1
|
Rostamighadi M, Kamelshahroudi A, Mehta V, Zeng FY, Pass I, Chung TDY, Salavati R. High-throughput screening of compounds targeting RNA editing in Trypanosoma brucei: Novel molecular scaffolds with broad trypanocidal effects. Biochem Pharmacol 2024; 219:115937. [PMID: 37995979 DOI: 10.1016/j.bcp.2023.115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Mitochondrial uridine insertion/deletion RNA editing, catalyzed by a multiprotein complex (editosome), is essential for gene expression in trypanosomes and Leishmania parasites. As this process is absent in the human host, a drug targeting this mechanism promises high selectivity and reduced toxicity. Here, we successfully miniaturized our FRET-based full-round RNA editing assay, which replicates the complete RNA editing process, adapting it into a 1536-well format. Leveraging this assay, we screened over 100,000 compounds against purified editosomes derived from Trypanosoma brucei, identifying seven confirmed primary hits. We sourced and evaluated various analogs to enhance the inhibitory and parasiticidal effects of these primary hits. In combination with secondary assays, our compounds marked inhibition of essential catalytic activities, including the RNA editing ligase and interactions of editosome proteins. Although the primary hits did not exhibit any growth inhibitory effect on parasites, we describe eight analog compounds capable of effectively killing T. brucei and/or Leishmania donovani parasites within a low micromolar concentration. Whether parasite killing is - at least in part - due to inhibition of RNA editing in vivo remains to be assessed. Our findings introduce novel molecular scaffolds with the potential for broad antitrypanosomal effects.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Arezou Kamelshahroudi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Fu-Yue Zeng
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Ian Pass
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Thomas D Y Chung
- Sanford Burnham Prebys Medical Discovery Institute, Conrad Prebys Center for Chemical Genomics, La Jolla, CA, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
2
|
Rostamighadi M, Mehta V, Hassan Khan R, Moses D, Salavati R. Hammerhead ribozyme-based U-insertion and deletion RNA editing assays for multiplexing in HTS applications. RNA (NEW YORK, N.Y.) 2023; 29:252-261. [PMID: 36456183 PMCID: PMC9891259 DOI: 10.1261/rna.079454.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 05/14/2023]
Abstract
Untranslatable mitochondrial transcripts in kinetoplastids are decrypted post-transcriptionally through an RNA editing process that entails uridine insertion/deletion. This unique stepwise process is mediated by the editosome, a multiprotein complex that is a validated drug target of considerable interest in addressing the unmet medical needs for kinetoplastid diseases. With that objective, several in vitro RNA editing assays have been developed, albeit with limited success in discovering potent inhibitors. This manuscript describes the development of three hammerhead ribozyme (HHR) FRET reporter-based RNA editing assays for precleaved deletion, insertion, and ligation assays that bypass the rate-limiting endonucleolytic cleavage step, providing information on U-deletion, U-insertion, and ligation activities. These assays exhibit higher editing efficiencies in shorter incubation times while requiring significantly less purified editosome and 10,000-fold less ATP than the previously published full round of in vitro RNA editing assay. Moreover, modifications in the reporter ribozyme sequence enable the feasibility of multiplexing a ribozyme-based insertion/deletion editing (RIDE) assay that simultaneously surveils U-insertion and deletion editing suitable for HTS. These assays can be used to find novel chemical compounds with chemotherapeutic applications or as probes for studying the editosome machinery.
Collapse
Affiliation(s)
- Mojtaba Rostamighadi
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Rufaida Hassan Khan
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Daniel Moses
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
3
|
Janowski R, Niessing D. The large family of PC4-like domains - similar folds and functions throughout all kingdoms of life. RNA Biol 2020; 17:1228-1238. [PMID: 32476604 PMCID: PMC7549692 DOI: 10.1080/15476286.2020.1761639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA- and DNA-binding domains are essential building blocks for specific regulation of gene expression. While a number of canonical nucleic acid binding domains share sequence and structural conservation, others are less obviously linked by evolutionary traits. In this review, we describe a protein fold of about 150 aa in length, bearing a conserved β-β-β-β-α-linker-β-β-β-β-α topology and similar nucleic acid binding properties but no apparent sequence conservation. The same overall fold can also be achieved by dimerization of two proteins, each bearing a β-β-β-β-α topology. These proteins include but are not limited to the transcription factors PC4 and P24 from humans and plants, respectively, the human RNA-transport factor Pur-α (also termed PURA), as well as the ssDNA-binding SP_0782 protein from Streptococcus pneumonia and the bacteriophage coat proteins PP7 and MS2. Besides their common overall topology, these proteins share common nucleic acids binding surfaces and thus functional similarity. We conclude that these PC4-like domains include proteins from all kingdoms of life and are much more abundant than previously known.
Collapse
Affiliation(s)
- Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health , Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University , Ulm, Germany
| |
Collapse
|
4
|
Aphasizheva I, Aphasizhev R. U-Insertion/Deletion mRNA-Editing Holoenzyme: Definition in Sight. Trends Parasitol 2015; 32:144-156. [PMID: 26572691 DOI: 10.1016/j.pt.2015.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
RNA editing is a process that alters DNA-encoded sequences and is distinct from splicing, 5' capping, and 3' additions. In 30 years since editing was discovered in mitochondria of trypanosomes, several functionally and evolutionarily unrelated mechanisms have been described in eukaryotes, archaea, and viruses. Editing events are predominantly post-transcriptional and include nucleoside insertions and deletions, and base substitutions and modifications. Here, we review the mechanism of uridine insertion/deletion mRNA editing in kinetoplastid protists typified by Trypanosoma brucei. This type of editing corrects frameshifts, introduces translation punctuation signals, and often adds hundreds of uridines to create protein-coding sequences. We focus on protein complexes responsible for editing reactions and their interactions with other elements of the mitochondrial gene expression pathway.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA.
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
5
|
Aphasizheva I, Zhang L, Wang X, Kaake RM, Huang L, Monti S, Aphasizhev R. RNA binding and core complexes constitute the U-insertion/deletion editosome. Mol Cell Biol 2014; 34:4329-42. [PMID: 25225332 PMCID: PMC4248751 DOI: 10.1128/mcb.01075-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/02/2014] [Accepted: 09/11/2014] [Indexed: 12/19/2022] Open
Abstract
Enzymes embedded into the RNA editing core complex (RECC) catalyze the U-insertion/deletion editing cascade to generate open reading frames in trypanosomal mitochondrial mRNAs. The sequential reactions of mRNA cleavage, U-addition or removal, and ligation are directed by guide RNAs (gRNAs). We combined proteomic, genetic, and functional studies with sequencing of total and complex-bound RNAs to define a protein particle responsible for the recognition of gRNAs and pre-mRNA substrates, editing intermediates, and products. This approximately 23-polypeptide tripartite assembly, termed the RNA editing substrate binding complex (RESC), also functions as the interface between mRNA editing, polyadenylation, and translation. Furthermore, we found that gRNAs represent only a subset of small mitochondrial RNAs, and yet an inexplicably high fraction of them possess 3' U-tails, which correlates with gRNA's enrichment in the RESC. Although both gRNAs and mRNAs are associated with the RESC, their metabolic fates are distinct: gRNAs are degraded in an editing-dependent process, whereas edited mRNAs undergo 3' adenylation/uridylation prior to translation. Our results demonstrate that the well-characterized editing core complex (RECC) and the RNA binding particle defined in this study (RESC) typify enzymatic and substrate binding macromolecular constituents, respectively, of the ∼40S RNA editing holoenzyme, the editosome.
Collapse
MESH Headings
- Base Sequence
- Mitochondria/genetics
- Open Reading Frames/genetics
- Peptide Chain Elongation, Translational/genetics
- Polyadenylation/genetics
- Protozoan Proteins/metabolism
- RNA/genetics
- RNA Editing/genetics
- RNA Interference
- RNA, Catalytic/genetics
- RNA, Guide, Kinetoplastida/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Protozoan/genetics
- RNA, Small Interfering
- RNA-Binding Proteins/genetics
- Sequence Analysis, RNA
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Liye Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xiaorong Wang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Robyn M Kaake
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Lan Huang
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, USA Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Kolesnikov AA, Gerasimov ES. Diversity of mitochondrial genome organization. BIOCHEMISTRY (MOSCOW) 2013; 77:1424-35. [PMID: 23379519 DOI: 10.1134/s0006297912130020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we discuss types of mitochondrial genome structural organization (architecture), which includes the following characteristic features: size and the shape of DNA molecule, number of encoded genes, presence of cryptogenes, and editing of primary transcripts.
Collapse
Affiliation(s)
- A A Kolesnikov
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | |
Collapse
|
7
|
Sahoo GC, Yousuf Ansari M, Dikhit MR, Kannan M, Rana S, Das P. Structure prediction of gBP21 protein ofL. donovaniand its molecular interaction. J Biomol Struct Dyn 2013; 32:709-29. [DOI: 10.1080/07391102.2013.789400] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Kruse E, Voigt C, Leeder WM, Göringer HU. RNA helicases involved in U-insertion/deletion-type RNA editing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:835-41. [PMID: 23587716 DOI: 10.1016/j.bbagrm.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondrial pre-messenger RNAs in kinetoplastid protozoa such as the disease-causing African trypanosomes are substrates of a unique RNA editing reaction. The process is characterized by the site-specific insertion and deletion of exclusively U nucleotides and converts nonfunctional pre-mRNAs into translatable transcripts. Similar to other RNA-based metabolic pathways, RNA editing is catalyzed by a macromolecular protein complex, the editosome. Editosomes provide a reactive surface for the individual steps of the catalytic cycle and involve as key players a specific class of small, non-coding RNAs termed guide (g)RNAs. gRNAs basepair proximal to an editing site and act as quasi templates in the U-insertion/deletion reaction. Next to the editosome several accessory proteins and complexes have been identified, which contribute to different steps of the reaction. This includes matchmaking-type RNA/RNA annealing factors as well as RNA helicases of the archetypical DEAD- and DExH/D-box families. Here we summarize the current structural, genetic and biochemical knowledge of the two characterized "editing RNA helicases" and provide an outlook onto dynamic processes within the editing reaction cycle. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
9
|
Abstract
RNA editing describes a chemically diverse set of biomolecular reactions in which the nucleotide sequence of RNA molecules is altered. Editing reactions have been identified in many organisms and frequently contribute to the maturation of organellar transcripts. A special editing reaction has evolved within the mitochondria of the kinetoplastid protozoa. The process is characterized by the insertion and deletion of uridine nucleotides into otherwise nontranslatable messenger RNAs. Kinetoplastid RNA editing involves an exclusive class of small, noncoding RNAs known as guide RNAs. Furthermore, a unique molecular machinery, the editosome, catalyzes the process. Editosomes are megadalton multienzyme assemblies that provide a catalytic surface for the individual steps of the reaction cycle. Here I review the current mechanistic understanding and molecular inventory of kinetoplastid RNA editing and the editosome machinery. Special emphasis is placed on the molecular morphology of the editing complex in order to correlate structural features with functional characteristics.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Genetics, Darmstadt University of Technology, Germany.
| |
Collapse
|
10
|
|
11
|
Göringer HU, Katari VS, Böhm C. The structural landscape of native editosomes in African trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:395-407. [PMID: 21957025 DOI: 10.1002/wrna.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The majority of mitochondrial pre-messenger RNAs in African trypanosomes are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction. The process converts nonfunctional pre-mRNAs into translation-competent molecules and can generate protein diversity by alternative editing. High molecular mass protein complexes termed editosomes catalyze the processing reaction. They stably interact with pre-edited mRNAs and small noncoding RNAs, known as guide RNAs (gRNAs), which act as templates in the reaction. Editosomes provide a molecular surface for the individual steps of the catalytic reaction cycle and although the protein inventory of the complexes has been studied in detail, a structural analysis of the processing machinery has only recently been accomplished. Electron microscopy in combination with single particle reconstruction techniques has shown that steady state isolates of editosomes contain ensembles of two classes of stable complexes with calculated apparent hydrodynamic sizes of 20S and 35-40S. 20S editosomes are free of substrate RNAs, whereas 35-40S editosomes are associated with endogenous mRNA and gRNA molecules. Both complexes are characterized by a diverse structural landscape, which include complexes that lack or possess defined subdomains. Here, we summarize the consensus models and structural landmarks of both complexes. We correlate structural features with functional characteristics and provide an outlook into dynamic aspects of the editing reaction cycle.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | |
Collapse
|
12
|
Knoop V. When you can't trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 2011; 68:567-86. [PMID: 20938709 PMCID: PMC11114842 DOI: 10.1007/s00018-010-0538-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022]
Abstract
RNA editing describes targeted sequence alterations in RNAs so that the transcript sequences differ from their DNA template. Since the original discovery of RNA editing in trypanosomes nearly 25 years ago more than a dozen such processes of nucleotide insertions, deletions, and exchanges have been identified in evolutionarily widely separated groups of the living world including plants, animals, fungi, protists, bacteria, and viruses. In many cases gene expression in mitochondria is affected, but RNA editing also takes place in chloroplasts and in nucleocytosolic genetic environments. While some RNA editing systems largely seem to repair defect genes (cryptogenes), others have obvious functions in modulating gene activities. The present review aims for an overview on the current states of research in the different systems of RNA editing by following a historic timeline along the respective original discoveries.
Collapse
Affiliation(s)
- Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik (IZMB), Bonn, Germany.
| |
Collapse
|
13
|
Sprehe M, Fisk JC, McEvoy SM, Read LK, Schumacher MA. Structure of the Trypanosoma brucei p22 protein, a cytochrome oxidase subunit II-specific RNA-editing accessory factor. J Biol Chem 2010; 285:18899-908. [PMID: 20392699 PMCID: PMC2881812 DOI: 10.1074/jbc.m109.066597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Kinetoplastid RNA (k-RNA) editing is a complex process in the mitochondria of kinetoplastid protozoa, including Trypanosoma brucei, that involves the guide RNA-directed insertion and deletion of uridines from precursor-mRNAs to produce mature, translatable mRNAs. k-RNA editing is performed by multiprotein complexes called editosomes. Additional non-editosome components termed k-RNA-editing accessory factors affect the extent of editing of specific RNAs or classes of RNAs. The T. brucei p22 protein was identified as one such accessory factor. Here we show that p22 contributes to cell growth in the procyclic form of T. brucei and functions as a cytochrome oxidase subunit II-specific k-RNA-editing accessory factor. To gain insight into its functions, we solved the crystal structure of the T. brucei p22 protein to 2.0-A resolution. The p22 structure consists of a six-stranded, antiparallel beta-sheet flanked by five alpha-helices. Three p22 subunits combine to form a tight trimer that is primarily stabilized by interactions between helical residues. One side of the trimer is strikingly acidic, while the opposite face is more neutral. Database searches show p22 is structurally similar to human p32, which has a number of functions, including regulation of RNA splicing. p32 interacts with a number of target proteins via its alpha1 N-terminal helix, which is among the most conserved regions between p22 and p32. Co-immunoprecipitation studies showed that p22 interacts with the editosome and the k-RNA accessory protein, TbRGG2, and alpha1 of p22 was shown to be important for the p22-TbRGG2 interaction. Thus, these combined studies suggest that p22 mediates its role in k-RNA editing by acting as an adaptor protein.
Collapse
Affiliation(s)
- Mareen Sprehe
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
14
|
Snapshots of the RNA editing machine in trypanosomes captured at different assembly stages in vivo. EMBO J 2009; 28:766-78. [PMID: 19197238 DOI: 10.1038/emboj.2009.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 01/12/2009] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial pre-messenger RNAs in kinetoplastid protozoa are substrates of uridylate-specific RNA editing. RNA editing converts non-functional pre-mRNAs into translatable molecules and can generate protein diversity by alternative editing. Although several editing complexes have been described, their structure and relationship is unknown. Here, we report the isolation of functionally active RNA editing complexes by a multistep purification procedure. We show that the endogenous isolates contain two subpopulations of approximately 20S and approximately 35-40S and present the three-dimensional structures of both complexes by electron microscopy. The approximately 35-40S complexes consist of a platform density packed against a semispherical element. The approximately 20S complexes are composed of two subdomains connected by an interface. The two particles are structurally related, and we show that RNA binding is a main determinant for the interconversion of the two complexes. The approximately 20S editosomes contain an RNA-binding site, which binds gRNA, pre-mRNA and gRNA/pre-mRNA hybrid molecules with nanomolar affinity. Variability analysis indicates that subsets of complexes lack or possess additional domains, suggesting binding sites for components. Together, a picture of the RNA editing machinery is provided.
Collapse
|
15
|
Reifur L, Koslowsky DJ. Trypanosoma brucei ATPase subunit 6 mRNA bound to gA6-14 forms a conserved three-helical structure. RNA (NEW YORK, N.Y.) 2008; 14:2195-211. [PMID: 18772247 PMCID: PMC2553734 DOI: 10.1261/rna.1144508] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/17/2008] [Indexed: 05/26/2023]
Abstract
T. brucei survival relies on the expression of mitochondrial genes, most of which require RNA editing to become translatable. In trypanosomes, RNA editing involves the insertion and deletion of uridylates, a developmentally regulated process directed by guide RNAs (gRNAs) and catalyzed by the editosome, a complex of proteins. The pathway for mRNA/gRNA complex formation and assembly with the editosome is still unknown. Work from our laboratory has suggested that distinct mRNA/gRNA complexes anneal to form a conserved core structure that may be important for editosome assembly. The secondary structure for the apocytochrome b (CYb) pair has been previously determined and is consistent with our model of a three-helical structure. Here, we used cross-linking and solution structure probing experiments to determine the structure of the ATPase subunit 6 (A6) mRNA hybridized to its cognate gA6-14 gRNA in different stages of editing. Our results indicate that both unedited and partially edited A6/gA6-14 pairs fold into a three-helical structure similar to the previously characterized CYb/gCYb-558 pair. These results lead us to conclude that at least two mRNA/gRNA pairs with distinct editing sites and distinct primary sequences fold to a three-helical secondary configuration that persists through the first few editing events.
Collapse
Affiliation(s)
- Larissa Reifur
- Comparative Medicine and Integrative Biology, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
16
|
|
17
|
Göringer HU, Brecht M, Böhm C, Kruse E. RNA Editing Accessory Factors — the Example of mHel61p. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
18
|
Abstract
Trypanosoma brucei has three distinct approximately 20S editosomes that catalyze RNA editing by the insertion and deletion of uridylates. Editosomes with the KREN1 or KREN2 RNase III type endonucleases specifically cleave deletion and insertion editing site substrates, respectively. We report here that editosomes with KREPB2, which also has an RNase III motif, specifically cleave cytochrome oxidase II (COII) pre-mRNA insertion editing site substrates in vitro. Conditional repression and mutation studies also show that KREPB2 is an editing endonuclease specifically required for COII mRNA editing in vivo. Furthermore, KREPB2 expression is essential for the growth and survival of bloodstream forms. Thus, editing in T. brucei requires at least three compositionally and functionally distinct approximately 20S editosomes, two of which distinguish between different insertion editing sites. This unexpected finding reveals an additional level of complexity in the RNA editing process and suggests a mechanism for how the selection of sites for editing in vivo is controlled.
Collapse
|
19
|
Abstract
The uridine nucleotide insertion and deletion editing of trypanosomatid mitochondrial mRNAs is catalyzed by a macromolecular complex, the editosome. Many investigations of RNA editing involve some assessment of editosome activity either in vitro or in vivo. Assays to detect insertion or deletion editing activity on RNAs in vitro have been particularly useful, and can include the initial endonucleolytic step (full-round) or bypass it (precleaved). Additional assays to examine individual catalytic steps have also proved useful to dissect particular steps in editing. Detection of RNA editing activity in vivo has been significantly advanced by the application of real-time PCR technology, which can simultaneously assay several edited and pre-edited targets. Here we describe these assays to assess editing both in vitro (full-round insertion and deletion; precleaved insertion and deletion; individual TUTase, ligase, or helicase activity) and in vivo (real-time PCR).
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| | | |
Collapse
|
20
|
Panigrahi AK, Schnaufer A, Stuart KD. Isolation and compositional analysis of trypanosomatid editosomes. Methods Enzymol 2007; 424:3-24. [PMID: 17662834 DOI: 10.1016/s0076-6879(07)24001-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most mitochondrial (mt) mRNAs in trypanosomes undergo posttranscriptional RNA editing, which inserts and deletes uridines (Us) to produce the mature and functional mRNA. The editing process is catalyzed by multiple enzymatic steps and is carried out by an approximately 20S macromolecular complex, the editosome. Editosomes have been purified from Trypanosoma brucei using various techniques including combinations of column chromatography, gradient sedimentation, monoclonal antibody affinity, and TAP-tag affinity approaches. This article describes in detail the methods for editosome purification and identification of protein components by mass spectrometry analyses. It also describes the methods for isolation and analysis of TAP-tagged mutagenized complexes.
Collapse
|
21
|
Schumacher MA, Karamooz E, Zíková A, Trantírek L, Lukes J. Crystal structures of T. brucei MRP1/MRP2 guide-RNA binding complex reveal RNA matchmaking mechanism. Cell 2006; 126:701-11. [PMID: 16923390 DOI: 10.1016/j.cell.2006.06.047] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/19/2006] [Accepted: 06/23/2006] [Indexed: 11/19/2022]
Abstract
The mitochondrial RNA binding proteins MRP1 and MRP2 form a heteromeric complex that functions in kinetoplastid RNA editing. In this process, MRP1/MRP2 serves as a matchmaker by binding to guide RNAs and facilitating their hybridization with cognate preedited mRNAs. To understand the mechanism by which this complex performs RNA matchmaking, we determined structures of Trypanosoma brucei apoMRP1/MRP2 and an MRP1/MRP2-gRNA complex. The structures show that MRP1/MRP2 is a heterotetramer and, despite little sequence homology, each MRP subunit exhibits the same "Whirly" transcription-factor fold. The gRNA molecule binds to the highly basic beta sheet surface of the MRP complex via nonspecific, electrostatic contacts. Strikingly, while the gRNA stem/loop II base is anchored to the basic surface, stem/loop I (the anchor sequence) is unfolded and its bases exposed to solvent. Thus, MRP1/MRP2 acts as an RNA matchmaker by stabilizing the RNA molecule in an unfolded conformation suitable for RNA-RNA hybridization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Crystallography, X-Ray
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- Protein Folding
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Sequence Alignment
- Trypanosoma brucei brucei/chemistry
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, Houston, 77030, USA.
| | | | | | | | | |
Collapse
|
22
|
Panigrahi AK, Ernst NL, Domingo GJ, Fleck M, Salavati R, Stuart KD. Compositionally and functionally distinct editosomes in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2006; 12:1038-49. [PMID: 16611942 PMCID: PMC1464856 DOI: 10.1261/rna.45506] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Uridylate insertion/deletion RNA editing in Trypanosoma brucei mitochondria is catalyzed by a multiprotein complex, the approximately 20S editosome. Editosomes purified via three related tagged RNase III proteins, KREN1 (KREPB1/TbMP90), KREPB2 (TbMP67), and KREN2 (KREPB3/TbMP61), had very similar but nonidentical protein compositions, and only the tagged member of these three RNase III proteins was identified in each respective complex. Three new editosome proteins were also identified in these complexes. Each tagged complex catalyzed both precleaved insertion and deletion editing in vitro. However, KREN1 complexes cleaved deletion but not insertion editing sites in vitro, and, conversely, KREN2 complexes cleaved insertion but not deletion editing sites. These specific nuclease activities were abolished by mutations in the putative RNase III catalytic domain of the respective proteins. Thus editosomes appear to be heterogeneous in composition with KREN1 complexes catalyzing cleavage of deletion sites and KREN2 complexes cleaving insertion sites while both can catalyze the U addition, U removal, and ligation steps of editing.
Collapse
|
23
|
Trotter JR, Ernst NL, Carnes J, Panicucci B, Stuart K. A deletion site editing endonuclease in Trypanosoma brucei. Mol Cell 2005; 20:403-12. [PMID: 16285922 DOI: 10.1016/j.molcel.2005.09.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/08/2005] [Accepted: 09/20/2005] [Indexed: 11/26/2022]
Abstract
RNA editing in Trypanosoma brucei inserts and deletes uridines in mitochondrial mRNAs by a series of enzymatic steps that are catalyzed by a multiprotein complex, the editosome. KREPB1 and two related editosome proteins KREPB2 and KREPB3 contain motifs that suggest endonuclease and RNA/protein interaction functions. Repression of KREPB1 expression in procyclic forms by RNAi inhibited growth, in vivo editing, and in vitro endoribonucleolytic cleavage of deletion substrates. However, cleavage of insertion substrates and the exoUase, TUTase, and ligase catalytic activities of editing were retained by 20S editosomes. Repression of expression of an ectopic KREPB1 allele in bloodstream forms lacking both endogenous alleles or exclusive expression of KREPB1 with point mutations in the putative RNase III catalytic domain also blocked growth, in vivo editing, and abolished cleavage of deletion substrates, without affecting the other editing steps. These data indicate that KREPB1 is an endoribonuclease that is specific for RNA editing deletion sites.
Collapse
|
24
|
Lukes J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 2005; 48:277-99. [PMID: 16215758 DOI: 10.1007/s00294-005-0027-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/03/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Kinetoplastids are flagellated protozoans, whose members include the pathogens Trypanosoma brucei, T. cruzi and Leishmania species, that are considered among the earliest diverging eukaryotes with a mitochondrion. This organelle has become famous because of its many unusual properties, which are unique to the order Kinetoplastida, including an extensive kinetoplast DNA network and U-insertion/deletion type RNA editing of its mitochondrial transcripts. In the last decade, considerable progress has been made in elucidating the complex machinery of RNA editing. Moreover, our understanding of the structure and replication of kinetoplast DNA has also dramatically improved. Much less however, is known, about the developmental regulation of RNA editing, its integration with other RNA maturation processes, stability of mitochondrial mRNAs, or evolution of the editing process itself. Yet the profusion of genomic data recently made available by sequencing consortia, in combination with methods of reverse genetics, hold promise in understanding the complexity of this exciting organelle, knowledge of which may enable us to fight these often medically important protozoans.
Collapse
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, Branisovská 31, 37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
25
|
Penschow JL, Sleve DA, Ryan CM, Read LK. TbDSS-1, an essential Trypanosoma brucei exoribonuclease homolog that has pleiotropic effects on mitochondrial RNA metabolism. EUKARYOTIC CELL 2005; 3:1206-16. [PMID: 15470249 PMCID: PMC522597 DOI: 10.1128/ec.3.5.1206-1216.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial gene expression in trypanosomes is controlled primarily at the levels of RNA processing and RNA stability. This regulation undoubtedly involves numerous ribonucleases. Here we characterize the Trypanosoma brucei homolog of the yeast DSS-1 mitochondrial exoribonuclease, which we term TbDSS-1. Biochemical fractionation indicates that TbDSS-1 is mitochondrially localized, as predicted by its N-terminal sequence. In contrast to its yeast homolog, TbDSS-1 does not appear to be associated with mitochondrial ribosomes. Targeted downregulation of TbDSS-1 by RNA interference in procyclic-form T. brucei results in a severe growth defect. In addition, TbDSS-1 depletion leads to a decrease in the levels of never edited cytochrome oxidase subunit I (COI) mRNA and both unedited and edited COIII mRNAs, indicating this enzyme functions in the control of mitochondrial RNA abundance. We also observe a considerable reduction in the level of edited apocytochrome b (CYb) mRNA and a corresponding increase in unedited CYb mRNA, suggesting that TbDSS-1 functions, either directly or indirectly, in the control of RNA editing. The abundance of both gCYb[560] and gA6[149] guide RNAs is reduced upon TbDSS-1 depletion, although the reduction in gCYb[560] is much more dramatic. The significant reduction in gCYb levels could potentially account for the observed decrease in CYb RNA editing. Western blot analyses of mitochondrial RNA editing and stability factors indicate that the perturbations of RNA levels observed in TbDSS-1 knock-downs do not result from secondary effects on other mitochondrial proteins. In all, these data demonstrate that TbDSS-1 is an essential protein that plays a role in mitochondrial RNA stability and RNA editing.
Collapse
Affiliation(s)
- Jonelle L Penschow
- Department of Microbiology and Immunology, 138 Farber Hall, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Most mitochondrial mRNAs in kinetoplastids require editing, that is, the posttranscriptional insertion and deletion of uridine nucleotides that are specified by guide RNAs and catalyzed by multiprotein complexes. Recent studies have identified many of the proteins in these complexes, in addition to some of their functions and interactions. Although much remains unknown, a picture of highly organized complexes is emerging that shows that the complex that catalyzes the central steps of editing is partitioned into distinct insertion and deletion editing subcomplexes. These subcomplexes coordinate hundreds of ordered catalytic steps that function to produce a single mature mRNA. The dynamic processes, which might entail interactions among multiprotein complexes and changes in their composition and conformation, remain to be elucidated.
Collapse
Affiliation(s)
- Kenneth D Stuart
- Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
27
|
Halbig K, De Nova-Ocampo M, Cruz-Reyes J. Complete cycles of bloodstream trypanosome RNA editing in vitro. RNA (NEW YORK, N.Y.) 2004; 10:914-20. [PMID: 15146075 PMCID: PMC1370583 DOI: 10.1261/rna.5157704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNA editing in kinetoplastid protists is required for the maturation of mitochondrial pre-mRNAs and occurs by protein-catalyzed cycles of uridylate insertion and deletion. During the complex life cycle of Trypanosoma brucei this process is differentially regulated in the mammalian bloodstream and insect procyclic stages. Complementary guide RNAs (gRNAs) direct editing, but the abundance of these transcripts is not developmentally controlled. The establishment of in vitro systems that recreate efficient RNA editing in bloodstream T. brucei would be valuable for mechanistic studies of regulation. Here we describe a robust in vitro system that reconstitutes full cycles of both U insertion and U deletion in bloodstream trypanosomes, and the first direct comparisons of the in vitro systems for strains of mammalian and insect stages.
Collapse
Affiliation(s)
- Kari Halbig
- Department of Biochemistry and Biophyisics, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
28
|
Simpson L, Aphasizhev R, Gao G, Kang X. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA (NEW YORK, N.Y.) 2004; 10:159-70. [PMID: 14730014 PMCID: PMC1370527 DOI: 10.1261/rna.5170704] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A number of mitochondrial proteins have been identified in Leishmania sp. and Trypanosoma brucei that may be involved in U-insertion/deletion RNA editing. Only a few of these have yet been characterized sufficiently to be able to assign functional names for the proteins in both species, and most have been denoted by a variety of species-specific and laboratory-specific operational names, leading to a terminology confusion both within and outside of this field. In this review, we summarize the present status of our knowledge of the orthologous and unique putative editing proteins in both species and the functional motifs identified by sequence analysis and by experimentation. An online Supplemental sequence database (http://164.67.60.200/proteins/protsmini1.asp) is also provided as a research resource.
Collapse
Affiliation(s)
- Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
29
|
O'Hearn SF, Huang CE, Hemann M, Zhelonkina A, Sollner-Webb B. Trypanosoma brucei RNA editing complex: band II is structurally critical and maintains band V ligase, which is nonessential. Mol Cell Biol 2003; 23:7909-19. [PMID: 14560033 PMCID: PMC207603 DOI: 10.1128/mcb.23.21.7909-7919.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maturation of Trypanosoma brucei mitochondrial mRNA involves massive posttranscriptional insertion and deletion of uridine residues. This RNA editing utilizes an enzymatic complex with seven major proteins, band I through band VII. We here use RNA interference (RNAi) to examine the band II and band V proteins. Band II is found essential for viability; it is needed to maintain the normal structure of the editing complex and to retain the band V ligase protein. Previously, band III was found essential for certain activities, including maintenance of the editing complex and retention of the band IV ligase protein. Thus, band II and band V form a protein pair with features analogous to the band III/band IV ligase pair. Since band V is specific for U insertion and since band IV is needed for U deletion, their parallel organization suggests that the editing complex has a pseudosymmetry. However, unlike the essential band IV ligase, RNAi to band V has only a morphological but no growth rate effect, suggesting that it is stimulatory but nonessential. Indeed, in vitro analysis of band V RNAi cell extract demonstrates that band IV can seal U insertion when band V is lacking. Thus, band IV ligase is the first activity of the basic editing complex shown able to serve in both forms of editing. Our studies also indicate that the U insertional portion may be less central in the editing complex than the corresponding U deletional portion.
Collapse
Affiliation(s)
- Sean F O'Hearn
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
30
|
Schnaufer A, Ernst NL, Palazzo SS, O'Rear J, Salavati R, Stuart K. Separate insertion and deletion subcomplexes of the Trypanosoma brucei RNA editing complex. Mol Cell 2003; 12:307-19. [PMID: 14536071 DOI: 10.1016/s1097-2765(03)00286-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Trypanosoma brucei editosome catalyzes the maturation of mitochondrial mRNAs through the insertion and deletion of uridylates and contains at least 16 stably associated proteins. We examined physical and functional associations among these proteins using three different approaches: purification of complexes via tagged editing ligases TbREL1 and TbREL2, comprehensive yeast two-hybrid analysis, and coimmunoprecipitation of recombinant proteins. A purified TbREL1 subcomplex catalyzed precleaved deletion editing in vitro, while a purified TbREL2 subcomplex catalyzed precleaved insertion editing in vitro. The TbREL1 subcomplex contained three to four proteins, including a putative exonuclease, and appeared to be coordinated by the zinc finger protein TbMP63. The TbREL2 subcomplex had a different composition, contained the TbMP57 terminal uridylyl transferase, and appeared to be coordinated by the TbMP81 zinc finger protein. This study provides insight into the molecular architecture of the editosome and supports the existence of separate subcomplexes for deletion and insertion editing.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, 4 Nickerson Street, Suite 200, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gott JM. Two distinct roles for terminal uridylyl transferases in RNA editing. Proc Natl Acad Sci U S A 2003; 100:10583-4. [PMID: 12963809 PMCID: PMC196844 DOI: 10.1073/pnas.2035062100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Domingo GJ, Palazzo SS, Wang B, Pannicucci B, Salavati R, Stuart KD. Dyskinetoplastic Trypanosoma brucei contains functional editing complexes. EUKARYOTIC CELL 2003; 2:569-77. [PMID: 12796302 PMCID: PMC161453 DOI: 10.1128/ec.2.3.569-577.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/15/2003] [Indexed: 11/20/2022]
Abstract
Mitochondrial pre-mRNAs undergo posttranscriptional RNA editing as directed by small guide RNAs (gRNAs) to produce functional mRNAs in kinetoplastid protozoa. The pre-mRNAs and gRNAs are encoded in the maxicircle and minicircle components, respectively, of the kinetoplastid mitochondrial DNA (kDNA), and editing is catalyzed by a multienzyme protein complex. Trypanosoma evansi AnTat3/3, which lacks maxicircles but retains a single class of minicircles, and a dyskinetoplastic mutant of Trypanosoma brucei EATRO164, which is devoid of kDNA, were both shown to retain genes and proteins for the editing complex. The proteins are present in complexes that immunoprecipitate and sediment indistinguishably from wild-type complexes. The complexes catalyze precleaved insertion and deletion editing as well as full-round deletion editing in vitro. Thus, mutants which lack the natural substrates for RNA editing and all or most gRNAs retain editing complexes that contain the four primary catalytic activities of editing and function in editing, at least in vitro. Therefore neither pre-mRNA nor gRNA is required to form functional RNA-editing complexes.
Collapse
Affiliation(s)
- Gonzalo J Domingo
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ernst NL, Panicucci B, Igo RP, Panigrahi AK, Salavati R, Stuart K. TbMP57 is a 3' terminal uridylyl transferase (TUTase) of the Trypanosoma brucei editosome. Mol Cell 2003; 11:1525-36. [PMID: 12820966 DOI: 10.1016/s1097-2765(03)00185-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
RNA editing produces mature trypanosome mitochondrial mRNAs by uridylate (U) insertion and deletion. In insertion editing, Us are added to the pre-mRNA by a 3' terminal uridylyl transferase (TUTase) activity. We report the identification of a TUTase activity that copurifies with in vitro editing and is catalyzed by the integral editosome protein TbMP57. TbMP57 catalyzes the addition of primarily a single U to single-stranded (ss) RNA and adds the number of Us specified by a guide RNA to insertion editing-like substrates. TbMP57 is distinct from a previously identified TUTase that adds many Us to ssRNA and which we find is neither a stable editosome component nor does it add Us to editing-like substrates. Recombinant TbMP57 specifically interacts with the editosome protein TbMP81, and this interaction enhances the TUTase activity. These results suggest that TbMP57 catalyzes U addition to pre-mRNA during editing.
Collapse
MESH Headings
- Animals
- Catalysis
- Chromatography, Agarose
- Chromatography, Gel
- Chromatography, Ion Exchange
- Mitochondria/chemistry
- Mitochondria/enzymology
- Molecular Sequence Data
- Molecular Weight
- Protein Structure, Tertiary
- Protozoan Proteins
- RNA/genetics
- RNA/metabolism
- RNA Editing
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/metabolism
- Ribonucleoproteins/metabolism
- Substrate Specificity
- Trypanosoma brucei brucei/cytology
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- UDPglucose-Hexose-1-Phosphate Uridylyltransferase/genetics
- UDPglucose-Hexose-1-Phosphate Uridylyltransferase/isolation & purification
- UDPglucose-Hexose-1-Phosphate Uridylyltransferase/metabolism
Collapse
|
34
|
Pai RD, Oppegard LM, Connell GJ. Sequence and structural requirements for optimal guide RNA-directed insertional editing within Leishmania tarentolae. RNA (NEW YORK, N.Y.) 2003; 9:469-83. [PMID: 12649498 PMCID: PMC1370413 DOI: 10.1261/rna.2175703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2002] [Accepted: 01/08/2003] [Indexed: 05/24/2023]
Abstract
The coding sequence of several mitochondrial mRNAs of the trypanosomatid family of protozoa is created by the guide RNA-directed insertion and deletion of uridylates (Us). Selection-amplification was used to explore the sequence and structure of the guide RNA and mRNA required for efficient insertional editing within a mitochondrial extract prepared from Leishmania tarentolae. This study identifies several novel features of the editing reaction in addition to several that are consistent with the previous mutagenesis and phylogenetic analysis of the reaction in Trypanosoma brucei, a distantly related trypanosomatid. Specifically, there is a strong bias against cytidines 5' of the editing sites and guanosines immediately 3' of guiding nucleotides. U insertions are directed both 5' and 3' of a genomically encoded U, which was previously assumed not to occur. Base pairing immediately flanking an editing site can significantly stimulate the editing reaction and affect the reaction fidelity but is not essential. Likewise, single-stranded RNA in the region upstream of the editing site, not necessarily immediately adjacent, can facilitate editing but is also not essential. The editing of an RNA containing many of the optimal features is linear with increasing quantities of extract permitting specific activity measurements to be made that are not possible with previously described T. brucei and L. tarentolae assays. The reaction catalyzed by the L. tarentolae extract can be highly accurate, which does not support a proposed model for editing that was based largely on the inaccuracy of an earlier in vitro reaction.
Collapse
Affiliation(s)
- Raj D Pai
- Department of Pharmacology, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
35
|
Panigrahi AK, Schnaufer A, Ernst NL, Wang B, Carmean N, Salavati R, Stuart K. Identification of novel components of Trypanosoma brucei editosomes. RNA (NEW YORK, N.Y.) 2003; 9:484-92. [PMID: 12649499 PMCID: PMC1370414 DOI: 10.1261/rna.2194603] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 01/09/2003] [Indexed: 05/19/2023]
Abstract
The editosome is a multiprotein complex that catalyzes the insertion and deletion of uridylates that occurs during RNA editing in trypanosomatids. We report the identification of nine novel editosome proteins in Trypanosoma brucei. They were identified by mass spectrometric analysis of functional editosomes that were purified by serial ion exchange/gel permeation chromatography, immunoaffinity chromatography specific to the TbMP63 editosome protein, or tandem affinity purification based on a tagged RNA editing ligase. The newly identified proteins have ribonuclease and/or RNA binding motifs suggesting nuclease function for at least some of these. Five of the proteins are interrelated, as are two others, and one is related to four previously identified editosome proteins. The implications of these findings are discussed.
Collapse
|
36
|
Simpson L, Sbicego S, Aphasizhev R. Uridine insertion/deletion RNA editing in trypanosome mitochondria: a complex business. RNA (NEW YORK, N.Y.) 2003; 9:265-76. [PMID: 12591999 PMCID: PMC1370392 DOI: 10.1261/rna.2178403] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The basic mechanism of uridine insertion/deletion RNA editing in mitochondria of kinetoplastid protists has been established for some time but the molecular details remained largely unknown. Recently, there has been significant progress in defining the molecular components of the editing reaction. A number of factors have been isolated from trypanosome mitochondria, some of which have been definitely implicated in the uridine insertion/deletion RNA editing reaction and others of which have been circumstantially implicated. Several protein complexes have been isolated which exhibit some editing activities, and the macromolecular organization of these complexes is being analyzed. In addition, there have been several important technical advances in the in vitro analysis of editing. In this review we critically examine the various factors and complexes proposed to be involved in RNA editing.
Collapse
Affiliation(s)
- Larry Simpson
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
37
|
Aphasizhev R, Aphasizheva I, Nelson RE, Simpson L. A 100-kD complex of two RNA-binding proteins from mitochondria of Leishmania tarentolae catalyzes RNA annealing and interacts with several RNA editing components. RNA (NEW YORK, N.Y.) 2003; 9:62-76. [PMID: 12554877 PMCID: PMC1370371 DOI: 10.1261/rna.2134303] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2002] [Accepted: 10/07/2002] [Indexed: 05/22/2023]
Abstract
A stable 100-kD complex from mitochondria of Leishmania tarentolae containing two RNA-binding proteins, Ltp26 and Ltp28, was identified by cross-linking to unpaired 4-thiouridine nucleotides in a partially duplex RNA substrate. The genes were cloned and expressed and the complex was reconstituted from recombinant proteins in the absence of RNA or additional factors. The Ltp26 and Ltp28 proteins are homologs of gBP27 and gBP29 from Crithidia fasciculata and gBP25 and gBP21 from Trypanosoma brucei, respectively. The purified Ltp26/Ltp28 complex, the individual recombinant proteins, and the reconstituted complex are each capable of catalyzing the annealing of complementary RNAs, as was previously shown for gBP21 from T. brucei. A high-molecular-weight RNP complex consisting of the Ltp26/Ltp28 complex and several 55-60-kD proteins together with guide RNA could be purified from mitochondrial extract of L. tarentolae transfected with Ltp28-TAP. This complex also interacted in a less stable manner with the RNA ligase-containing L-complex and with the 3' TUTase. The Ltp26/Ltp28 RNP complex is a candidate for catalyzing the annealing of guide RNA and pre-edited mRNA in the initial step of RNA editing.
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles 90095, USA
| | | | | | | |
Collapse
|
38
|
Abstract
RNA editing in Trypanosomatids creates functional mitochondrial mRNAs by extensive uridylate (U) insertion and deletion as specified by small guide RNAs (gRNAs). Editing is catalysed by the multiprotein editosome. Over 20 of its protein components have been identified and additional proteins are likely to function in editing and its regulation. The functions of only a few editosome proteins have been determined. Surprisingly, there are related pairs or sets of editosome proteins, and insertion and deletion editing appear to be functionally and perhaps spatially separate. A model for the editosome is proposed, which has a catalysis domain with separate sectors for insertion and deletion editing. It also contains domains for anchor duplex and upstream RNA binding, which position the sequence to be edited in the catalysis domain.
Collapse
|
39
|
Drozdz M, Palazzo SS, Salavati R, O’Rear J, Clayton C, Stuart K. TbMP81 is required for RNA editing in Trypanosoma brucei. EMBO J 2002; 21:1791-9. [PMID: 11927563 PMCID: PMC125959 DOI: 10.1093/emboj/21.7.1791] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Most mitochondrial mRNAs are edited in Trypano soma brucei by a series of steps that are catalyzed by a multienzyme complex that is in its initial stages of characterization. RNA interference (RNAi)-mediated repression of the expression of TbMP81, a zinc finger protein component of the complex, inhibited growth of bloodstream and insect forms, and blocked in vivo RNA editing. This repression preferentially inhibited insertion editing compared with deletion editing in vitro. It resulted in reduced specific endoribonucleolytic cleavage and a greater reduction of U addition and associated RNA ligation activities than U removal and associated RNA ligation activities. The repressed cells retained 20S editing complexes with several demonstrable proteins and adenylatable TbMP52 RNA ligase, but adenlyatable TbMP48 was not detected. Elimination of TbMP48 by RNAi repression did not inhibit cell growth or in vivo editing in either bloodstream or procyclic forms. These results indicate that TbMP81 is required for RNA editing and suggest that the editing complex is functionally partitioned.
Collapse
Affiliation(s)
| | - Setareh S. Palazzo
- Zentrum für Molekulare Biologie, Heidelberg, Germany and
Seattle Biomedical Research Institute and Department of Pathobiology, University of Washington, Seattle, WA, USA Corresponding author e-mail:
| | - Reza Salavati
- Zentrum für Molekulare Biologie, Heidelberg, Germany and
Seattle Biomedical Research Institute and Department of Pathobiology, University of Washington, Seattle, WA, USA Corresponding author e-mail:
| | - Jeff O’Rear
- Zentrum für Molekulare Biologie, Heidelberg, Germany and
Seattle Biomedical Research Institute and Department of Pathobiology, University of Washington, Seattle, WA, USA Corresponding author e-mail:
| | | | - Kenneth Stuart
- Zentrum für Molekulare Biologie, Heidelberg, Germany and
Seattle Biomedical Research Institute and Department of Pathobiology, University of Washington, Seattle, WA, USA Corresponding author e-mail:
| |
Collapse
|
40
|
Igo RP, Lawson SD, Stuart K. RNA sequence and base pairing effects on insertion editing in Trypanosoma brucei. Mol Cell Biol 2002; 22:1567-76. [PMID: 11839822 PMCID: PMC134691 DOI: 10.1128/mcb.22.5.1567-1576.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2001] [Revised: 09/10/2001] [Accepted: 11/29/2001] [Indexed: 11/20/2022] Open
Abstract
RNA editing inserts and deletes uridylates (U's) in kinetoplastid mitochondrial pre-mRNAs by a series of enzymatic steps. Small guide RNAs (gRNAs) specify the edited sequence. Editing, though sometimes extensive, is precise. The effects of mutating pre-mRNA and gRNA sequences in, around, and upstream of the editing site on the specificity and efficiency of in vitro insertion editing were examined. U's could be added opposite guiding pyrimidines, but guiding purines, particularly A's, were required for efficient ligation. A base pair between mRNA and gRNA immediately upstream of the editing site was not required for insertion editing, although it greatly enhanced its efficiency and accuracy. In addition, a gRNA/mRNA duplex upstream of the editing site enhanced insertion editing when it was close to the editing site, but prevented cleavage, and hence editing, when immediately adjacent to the editing site. Thus, several aspects of mRNA-gRNA interaction, as well as gRNA base pairing with added U's, optimize editing efficiency, although they are not required for insertion editing.
Collapse
Affiliation(s)
- Robert P Igo
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
41
|
Blanc V, Farré JC, Litvak S, Araya A. Réécriture du matériel génétique : fonctions et mécanismes de l’édition de l’ARN. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002182181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Igo RP, Weston DS, Ernst NL, Panigrahi AK, Salavati R, Stuart K. Role of uridylate-specific exoribonuclease activity in Trypanosoma brucei RNA editing. EUKARYOTIC CELL 2002; 1:112-8. [PMID: 12455977 PMCID: PMC118049 DOI: 10.1128/ec.1.1.112-118.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Editing of mitochondrial mRNAs in kinetoplastid protozoa occurs by a series of enzymatic steps that insert and delete uridylates (U's) as specified by guide RNAs (gRNAs). The characteristics of the 3' exonuclease activity that removes the U's following cleavage during deletion editing were determined by using an in vitro precleaved deletion assay that is based on ATPase subunit 6 pre-mRNA and gA6[14] gRNA. The exonuclease in partially purified editing complexes is specific for U's. The specificity occurs in the absence of gRNA, but its activity is enhanced by the presence of gRNA. The 3' pre-mRNA fragment enhances the specificity, but not the efficiency, of U removal. The activity is sensitive to the 5' phosphate of the 3' fragment, which is not required for U removal. The ability of the 3' U's to base pair with purines in the gRNA protects them from removal, suggesting that the U-specific 3' exonuclease (exoUase) is specific for U's which are not base paired. ExoUase is stereospecific and cannot remove (Rp)alpha-thio-U. The specificity of the exoUase activity thus contributes to the precision of RNA editing.
Collapse
Affiliation(s)
- Robert P Igo
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
43
|
Stuart K, Panigrahi AK, Schnaufer A, Drozdz M, Clayton C, Salavati R. Composition of the editing complex of Trypanosoma brucei. Philos Trans R Soc Lond B Biol Sci 2002; 357:71-9. [PMID: 11839184 PMCID: PMC1692915 DOI: 10.1098/rstb.2001.0994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The RNA editing that produces most functional mRNAs in trypanosomes is catalysed by a multiprotein complex. This complex catalyses the endoribonucleolytic cleavage, uridylate addition and removal, and RNA ligation steps of the editing process. Enzymatic and in vitro editing analyses reveal that each catalytic step contributes to the specificity of the editing and, together with the interaction between gRNA and the mRNA, results in precisely edited mRNAs. Tandem mass spectrometric analysis was used to identify the genes for several components of biochemically purified editing complexes. Their identity and presence in the editing complex were confirmed using immunochemical analyses utilizing mAbs specific to the editing complex components. The genes for two RNA ligases were identified. Genetic studies show that some, but not all, of the components of the complex are essential for editing. The TbMP52 RNA ligase is essential for editing while the TbMP48 RNA ligase is not. Editing was found to be essential in bloodstream form trypanosomes. This is surprising because mutants devoid of genes encoding RNAs that become edited survive as bloodstream forms but encouraging since editing complex components may be targets for chemotherapy.
Collapse
Affiliation(s)
- K Stuart
- Seattle Biomedical Research Institute, 4 Nickerson Street, Seattle, WA 98109, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Müller UF, Göringer HU. Mechanism of the gBP21-mediated RNA/RNA annealing reaction: matchmaking and charge reduction. Nucleic Acids Res 2002; 30:447-55. [PMID: 11788706 PMCID: PMC99830 DOI: 10.1093/nar/30.2.447] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/16/2001] [Accepted: 11/16/2001] [Indexed: 01/17/2023] Open
Abstract
The guide RNA-binding protein gBP21 has been characterized as a mitochondrial RNA/RNA annealing factor. The protein co-immunoprecipitates with RNA editing ribonucleoprotein complexes, which suggests that gBP21 contributes its annealing activity to the RNA editing machinery. In support of this view, gBP21 was found to accelerate the hybridization of cognate guide (g)RNA/pre-edited mRNA pairs. Here we analyze the mechanism of the gBP21-mediated RNA annealing reaction. Three possible modes of action are considered: chaperone function, matchmaker function and product stabilization. We conclude that gBP21 works as a matchmaker by binding to gRNAs as one of the two RNA annealing reactants. Three lines of evidence substantiate this model. First, gBP21 and gRNAs form a thermodynamically and kinetically stable complex in a 1 + 1 stoichiometry. Secondly, gRNA-bound gBP21 stabilizes single-stranded RNA, which can be considered the transition state in the annealing reaction. Thirdly, gBP21 has a low affinity for double-stranded RNAs, suggesting the release of the annealed reaction product after the hybridization step. In the process, up to six ionic bonds are formed between gBP21 and a gRNA, which decreases the net negative charge of the RNA. As a consequence, the electrostatic repulsion between the two annealing reactants is reduced favoring the hybridization reaction.
Collapse
Affiliation(s)
- Ulrich F Müller
- Department of Microbiology and Genetics, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | |
Collapse
|
45
|
Leung SS, Koslowsky DJ. Interactions of mRNAs and gRNAs involved in trypanosome mitochondrial RNA editing: structure probing of an mRNA bound to its cognate gRNA. RNA (NEW YORK, N.Y.) 2001; 7:1803-16. [PMID: 11780636 PMCID: PMC1370219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Posttranscriptional editing of trypanosome mitochondrial messenger RNA is directed by small guide RNAs (gRNAs). Using crosslinking techniques, we have previously shown that the gRNA base pairs to the mRNA via a 5' anchor, whereas its 3' U-tail interacts with upstream purine-rich mRNA sequences. The incorporation of crosslinking data into RNA folding programs produced similar structure predictions for all gRNA/mRNA pairs examined. This suggests that gRNA/mRNA pairs can form common secondary structure motifs that may be important for recognition by the editing complex. In this study, the structure of CYb mRNA crosslinked to gCYb-558 was examined using solution-probing techniques. The mRNA/gRNA crosslinked molecules are efficient substrates for gRNA-directed cleavage. In addition, when the cleavage assay is performed in the presence or absence of additional UTP, the activities of both the U-specific exonuclease and terminal uridylyl transferase (tutase) can be detected. These results indicate that a partial editing complex can assemble and function on these substrates suggesting that the crosslink captured the molecules in a biologically relevant interaction. The structure probing data directly show that the U-tail protects several mRNA bases predicted to be involved in the U-tail-mRNA duplex. In combination with our previous studies, these new data provide additional support for the predicted secondary structure of interacting gRNA/mRNA pairs.
Collapse
MESH Headings
- Animals
- Apoproteins/genetics
- Base Sequence
- Cytochrome b Group/genetics
- Cytochromes b
- Endoribonucleases/metabolism
- Forecasting
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA/genetics
- RNA Editing
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- Ribonuclease T1/metabolism
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
- Substrate Specificity
- Trypanosoma/genetics
Collapse
Affiliation(s)
- S S Leung
- Interdepartmental Graduate Program in Genetics, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
46
|
Lawson SD, Igo RP, Salavati R, Stuart KD. The specificity of nucleotide removal during RNA editing in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2001; 7:1793-802. [PMID: 11780635 PMCID: PMC1370218 DOI: 10.1017/s135583820101055x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
RNA editing in Trypanosoma brucei produces mature mRNAs by posttranscriptional insertion and deletion of uridylates (Us) by a series of catalytic steps, which include endoribonucleolytic cleavage, 3' terminal addition or removal of Us, and RNA ligation. Preedited mRNA (pre-mRNA) and guide RNA (gRNA) that are mutated at or near the editing site (ES) were used to examine the effects on the specificity of in vitro editing. Sequences that are not predicted to form a gRNA/pre-mRNA base pair immediately 5' to the ES still supported accurate editing. Substitution of a non-U nucleotide at various positions within a stretch of Us that are normally removed from the ES resulted in deletion of only the Us that were 3' to the substituted nucleotide. Overall, ES selection by the endoribonuclease, the specificity of the 3' exoribonuclease for Us, and ligation appear to act in concert to ensure the production of accurately edited RNA.
Collapse
Affiliation(s)
- S D Lawson
- Seattle Biomedical Research Institute and Pathobiology Department, University of Washington, Washington 98109-1651, USA
| | | | | | | |
Collapse
|
47
|
Panigrahi AK, Schnaufer A, Carmean N, Igo RP, Gygi SP, Ernst NL, Palazzo SS, Weston DS, Aebersold R, Salavati R, Stuart KD. Four related proteins of the Trypanosoma brucei RNA editing complex. Mol Cell Biol 2001; 21:6833-40. [PMID: 11564867 PMCID: PMC99860 DOI: 10.1128/mcb.21.20.6833-6840.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 07/16/2001] [Indexed: 11/20/2022] Open
Abstract
RNA editing in kinetoplastid mitochondria occurs by a series of enzymatic steps that is catalyzed by a macromolecular complex. Four novel proteins and their corresponding genes were identified by mass spectrometric analysis of purified editing complexes from Trypanosoma brucei. These four proteins, TbMP81, TbMP63, TbMP42, and TbMP18, contain conserved sequences to various degrees. All four proteins have sequence similarity in the C terminus; TbMP18 has considerable sequence similarity to the C-terminal region of TbMP42, and TbMP81, TbMP63, and TbMP42 contain zinc finger motif(s). Monoclonal antibodies that are specific for TbMP63 and TbMP42 immunoprecipitate in vitro RNA editing activities. The proteins are present in the immunoprecipitates and sediment at 20S along with the in vitro editing, and RNA editing ligases TbMP52 and TbMP48. Recombinant TbMP63 and TbMP52 coimmunoprecipitate. These results indicate that these four proteins are components of the RNA editing complex and that TbMP63 and TbMP52 can interact.
Collapse
Affiliation(s)
- A K Panigrahi
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang CE, Cruz-Reyes J, Zhelonkina AG, O’Hearn S, Wirtz E, Sollner-Webb B. Roles for ligases in the RNA editing complex of Trypanosoma brucei: band IV is needed for U-deletion and RNA repair. EMBO J 2001; 20:4694-703. [PMID: 11532934 PMCID: PMC125609 DOI: 10.1093/emboj/20.17.4694] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trypanosome RNA editing utilizes a seven polypeptide complex that includes two RNA ligases, band IV and band V. We now find that band IV protein contributes to the structural stability of the editing complex, so its lethal genetic knock-out could reflect structural or catalytic requirements. To assess the catalytic role in editing, we generated cell lines which inducibly replaced band IV protein with an enzymatically inactive but structurally conserved version. This induction halts cell growth, showing that catalytic activity is essential. These induced cells have impaired in vivo editing, specifically of RNAs requiring uridylate (U) deletion; unligated RNAs cleaved at U-deletion sites accumulated. Additionally, mitochondrial extracts of cells with reduced band IV activity were deficient in catalyzing U-deletion, specifically at its ligation step, but were not deficient in U-insertion. Thus band IV ligase is needed to seal RNAs in U-deletion. U-insertion does not appear to require band IV, so it might use the other ligase of the editing complex. Furthermore, band IV ligase was also found to serve an RNA repair function, both in vitro and in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth Wirtz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 and
Laboratory of Molecular Parasitology, The Rockefeller University, New York, NY 10021, USA Corresponding author e-mail:
| | - Barbara Sollner-Webb
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 and
Laboratory of Molecular Parasitology, The Rockefeller University, New York, NY 10021, USA Corresponding author e-mail:
| |
Collapse
|
49
|
Blom D, Burg Jv, Breek CK, Speijer D, Muijsers AO, Benne R. Cloning and characterization of two guide RNA-binding proteins from mitochondria of Crithidia fasciculata: gBP27, a novel protein, and gBP29, the orthologue of Trypanosoma brucei gBP21. Nucleic Acids Res 2001; 29:2950-62. [PMID: 11452020 PMCID: PMC55805 DOI: 10.1093/nar/29.14.2950] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2001] [Accepted: 05/29/2001] [Indexed: 11/14/2022] Open
Abstract
In kinetoplastid protozoa, mitochondrial (mt) mRNAs are post-transcriptionally edited by insertion and deletion of uridylate residues, the information being provided by guide (g)RNAs. Currently popular mechanisms for the editing process envisage a series of consecutive 'cut-and-paste' reactions, carried out by a complex RNP machinery. Here we report on the purification, cloning and functional analysis of two gRNA-binding proteins of 28.8 (gBP29) and 26.8 kDa (gBP27) from mitochondria of the insect trypanosome Crithidia fasciculata. gBP29 and gBP27 proved to be similar, Arg + Ala-rich proteins, with pI values of approximately 10.0. gBP27 has no homology to known proteins, but gBP29 is the C.fasciculata orthologue of gBP21 from Trypanosoma brucei, a gRNA-binding protein that associates with active RNA editing complexes. As measured in UV cross-linking assays, His-tagged recombinant gBP29 and gBP27 bind to radiolabelled poly(U) and synthetic gRNAs, while competition experiments suggest a role for the gRNA 3'-(U)-tail in binding to these proteins. Immunoprecipitates of mt extracts generated with antibodies against gBP29 also contained gBP27 and vice versa. The immunoprecipitates further harbored a large proportion of the cellular content of four different gRNAs and of edited and pre-edited NADH dehydrogenase subunit 7 mRNAs, but only small amounts of mt rRNAs. In addition, the bulk of gBP29 and gBP27 co-eluted with gRNAs from gel filtration columns in the high molecular weight range. Together, these results suggest that the proteins are part of a large macromolecular complex(es). We infer that gBP29 and gBP27 are components of the C.fasciculata editing machinery that may interact with gRNAs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- Crithidia fasciculata/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Molecular Sequence Data
- Precipitin Tests
- Protein Binding
- Protozoan Proteins
- RNA/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/isolation & purification
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- D Blom
- Department of Biochemistry, Academic Medical Centre, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Madison-Antenucci S, Hajduk SL. RNA editing-associated protein 1 is an RNA binding protein with specificity for preedited mRNA. Mol Cell 2001; 7:879-86. [PMID: 11336710 DOI: 10.1016/s1097-2765(01)00231-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
RNA editing in the mitochondria of kinetoplastids involves the addition and deletion of uridines at specific sites as directed by guide RNAs (gRNAs). Ample evidence shows that ribonucleoprotein (RNP) complexes carry out this posttranscriptional processing. One component of RNA editing complexes is REAP-1, a protein of previously unknown function found primarily in mRNA containing editing complexes. We now show that REAP-1 is an RNA binding protein and map the binding activity to the amino-terminal third of the protein. REAP-1 binds to poly(G) and single-stranded guanosine rich RNAs. Data presented here demonstrates that preedited RNAs are the preferred substrate for REAP-1. The results suggest a model in which the role of REAP-1 is to bring preedited mRNAs into the editing complex.
Collapse
Affiliation(s)
- S Madison-Antenucci
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|