1
|
Wang L, Li P, Zeng P, Xie D, Gao M, Ma L, Sohail A, Zeng F. Dosage suppressors of gpn2ts mutants and functional insights into the role of Gpn2 in budding yeast. PLoS One 2024; 19:e0313597. [PMID: 39642114 PMCID: PMC11623451 DOI: 10.1371/journal.pone.0313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024] Open
Abstract
Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated. To further explore these functions, we conducted large-scale multicopy suppressor screening in budding yeast, aiming to identify genes whose overexpression could mitigate the growth defects of a temperature-sensitive gpn2 mutant (gpn2ts) at restrictive temperatures. We screened over 30,000 colonies harboring plasmids from a multicopy genetic library and identified 31 genes that rescued the growth defects of gpn2ts to various extents. Notably, we found that PAB1, CDC5, and RGS2 reduced the drug sensitivity of gpn2ts mutants. These findings lay a theoretical foundation for future studies on the function of Gpn2 in RNAPII assembly.
Collapse
Affiliation(s)
- Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Pan Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Pei Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Lujie Ma
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Aamir Sohail
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
2
|
Sukhoplyasova M, Keith AM, Perrault EM, Vorndran HE, Jordahl AS, Yates ME, Pastor A, Li Z, Freaney ML, Deshpande RA, Adams DB, Guerriero CJ, Shi S, Kleyman TR, Kashlan OB, Brodsky JL, Buck TM. Lhs1 dependent ERAD is determined by transmembrane domain context. Biochem J 2023; 480:1459-1473. [PMID: 37702403 PMCID: PMC11040695 DOI: 10.1042/bcj20230075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
Transmembrane proteins have unique requirements to fold and integrate into the endoplasmic reticulum (ER) membrane. Most notably, transmembrane proteins must fold in three separate environments: extracellular domains fold in the oxidizing environment of the ER lumen, transmembrane domains (TMDs) fold within the lipid bilayer, and cytosolic domains fold in the reducing environment of the cytosol. Moreover, each region is acted upon by a unique set of chaperones and monitored by components of the ER associated quality control machinery that identify misfolded domains in each compartment. One factor is the ER lumenal Hsp70-like chaperone, Lhs1. Our previous work established that Lhs1 is required for the degradation of the unassembled α-subunit of the epithelial sodium channel (αENaC), but not the homologous β- and γENaC subunits. However, assembly of the ENaC heterotrimer blocked the Lhs1-dependent ER associated degradation (ERAD) of the α-subunit, yet the characteristics that dictate the specificity of Lhs1-dependent ERAD substrates remained unclear. We now report that Lhs1-dependent substrates share a unique set of features. First, all Lhs1 substrates appear to be unglycosylated, and second they contain two TMDs. Each substrate also contains orphaned or unassembled TMDs. Additionally, interfering with inter-subunit assembly of the ENaC trimer results in Lhs1-dependent degradation of the entire complex. Finally, our work suggests that Lhs1 is required for a subset of ERAD substrates that also require the Hrd1 ubiquitin ligase. Together, these data provide hints as to the identities of as-yet unconfirmed substrates of Lhs1 and potentially of the Lhs1 homolog in mammals, GRP170.
Collapse
Affiliation(s)
- Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Abigail M. Keith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emma M. Perrault
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E. Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ashutosh Pastor
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Zachary Li
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Michael L. Freaney
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Riddhi A. Deshpande
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - David B. Adams
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | | | - Shujie Shi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Ossama B. Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
3
|
Melnyk A, Lang S, Sicking M, Zimmermann R, Jung M. Co-chaperones of the Human Endoplasmic Reticulum: An Update. Subcell Biochem 2023; 101:247-291. [PMID: 36520310 DOI: 10.1007/978-3-031-14740-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In mammalian cells, the rough endoplasmic reticulum (ER) plays central roles in the biogenesis of extracellular plus organellar proteins and in various signal transduction pathways. For these reasons, the ER comprises molecular chaperones, which are involved in import, folding, assembly, export, plus degradation of polypeptides, and signal transduction components, such as calcium channels, calcium pumps, and UPR transducers plus adenine nucleotide carriers/exchangers in the ER membrane. The calcium- and ATP-dependent ER lumenal Hsp70, termed immunoglobulin heavy-chain-binding protein or BiP, is the central player in all these activities and involves up to nine different Hsp40-type co-chaperones, i.e., ER membrane integrated as well as ER lumenal J-domain proteins, termed ERj or ERdj proteins, two nucleotide exchange factors or NEFs (Grp170 and Sil1), and NEF-antagonists, such as MANF. Here we summarize the current knowledge on the ER-resident BiP/ERj chaperone network and focus on the interaction of BiP with the polypeptide-conducting and calcium-permeable Sec61 channel of the ER membrane as an example for BiP action and how its functional cycle is linked to ER protein import and various calcium-dependent signal transduction pathways.
Collapse
Affiliation(s)
- Armin Melnyk
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Mark Sicking
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany.
| | - Martin Jung
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Appl Environ Microbiol 2021; 87:e0058821. [PMID: 34105981 PMCID: PMC8315178 DOI: 10.1128/aem.00588-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High ethanol levels can severely inhibit the growth of yeast cells and fermentation productivity. The ethanologenic yeast Saccharomyces cerevisiae activates several well-defined cellular mechanisms of ethanol stress response (ESR); however, the involved regulatory control remains to be characterized. Here, we report a new transcription factor of ethanol stress adaptation called Znf1. It plays a central role in ESR by activating genes for glycerol and fatty acid production (GUP1, GPP1, GPP2, GPD1, GAT1, and OLE1) to preserve plasma membrane integrity. Importantly, Znf1 also activates genes implicated in cell wall biosynthesis (FKS1, SED1, and SMI1) and in the unfolded protein response (HSP30, HSP104, KAR1, and LHS1) to protect cells from proteotoxic stress. The znf1Δ strain displays increased sensitivity to ethanol, the endoplasmic reticulum (ER) stressor β-mercaptoethanol, and the cell wall-perturbing agent calcofluor white. To compensate for a defective cell wall, the strain lacking ZNF1 or its target SMI1 displays increased glycerol levels of 19.6% and 27.7%, respectively. Znf1 collectively regulates an intricate network of target genes essential for growth, protein refolding, and production of key metabolites. Overexpression of ZNF1 not only confers tolerance to high ethanol levels but also increases ethanol production by 4.6% (8.43 g/liter) or 2.8% (75.78 g/liter) when 2% or 20% (wt/vol) glucose, respectively, is used as a substrate, compared to that of the wild-type strain. The mutually stress-responsive transcription factors Msn2/4, Hsf1, and Yap1 are associated with some promoters of Znf1’s target genes to promote ethanol stress tolerance. In conclusion, this work implicates the novel regulator Znf1 in coordinating expression of ESR genes and illuminates the unifying transcriptional reprogramming during alcoholic fermentation. IMPORTANCE The yeast S. cerevisiae is a major microbe that is widely used in food and nonfood industries. However, accumulation of ethanol has a negative effect on its growth and limits ethanol production. The Znf1 transcription factor has been implicated as a key regulator of glycolysis and gluconeogenesis in the utilization of different carbon sources, including glucose, the most abundant sugar on earth, and nonfermentable substrates. Here, the role of Znf1 in ethanol stress response is defined. Znf1 actively reprograms expression of genes linked to the unfolded protein response (UPR), heat shock response, glycerol and carbohydrate metabolism, and biosynthesis of cell membrane and cell wall components. A complex interplay among transcription factors of ESR indicates transcriptional fine-tuning as the main mechanism of stress adaptation, and Znf1 plays a major regulatory role in the coordination. Understanding the adaptive ethanol stress mechanism is crucial to engineering robust yeast strains for enhanced stress tolerance or increased ethanol production.
Collapse
|
5
|
Lim J, Lee K, Im H. Reinforcement of the Unfolded Protein Response Mitigates Cytotoxicity Induced by Human Z‐Type α
1
‐Antitrypsin. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaeyeon Lim
- Department of Integrative Bioscience and Biotechnology Sejong University Seoul 05006 South Korea
| | - Kyunghee Lee
- Department of Chemistry Sejong University Seoul 05006 South Korea
| | - Hana Im
- Department of Integrative Bioscience and Biotechnology Sejong University Seoul 05006 South Korea
| |
Collapse
|
6
|
Iberahim NA, Sood N, Pradhan PK, van den Boom J, van West P, Trusch F. The chaperone Lhs1 contributes to the virulence of the fish-pathogenic oomycete Aphanomyces invadans. Fungal Biol 2020; 124:1024-1031. [PMID: 33213782 DOI: 10.1016/j.funbio.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022]
Abstract
Oomycetes are fungal-like eukaryotes and many of them are pathogens that threaten natural ecosystems and cause huge financial losses for the aqua- and agriculture industry. Amongst them, Aphanomyces invadans causes Epizootic Ulcerative Syndrome (EUS) in fish which can be responsible for up to 100% mortality in aquaculture. As other eukaryotic pathogens, in order to establish and promote an infection, A. invadans secretes proteins, which are predicted to overcome host defence mechanisms and interfere with other processes inside the host. We investigated the role of Lhs1 which is part of an ER-resident complex that generally promotes the translocation of proteins from the cytoplasm into the ER for further processing and secretion. Interestingly, proteomic studies reveal that only a subset of virulence factors are affected by the silencing of AiLhs1 in A. invadans indicating various secretion pathways for different proteins. Importantly, changes in the secretome upon silencing of AiLhs1 significantly reduces the virulence of A. invadans in the infection model Galleriamellonella. Furthermore, we show that AiLhs1 is important for the production of zoospores and their cluster formation. This renders proteins required for protein ER translocation as interesting targets for the potential development of alternative disease control strategies in agri- and aquaculture.
Collapse
Affiliation(s)
- Nurul Aqilah Iberahim
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom; Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030, Malaysia
| | - Neeraj Sood
- Fish Health Management Division, National Bureau of Fish Genetic Resources, 226002, Lucknow, India
| | - Pravata Kumar Pradhan
- Fish Health Management Division, National Bureau of Fish Genetic Resources, 226002, Lucknow, India
| | - Johannes van den Boom
- Molecular Biology I, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom.
| | - Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom.
| |
Collapse
|
7
|
Epithelial sodium channel biogenesis and quality control in the early secretory pathway. Curr Opin Nephrol Hypertens 2018; 27:364-372. [DOI: 10.1097/mnh.0000000000000438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
(Poly)phenol-digested metabolites modulate alpha-synuclein toxicity by regulating proteostasis. Sci Rep 2018; 8:6965. [PMID: 29725038 PMCID: PMC5934470 DOI: 10.1038/s41598-018-25118-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/11/2018] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease associated with the misfolding and aggregation of alpha-synuclein (aSyn). The molecular underpinnings of PD are still obscure, but nutrition may play an important role in the prevention, onset, and disease progression. Dietary (poly)phenols revert and prevent age-related cognitive decline and neurodegeneration in model systems. However, only limited attempts were made to evaluate the impact of digestion on the bioactivities of (poly)phenols and determine their mechanisms of action. This constitutes a challenge for the development of (poly)phenol-based nutritional therapies. Here, we subjected (poly)phenols from Arbutus unedo to in vitro digestion and tested the products in cell models of PD based on the cytotoxicity of aSyn. The (poly)phenol-digested metabolites from A. unedo leaves (LPDMs) effectively counteracted aSyn and H2O2 toxicity in yeast and human cells, improving viability by reducing aSyn aggregation and inducing its clearance. In addition, LPDMs modulated pathways associated with aSyn toxicity, such as oxidative stress, endoplasmic reticulum (ER) stress, mitochondrial impairment, and SIR2 expression. Overall, LPDMs reduced aSyn toxicity, enhanced the efficiency of ER-associated protein degradation by the proteasome and autophagy, and reduced oxidative stress. In total, our study opens novel avenues for the exploitation of (poly)phenols in nutrition and health.
Collapse
|
9
|
Buck TM, Jordahl AS, Yates ME, Preston GM, Cook E, Kleyman TR, Brodsky JL. Interactions between intersubunit transmembrane domains regulate the chaperone-dependent degradation of an oligomeric membrane protein. Biochem J 2017; 474:357-376. [PMID: 27903760 PMCID: PMC5423784 DOI: 10.1042/bcj20160760] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022]
Abstract
In the kidney, the epithelial sodium channel (ENaC) regulates blood pressure through control of sodium and volume homeostasis, and in the lung, ENaC regulates the volume of airway and alveolar fluids. ENaC is a heterotrimer of homologous α-, β- and γ-subunits, and assembles in the endoplasmic reticulum (ER) before it traffics to and functions at the plasma membrane. Improperly folded or orphaned ENaC subunits are subject to ER quality control and targeted for ER-associated degradation (ERAD). We previously established that a conserved, ER lumenal, molecular chaperone, Lhs1/GRP170, selects αENaC, but not β- or γ-ENaC, for degradation when the ENaC subunits were individually expressed. We now find that when all three subunits are co-expressed, Lhs1-facilitated ERAD was blocked. To determine which domain-domain interactions between the ENaC subunits are critical for chaperone-dependent quality control, we employed a yeast model and expressed chimeric α/βENaC constructs in the context of the ENaC heterotrimer. We discovered that the βENaC transmembrane domain was sufficient to prevent the Lhs1-dependent degradation of the α-subunit in the context of the ENaC heterotrimer. Our work also found that Lhs1 delivers αENaC for proteasome-mediated degradation after the protein has become polyubiquitinated. These data indicate that the Lhs1 chaperone selectively recognizes an immature form of αENaC, one which has failed to correctly assemble with the other channel subunits via its transmembrane domain.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Alexa S Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Megan E Yates
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - G Michael Preston
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Emily Cook
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Thomas R Kleyman
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, U.S.A
| |
Collapse
|
10
|
Behnke J, Feige MJ, Hendershot LM. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 2015; 427:1589-608. [PMID: 25698114 DOI: 10.1016/j.jmb.2015.02.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022]
Abstract
BiP (immunoglobulin heavy-chain binding protein) is the endoplasmic reticulum (ER) orthologue of the Hsp70 family of molecular chaperones and is intricately involved in most functions of this organelle through its interactions with a variety of substrates and regulatory proteins. Like all Hsp70 family members, the ability of BiP to bind and release unfolded proteins is tightly regulated by a cycle of ATP binding, hydrolysis, and nucleotide exchange. As a characteristic of the Hsp70 family, multiple DnaJ-like co-factors can target substrates to BiP and stimulate its ATPase activity to stabilize the binding of BiP to substrates. However, only in the past decade have nucleotide exchange factors for BiP been identified, which has shed light not only on the mechanism of BiP-assisted folding in the ER but also on Hsp70 family members that reside throughout the cell. We will review the current understanding of the ATPase cycle of BiP in the unique environment of the ER and how it is regulated by the nucleotide exchange factors, Grp170 (glucose-regulated protein of 170kDa) and Sil1, both of which perform unanticipated roles in various biological functions and disease states.
Collapse
Affiliation(s)
- Julia Behnke
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
11
|
Maity S, Basak T, Bhat A, Bhasin N, Ghosh A, Chakraborty K, Sengupta S. Cross-compartment proteostasis regulation during redox imbalance induced ER stress. Proteomics 2014; 14:1724-36. [DOI: 10.1002/pmic.201300449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/18/2014] [Accepted: 05/12/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Shuvadeep Maity
- CSIR-Institute of Genomics and Integrative Biology; New Delhi India
| | - Trayambak Basak
- CSIR-Institute of Genomics and Integrative Biology; New Delhi India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road Campus; New Delhi India
| | - Ajay Bhat
- CSIR-Institute of Genomics and Integrative Biology; New Delhi India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road Campus; New Delhi India
| | - Namrata Bhasin
- CSIR-Institute of Genomics and Integrative Biology; New Delhi India
| | - Asmita Ghosh
- CSIR-Institute of Genomics and Integrative Biology; New Delhi India
| | - Kausik Chakraborty
- CSIR-Institute of Genomics and Integrative Biology; New Delhi India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road Campus; New Delhi India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology; New Delhi India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road Campus; New Delhi India
| |
Collapse
|
12
|
Vogl T, Thallinger GG, Zellnig G, Drew D, Cregg JM, Glieder A, Freigassner M. Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression. N Biotechnol 2014; 31:538-52. [PMID: 24594271 DOI: 10.1016/j.nbt.2014.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/20/2014] [Accepted: 02/23/2014] [Indexed: 01/13/2023]
Abstract
Membrane proteins are the largest group of human drug targets and are also used as biocatalysts. However, due to their complexity, efficient expression remains a bottleneck for high level production. In recent years, the methylotrophic yeast Pichia pastoris has emerged as one of the most commonly used expression systems for membrane protein production. Here, we have analysed the transcriptomes of P. pastoris strains producing different classes of membrane proteins (mitochondrial, ER/Golgi and plasma membrane localized) to understand the cellular response and to identify targets to engineer P. pastoris towards an improved chassis for membrane protein production. Microarray experiments revealed varying transcriptional responses depending on the enzymatic activity, subcellular localization and physiological role of the membrane proteins. While an alternative oxidase evoked primarily a response within the mitochondria, the overexpression of transporters entering the secretory pathway had a wide effect on lipid metabolism and induced the upregulation of the UPR (unfolded protein response) transcription factor Hac1p. Coexpression of P. pastoris endogenous HAC1 increased the levels of ER-resident membrane proteins 1.5- to 2.1-fold. Subsequent transcriptome analysis of HAC1 coexpression revealed an upregulation of the folding machinery correlating with an expansion of the ER membrane capacity, thus boosting membrane protein production. Hence, our study has helped to elucidate the cellular response of P. pastoris to the expression of different classes of membrane proteins and led specifically to new insights into the effect of PpHac1p on membrane proteins entering the secretory pathway.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Gerhard G Thallinger
- Institute for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14/5, 8010 Graz, Austria; Omics Center Graz, Stiftingtalstrasse 24, 8036 Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14/5, 8010 Graz, Austria
| | - Guenther Zellnig
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, 8010 Graz, Austria
| | - David Drew
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James M Cregg
- Keck Graduate Institute of Applied Life Sciences, 535 Watson Drive, Claremont, CA 91711, USA
| | - Anton Glieder
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14/5, 8010 Graz, Austria
| | - Maria Freigassner
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria.
| |
Collapse
|
13
|
Abstract
The secretory pathway is responsible for the synthesis, folding, and delivery of a diverse array of cellular proteins. Secretory protein synthesis begins in the endoplasmic reticulum (ER), which is charged with the tasks of correctly integrating nascent proteins and ensuring correct post-translational modification and folding. Once ready for forward traffic, proteins are captured into ER-derived transport vesicles that form through the action of the COPII coat. COPII-coated vesicles are delivered to the early Golgi via distinct tethering and fusion machineries. Escaped ER residents and other cycling transport machinery components are returned to the ER via COPI-coated vesicles, which undergo similar tethering and fusion reactions. Ultimately, organelle structure, function, and cell homeostasis are maintained by modulating protein and lipid flux through the early secretory pathway. In the last decade, structural and mechanistic studies have added greatly to the strong foundation of yeast genetics on which this field was built. Here we discuss the key players that mediate secretory protein biogenesis and trafficking, highlighting recent advances that have deepened our understanding of the complexity of this conserved and essential process.
Collapse
|
14
|
Buck TM, Plavchak L, Roy A, Donnelly BF, Kashlan OB, Kleyman TR, Subramanya AR, Brodsky JL. The Lhs1/GRP170 chaperones facilitate the endoplasmic reticulum-associated degradation of the epithelial sodium channel. J Biol Chem 2013; 288:18366-80. [PMID: 23645669 DOI: 10.1074/jbc.m113.469882] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel, ENaC, plays a critical role in maintaining salt and water homeostasis, and not surprisingly defects in ENaC function are associated with disease. Like many other membrane-spanning proteins, this trimeric protein complex folds and assembles inefficiently in the endoplasmic reticulum (ER), which results in a substantial percentage of the channel being targeted for ER-associated degradation (ERAD). Because the spectrum of factors that facilitates the degradation of ENaC is incomplete, we developed yeast expression systems for each ENaC subunit. We discovered that a conserved Hsp70-like chaperone, Lhs1, is required for maximal turnover of the ENaC α subunit. By expressing Lhs1 ATP binding mutants, we also found that the nucleotide exchange properties of this chaperone are dispensable for ENaC degradation. Consistent with the precipitation of an Lhs1-αENaC complex, Lhs1 holdase activity was instead most likely required to support the ERAD of αENaC. Moreover, a complex containing the mammalian Lhs1 homolog GRP170 and αENaC co-precipitated, and GRP170 also facilitated ENaC degradation in human, HEK293 cells, and in a Xenopus oocyte expression system. In both yeast and higher cell types, the effect of Lhs1 on the ERAD of αENaC was selective for the unglycosylated form of the protein. These data establish the first evidence that Lhs1/Grp170 chaperones can act as mediators of ERAD substrate selection.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
16
|
Feature Identification of Compensatory Gene Pairs without Sequence Homology in Yeast. Comp Funct Genomics 2012; 2012:653174. [PMID: 22952430 PMCID: PMC3431050 DOI: 10.1155/2012/653174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/09/2012] [Accepted: 07/19/2012] [Indexed: 11/17/2022] Open
Abstract
Genetic robustness refers to a compensatory mechanism for buffering deleterious mutations or environmental variations. Gene duplication has been shown to provide such functional backups. However, the overall contribution of duplication-based buffering for genetic robustness is rather small. In this study, we investigated whether transcriptional compensation also exists among genes that share similar functions without sequence homology. A set of nonhomologous synthetic-lethal gene pairs was assessed by using a coexpression network, protein-protein interactions, and other types of genetic interactions in yeast. Our results are notably different from those of previous studies on buffering paralogs. The low expression similarity and the conditional coexpression alone do not play roles in identifying the functionally compensatory genes. Additional properties such as synthetic-lethal interaction, the ratio of shared common interacting partners, and the degree of coregulation were, at least in part, necessary to extract functional compensatory genes. Our network-based approach is applicable to select several well-documented cases of compensatory gene pairs and a set of new pairs. The results suggest that transcriptional reprogramming plays a limited role in functional compensation among nonhomologous genes. Our study aids in understanding the mechanism and features of functional compensation more in detail.
Collapse
|
17
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
18
|
Andréasson C, Rampelt H, Fiaux J, Druffel-Augustin S, Bukau B. The endoplasmic reticulum Grp170 acts as a nucleotide exchange factor of Hsp70 via a mechanism similar to that of the cytosolic Hsp110. J Biol Chem 2010; 285:12445-53. [PMID: 20177057 DOI: 10.1074/jbc.m109.096735] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grp170 and Hsp110 proteins constitute two evolutionary distinct branches of the Hsp70 family that share the ability to function as nucleotide exchange factors (NEFs) for canonical Hsp70s. Although the NEF mechanism of the cytoplasmic Hsp110s is well understood, little is known regarding the mechanism used by Grp170s in the endoplasmic reticulum. In this study, we compare the yeast Grp170 Lhs1 with the yeast Hsp110 Sse1. We find that residues important for Sse1 NEF activity are conserved in Lhs1 and that mutations in these residues in Lhs1 compromise NEF activity. As previously reported for Sse1, Lhs1 requires ATP to trigger nucleotide exchange in its cognate Hsp70 partner Kar2. Using site-specific cross-linking, we show that the nucleotide-binding domain (NBD) of Lhs1 interacts with the NBD of Kar2 face to face, and that Lhs1 contacts the side of the Kar2 NBD via its protruding C-terminal alpha-helical domain. To directly address the mechanism of nucleotide exchange, we have compared the hydrogen-exchange characteristics of a yeast Hsp70 NBD (Ssa1) in complex with either Sse1 or Lhs1. We find that Lhs1 and Sse1 induce very similar changes in the conformational dynamics in the Hsp70. Thus, our findings demonstrate that despite some differences between Hsp110 and Grp170 proteins, they use a similar mechanism to trigger nucleotide exchange.
Collapse
Affiliation(s)
- Claes Andréasson
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
19
|
de Keyzer J, Steel GJ, Hale SJ, Humphries D, Stirling CJ. Nucleotide binding by Lhs1p is essential for its nucleotide exchange activity and for function in vivo. J Biol Chem 2009; 284:31564-71. [PMID: 19759005 PMCID: PMC2797226 DOI: 10.1074/jbc.m109.055160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Protein translocation and folding in the endoplasmic reticulum of Saccharomyces cerevisiae involves two distinct Hsp70 chaperones, Lhs1p and Kar2p. Both proteins have the characteristic domain structure of the Hsp70 family consisting of a conserved N-terminal nucleotide binding domain and a C-terminal substrate binding domain. Kar2p is a canonical Hsp70 whose substrate binding activity is regulated by cochaperones that promote either ATP hydrolysis or nucleotide exchange. Lhs1p is a member of the Grp170/Lhs1p subfamily of Hsp70s and was previously shown to function as a nucleotide exchange factor (NEF) for Kar2p. Here we show that in addition to this NEF activity, Lhs1p can function as a holdase that prevents protein aggregation in vitro. Analysis of the nucleotide requirement of these functions demonstrates that nucleotide binding to Lhs1p stimulates the interaction with Kar2p and is essential for NEF activity. In contrast, Lhs1p holdase activity is nucleotide-independent and unaffected by mutations that interfere with ATP binding and NEF activity. In vivo, these mutants show severe protein translocation defects and are unable to support growth despite the presence of a second Kar2p-specific NEF, Sil1p. Thus, Lhs1p-dependent nucleotide exchange activity is vital for ER protein biogenesis in vivo.
Collapse
Affiliation(s)
- Jeanine de Keyzer
- Faculty of Life Sciences, A4040 Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Yi M, Chi MH, Khang CH, Park SY, Kang S, Valent B, Lee YH. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. THE PLANT CELL 2009; 21:681-95. [PMID: 19252083 PMCID: PMC2660637 DOI: 10.1105/tpc.107.055988] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/31/2008] [Accepted: 02/09/2009] [Indexed: 05/20/2023]
Abstract
In planta secretion of fungal pathogen proteins, including effectors destined for the plant cell cytoplasm, is critical for disease progression. However, little is known about the endoplasmic reticulum (ER) secretion mechanisms used by these pathogens. To determine if normal ER function is crucial for fungal pathogenicity, Magnaporthe oryzae genes encoding proteins homologous to yeast Lhs1p and Kar2p, members of the heat shock protein 70 family in Saccharomyces cerevisiae, were cloned and characterized. Like their yeast counterparts, both LHS1 and KAR2 proteins localized in the ER and functioned in an unfolded protein response (UPR) similar to the yeast UPR. Mutants produced by disruption of LHS1 were viable but showed a defect in the translocation of proteins across the ER membrane and reduced activities of extracellular enzymes. The Deltalhs1 mutant was severely impaired not only in conidiation, but also in both penetration and biotrophic invasion in susceptible rice (Oryza sativa) plants. This mutant also had defects in the induction of the Pi-ta resistance gene-mediated hypersensitive response and in the accumulation of fluorescently-labeled secreted effector proteins in biotrophic interfacial complexes. Our results suggest that proper processing of secreted proteins, including effectors, by chaperones in the ER is requisite for successful disease development and for determining host-pathogen compatibility via the gene-for-gene interaction.
Collapse
Affiliation(s)
- Mihwa Yi
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Haataja L, Gurlo T, Huang CJ, Butler PC. Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 2008; 29:303-16. [PMID: 18314421 PMCID: PMC2528855 DOI: 10.1210/er.2007-0037] [Citation(s) in RCA: 468] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2DM) is characterized by insulin resistance, defective insulin secretion, loss of beta-cell mass with increased beta-cell apoptosis and islet amyloid. The islet amyloid is derived from islet amyloid polypeptide (IAPP, amylin), a protein coexpressed and cosecreted with insulin by pancreatic beta-cells. In common with other amyloidogenic proteins, IAPP has the propensity to form membrane permeant toxic oligomers. Accumulating evidence suggests that these toxic oligomers, rather than the extracellular amyloid form of these proteins, are responsible for loss of neurons in neurodegenerative diseases. In this review we discuss emerging evidence to suggest that formation of intracellular IAPP oligomers may contribute to beta-cell loss in T2DM. The accumulated evidence permits the amyloid hypothesis originally developed for neurodegenerative diseases to be reformulated as the toxic oligomer hypothesis. However, as in neurodegenerative diseases, it remains unclear exactly why amyloidogenic proteins form oligomers in vivo, what their exact structure is, and to what extent these oligomers play a primary or secondary role in the cytotoxicity in what are now often called unfolded protein diseases.
Collapse
Affiliation(s)
- Leena Haataja
- Larry Hillblom Islet Research Center, UCLA David Geffen School of Medicine, 900 Weyburn Place #A, Los Angeles, California 90024-2852, USA
| | | | | | | |
Collapse
|
22
|
Shaner L, Morano KA. All in the family: atypical Hsp70 chaperones are conserved modulators of Hsp70 activity. Cell Stress Chaperones 2007; 12:1-8. [PMID: 17441502 PMCID: PMC1852889 DOI: 10.1379/csc-245r.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Divergent relatives of the Hsp70 protein chaperone such as the Hsp110 and Grp170 families have been recognized for some time, yet their biochemical roles remained elusive. Recent work has revealed that these "atypical" Hsp70s exist in stable complexes with classic Hsp70s where they exert a powerful nucleotide-exchange activity that synergizes with Hsp40/DnaJ-type cochaperones to dramatically accelerate Hsp70 nucleotide cycling. This represents a novel evolutionary transition from an independent protein-folding chaperone to what appears to be a dedicated cochaperone. Contributions of the atypical Hsp70s to established cellular roles for Hsp70 now must be deciphered.
Collapse
Affiliation(s)
- Lance Shaner
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
23
|
Famá MC, Raden D, Zacchi N, Lemos DR, Robinson AS, Silberstein S. The Saccharomyces cerevisiae YFR041C/ERJ5 gene encoding a type I membrane protein with a J domain is required to preserve the folding capacity of the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:232-42. [PMID: 17157937 PMCID: PMC1847348 DOI: 10.1016/j.bbamcr.2006.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/13/2006] [Accepted: 10/17/2006] [Indexed: 11/25/2022]
Abstract
YFR041C/ERJ5 was identified in Saccharomyces cerevisiae as a gene regulated by the unfolded protein response pathway (UPR). The open reading frame of the gene has a J domain characteristic of the DnaJ chaperone family of proteins that regulate the activity of Hsp70 chaperones. We determined the expression and topology of Erj5p, a type I membrane protein with a J domain in the lumen of the endoplasmic reticulum (ER) that colocalizes with Kar2p, the major Hsp70 in the yeast ER. We identified synthetic interactions of Deltaerj5 with mutations in genes involved in protein folding in the ER (kar2-159, Deltascj1Deltajem1) and in the induction of the unfolded protein response (Deltaire1). Loss of Erj5p in yeast cells with impaired ER protein folding capacity increased sensitivity to agents that cause ER stress. We identified the ERJ5 mRNA and confirmed that agents that promote accumulation of misfolded proteins in the ER regulate its abundance. We found that loss of the non-essential ERJ5 gene leads to a constitutively induced UPR, indicating that ERJ5 is required for maintenance of an optimal folding environment in the yeast ER.
Collapse
Affiliation(s)
- M. Carla Famá
- IBYF-CONICET, Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - David Raden
- 259 Colburn Laboratory, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Nicolás Zacchi
- IBYF-CONICET, Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Darío R. Lemos
- IBYF-CONICET, Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Anne S. Robinson
- 259 Colburn Laboratory, Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Susana Silberstein
- IBYF-CONICET, Cátedra de Microbiología, Facultad de Agronomía, Universidad de Buenos Aires, Avda. San Martín 4453, C1417DSE Buenos Aires, Argentina
- * Corresponding author. Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, (C1428EHA), Buenos Aires, Argentina. Fax: 54-11-4576-3321. E-mail address:
| |
Collapse
|
24
|
Protchenko O, Rodriguez-Suarez R, Androphy R, Bussey H, Philpott CC. A screen for genes of heme uptake identifies the FLC family required for import of FAD into the endoplasmic reticulum. J Biol Chem 2006; 281:21445-21457. [PMID: 16717099 DOI: 10.1074/jbc.m512812200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although Candida albicans and Saccharomyces cerevisiae express very similar systems of iron uptake, these species differ in their capacity to use heme as a nutritional iron source. Whereas C. albicans efficiently takes up heme, S. cerevisiae grows poorly on media containing heme as the sole source of iron. We identified a gene from C. albicans that would enhance heme uptake when expressed in S. cerevisiae. Overexpression of CaFLC1 (for flavin carrier 1) stimulated the growth of S. cerevisiae on media containing heme iron. In C. albicans, deletion of both alleles of CaFLC1 resulted in a decrease in heme uptake activity, whereas overexpression of CaFLC1 resulted in an increase in heme uptake. The S. cerevisiae genome contains three genes with homology to CaFLC1, and two of these, termed FLC1 and FLC2, also stimulated growth on heme when overexpressed in S. cerevisiae. The S. cerevisiae Flc proteins were detected in the endoplasmic reticulum and the FLC genes encoded an essential function, as strains deleted for either FLC1 or FLC2 were viable, but deletion of both FLC1 and FLC2 was synthetically lethal. FLC gene deletion resulted in pleiotropic phenotypes related to defects in cell wall integrity. High copy suppressors of this synthetic lethality included three mannosyltransferases, VAN1, KTR4, and HOC1. FLC deletion strains exhibited loss of cell wall mannose phosphates, defects in cell wall assembly, and delayed maturation of carboxypeptidase Y. Permeabilized cells lacking FLC proteins exhibited dramatic loss of FAD import activity. We propose that the FLC genes are required for import of FAD into the lumen of the endoplasmic reticulum, where it is required for disulfide bond formation.
Collapse
Affiliation(s)
- Olga Protchenko
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Rachel Androphy
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Howard Bussey
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Caroline C Philpott
- Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
25
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|
26
|
Cheng Z, Jiang Y, Mandon EC, Gilmore R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. ACTA ACUST UNITED AC 2005; 168:67-77. [PMID: 15631991 PMCID: PMC2171681 DOI: 10.1083/jcb.200408188] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoplasmic surface of Sec61p is the binding site for the ribosome and has been proposed to interact with the signal recognition particle receptor during targeting of the ribosome nascent chain complex to the translocation channel. Point mutations in cytoplasmic loops six (L6) and eight (L8) of yeast Sec61p cause reductions in growth rates and defects in the translocation of nascent polypeptides that use the cotranslational translocation pathway. Sec61 heterotrimers isolated from the L8 sec61 mutants have a greatly reduced affinity for 80S ribosomes. Cytoplasmic accumulation of protein precursors demonstrates that the initial contact between the large ribosomal subunit and the Sec61 complex is important for efficient insertion of a nascent polypeptide into the translocation pore. In contrast, point mutations in L6 of Sec61p inhibit cotranslational translocation without significantly reducing the ribosome-binding activity, indicating that the L6 and L8 sec61 mutants affect different steps in the cotranslational translocation pathway.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
27
|
Schröder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005; 569:29-63. [PMID: 15603751 DOI: 10.1016/j.mrfmmm.2004.06.056] [Citation(s) in RCA: 1337] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 06/10/2004] [Indexed: 02/08/2023]
Abstract
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK
| | | |
Collapse
|
28
|
Abstract
Hsp70s are a ubiquitous family of molecular chaperones involved in many cellular processes. Two Hsp70s, Lhs1p and Kar2p, are required for protein biogenesis in the yeast endoplasmic reticulum. Here, we found that Lhs1p and Kar2p specifically interacted to couple, and coordinately regulate, their respective activities. Lhs1p stimulated Kar2p by providing a specific nucleotide exchange activity, whereas Kar2p reciprocally activated the Lhs1p adenosine triphosphatase (ATPase). The two ATPase activities are coupled, and their coordinated regulation is essential for normal function in vivo.
Collapse
Affiliation(s)
- Gregor J Steel
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
29
|
Bies C, Blum R, Dudek J, Nastainczyk W, Oberhauser S, Jung M, Zimmermann R. Characterization of pancreatic ERj3p, ahomolog of yeast DnaJ-like protein Scj1p. Biol Chem 2004; 385:389-95. [PMID: 15195998 DOI: 10.1515/bc.2004.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously identified in the human EST sequence data base four overlapping clones that could be aligned with both a predicted protein sequence, deduced from the C. elegans genomic sequence, and partial amino acid sequences, obtained for a protein from canine pancreatic microsomes. We suggested that these proteins are homologs of yeast microsomal and DnaJ-like protein Scj1p and termed them ERj3p. Here we verified the predicted protein sequence of human ERj3p by sequence analysis of the corresponding cDNA. Multiple alignment of related sequences identified these proteins as true homologs of yeast Scj1p. Biochemical analysis of the canine protein characterized ERj3p as a soluble glycoprotein of the pancreatic endoplasmic reticulum. This pancreatic DnaJ-like protein was shown to interact with lumenal DnaK-like proteins, such as BiP. Furthermore, we found that ERj3p interacts with SDF2L1 protein that may be involved in protein O-glycosylation. We propose that ERj3p represents a cochaperone of DnaK-like chaperones of the mammalian endoplasmic reticulum and is involved in folding and maturation of newly synthesized proteins.
Collapse
Affiliation(s)
- Christiane Bies
- Medizinische Biochemie and Molekularbiologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Protchenko O, Philpott CC. Regulation of intracellular heme levels by HMX1, a homologue of heme oxygenase, in Saccharomyces cerevisiae. J Biol Chem 2003; 278:36582-7. [PMID: 12840010 DOI: 10.1074/jbc.m306584200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Saccharomyces cerevisiae responds to iron deprivation by increasing the transcription of genes involved in the uptake of environmental iron and in the mobilization of vacuolar iron stores. HMX1 is also transcribed under conditions of iron deprivation and is under the control of the major iron-dependent transcription factor, Aft1p. Although Hmx1p exhibits limited homology to heme oxygenases, it has not been shown to be enzymatically active. We find that Hmx1p is a resident protein of the endoplasmic reticulum and that isolated yeast membranes contain a heme degradation activity that is dependent on HMX1. Hmx1p facilitates the capacity of cells to use heme as a nutritional iron source. Deletion of HMX1 leads to defects in iron accumulation and to expansion of intracellular heme pools. These alterations in the regulatory pools of iron lead to activation of Aft1p and inappropriate activation of heme-dependent transcription factors. Expression of HmuO, the heme oxygenase from Corynebacterium diphtheriae, restores iron and heme levels, as well as Aft1p- and heme-dependent transcriptional activities, to those of wild type cells, indicating that the heme degradation activity associated with Hmx1p is important in mediating iron and heme homeostasis. Hmx1p promotes both the reutilization of heme iron and the regulation of heme-dependent transcription during periods of iron scarcity.
Collapse
Affiliation(s)
- Olga Protchenko
- Liver Diseases Section, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1800, USA
| | | |
Collapse
|
31
|
Dudek J, Volkmer J, Bies C, Guth S, Müller A, Lerner M, Feick P, Schäfer KH, Morgenstern E, Hennessy F, Blatch GL, Janoscheck K, Heim N, Scholtes P, Frien M, Nastainczyk W, Zimmermann R. A novel type of co-chaperone mediates transmembrane recruitment of DnaK-like chaperones to ribosomes. EMBO J 2002; 21:2958-67. [PMID: 12065409 PMCID: PMC126068 DOI: 10.1093/emboj/cdf315] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2001] [Revised: 04/02/2002] [Accepted: 04/29/2002] [Indexed: 11/12/2022] Open
Abstract
Recently, the homolog of yeast protein Sec63p was identified in dog pancreas microsomes. This pancreatic DnaJ-like protein was shown to be an abundant protein, interacting with both the Sec61p complex and lumenal DnaK-like proteins, such as BiP. The pancreatic endoplasmic reticulum contains a second DnaJ-like membrane protein, which had been termed Mtj1p in mouse. Mtj1p is present in pancreatic microsomes at a lower concentration than Sec63p but has a higher affinity for BiP. In addition to a lumenal J-domain, Mtj1p contains a single transmembrane domain and a cytosolic domain which is in close contact with translating ribosomes and appears to have the ability to modulate translation. The interaction with ribosomes involves a highly charged region within the cytosolic domain of Mtj1p. We propose that Mtj1p represents a novel type of co-chaperone, mediating transmembrane recruitment of DnaK-like chaperones to ribosomes and, possibly, transmembrane signaling between ribosomes and DnaK-like chaperones of the endoplasmic reticulum.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Feick
- Medizinische Biochemie und Molekularbiologie,
Physiologie, Anatomie and Zellbiologie, Universität des Saarlandes, D-66421 Homburg, Germany and Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa Corresponding author e-mail:
| | - Karl-Herbert Schäfer
- Medizinische Biochemie und Molekularbiologie,
Physiologie, Anatomie and Zellbiologie, Universität des Saarlandes, D-66421 Homburg, Germany and Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa Corresponding author e-mail:
| | - Eberhard Morgenstern
- Medizinische Biochemie und Molekularbiologie,
Physiologie, Anatomie and Zellbiologie, Universität des Saarlandes, D-66421 Homburg, Germany and Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa Corresponding author e-mail:
| | - Fritha Hennessy
- Medizinische Biochemie und Molekularbiologie,
Physiologie, Anatomie and Zellbiologie, Universität des Saarlandes, D-66421 Homburg, Germany and Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa Corresponding author e-mail:
| | - Gregory L. Blatch
- Medizinische Biochemie und Molekularbiologie,
Physiologie, Anatomie and Zellbiologie, Universität des Saarlandes, D-66421 Homburg, Germany and Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa Corresponding author e-mail:
| | | | | | | | | | | | - Richard Zimmermann
- Medizinische Biochemie und Molekularbiologie,
Physiologie, Anatomie and Zellbiologie, Universität des Saarlandes, D-66421 Homburg, Germany and Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa Corresponding author e-mail:
| |
Collapse
|
32
|
Fewell SW, Travers KJ, Weissman JS, Brodsky JL. The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 2002; 35:149-91. [PMID: 11700281 DOI: 10.1146/annurev.genet.35.102401.090313] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endoplasmic reticulum (ER) serves as a way-station during the biogenesis of nearly all secreted proteins, and associated with or housed within the ER are factors required to catalyze their import into the ER and facilitate their folding. To ensure that only properly folded proteins are secreted and to temper the effects of cellular stress, the ER can target aberrant proteins for degradation and/or adapt to the accumulation of misfolded proteins. Molecular chaperones play critical roles in each of these phenomena.
Collapse
Affiliation(s)
- S W Fewell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
33
|
Conesa A, Punt PJ, van Luijk N, van den Hondel CA. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 2001; 33:155-71. [PMID: 11495573 DOI: 10.1006/fgbi.2001.1276] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The high capacity of the secretion machinery of filamentous fungi has been widely exploited for the production of homologous and heterologous proteins; however, our knowledge of the fungal secretion pathway is still at an early stage. Most of the knowledge comes from models developed in yeast and higher eukaryotes, which have served as reference for the studies on fungal species. In this review we compile the data accumulated in recent years on the molecular basis of fungal secretion, emphasizing the relevance of these data for the biotechnological use of the fungal cell and indicating how this information has been applied in attempts to create improved production strains. We also present recent emerging approaches that promise to provide answers to fundamental questions on the molecular genetics of the fungal secretory pathway.
Collapse
Affiliation(s)
- A Conesa
- Department of Applied Microbiology and Gene Technology, TNO Nutrition and Food Research, Zeist, 3700 AJ, The Netherlands
| | | | | | | |
Collapse
|
34
|
Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 2001; 153:1061-70. [PMID: 11381090 PMCID: PMC2174341 DOI: 10.1083/jcb.153.5.1061] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is the process by which aberrant proteins in the ER lumen are exported back to the cytosol and degraded by the proteasome. Although ER molecular chaperones are required for ERAD, their specific role(s) in this process have been ill defined. To understand how one group of interacting lumenal chaperones facilitates ERAD, the fates of pro-alpha-factor and a mutant form of carboxypeptidase Y were examined both in vivo and in vitro. We found that these ERAD substrates are stabilized and aggregate in the ER at elevated temperatures when BiP, the lumenal Hsp70 molecular chaperone, is mutated, or when the genes encoding the J domain-containing proteins Jem1p and Scj1p are deleted. In contrast, deletion of JEM1 and SCJ1 had little effect on the ERAD of a membrane protein. These results suggest that one role of the BiP, Jem1p, and Scj1p chaperones is to maintain lumenal ERAD substrates in a retrotranslocation-competent state.
Collapse
Affiliation(s)
- Shuh-ichi Nishikawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Sheara W. Fewell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Yoshihito Kato
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
35
|
Tyson JR, Stirling CJ. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 2000; 19:6440-52. [PMID: 11101517 PMCID: PMC305876 DOI: 10.1093/emboj/19.23.6440] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2000] [Revised: 10/16/2000] [Accepted: 10/18/2000] [Indexed: 01/22/2023] Open
Abstract
Lhs1p is an Hsp70-related chaperone localized in the endoplasmic reticulum (ER) lumen. Deltalhs1 mutant cells are viable but are constitutively induced for the unfolded protein response (UPR). Here, we demonstrate a severe growth defect in Deltaire1Deltalhs1 double mutant cells in which the UPR can no longer be induced. In addition, we have identified a UPR- regulated gene, SIL1, whose overexpression is sufficient to suppress the Deltaire1Deltalhs1 growth defect. SIL1 encodes an ER-localized protein that interacts directly with the ATPase domain of Kar2p (BiP), suggesting some role in modulating the activity of this vital chaperone. SIL1 is a non-essential gene but the Deltalhs1Deltasil1 double mutation is lethal and correlates with a complete block of protein translocation into the ER. We conclude that the IRE1-dependent induction of SIL1 is a vital adaptation in Deltalhs1 cells, and that the activities associated with the Lhs1 and Sil1 proteins constitute an essential function required for protein translocation into the ER. The Sil1 protein appears widespread amongst eukaryotes, with homologues in Yarrowia lipolytica (Sls1p), Drosophila and mammals.
Collapse
Affiliation(s)
- J R Tyson
- School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
36
|
Ng DT, Spear ED, Walter P. The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 2000; 150:77-88. [PMID: 10893258 PMCID: PMC2185565 DOI: 10.1083/jcb.150.1.77] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2000] [Accepted: 05/31/2000] [Indexed: 11/22/2022] Open
Abstract
The unfolded protein response (UPR) is an intracellular signaling pathway that relays signals from the lumen of the ER to activate target genes in the nucleus. We devised a genetic screen in the yeast Saccharomyces cerevisiae to isolate mutants that are dependent on activation of the pathway for viability. Using this strategy, we isolated mutants affecting various aspects of ER function, including protein translocation, folding, glycosylation, glycosylphosphatidylinositol modification, and ER-associated protein degradation (ERAD). Extending results gleaned from the genetic studies, we demonstrate that the UPR regulates trafficking of proteins at the translocon to balance the needs of biosynthesis and ERAD. The approach also revealed connections of the UPR to other regulatory pathways. In particular, we identified SON1/RPN4, a recently described transcriptional regulator for genes encoding subunits of the proteasome. Our genetic strategy, therefore, offers a powerful means to provide insight into the physiology of the UPR and to identify novel genes with roles in many aspects of secretory and membrane protein biogenesis.
Collapse
Affiliation(s)
- D T Ng
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
37
|
Tyedmers J, Lerner M, Bies C, Dudek J, Skowronek MH, Haas IG, Heim N, Nastainczyk W, Volkmer J, Zimmermann R. Homologs of the yeast Sec complex subunits Sec62p and Sec63p are abundant proteins in dog pancreas microsomes. Proc Natl Acad Sci U S A 2000; 97:7214-9. [PMID: 10860986 PMCID: PMC16525 DOI: 10.1073/pnas.97.13.7214] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cotranslational protein transport into dog pancreas microsomes involves the Sec61p complex plus a luminal heat shock protein 70. Posttranslational protein transport into the yeast endoplasmic reticulum (ER) involves the so-called Sec complex in the membrane, comprising a similar Sec61p subcomplex, the putative signal peptide receptor subcomplex, and the heat shock protein 40-type subunit, Sec63p, plus a luminal heat shock protein 70. Recently, human homologs of yeast proteins Sec62p and Sec63p were discovered. Here we determined the concentrations of these two membrane proteins in dog pancreas microsomes and observed that the canine homologs of yeast proteins Sec62p and Sec63p are abundant proteins, present in almost equimolar concentrations as compared with Sec61alphap monomers. Furthermore, we detected fractions of these two proteins in association with each other as well as with the Sec61p complex. The J domain of the human Sec63p was shown to interact with immunoglobulin heavy chain binding protein. Thus, the membrane of the mammalian ER contains components, known from the posttranslationally operating protein translocase in yeast. We suggest that these components are required for efficient cotranslational protein transport into the mammalian ER as well as for other transport processes.
Collapse
Affiliation(s)
- J Tyedmers
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, D-66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hänninen AL, Simola M, Saris N, Makarow M. The cytoplasmic chaperone hsp104 is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum. Mol Biol Cell 1999; 10:3623-32. [PMID: 10564260 PMCID: PMC25649 DOI: 10.1091/mbc.10.11.3623] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Severe heat stress causes protein denaturation in various cellular compartments. If Saccharomyces cerevisiae cells grown at 24 degrees C are preconditioned at 37 degrees C, proteins denatured by subsequent exposure to 48-50 degrees C can be renatured when the cells are allowed to recover at 24 degrees C. Conformational repair of vital proteins is essential for survival, because gene expression is transiently blocked after the thermal insult. Refolding of cytoplasmic proteins requires the Hsp104 chaperone, and refolding of lumenal endoplasmic reticulum (ER) proteins requires the Hsp70 homologue Lhs1p. We show here that conformational repair of heat-damaged glycoproteins in the ER of living yeast cells required functional Hsp104. A heterologous enzyme and a number of natural yeast proteins, previously translocated and folded in the ER and thereafter denatured by severe heat stress, failed to be refolded to active and secretion-competent structures in the absence of Hsp104 or when an ATP-binding site of Hsp104 was mutated. During recovery at 24 degrees C, the misfolded proteins persisted in the ER, although the secretory apparatus was fully functional. Hsp104 appears to control conformational repair of heat-damaged proteins even beyond the ER membrane.
Collapse
Affiliation(s)
- A L Hänninen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
39
|
Umebayashi K, Hirata A, Horiuchi H, Ohta A, Takagi M. Unfolded protein response-induced BiP/Kar2p production protects cell growth against accumulation of misfolded protein aggregates in the yeast endoplasmic reticulum. Eur J Cell Biol 1999; 78:726-38. [PMID: 10569245 DOI: 10.1016/s0171-9335(99)80041-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Overproduction of delta(pro), a mutated secretory proteinase derived from a filamentous fungus Rhizopus niveus, results in formation of gross aggregates (delta(pro) aggregates) in the yeast endoplasmic reticulum (ER) lumen, activation of the unfolded protein response (UPR) and ER membrane proliferation. To investigate the roles of the UPR against the delta(pro) aggregates, we constructed an IRE1-deleted ((delta)ire1) strain. In contrast to wild-type cells, (delta)ire1 cells ceased to grow several hours after the overproduction of (delta)pro. Two lines of evidence argued against the possibility that the growth defect was due to the inability to make extra ER membrane which accommodates the (delta)pro aggregates. First, by electron microscopy, ER membrane proliferation was observed in (delta)ire1 cells overproducing (delta)pro. Second, disruption of the OPI1 gene in the (delta)ire1 mutant, which is considered to derepress the activities of phospholipid-synthesizing enzymes, did not restore the growth upon the overproduction of (delta)pro. Instead, the growth was restored when an extra copy of the KAR2 gene, which encodes yeast BiP, was introduced, indicating that an increase in the amount of BiP is essential for cell growth when the (delta)pro aggregates accumulate in the ER. Since BiP is included in the insoluble (delta)pro aggregates, it is likely that the amount of free BiP in the ER lumen is insufficient without the UPR to fully exert its functions. Consistently, overproduction of (delta)pro impaired protein translocation and folding in (delta)ire1 cells but not in wild-type cells. The tunicamycin sensitivity of (delta)ire1 cells was also suppressed by extra expression of KAR2, suggesting that BiP plays a principal role in protecting cell growth against misfolded proteins accumulated in the ER.
Collapse
Affiliation(s)
- K Umebayashi
- Department of Biotechnology, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
40
|
Bies C, Guth S, Janoschek K, Nastainczyk W, Volkmer J, Zimmermann R. A Scj1p homolog and folding catalysts present in dog pancreas microsomes. Biol Chem 1999; 380:1175-82. [PMID: 10595580 DOI: 10.1515/bc.1999.149] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dog pancreas microsomes represent the key components of the established model system for the analysis of protein transport into the mammalian endoplasmic reticulum. More recently, these microsomes were also employed in cell-free systems which address questions related to protein folding and protein degradation in the mammalian endoplasmic reticulum. In order to get at a complete picture of these undoubtedly related processes in the in vitro system we need to know all the proteins we are dealing with, and their respective stoichiometries. Here we give a progress report on our attempts to identify and to quantify the soluble molecular chaperones and folding catalysts which are present in the lumen of dog pancreas microsomes. Eventually, we will need to know how the in vitro system compares with the situation in intact pancreatic cells as well as in other cells.
Collapse
Affiliation(s)
- C Bies
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Homburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Skowronek MH, Rotter M, Haas IG. Molecular characterization of a novel mammalian DnaJ-like Sec63p homolog. Biol Chem 1999; 380:1133-8. [PMID: 10543453 DOI: 10.1515/bc.1999.142] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We identified a human cDNA sequence encoding a polypeptide of 760 amino acids that shares 53% homology and 25.6% identity with the yeast DnaJ-like endoplasmic reticulum (ER) translocon component Sec63p. Three epitope-specific antisera revealed a protein of an apparent molecular mass of 83 kDa, both in human cell extracts and in dog pancreatic microsomes. Biochemical analyses show that it is an integral membrane protein of the rough ER, which has the DnaJ domain located in the ER lumen. The novel Sec63 protein could thus represent a key component of the mammalian ER protein translocation machinery.
Collapse
|
42
|
Davis JE, Voisine C, Craig EA. Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains. Proc Natl Acad Sci U S A 1999; 96:9269-76. [PMID: 10430932 PMCID: PMC17769 DOI: 10.1073/pnas.96.16.9269] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/1999] [Indexed: 01/21/2023] Open
Abstract
ATP hydrolysis and polypeptide binding, the two key activities of Hsp70 molecular chaperones, are inherent properties of different domains of the protein. The coupling of these two activities is critical because the bound nucleotide determines, in part, the affinity of Hsp70s for protein substrate. In addition, cochaperones of the Hsp40 (DnaJ) class, which stimulate Hsp70 ATPase activity, have been proposed to play an important role in promoting efficient Hsp70 substrate binding. Because little is understood about this functional interaction between domains of Hsp70s, we investigated mutations in the region encoding the ATPase domain that acted as intragenic suppressors of a lethal mutation (I485N) mapping to the peptide-binding domain of the mitochondrial Hsp70 Ssc1. Analogous amino acid substitution in the ATPase domain of the Escherichia coli Hsp70 DnaK had a similar intragenic suppressive effect on the corresponding I462T temperature-sensitive peptide-binding domain mutation. I462T protein had a normal basal ATPase activity and was capable of nucleotide-dependent conformation changes. However, the reduced affinity of I462T for substrate peptide (and DnaJ) is likely responsible for the inability of I462T to function in vivo. The suppressor mutation (D79A) appears to partly alleviate the defect in DnaJ ATPase stimulation caused by I462T, suggesting that alteration in the interaction with DnaJ may alter the chaperone cycle to allow productive interaction with polypeptide substrates. Preservation of the intragenic suppression phenotypes between eukaryotic mitochondrial and bacterial Hsp70s suggests that the phenomenon studied here is a fundamental aspect of the function of Hsp70:Hsp40 chaperone machines.
Collapse
Affiliation(s)
- J E Davis
- Department of Biomolecular Chemistry, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
43
|
Hamilton TG, Norris TB, Tsuruda PR, Flynn GC. Cer1p functions as a molecular chaperone in the endoplasmic reticulum of Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:5298-307. [PMID: 10409721 PMCID: PMC84373 DOI: 10.1128/mcb.19.8.5298] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cer1p/Lhs1p/Ssi1p is a novel Hsp70-related protein that is important for the translocation of a subset of proteins into the yeast Saccharomyces cerevisiae endoplasmic reticulum. Cer1p has very limited amino acid identity to the hsp70 chaperone family in the N-terminal ATPase domain but lacks homology to the highly conserved hsp70 peptide binding domain. The role of Cer1p in protein folding and translocation was assessed. Deletion of CER1 slowed the folding of reduced pro-carboxypeptidase Y (pro-CPY) approximately twofold in yeast. In wild-type yeast under reducing conditions, pro-CPY can be found in a complex with Cer1p, while partially purified Cer1p is able to bind directly to peptides. Together, this suggests that Cer1p has a chaperoning activity required for proper refolding of denatured pro-CPY which is mediated by direct interaction with the unfolded polypeptide. Cer1p peptide binding and oligomerization could be disrupted by addition of ATP, confirming that Cer1p possesses a functional ATP binding site, much like Kar2p and other members of the hsp70 family. Interestingly, replacing the signal sequence of a CER1-dependent protein with that of a CER1-independent protein did not relieve the requirement of CER1 for import. This result suggests that an interaction with the mature portion of the protein also is important for the translocation role of Cer1p. The CER1 RNA levels increase at lower temperatures. In addition, the effects of deletion on folding and translocation are more severe at lower temperatures. Therefore, these results suggest that Cer1p provides an additional chaperoning activity in processes known to require Kar2p. However, there appears to be a greater requirement for Cer1p chaperone activity at lower temperatures.
Collapse
Affiliation(s)
- T G Hamilton
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | |
Collapse
|
44
|
Benachour A, Sipos G, Flury I, Reggiori F, Canivenc-Gansel E, Vionnet C, Conzelmann A, Benghezal M. Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity. J Biol Chem 1999; 274:15251-61. [PMID: 10329735 DOI: 10.1074/jbc.274.21.15251] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gpi7 was isolated by screening for mutants defective in the surface expression of glycosylphosphatidylinositol (GPI) proteins. Gpi7 mutants are deficient in YJL062w, herein named GPI7. GPI7 is not essential, but its deletion renders cells hypersensitive to Calcofluor White, indicating cell wall fragility. Several aspects of GPI biosynthesis are disturbed in Deltagpi7. The extent of anchor remodeling, i.e. replacement of the primary lipid moiety of GPI anchors by ceramide, is significantly reduced, and the transport of GPI proteins to the Golgi is delayed. Gpi7p is a highly glycosylated integral membrane protein with 9-11 predicted transmembrane domains in the C-terminal part and a large, hydrophilic N-terminal ectodomain. The bulk of Gpi7p is located at the plasma membrane, but a small amount is found in the endoplasmic reticulum. GPI7 has homologues in Saccharomyces cerevisiae, Caenorhabditis elegans, and man, but the precise biochemical function of this protein family is unknown. Based on the analysis of M4, an abnormal GPI lipid accumulating in gpi7, we propose that Gpi7p adds a side chain onto the GPI core structure. Indeed, when compared with complete GPI lipids, M4 lacks a previously unrecognized phosphodiester-linked side chain, possibly an ethanolamine phosphate. Gpi7p contains significant homology with phosphodiesterases suggesting that Gpi7p itself is the transferase adding a side chain to the alpha1,6-linked mannose of the GPI core structure.
Collapse
Affiliation(s)
- A Benachour
- Institute of Biochemistry, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kochendörfer KU, Then AR, Kearns BG, Bankaitis VA, Mayinger P. Sac1p plays a crucial role in microsomal ATP transport, which is distinct from its function in Golgi phospholipid metabolism. EMBO J 1999; 18:1506-15. [PMID: 10075922 PMCID: PMC1171239 DOI: 10.1093/emboj/18.6.1506] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of microsomal ATP transport in yeast resulted in the identification of Sac1p as an important factor in efficient ATP uptake into the endoplasmic reticulum (ER) lumen. Yet it remained unclear whether Sac1p is the authentic transporter in this reaction. Sac1p shows no homology to other known solute transporters but displays similarity to the N-terminal non-catalytic domain of a subset of inositol 5'-phosphatases. Furthermore, Sac1p was demonstrated to be involved in inositol phospholipid metabolism, an activity whose absence contributes to the bypass Sec14p phenotype in sac1 mutants. We now show that purified recombinant Sac1p can complement ATP transport defects when reconstituted together with sac1Delta microsomal extracts, but is unable to catalyze ATP transport itself. In addition, we demonstrate that sac1Delta strains are defective in ER protein translocation and folding, which is a direct consequence of impaired ATP transport function and not related to the role of Sac1p in Golgi inositol phospholipid metabolism. These data suggest that Sac1p is an important regulator of microsomal ATP transport providing a possible link between inositol phospholipid signaling and ATP-dependent processes in the yeast ER.
Collapse
Affiliation(s)
- K U Kochendörfer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
46
|
McClellan AJ, Endres JB, Vogel JP, Palazzi D, Rose MD, Brodsky JL. Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER. Mol Biol Cell 1998; 9:3533-45. [PMID: 9843586 PMCID: PMC25671 DOI: 10.1091/mbc.9.12.3533] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The posttranslational translocation of proteins across the endoplasmic reticulum (ER) membrane in yeast requires ATP hydrolysis and the action of hsc70s (DnaK homologues) and DnaJ homologues in both the cytosol and ER lumen. Although the cytosolic hsc70 (Ssa1p) and the ER lumenal hsc70 (BiP) are homologous, they cannot substitute for one another, possibly because they interact with specific DnaJ homologues on each side of the ER membrane. To investigate this possibility, we purified Ssa1p, BiP, Ydj1p (a cytosolic DnaJ homologue), and a GST-63Jp fusion protein containing the lumenal DnaJ region of Sec63p. We observed that BiP, but not Ssa1p, is able to associate with GST-63Jp and that Ydj1p stimulates the ATPase activity of Ssa1p up to 10-fold but increases the ATPase activity of BiP by <2-fold. In addition, Ydj1p and ATP trigger the release of an unfolded polypeptide from Ssa1p but not from BiP. To understand further how BiP drives protein translocation, we purified four dominant lethal mutants of BiP. We discovered that each mutant is defective for ATP hydrolysis, fails to undergo an ATP-dependent conformational change, and cannot interact with GST-63Jp. Measurements of protein translocation into reconstituted proteoliposomes indicate that the mutants inhibit translocation even in the presence of wild-type BiP. We conclude that a conformation- and ATP-dependent interaction of BiP with the J domain of Sec63p is essential for protein translocation and that the specificity of hsc70 action is dictated by their DnaJ partners.
Collapse
Affiliation(s)
- A J McClellan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
47
|
Silberstein S, Schlenstedt G, Silver PA, Gilmore R. A role for the DnaJ homologue Scj1p in protein folding in the yeast endoplasmic reticulum. J Cell Biol 1998; 143:921-33. [PMID: 9817751 PMCID: PMC2132949 DOI: 10.1083/jcb.143.4.921] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Revised: 09/14/1998] [Indexed: 01/16/2023] Open
Abstract
Members of the eukaryotic heat shock protein 70 family (Hsp70s) are regulated by protein cofactors that contain domains homologous to bacterial DnaJ. Of the three DnaJ homologues in the yeast rough endoplasmic reticulum (RER; Scj1p, Sec63p, and Jem1p), Scj1p is most closely related to DnaJ, hence it is a probable cofactor for Kar2p, the major Hsp70 in the yeast RER. However, the physiological role of Scj1p has remained obscure due to the lack of an obvious defect in Kar2p-mediated pathways in scj1 null mutants. Here, we show that the Deltascj1 mutant is hypersensitive to tunicamycin or mutations that reduce N-linked glycosylation of proteins. Although maturation of glycosylated carboxypeptidase Y occurs with wild-type kinetics in Deltascj1 cells, the transport rate for an unglycosylated mutant carboxypeptidase Y (CPY) is markedly reduced. Loss of Scj1p induces the unfolded protein response pathway, and results in a cell wall defect when combined with an oligosaccharyltransferase mutation. The combined loss of both Scj1p and Jem1p exaggerates the sensitivity to hypoglycosylation stress, leads to further induction of the unfolded protein response pathway, and drastically delays maturation of an unglycosylated reporter protein in the RER. We propose that the major role for Scj1p is to cooperate with Kar2p to mediate maturation of proteins in the RER lumen.
Collapse
Affiliation(s)
- S Silberstein
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0103, USA
| | | | | | | |
Collapse
|
48
|
Oka M, Nakai M, Endo T, Lim CR, Kimata Y, Kohno K. Loss of Hsp70-Hsp40 chaperone activity causes abnormal nuclear distribution and aberrant microtubule formation in M-phase of Saccharomyces cerevisiae. J Biol Chem 1998; 273:29727-37. [PMID: 9792686 DOI: 10.1074/jbc.273.45.29727] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 70-kDa heat shock proteins, hsp70, are highly conserved among both prokaryotes and eukaryotes, and function as chaperones in diverse cellular processes. To elucidate the function of the yeast cytosolic hsp70 Ssa1p in vivo, we characterized a Saccharomyces cerevisiae ssa1 temperature-sensitive mutant (ssa1-134). After shifting to the restrictive temperature (37 degreesC), ssa1-134 mutant cells showed abnormal distribution of nuclei and accumulated as large-budded cells with a 2 N DNA content. We observed more prominent mutant phenotypes using nocodazole-synchronized cells: when cells were incubated at the restrictive temperature following nocodazole treatment, viability was rapidly lost and abnormal arrays of bent microtubules were formed. Chemical cross-linking and immunoprecipitation analyses revealed that the interaction of mutant Ssa1p with Ydj1p (cytosolic DnaJ homologue in yeast) was much weaker compared with wild-type Ssa1p. These results suggest that Ssa1p and Ydj1p chaperone activities play important roles in the regulation of microtubule formation in M phase. In support of this idea, a ydj1 null mutant at the restrictive temperature was found to exhibit more prominent phenotypes than ssa1-134. Furthermore, both ssa1-134 and ydj1 null mutant cells exhibited greater sensitivity to anti-microtubule drugs. Finally, the observation that SSA1 and YDJ1 interact genetically with a gamma-tubulin, TUB4, supports the idea that they play a role in the regulation of microtubule formation.
Collapse
Affiliation(s)
- M Oka
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Saris N, Makarow M. Transient ER retention as stress response: conformational repair of heat-damaged proteins to secretion-competent structures. J Cell Sci 1998; 111 ( Pt 11):1575-82. [PMID: 9580565 DOI: 10.1242/jcs.111.11.1575] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mechanisms to acquire tolerance against heat, an important environmental stress condition, have evolved in all organisms, but are largely unknown. When Saccharomyces cerevisiae cells are pre-conditioned at 37 degrees C, they survive an otherwise lethal exposure to 48–50 degrees C, and form colonies at 24 degrees C. We show here that incubation of yeast cells at 48–50 degrees C, after pre-conditioning at 37 degrees C, resulted in inactivation of exocytosis, and in conformational damage and loss of transport competence of proteins residing in the endoplasmic reticulum (ER). Soon after return of the cells to 24 degrees C, membrane traffic was resumed, but cell wall invertase, vacuolar carboxypeptidase Y and a secretory beta-lactamase fusion protein remained in the ER for different times. Thereafter their transport competence was resumed very slowly with widely varying kinetics. While the proteins were undergoing conformational repair in the ER, their native counterparts, synthesized after shift of the cells to 24 degrees C, folded normally, by-passed the heat-affected copies and exited rapidly the ER. The Hsp70 homolog Lhs1p was required for acquisition of secretion competence of heat-damaged proteins. ER retention and refolding of heat-denatured glycoproteins appear to be part of the cellular stress response.
Collapse
Affiliation(s)
- N Saris
- Yeast Laboratory, Institute of Biotechnology, PO Box 56, Finland
| | | |
Collapse
|
50
|
Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J Biol Chem 1998; 273:9912-20. [PMID: 9545334 DOI: 10.1074/jbc.273.16.9912] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When unfolded proteins are accumulated in the endoplasmic reticulum (ER), an intracellular signaling pathway termed the unfolded protein response (UPR) is activated to induce transcription of ER-localized molecular chaperones and folding enzymes in the nucleus. In Saccharomyces cerevisiae, at least six lumenal proteins including essential Kar2p and Pdi1p are known to be regulated by the UPR. We and others recently demonstrated that the basic-leucine zipper protein Hac1p/Ern4p functions as a trans-acting factor responsible for the UPR. Hac1p binds directly to the cis-acting unfolded protein response element (UPRE) responsible for Kar2p induction. Moreover, we showed that the KAR2 UPRE contains an E box-like palindrome separated by one nucleotide (CAGCGTG) that is essential for its function. We report here that the promoter regions of each of five target proteins (Kar2p, Pdi1p, Eug1p, Fkb2p, and Lhs1p) contain a single UPRE sequence that is necessary and sufficient for induction and that binds specifically to Hac1p in vitro. All of the five functional UPRE sequences identified contain a palindromic sequence that has, in four cases, a spacer of one C nucleotide. This unique characteristic of UPRE explains why only a specific set of proteins are induced in the UPR to cope with ER stress.
Collapse
Affiliation(s)
- K Mori
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8813, Japan.
| | | | | | | | | |
Collapse
|