1
|
van Muilekom DR, Collet B, Rebl H, Zlatina K, Sarais F, Goldammer T, Rebl A. Lost and Found: The Family of NF-κB Inhibitors Is Larger than Assumed in Salmonid Fish. Int J Mol Sci 2023; 24:10229. [PMID: 37373375 DOI: 10.3390/ijms241210229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
NF-κB signalling is largely controlled by the family of 'inhibitors of NF-κB' (IκB). The relevant databases indicate that the genome of rainbow trout contains multiple gene copies coding for iκbα (nfkbia), iκbε (nfkbie), iκbδ (nkfbid), iκbζ (nfkbiz), and bcl3, but it lacks iκbβ (nfkbib) and iκbη (ankrd42). Strikingly, three nfkbia paralogs are apparently present in salmonid fish, two of which share a high sequence identity, while the third putative nfkbia gene is significantly less like its two paralogs. This particular nfkbia gene product, iκbα, clusters with the human IκBβ in a phylogenetic analysis, while the other two iκbα proteins from trout associate with their human IκBα counterpart. The transcript concentrations were significantly higher for the structurally more closely related nfkbia paralogs than for the structurally less similar paralog, suggesting that iκbβ probably has not been lost from the salmonid genomes but has been incorrectly designated as iκbα. In the present study, two gene variants coding for iκbα (nfkbia) and iκbε (nfkbie) were prominently expressed in the immune tissues and, particularly, in a cell fraction enriched with granulocytes, monocytes/macrophages, and dendritic cells from the head kidney of rainbow trout. Stimulation of salmonid CHSE-214 cells with zymosan significantly upregulated the iκbα-encoding gene while elevating the copy numbers of the inflammatory markers interleukin-1-beta and interleukin-8. Overexpression of iκbα and iκbε in CHSE-214 cells dose-dependently quenched both the basal and stimulated activity of an NF-κB promoter suggesting their involvement in immune-regulatory processes. This study provides the first functional data on iκbε-versus the well-researched iκbα factor-in a non-mammalian model species.
Collapse
Affiliation(s)
- Doret R van Muilekom
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Bertrand Collet
- VIM, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Henrike Rebl
- Department of Cell Biology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Fabio Sarais
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
2
|
Khoi PN, Li S, Thuan UT, Sah DK, Kang TW, Nguyen TT, Lian S, Xia Y, Jung YD. Lysophosphatidic Acid Upregulates Recepteur D'origine Nantais Expression and Cell Invasion via Egr-1, AP-1, and NF-κB Signaling in Bladder Carcinoma Cells. Int J Mol Sci 2020; 21:304. [PMID: 31906413 PMCID: PMC6981588 DOI: 10.3390/ijms21010304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/05/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022] Open
Abstract
Muscle invasive bladder carcinoma is a highly malignant cancer with a high mortality rate, due to its tendency to metastasize. The tyrosine kinase recepteur d'origine nantais (RON) promotes bladder carcinoma metastasis. Lysophosphatidic acid (LPA) is a phospholipid derivative, which acts as a signaling molecule to activate three high affinity G-protein coupled receptors, LPA1, LPA2, and LPA3. This in turn leads to cell proliferation and contributes to oncogenesis. However, little is known about the effects of LPA on invasive bladder cancer (IBC). In this study, we discovered that LPA upregulated RON expression, which in turn promoted cell invasion in bladder cancer T24 cells. As expected, we found that the LPA receptor was essential for the LPA induced increase in RON expression. More interestingly, we discovered that LPA induced RON expression via the MAPK (ERK1/2, JNK1/2), Egr-1, AP-1, and NF-κB signaling axes. These results provide experimental evidence and novel insights regarding bladder malignancy metastasis, which could be helpful for developing new therapeutic strategies for IBC treatment.
Collapse
Affiliation(s)
- Pham Ngoc Khoi
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (P.N.K.); (S.L.); (U.T.T.); (D.K.S.); (T.W.K.); (T.T.N.)
| | - Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (P.N.K.); (S.L.); (U.T.T.); (D.K.S.); (T.W.K.); (T.T.N.)
| | - Ung Trong Thuan
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (P.N.K.); (S.L.); (U.T.T.); (D.K.S.); (T.W.K.); (T.T.N.)
| | - Dhiraj Kumar Sah
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (P.N.K.); (S.L.); (U.T.T.); (D.K.S.); (T.W.K.); (T.T.N.)
| | - Taek Won Kang
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (P.N.K.); (S.L.); (U.T.T.); (D.K.S.); (T.W.K.); (T.T.N.)
| | - Thi Thinh Nguyen
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (P.N.K.); (S.L.); (U.T.T.); (D.K.S.); (T.W.K.); (T.T.N.)
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Yong Xia
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Korea; (P.N.K.); (S.L.); (U.T.T.); (D.K.S.); (T.W.K.); (T.T.N.)
| |
Collapse
|
3
|
Li XH, Gaynor RB. Regulation of NF-kappaB by the HTLV-1 Tax protein. Gene Expr 2018; 7:233-45. [PMID: 10440224 PMCID: PMC6174672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The Tax protein encoded by the human T-cell leukemia virus type 1 (HTLV-1) activates viral gene expression via the ATF/CREB pathway. Tax also induces a variety of cellular genes through activation of the transcription factor NF-kappaB. The ability of Tax to activate the NF-kappaB pathway plays an essential role in HTLV-1-induced cellular transformation. This review briefly summarizes the remarkable discoveries of the past several years that have greatly advanced our knowledge on signal-mediated activation of the NF-kappaB pathway. It highlights our current understanding of how viral agents like Tax modulate cellular signaling machinery to activate the NF-kappaB pathway.
Collapse
Affiliation(s)
- Xiao Hua Li
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235-8594
| | - Richard B. Gaynor
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235-8594
- Address correspondence to Richard B. Gaynor, Division of Hematology-Oncology, Department of Medicine, U.T. Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-8594. Tel: (214) 648-7570; Fax: (214) 648-8862; E-mail:
| |
Collapse
|
4
|
Panfil AR, Dissinger NJ, Howard CM, Murphy BM, Landes K, Fernandez SA, Green PL. Functional Comparison of HBZ and the Related APH-2 Protein Provides Insight into Human T-Cell Leukemia Virus Type 1 Pathogenesis. J Virol 2016; 90:3760-72. [PMID: 26819304 PMCID: PMC4794683 DOI: 10.1128/jvi.03113-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that transform T cells in vitro but have distinct pathological outcomes in vivo. HTLV-1 encodes a protein from the antisense strand of its proviral genome, the HTLV-1 basic leucine zipper factor (HBZ), which inhibits Tax-1-mediated viral transcription and promotes cell proliferation, a high proviral load, and persistence in vivo. In adult T-cell leukemia/lymphoma (ATL) cell lines and patient T cells, hbz is often the only viral gene expressed. The antisense strand of the HTLV-2 proviral genome also encodes a protein termed APH-2. Like HBZ, APH-2 is able to inhibit Tax-2-mediated viral transcription and is detectable in most primary lymphocytes from HTLV-2-infected patients. However, unlike HBZ, the loss of APH-2 in vivo results in increased viral replication and proviral loads, suggesting that HBZ and APH-2 modulate the virus and cellular pathways differently. Herein, we examined the effect of APH-2 on several known HBZ-modulated pathways: NF-κB (p65) transactivation, transforming growth factor β (TGF-β) signaling, and interferon regulatory factor 1 (IRF-1) transactivation. Like HBZ, APH-2 has the ability to inhibit p65 transactivation. Conversely, HBZ and APH-2 have divergent effects on TGF-β signaling and IRF-1 transactivation. Quantitative PCR and protein half-life experiments revealed a substantial disparity between HBZ and APH-2 transcript levels and protein stability, respectively. Taken together, our data further elucidate the functional differences between HBZ and APH-2 and how these differences can have profound effects on the survival of infected cells and, ultimately, pathogenesis. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are highly related retroviruses that have distinct pathological outcomes in infected hosts. Functional comparisons of HTLV-1 and HTLV-2 proteins provide a better understanding about how HTLV-1 infection is associated with disease and HTLV-2 infection is not. The HTLV genome antisense-strand genes hbz and aph-2 are often the only viral genes expressed in HTLV-infected T cells. Previously, our group found that HTLV-1 HBZ and HTLV-2 APH-2 had distinct effects in vivo and hypothesized that the differences in the interactions of HBZ and APH-2 with important cell signaling pathways dictate whether cells undergo proliferation, apoptosis, or senescence. Ultimately, these functional differences may affect how HTLV-1 causes disease but HTLV-2 generally does not. In the current study, we compared the effects of HBZ and APH-2 on several HTLV-relevant cellular pathways, including the TGF-β signaling, NF-κB activation, and IRF-1 transactivation pathways.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Nathan J Dissinger
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Cory M Howard
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Brandon M Murphy
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Kristina Landes
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Soledad A Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, USA
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Ishikawa C, Senba M, Mori N. Induction of IκB-ζ by Epstein-Barr virus latent membrane protein-1 and CD30. Int J Oncol 2015; 47:2197-207. [PMID: 26498461 DOI: 10.3892/ijo.2015.3218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/21/2015] [Indexed: 11/05/2022] Open
Abstract
Activation of nuclear factor-κB (NF-κB) in Burkitt's lymphoma (BL) and Hodgkin's lymphoma (HL) cells is important in the transformation and development process of these lymphomas. Epstein-Barr virus (EBV) latent membrane protein-1 (LMP-1) and ligand-independent signaling by overexpressed CD30 are known to cause permanent activation of NF-κB in lymphomas. However, hyperactivation of NF-κB triggers cellular senescence and apoptosis. Here, we show that IκB-ζ, an inducible regulator of NF-κB, is constitutively expressed in BL and HL cell lines. In addition, immunohistochemical staining identified nuclear IκB-ζ‑positive BL cells, and Hodgkin and Reed-Sternberg cells in lymph nodes. Expression of LMP-1 and CD30 increased IκB-ζ expression at the transcriptional level. IκB-ζ promoter was regulated by activation of the NF-κB‑inducing kinase (NIK)/IκB kinase/NF-κB pathway via the carboxyl‑terminal tumor necrosis factor (TNF) receptor‑associated factor (TRAF)-interacting regions of LMP-1 and CD30. Interestingly, IκB-ζ inhibited NF-κB activation by LMP-1 and CD30. The results suggest that NF-κB-induced IκB-ζ negatively modulates NF-κB hyperactivation, resulting in a fine balance that ultimately endows a net evolutionary benefit to the survival of BL and HL cells.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
6
|
Xia Y, Lian S, Khoi PN, Yoon HJ, Han JY, Chay KO, Kim KK, Jung YD. Chrysin inhibits cell invasion by inhibition of Recepteur d'origine Nantais via suppressing early growth response-1 and NF-κB transcription factor activities in gastric cancer cells. Int J Oncol 2015; 46:1835-1843. [PMID: 25625479 DOI: 10.3892/ijo.2015.2847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/23/2014] [Indexed: 11/05/2022] Open
Abstract
Cell invasion is one of crucial reasons for cancer metastasis and malignancy. Recepteur d'origine Nantais (RON) has been reported to play an important role in the cancer cell invasion process. High accumulation and activation of RON has been implicated in gastric adenocarcinoma AGS cells. Chrysin is a naturally occurring phytochemical, a type of flavonoid, which has been reported to suppress tumor metastasis. However, the effects of chrysin on RON expression in gastric cancer are not well studied. In the present study, we examined whether chrysin affects RON expression in gastric cancer, and if so, its underlying mechanism. We examined the effect of chrysin on RON expression and activity, via RT-PCR, promoter study, and western blotting in human gastric cancer AGS cells. Chrysin significantly inhibited endogenous and inducible RON expression in a dose-dependent manner. After demonstrating that Egr-1 and NF-κB are the critically required transcription factors for RON expression, we discovered that chrysin suppressed Egr-1 and NF-κB transcription factor activities. Additionally, the phorbol-12-myristate-13-acetate- (PMA) induced cell invasion was partially abrogated by chrysin and an RON antibody. Our results suggest that chrysin has anticancer effects at least by suppressing RON expression through blocking Egr-1 and NF-κB in gastric cancer AGS cells.
Collapse
Affiliation(s)
- Yong Xia
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Sen Lian
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Pham Ngoc Khoi
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Hyun Joong Yoon
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Jae Young Han
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kee Oh Chay
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Kyung Keun Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| |
Collapse
|
7
|
Human T cell leukemia virus type I tax-induced IκB-ζ modulates tax-dependent and tax-independent gene expression in T cells. Neoplasia 2014; 15:1110-24. [PMID: 24027435 DOI: 10.1593/neo.131140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3',5'-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases.
Collapse
|
8
|
Barrios CS, Castillo L, Zhi H, Giam CZ, Beilke MA. Human T cell leukaemia virus type 2 tax protein mediates CC-chemokine expression in peripheral blood mononuclear cells via the nuclear factor kappa B canonical pathway. Clin Exp Immunol 2014; 175:92-103. [PMID: 24116893 DOI: 10.1111/cei.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 12/22/2022] Open
Abstract
Retroviral co-infections with human immunodeficiency virus type-1 (HIV-1) and human T cell leukaemia virus type 1 (HTLV-1) or type 2 (HTLV-2) are prevalent in many areas worldwide. It has been observed that HIV-1/HTLV-2 co-infections are associated with slower rates of CD4(+) T cell decline and delayed progression to AIDS. This immunological benefit has been linked to the ability of Tax2, the transcriptional activating protein of HTLV-2, to induce the expression of macrophage inflammatory protein (MIP)-1α/CCL3, MIP-1β/CCL4 and regulated upon activation normal T cell expressed and secreted (RANTES)/CCL5 and to down-regulate the expression of the CCR5 co-receptor in peripheral blood mononuclear cells (PBMCs). This study aimed to assess the role of Tax2-mediated activation of the nuclear factor kappa B (NF-κB) signalling pathway on the production of the anti-viral CC-chemokines MIP-1α, MIP-1β and RANTES. Recombinant Tax1 and Tax2 proteins, or proteins expressed via adenoviral vectors used to infect cells, were tested for their ability to activate the NF-κB pathway in cultured PBMCs in the presence or absence of NF-κB pathway inhibitors. Results showed a significant release of MIP-1α, MIP-1β and RANTES by PBMCs after the activation of p65/RelA and p50. The secretion of these CC-chemokines was significantly reduced (P < 0·05) by canonical NF-κB signalling inhibitors. In conclusion, Tax2 protein may promote innate anti-viral immune responses through the activation of the canonical NF-κB pathway.
Collapse
Affiliation(s)
- C S Barrios
- Infectious Diseases Division, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service 151-I, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
9
|
Zane L, Jeang KT. HTLV-1 and leukemogenesis: virus-cell interactions in the development of adult T-cell leukemia. Recent Results Cancer Res 2014; 193:191-210. [PMID: 24008300 DOI: 10.1007/978-3-642-38965-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) was originally discovered in the early 1980s. It is the first retrovirus to be unambiguously linked causally to a human cancer. HTLV-1 currently infects approximately 20 million people worldwide. In this chapter, we review progress made over the last 30 years in our understanding of HTLV-1 infection, replication, gene expression, and cellular transformation.
Collapse
Affiliation(s)
- Linda Zane
- Molecular Virology Section, Laboratory of Molecular Microbiology, The National Institutes of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, 20892-0460, USA
| | | |
Collapse
|
10
|
Khoi PN, Park JS, Kim JH, Xia Y, Kim NH, Kim KK, Jung YD. (-)-Epigallocatechin-3-gallate blocks nicotine-induced matrix metalloproteinase-9 expression and invasiveness via suppression of NF-κB and AP-1 in endothelial cells. Int J Oncol 2013; 43:868-76. [PMID: 23835612 DOI: 10.3892/ijo.2013.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/17/2013] [Indexed: 11/05/2022] Open
Abstract
Cigarette smoke, specifically the nicotine contained within, has been shown to correlate closely with cell invasion and strategies to downregulate their expression may ultimately be of clinical utility. Matrix metalloproteinase-9 (MMP-9) is critically involved in the cell invasion and metastasis processes. Since nicotine plays a crucial role in the regulation of MMP-9 expression, the investigation of plant-derived compounds capable of modulating nicotine-induced signaling is an issue of concern. In this study, the effects of (-)-epigallocatechin-3-gallate (EGCG), a major green tea catechin, on nicotine-induced cell invasion and MMP-9 activity in ECV304 human endothelial cells were examined. EGCG treatment was found to reduce the MMP-9 expression and transcriptional activity in a dose-dependent manner. EGCG inhibited nicotine-activated production of reactive oxygen species (ROS), which are known as important signaling molecules to activate MMP-9. To further study the mechanisms for the EGCG-mediated regulation of MMP-9, the transcription factors NF-κB and AP-1 activities were examined. EGCG suppressed the nicotine-induced NF-κB and AP-1 activation. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated MMP-9 expression. EGCG also abrogated the nicotine-induced activation of AP-1 subunits c-fos and c-jun. The above studies demonstrate that EGCG may exert at least part of its anti-invasive effect in ECV304 human endothelial cells by controlling MMP-9 expression through the suppression of ROS, NF-κB and AP-1.
Collapse
Affiliation(s)
- Pham Ngoc Khoi
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Ishikawa C, Mori N. Epstein-Barr virus latent membrane protein 1 induces CD69 expression through activation of nuclear factor-κB. Int J Oncol 2013; 42:1786-92. [PMID: 23546309 DOI: 10.3892/ijo.2013.1871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/25/2013] [Indexed: 11/05/2022] Open
Abstract
Latent membrane protein‑1 (LMP-1) of Epstein‑Barr virus (EBV) promotes tumorigenesis. Here, we report that LMP-1 activates the immunoregulatory molecule CD69 gene transcription through a nuclear factor-κB (NF-κB)‑dependent pathway. CD69 expression was upregulated in LMP-1‑expressing EBV-immortalized human B-cell lines and an EBV-positive Burkitt's lymphoma cell line. LMP-1 expression increased CD69 expression at the transcriptional level. CD69 promoter was regulated by LMP-1 activation of NF-κB via the carboxy-terminal activation region 1 and 2. Promoter deletion analysis indicated that two NF-κB binding sites are necessary for activation of the CD69 promoter. Electrophoretic mobility shift analysis demonstrated that LMP-1 activates both NF-κB binding sites in the CD69 promoter. This is the first report of the regulation of CD69 expression by LMP-1, and this novel finding may, thus, represent an important link between the EBV oncoprotein LMP-1 and its critical role in the development of EBV-associated diseases.
Collapse
Affiliation(s)
- Chie Ishikawa
- Transdisciplinary Research Organization for Subtropics and Island Studies, Nishihara, Okinawa 903-0213, Japan.
| | | |
Collapse
|
12
|
Ishikawa C, Kawakami H, Uchihara JN, Senba M, Mori N. CD69 overexpression by human T-cell leukemia virus type 1 Tax transactivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1542-52. [PMID: 23507197 DOI: 10.1016/j.bbamcr.2013.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/22/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is associated with the development of adult T-cell leukemia (ATL) and various inflammatory diseases. CD69 is a marker of early activation of lymphocytes. We investigated the effects of HTLV-1 infection on the expression of CD69. The CD69 gene was upregulated in all viral protein Tax-expressing HTLV-1-transformed T-cell lines, except MT-2 and peripheral blood mononuclear cells from patients with ATL compared with uninfected T-cell line, Tax-negative ATL-derived T-cell lines and normal peripheral blood mononuclear cells. Flow cytometric analysis and immunohistochemical analysis confirmed the enhanced expression of CD69 in HTLV-1-transformed T-cell lines and in ATL cells in lymph nodes and skin lesions, and its absence in MT-2 and peripheral blood mononuclear cells. CD69 expression was induced following infection of human T-cell line with HTLV-1, and specifically by Tax. Tax transcriptionally activated CD69 gene through both nuclear factor-κB and cyclic adenosine 3',5'-monophosphate response element-binding protein signaling pathways. Detailed analysis of the CD69 promoter indicated that the Tax-induced expression of CD69 was regulated by multiple cis-acting elements and by the interplay of transcription factors of the nuclear factor-κB, early growth response and cyclic adenosine 3',5'-monophosphate response element-binding protein families. The lack of CD69 expression in MT-2 is due to epigenetic mechanism involving deacetylation, but not methylation. We conclude that CD69 is a Tax-regulated gene, and its regulation by Tax may play a role in cellular activation and HTLV-1-induced disease pathogenesis.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, University of the Ryukyus, Okinawa, Japan.
| | | | | | | | | |
Collapse
|
13
|
Ahmadi Ghezeldasht S, Shirdel A, Assarehzadegan MA, Hassannia T, Rahimi H, Miri R, Rezaee SAR. Human T Lymphotropic Virus Type I (HTLV-I) Oncogenesis: Molecular Aspects of Virus and Host Interactions in Pathogenesis of Adult T cell Leukemia/Lymphoma (ATL). IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2013; 16:179-95. [PMID: 24470860 PMCID: PMC3881257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/18/2013] [Indexed: 11/06/2022]
Abstract
The study of tumor viruses paves the way for understanding the mechanisms of virus pathogenesis, including those involved in establishing infection and dissemination in the host tumor affecting immune-compromised patients. The processes ranging from viral infection to progressing malignancy are slow and usually insufficient for establishment of transformed cells that develop cancer in only a minority of infected subjects. Therefore, viral infection is usually not the only cause of cancer, and further environmental and host factors, may be implicated. HTLV-I, in particular, is considered as an oncovirus cause of lymphoproliferative disease such as adult T cell leukemia/lymphoma (ATL) and disturbs the immune responses which results in HTLV-I associated meylopathy/tropical spastic parapresis (HAM/TSP). HTLV-I infection causes ATL in a small proportion of infected subjects (2-5%) following a prolonged incubation period (15-30 years) despite a strong adaptive immune response against the virus. Overall, these conditions offer a prospect to study the molecular basis of tumorgenicity in mammalian cells. In this review, the oncogencity of HTLV-I is being considered as an oncovirus in context of ATL.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Research Centre for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Centre for Education, Culture & Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - Abbas Shirdel
- Inflammation and Inflammatory diseases research Centre, Medical School, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Ali Assarehzadegan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Hassannia
- Internal Medicine Dept, Medical School, Arak University of Medical Sciences, Arak- Iran
| | - Hosian Rahimi
- Inflammation and Inflammatory diseases research Centre, Medical School, Mashhad University of Medical Science, Mashhad, Iran
| | - Rahele Miri
- Research Centre for HIV/AIDS, HTLV and Viral Hepatitis, Iranian Academic Centre for Education, Culture & Research (ACECR), Mashhad Branch, Mashhad, Iran
| | - S. A. Rahim Rezaee
- Immunology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Rezaee S. AR, Immunology Research Centre, Immunology Dept. Qaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. Tel:+98-511 8436626; E-mail:
| |
Collapse
|
14
|
Danthi P, Holm GH, Stehle T, Dermody TS. Reovirus receptors, cell entry, and proapoptotic signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:42-71. [PMID: 23884585 DOI: 10.1007/978-1-4614-7651-1_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian orthoreoviruses (reoviruses) are members of the Reoviridae. Reoviruses contain 10 double-stranded (ds) RNA gene segments enclosed in two concentric protein shells, called outer capsid and core. These viruses serve as a versatile experimental system for studies of viral replication events at the virus-cell interface, including engagement of cell-surface receptors, internalization and disassembly, and activation of the innate immune response, including NF-κB-dependent cellular signaling pathways. Reoviruses also provide a model system for studies of virus-induced apoptosis and organ-specific disease in vivo.Reoviruses attach to host cells via the filamentous attachment protein, σ1. The σ1 protein of all reovirus serotypes engages junctional adhesion molecule-A (JAM-A), an integral component of intercellular tight junctions. The σ1 protein also binds to cell-surface carbohydrate, with the type of carbohydrate bound varying by serotype. Following attachment to JAM-A and carbohydrate, reovirus internalization is mediated by β1 integrins, most likely via clathrin-dependent endocytosis. In the endocytic compartment, reovirus outer-capsid protein σ3 is removed by acid-dependent cysteine proteases in most cell types. Removal of σ3 results in the exposure of a hydrophobic conformer of the viral membrane-penetration protein, μ1, which pierces the endosomal membrane and delivers transcriptionally active reovirus core particles into the cytoplasm.Reoviruses induce apoptosis in both cultured cells and infected mice. Perturbation of reovirus disassembly using inhibitors of endosomal acidification or protease activity abrogates apoptosis. The μ1-encoding M2 gene is genetically linked to strain-specific differences in apoptosis-inducing capacity, suggesting a function for μ1 in induction of death signaling. Reovirus disassembly leads to activation of transcription factor NF-κB, which modulates apoptotic signaling in numerous types of cells. Inhibition of NF-κB nuclear translocation using either pharmacologic agents or expression of transdominant forms of IκB blocks reovirus-induced apoptosis, suggesting an essential role for NF-κB activation in the death response. Multiple effector pathway s downstream of NF-κB-directed gene expression execute reovirus-induced cell death. This chapter will focus on the mechanisms by which reovirus attachment and disassembly activate NF-κB and stimulate the cellular proapoptotic machinery.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | | | |
Collapse
|
15
|
Cheng H, Ren T, Sun SC. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax. Protein Cell 2012; 3:581-9. [PMID: 22865346 DOI: 10.1007/s13238-012-2047-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 12/29/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T cell leukemia and lymphoma (ATL), infects over 20 million people worldwide. About 1 million of HTLV-1-infected patients develop ATL, a highly aggressive non-Hodgkin's lymphoma without an effective therapy. The pX region of the HTLV-1 viral genome encodes an oncogenic protein, Tax, which plays a central role in transforming CD4+ T lymphocytes by deregulating oncogenic signaling pathways and promoting cell cycle progression. Expression of Tax following viral entry is critical for promoting survival and proliferation of human T cells and is required for initiation of oncogenesis. Tax exhibits diverse functions in host cells, and this oncoprotein primarily targets IκB kinase complex in the cytoplasm, resulting in persistent activation of NF-κB and upregulation of its responsive gene expressions that are crucial for T cell survival and cell cycle progression. We here review recent advances for the pathological roles of Tax in modulating IκB kinase activity. We also discuss our recent observation that Tax connects the IκB kinase complex to autophagy pathways. Understanding Tax-mediated pathogenesis will provide insights into development of new therapeutics in controlling HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Hua Cheng
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
16
|
Tomimori K, Nakama S, Kimura R, Tamaki K, Ishikawa C, Mori N. Antitumor activity and macrophage nitric oxide producing action of medicinal herb, Crassocephalum crepidioides. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:78. [PMID: 22720874 PMCID: PMC3407475 DOI: 10.1186/1472-6882-12-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/21/2012] [Indexed: 11/10/2022]
Abstract
Background Crassocephalum crepidioides, a plant distributed in Okinawa Islands, is known in folk medicine; however, its anticancer activity has not been investigated. The aim of this study was to determine the in vitro and in vivo antitumor activities of C. crepidioides on murine Sarcoma 180 (S-180) and related molecular mechanisms. Methods The antitumor effect of C. crepidioides was evaluated in S-180-cell-bearing mice. Cell growth was assessed using a colorimetric assay. Nitrite and nitrate levels were measured by colorimetry. The expression levels of inducible NO synthase (iNOS) in murine RAW264.7 macrophages was assessed by reverse transcriptase-polymerase chain reaction. Activation of iNOS promoter was detected by reporter gene. Activation of nuclear factor-κB (NF-κB) was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling was analyzed using inhibitors of NF-κB and dominant-negative mutants, and Western blot analysis. Results C. crepidioides extract delayed tumor growth in S-180-bearing mice. However, it did not inhibit S-180 cell growth in vitro. Supernatant of cultured C. crepidioides-stimulated RAW264.7 macrophages was cytotoxic to S-180 cells. This cytotoxicity was associated with nitric oxide (NO) production. NF-κB signaling pathway was crucial for the transcriptional activation of iNOS gene. Isochlorogenic acid, a component of C. crepidioides, induced NF-κB activation and iNOS expression. Conclusions The results highlight the oncolytic and immunopotentiation properties of C. crepidioides mediated through NF-κB-induced release of NO from macrophages.
Collapse
|
17
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
18
|
Khoi PN, Park JS, Kim NH, Jung YD. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells. Toxicol Appl Pharmacol 2012; 259:248-56. [DOI: 10.1016/j.taap.2012.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/21/2011] [Accepted: 01/02/2012] [Indexed: 10/14/2022]
|
19
|
Mori N, Ishikawa C, Senba M. Induction of CD69 expression by cagPAI-positive Helicobacter pylori infection. World J Gastroenterol 2011; 17:3691-9. [PMID: 21990950 PMCID: PMC3181454 DOI: 10.3748/wjg.v17.i32.3691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate and elucidate the molecular mechanism that regulates inducible expression of CD69 by Helicobacter pylori (H. pylori) infection.
METHODS: The expression levels of CD69 in a T-cell line, Jurkat, primary human peripheral blood mononuclear cells (PBMCs), and CD4+ T cells, were assessed by immunohistochemistry, reverse transcription polymerase chain reaction, and flow cytometry. Activation of CD69 promoter was detected by reporter gene. Nuclear factor (NF)-κB activation in Jurkat cells infected with H. pylori was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling in H. pylori-induced CD69 expression was analyzed using inhibitors of NF-κB and dominant-negative mutants. The isogenic mutants with disrupted cag pathogenicity island (cagPAI) and virD4 were used to elucidate the role of cagPAI-encoding type IV secretion system and CagA in CD69 expression.
RESULTS: CD69 staining was detected in mucosal lymphocytes and macrophages in specimens of patients with H. pylori-positive gastritis. Although cagPAI-positive H. pylori and an isogenic mutant of virD4 induced CD69 expression, an isogenic mutant of cagPAI failed to induce this in Jurkat cells. H. pylori also induced CD69 expression in PBMCs and CD4+ T cells. The activation of the CD69 promoter by H. pylori was mediated through NF-κB. Transfection of dominant-negative mutants of IκBs, IκB kinases, and NF-κB-inducing kinase inhibited H. pylori-induced CD69 activation. Inhibitors of NF-κB suppressed H. pylori-induced CD69 mRNA expression.
CONCLUSION: The results suggest that H. pylori induces CD69 expression through the activation of NF-κB. cagPAI might be relevant in the induction of CD69 expression in T cells. CD69 in T cells may play a role in H. pylori-induced gastritis.
Collapse
|
20
|
Park JS, Park JH, Khoi PN, Joo YE, Jung YD. MSP-induced RON activation upregulates uPAR expression and cell invasiveness via MAPK, AP-1 and NF-κB signals in gastric cancer cells. Carcinogenesis 2011; 32:175-181. [PMID: 21081472 DOI: 10.1093/carcin/bgq241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overexpression of recepteur d'Origine nantais (RON) and urokinase plasminogen activator receptor (uPAR) have been observed in human gastric cancers. However, the interaction between RON and uPAR in gastric cancer is unclear. The present study investigated the effect of macrophage-stimulating protein (MSP, the RON ligand) on uPAR expression and the underlying signal pathways in human gastric cancer AGS cells. uPAR messenger RNA expression was induced by MSP in a time- and concentration-dependent manner. MSP also induced uPAR promoter activity. The introduction of RON-specific small interfering RNA (siRNA) significantly affected the MSP-induced uPAR transcription. Deleted and site-directed mutagenesis studies demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the MSP-induced uPAR expression. Studies with expression vectors encoding mutated-type NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the MSP-induced uPAR expression. In addition, MSP induced the activation of extracellular signal-regulated kinase-1/2 (Erk-1/2), c-Jun amino terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Dominant-negative mutants (K97M and TAM67) and specific inhibitors of Erk-1/2 and JNK were able to suppress the MSP-induced uPAR expression. AGS cells pretreated with MSP showed a remarkably enhanced invasiveness, which was partially abrogated by siRNA-targeted RON and uPAR-neutralizing antibodies. The above results suggest that MSP induces uPAR expression via MAPK, AP-1 and NF-κB signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.
Collapse
Affiliation(s)
- Jung Sun Park
- Research Institute of Medical Sciences, Chonnam National University Medical School, Kwangju 501-190, Korea
| | | | | | | | | |
Collapse
|
21
|
Ishikawa C, Nakachi S, Senba M, Sugai M, Mori N. Activation of AID by human T-cell leukemia virus Tax oncoprotein and the possible role of its constitutive expression in ATL genesis. Carcinogenesis 2011; 32:110-119. [DOI: 10.1093/carcin/bgq222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
22
|
Zane L, Sibon D, Legras C, Lachuer J, Wierinckx A, Mehlen P, Delfau-Larue MH, Gessain A, Gout O, Pinatel C, Lançon A, Mortreux F, Wattel E. Clonal expansion of HTLV-1 positive CD8+ cells relies on cIAP-2 but not on c-FLIP expression. Virology 2010; 407:341-51. [DOI: 10.1016/j.virol.2010.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/11/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
|
23
|
Regulation of IkappaBalpha function and NF-kappaB signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010; 2010:823821. [PMID: 20396415 PMCID: PMC2855089 DOI: 10.1155/2010/823821] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/12/2010] [Indexed: 02/08/2023] Open
Abstract
NF-κB comprises a family of transcription factors that are critically involved in various inflammatory processes. In this paper, the role of NF-κB in inflammation and atherosclerosis and the regulation of the NF-κB signaling pathway are summarized. The structure, function, and regulation of the NF-κB inhibitors, IκBα and IκBβ, are reviewed. The regulation of NF-κB activity by glucocorticoid receptor (GR) signaling and IκBα sumoylation is also discussed. This paper focuses on the recently reported regulatory function that adipocyte enhancer-binding protein 1 (AEBP1) exerts on NF-κB transcriptional activity in macrophages, in which AEBP1 manifests itself as a potent modulator of NF-κB via physical interaction with IκBα and a critical mediator of inflammation. Finally, we summarize the regulatory roles that recently identified IκBα-interacting proteins play in NF-κB signaling. Based on its proinflammatory roles in macrophages, AEBP1 is anticipated to serve as a therapeutic target towards the treatment of various inflammatory conditions and disorders.
Collapse
|
24
|
Abstract
Caveolin-1 is implicated in the regulation of signal pathways. Adult T-cell leukemia (ATL) is a T-cell malignancy causatively associated with human T-cell leukemia virus type 1 (HTLV-1). To determine the role of caveolin-1 in leukemogenesis, we examined caveolin-1 expression levels in HTLV-1-infected T-cell lines and ATL cells. These cells expressed high levels of caveolin-1 compared with uninfected T-cell lines and normal peripheral blood mononuclear cells (PBMCs). Caveolin-1-positive ATL cells were detected in ATL lymph nodes and skin lesions, and caveolin-1 was also detected in the plasma of patients with ATL. Infection of a human T-cell line, an epithelial cell line, and normal PBMCs with HTLV-1 induced caveolin-1 expression. The viral protein Tax transcriptionally activated caveolin-1 gene through nuclear factor-kappaB and cAMP response element binding protein signal pathways. HTLV-1-infected T-cell lines, and ATL cells are known to be resistant to transforming growth factor beta (TGF-beta)-induced growth inhibition. Caveolin-1 was colocalized with TGF-beta type I receptor in HTLV-1-infected T-cell lines and suppressed TGF-beta signaling. Caveolin-1 knockdown in an HTLV-1-infected T-cell line exhibited susceptibility to TGF-beta. Thus, we describe a new function for Tax, repression of TGF-beta signaling through caveolin-1 expression, which may play a critical role in ATL leukemogenesis.
Collapse
|
25
|
Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 2009; 125:2863-70. [PMID: 19609947 DOI: 10.1002/ijc.24748] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The serine/threonine kinase Akt (cellular homolog of murine thymoma virus akt8 oncogene), also known as PKB (protein kinase B), is activated by lipid products of phosphatidylinositol 3-kinase (PI3K). Akt phosphorylates numerous protein targets that control cell survival, proliferation and motility. Previous studies suggest that Akt regulates transcriptional activity of the nuclear factor-kappaB (NFkappaB) by inducing phosphorylation and subsequent degradation of inhibitor of kappaB (IkappaB). We show here that NFkappaB-driven transcription increases in chicken embryonic fibroblasts (CEF) transformed by myristylated Akt (myrAkt). Accordingly, both a dominant negative mutant of Akt and Akt inhibitors repress NFkappaB-dependent transcription. The degradation of the IkappaB protein is strongly enhanced in Akt-transformed cells, and the loss of NFkappaB activity by introduction of a super-repressor of NFkappaB, IkappaBSR, interferes with PI3K- and Akt-induced oncogenic transformation of CEF. The phosphorylation of the p65 subunit of NFkappaB at serine 534 is also upregulated in Akt-transformed cells. Our data suggest that the stimulation of NFkappaB by Akt is dependent on the phosphorylation of p65 at S534, mediated by IKK (IkappaB kinase) alpha and beta. Akt phosphorylates IKKalpha on T23, and this phosphorylation event is a prerequisite for the phosphorylation of p65 at S534 by IKKalpha and beta. Our results demonstrate two separate functions of the IKK complex in NFkappaB activation in cells with constitutive Akt activity: the phosphorylation and consequent degradation of IkappaB and the phosphorylation of p65. The data further support the conclusion that NFkappaB activity is essential for PI3K- and Akt-induced oncogenic transformation.
Collapse
Affiliation(s)
- Dong Bai
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
26
|
Abstract
Interleukin-12 (IL-12) is a heterodimeric cytokine produced by antigen-presenting cells that promotes the development of T-helper lymphocyte 1 (Th1). Chronic gastritis induced by Helicobacter pylori is considered a Th1-mediated process. IL-12 levels in gastric biopsy samples of H. pylori-infected patients are higher than in those of uninfected individuals, but the cellular source of IL-12 remains elusive. IL-12 staining was detected in mucosal epithelial cells, lymphocytes, and macrophages in specimens of patients with H. pylori-positive gastritis. Therefore, we investigated IL-12 p40 mRNA induction by H. pylori in gastric epithelial cells and T cells. Although cag pathogenicity island (PAI)-positive H. pylori induced IL-12 p40 mRNA expression, an isogenic mutant of the cag PAI failed to induce it in both cell types. Supernatants from H. pylori cultures and H. pylori VacA induced IL-12 p40 mRNA expression in T cells but not in epithelial cells. The activation of the IL-12 p40 promoter by H. pylori was mediated through NF-kappaB. The transfection of IkappaB kinase and NF-kappaB-inducing kinase dominant-negative mutants inhibited H. pylori-induced IL-12 p40 activation. Inhibitors of NF-kappaB, phosphatidylinositol 3-kinase, p38 mitogen-activated protein kinase, and Hsp90 suppressed H. pylori- and VacA-induced IL-12 p40 mRNA expression. The results indicate that H. pylori induces IL-12 p40 expression by the activation of NF-kappaB, phosphatidylinositol 3-kinase, and p38 mitogen-activated protein kinase. Hsp90 is also a crucial regulator of H. pylori-induced IL-12 p40 expression. In addition to the cag PAI, VacA might be relevant in the induction of IL-12 expression and a Th1-polarized response only in T cells.
Collapse
|
27
|
Teruya H, Higa F, Akamine M, Ishikawa C, Okudaira T, Tomimori K, Mukaida N, Tateyama M, Heuner K, Fujita J, Mori N. Mechanisms of Legionella pneumophila-induced interleukin-8 expression in human lung epithelial cells. BMC Microbiol 2007; 7:102. [PMID: 18034886 PMCID: PMC2213657 DOI: 10.1186/1471-2180-7-102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 11/22/2007] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Legionella pneumophila is a facultative intracellular bacterium, capable of replicating within the phagosomes of macrophages and monocytes, but little is known about its interaction with human lung epithelial cells. We investigated the effect of L. pneumophila on the expression of interleukin-8 (IL-8) in human A549 alveolar and NCI-H292 tracheal epithelial cell lines. RESULTS Infection of L. pneumophila strain, but not heat-killed strain, resulted in upregulation of IL-8. IL-8 mRNA expression was induced immediately after the infection and its signal became gradually stronger until 24 h after infection. On the other hand, IL-8 expression in A549 cells infected with L. pneumophila lacking a functional type IV secretion system was transient. The IL-8 expression was slightly induced at 16 h and increased at 24 h after infection with flagellin-deficient Legionella. Activation of the IL-8 promoter by L. pneumophila infection occurred through the action of nuclear factor-kappaB (NF-kappaB). Transfection of dominant negative mutants of NF-kappaB-inducing kinase, IkappaB kinase and IkappaB inhibited L. pneumophila-mediated activation of IL-8 promoter. Treatment with hsp90 inhibitor suppressed L. pneumophila-induced IL-8 mRNA due to deactivation of NF-kappaB. CONCLUSION Collectively, these results suggest that L. pneumophila induces activation of NF-kappaB through an intracellular signaling pathway that involves NF-kappaB-inducing kinase and IkappaB kinase, leading to IL-8 gene transcription, and that hsp90 acts as a crucial regulator in L. pneumophila-induced IL-8 expression, presumably contributing to immune response in L. pneumophila. The presence of flagellin and a type IV secretion system are critical for Legionella to induce IL-8 expression in lung epithelial cells.
Collapse
Affiliation(s)
- Hiromitsu Teruya
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
- Division of Control and Prevention of Infectious Diseases, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Futoshi Higa
- Division of Control and Prevention of Infectious Diseases, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Morikazu Akamine
- Division of Control and Prevention of Infectious Diseases, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Chie Ishikawa
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
- Division of Child Health and Welfare, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Taeko Okudaira
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
- Division of Endocrinology and Metabolism, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Koh Tomimori
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
- Division of Control and Prevention of Infectious Diseases, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-0934, Japan
| | - Masao Tateyama
- Division of Control and Prevention of Infectious Diseases, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Klaus Heuner
- Institute for Molecular Infection Biology, Universitat Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany
| | - Jiro Fujita
- Division of Control and Prevention of Infectious Diseases, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | - Naoki Mori
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
28
|
Tomimori K, Uema E, Teruya H, Ishikawa C, Okudaira T, Senba M, Yamamoto K, Matsuyama T, Kinjo F, Fujita J, Mori N. Helicobacter pylori induces CCL20 expression. Infect Immun 2007; 75:5223-32. [PMID: 17724069 PMCID: PMC2168315 DOI: 10.1128/iai.00731-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CCL20 attracts immature dendritic cells and memory T cells and plays a role on mucosal surfaces in inflammation. However, whether Helicobacter pylori infection induces CCL20 in human gastric epithelial cells remains to be determined. The aim of this study was to analyze the molecular mechanism of H. pylori-induced CCL20 expression. Expression of CCL20 mRNA was assessed by reverse transcription-PCR. Five normal and five H. pylori-infected gastric tissue samples were stained immunohistochemically for CCL20. A luciferase assay was used to monitor activation of the CCL20 gene promoter, and an electrophoretic mobility shift assay was used to explore the binding of transcription factors to this promoter. The CCL20 expression in epithelial cells of H. pylori-positive tissues was higher than that in H. pylori-negative tissues. H. pylori induced CCL20 expression in gastric epithelial cell lines, and the induction was dependent on an intact cag pathogenicity island. Activation of the CCL20 promoter by H. pylori occurred through the action of NF-kappaB. Transfection of IkappaB kinase and NF-kappaB-inducing kinase dominant negative mutants inhibited H. pylori-mediated activation of CCL20. Treatment with an inhibitor of Hsp90 suppressed H. pylori-induced CCL20 mRNA due to deactivation of NF-kappaB. Collectively, these results suggest that H. pylori activates NF-kappaB through an intracellular signaling pathway that involves IkappaB kinase and NF-kappaB-inducing kinase, leading to CCL20 gene transcription, and that Hsp90 is a crucial regulator of H. pylori-induced CCL20 expression, presumably contributing to the immune response in H. pylori.
Collapse
Affiliation(s)
- Koh Tomimori
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hong MH, Kim MH, Chang HJ, Kim NH, Shin BA, Ahn BW, Jung YD. (−)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in endothelial cells via blocking NF-κB signaling. Life Sci 2007; 80:1957-65. [PMID: 17379255 DOI: 10.1016/j.lfs.2007.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/05/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Monocyte chemotactic protein-1 (MCP-1) is a potent chemoattractant for monocytes and plays a key role in various inflammatory responses, including atherosclerosis. In this study, we examined the effect of (-)-epigallocatechin-3-gallate (EGCG), a major green tea catechin, on the expression of MCP-1 in human endothelial ECV304 cells. EGCG markedly inhibited the phorbol 12-myristate 13-acetate (PMA)-induced MCP-1 mRNA and protein levels in a dose-dependent manner. EGCG was also found to reduce the MCP-1 transcriptional activity. The upregulation of MCP-1 by PMA was significantly inhibited by blockade of P38 mitogen-activated protein kinase (MAPK) and NF-kappaB, but not by blockade of extracellular-signal-regulated kinase and c-Jun N-terminal kinase pathway. Furthermore, The PMA-induced p38 MAPK and NF-kappaB activation were obviously attenuated after pretreating ECV304 cells with EGCG. The conditioned media from the endothelial ECV304 cells treated with PMA could remarkably stimulate the migration of THP-1 monocytes and this effect was partially abrogated by MCP-1 neutralizing antibodies. Moreover, the media from the EGCG-pretreated ECV304 cells lost the stimulatory activity for THP-1 migration. These results suggest that EGCG may exert an anti-inflammatory effect in endothelial cells by controlling MCP-1 expression, at least in part, mediated through the suppression of p38 MAPK and NF-kappaB activation.
Collapse
Affiliation(s)
- Min H Hong
- Chonnam University Research Institute of Medical Sciences, Chonnam National University Medical School, Kwangju, 501-190, South Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Jang WG, Kim EJ, Park KG, Park YB, Choi HS, Kim HJ, Kim YD, Kim KS, Lee KU, Lee IK. Glucocorticoid receptor mediated repression of human insulin gene expression is regulated by PGC-1α. Biochem Biophys Res Commun 2007; 352:716-21. [PMID: 17150186 DOI: 10.1016/j.bbrc.2006.11.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 11/15/2006] [Indexed: 11/20/2022]
Abstract
Transcriptional regulation of the insulin gene plays a critical role in maintenance of pancreatic beta cell function in response to various stimuli. Here, we used INS-1 cells to test the hypothesis that PGC-1alpha regulates human insulin gene transcription by modulating glucocorticoid (GR) binding to the insulin gene promoter. Analysis of the human insulin promoter region revealed that the suppressive region regulated by GR and PGC-1alpha is localized from -362 to -257 bp. To locate the GR binding site in the human insulin promoter region, EMSAs were performed with candidate GR binding sequences and confirmed that a palindromic region (Palin, -284 to -274 bp) specifically interacts with GR. We also found that the Palin-binding activity of GR is increased in the presence of PGC-1alpha. These findings suggest that PGC-1alpha elevates the binding of GR to Palin and thereby enhances the GR-mediated inhibition of human insulin transcription.
Collapse
Affiliation(s)
- Won Gu Jang
- Department of Genetic Engineering, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hiscott J, Nguyen TLA, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25:6844-67. [PMID: 17072332 PMCID: PMC7100320 DOI: 10.1038/sj.onc.1209941] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viral and microbial constituents contain specific motifs or pathogen-associated molecular patterns (PAMPs) that are recognized by cell surface- and endosome-associated Toll-like receptors (TLRs). In addition, intracellular viral double-stranded RNA is detected by two recently characterized DExD/H box RNA helicases, RIG-I and Mda-5. Both TLR-dependent and -independent pathways engage the IkappaB kinase (IKK) complex and related kinases TBK-1 and IKKvarepsilon. Activation of the nuclear factor kappaB (NF-kappaB) and interferon regulatory factor (IRF) transcription factor pathways are essential immediate early steps of immune activation; as a result, both pathways represent prime candidates for viral interference. Many viruses have developed strategies to manipulate NF-kappaB signaling through the use of multifunctional viral proteins that target the host innate immune response pathways. This review discusses three rapidly evolving areas of research on viral pathogenesis: the recognition and signaling in response to virus infection through TLR-dependent and -independent mechanisms, the involvement of NF-kappaB in the host innate immune response and the multitude of strategies used by different viruses to short circuit the NF-kappaB pathway.
Collapse
Affiliation(s)
- J Hiscott
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
32
|
Okudaira T, Yamamoto K, Kawakami H, Uchihara JN, Tomita M, Masuda M, Matsuda T, Sairenji T, Iha H, Jeang KT, Matsuyama T, Takasu N, Mori N. Transactivation of CCL20 gene by Epstein-Barr virus latent membrane protein 1. Br J Haematol 2006; 132:293-302. [PMID: 16409294 DOI: 10.1111/j.1365-2141.2005.05877.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CCL20 is expected to play a crucial role in the initiation of immune responses and tumour growth. However, expression of CCL20 in Epstein-Barr virus (EBV)-associated diseases has not been studied. We examined the contribution of EBV infection and EBV-encoded latent membrane protein (LMP)-1 to CCL20 expression. EBV infection and LMP-1 induced CCL20 mRNA expression in the EBV-negative Burkitt lymphoma (BL) cell lines and the embryonic kidney cell line. Histone deacetylase inhibitor-stimulated endogenous LMP-1 also induced CCL20 expression in an EBV-positive BL cell line. Analysis of the CCL20 promoter showed that it was activated by LMP-1 C-terminal activation region (CTAR)-1 and CTAR-2. Co-expression of IkappaB alpha, IkappaB beta, IkappaB kinase (IKK)alpha, IKKbeta, IKKgamma, nuclear factor (NF)-kappaB-inducing kinase and tumour necrosis factor receptor-associated factor 2 dominant-negative constructs with LMP-1 inhibited the activation of the CCL20 promoter by LMP-1, suggesting that LMP-1 induces CCL20 via NF-kappaB signalling. The requirement for the NF-kappaB-binding site in the CCL20 promoter in LMP-1 responsiveness was established. Our results indicate that activation of the NF-kappaB pathway by LMP-1 is required for the activation of CCL20 expression.
Collapse
Affiliation(s)
- Taeko Okudaira
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Uchihara JN, Matsuda T, Okudaira T, Ishikawa C, Masuda M, Horie R, Watanabe T, Ohta T, Takasu N, Mori N. Transactivation of the ICAM-1 gene by CD30 in Hodgkin's lymphoma. Int J Cancer 2006; 118:1098-107. [PMID: 16152613 DOI: 10.1002/ijc.21427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ICAM-1/LFA-1 complex mediates cell-cell interaction. ICAM-1 is overexpressed in Hodgkin/Reed-Sternberg (H/RS) cells, and serum levels of its soluble form are higher in Hodgkin's lymphoma (HL) patients than in controls. There are no data, however, regarding the regulation of expression of ICAM-1 in H/RS cells. CD30 was identified in H/RS cells of HL and has attracted much interest as a molecular marker of HL. To analyze ICAM-1 expression in H/RS cells, we examined the expression of ICAM-1, LFA-1, CD30 and CD30L in HL-derived cell lines. All cell lines expressed ICAM-1 and CD30, but not LFA-1 or CD30L. CD30 induced ICAM-1 expression. Analysis of the ICAM-1 promoter showed the importance of NF-kappaB binding site for CD30-induced ICAM-1 gene expression. Coexpression of IkappaB, IKK, NIK and TRAF dominant-negative constructs with CD30 inhibited CD30-induced activation of ICAM-1 promoter, suggesting that CD30 induces ICAM-1 via NF-kappaB signalling. The ICAM-1 promoter was activated by the C-terminal region of CD30, which activated NF-kappaB signalling. A decoy CD30 lacking the cytoplasmic region inhibited ICAM-1 promoter activity in HL cell lines. Thus, in H/RS cells, ligand-independent activation of CD30 signalling activates NF-kappaB and this leads to constitutive ICAM-1 expression, suggesting a link between 2 well known phenotypic characteristics of HL, CD30 and ICAM-1 overexpression.
Collapse
Affiliation(s)
- Jun-Nosuke Uchihara
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sundaram R, Lynch MP, Rawale S, Dakappagari N, Young D, Walker CM, Lemonnier F, Jacobson S, Kaumaya PTP. Protective efficacy of multiepitope human leukocyte antigen-A*0201 restricted cytotoxic T-lymphocyte peptide construct against challenge with human T-cell lymphotropic virus type 1 Tax recombinant vaccinia virus. J Acquir Immune Defic Syndr 2005; 37:1329-39. [PMID: 15483462 DOI: 10.1097/00126334-200411010-00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia. Multiepitope T-cell vaccines are more likely to generate a broad long-lasting immune response than those composed of single epitopes. We recently reported a novel multivalent cytotoxic T-lymphocyte peptide construct derived from the Tax protein of HTLV-1 separated by arginine spacers that elicited high cellular responses against individual epitopes simultaneously in human leukocyte antigen (HLA)-A*0201 transgenic mice. We now report the effect of epitope orientation on the processing of the multiepitope construct by 20s proteasomes and the effect of the processing rates on the immunogenicity of the intended epitopes. A positive correlation was found between processing rates and the immunogenicity of the intended epitopes. The construct with the highest immunogenicity for each epitope was tested for protective efficacy in a preclinical model of infection using HTLV-1 Tax recombinant vaccinia virus and HLA-A*0201 transgenic mice. Mice vaccinated with the multiepitope construct displayed a statistically significant reduction in viral replication that was dependent on CD8 T cells. Reduction in viral replication was also confirmed to be specific to Tax-vaccinia virus. These results demonstrate the activation of Tax-specific CD8+ T cells by vaccination and are supportive of a multivalent peptide vaccine approach against HTLV-1 infections.
Collapse
Affiliation(s)
- Roshni Sundaram
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
HTLV-1 and HTLV-2 are highly related complex retroviruses that have been studied intensely for nearly three decades because of their association with neoplasia, neuropathology, and/or their capacity to transform primary human T lymphocytes. The study of HTLV also represents an attractive model that has allowed investigators to dissect the mechanism of various cellular processes, several of which may be critical steps in HTLV-mediated pathogenesis. Both HTLV-1 and HTLV-2 can efficiently immortalize and transform T lymphocytes in cell culture and persist in infected individuals or experimental animals. However, the clinical manifestations of these two viruses differ significantly. HTLV-1 is associated with adult T-cell leukemia (ATL) and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In contrast, HTLV-2 is much less pathogenic with reports of only a few cases of variant hairy cell leukemia and neurological disease associated with infection. The limited number of individuals shown to harbor HTLV-2 in association with specific diseases has, to date, precluded convincing epidemiological demonstration of a definitive etiologic role of HTLV-2 in human disease. Therefore, it has become clear that comparative studies designed to elucidate the mechanisms by which HTLV-1 and HTLV-2 determine distinct outcomes are likely to provide fundamental insights into the initiation of multistep leukemogenesis.
Collapse
Affiliation(s)
- Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
36
|
Sun SC, Yamaoka S. Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene 2005; 24:5952-64. [PMID: 16155602 DOI: 10.1038/sj.onc.1208969] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T-cell transformation by the human T-cell leukemia virus type I (HTLV-I) involves deregulation of cellular transcription factors, including members of the NF-kappaB family. In normal T cells, NF-kappaB activation occurs transiently in response to immune stimuli, which is required for antigen-stimulated T-cell proliferation and survival. However, HTLV-I induces persistent activation of NF-kappaB, causing deregulated expression of a large array of cellular genes, which in turn contributes to the induction of T-cell transformation. The HTLV-I transforming protein Tax functions as an intracellular stimulator of IkappaB kinase (IKK), a cellular kinase mediating NF-kappaB activation by diverse stimuli. Tax physically interacts with IKK and renders this inducible kinase constitutively active. By assembling different Tax/IKK complexes, Tax targets the persistent activation of both canonical and noncanonical NF-kappaB signaling pathways. Whereas Tax plays a primary role in HTLV-I-mediated NF-kappaB activation, recent studies reveal that the IKK/NF-kappaB signaling pathway is also activated in freshly isolated adult T-cell leukemia (ATL) cells that often lack detectable Tax expression. The mechanism underlying this Tax-independent pathway of NF-kappaB activation remains poorly understood. Clarifying the precise nature and consequences of the constitutive NF-kappaB activation in ATL cells is important for developing rational therapeutic strategies for this T-cell malignancy.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| | | |
Collapse
|
37
|
Kawakami H, Tomita M, Matsuda T, Ohta T, Tanaka Y, Fujii M, Hatano M, Tokuhisa T, Mori N. Transcriptional activation of survivin through the NF-kappaB pathway by human T-cell leukemia virus type I tax. Int J Cancer 2005; 115:967-74. [PMID: 15729715 DOI: 10.1002/ijc.20954] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Survivin, a unique member of the inhibitor of apoptosis protein family, is overexpressed in many cancers and considered to play an important role in oncogenesis. We previously reported the survivin expression profile in ATL, a CD4-positive T-cell malignancy caused by HTLV-I. HTLV-I Tax is thought to play an important role in immortalization of T cells. We have shown also that the expression of Tax protected the mouse T-cell line CTLL-2 against apoptosis induced by deprivation of IL-2 and converted its growth from being IL-2 dependent to being IL-2 independent through the NF-kappaB pathway. In our study, we demonstrate that constitutive expression of survivin was associated with resistance to apoptosis after IL-2 deprivation in Tax-expressing CTLL-2 cells. Transient transfection assays showed that survivin promoter was transactivated by Tax, via the activation of NF-kappaB. Pharmacological NF-kappaB inhibition resulted in suppression of survivin expression and caused apoptosis of Tax-expressing CTLL-2 cells. Our findings suggest that activated NF-kappaB signaling contributes directly to malignant progression of ATL by preventing apoptosis, acting through the prosurvival protein survivin.
Collapse
Affiliation(s)
- Hirochika Kawakami
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Uchihara JN, Krensky AM, Matsuda T, Kawakami H, Okudaira T, Masuda M, Ohta T, Takasu N, Mori N. Transactivation of the CCL5/RANTES gene by Epstein-Barr virus latent membrane protein 1. Int J Cancer 2005; 114:747-55. [PMID: 15609310 DOI: 10.1002/ijc.20784] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemokines and chemokine receptors mediate lymphocyte migration and tissue localization. To analyze CCL5 (RANTES) expression by EBV-infected cells, we examined the expression of CCL5 in BL cell lines. Among 4 BL cell lines, those infected with EBV selectively expressed the CCL5 gene and secreted CCL5. Four cell lines also expressed CCR5, a receptor for CCL5. EBV-encoded LMP-1, a pleiotropic protein that effects gene expression, cell transformation, growth and death, induces expression of CCL5 mRNA and secretion of CCL5 in the EBV-negative BL cell line BJAB and the embryonic kidney cell line 293T. HDACI-stimulated endogenous LMP-1 also induced CCL5 expression in an EBV-positive BL cell line. Analysis of the CCL5 promoter revealed that it is activated by both LMP-1 C-terminal activation domains, CTAR-1 and CTAR-2, which can activate NF-kappaB signaling. Coexpression of IkappaBalpha, IkappaBbeta, IKKalpha, IKKbeta, NIK and TRAF2 dominant-negative constructs, with LMP-1 inhibited the activation of the CCL5 promoter by LMP-1, suggesting that LMP-1 induces CCL5 via NF-kappaB signaling. The NF-kappaB binding sites, R(A/B), located at positions -71 to -43 relative to the putative transcription start site in the CCL5 promoter, were essential for the activation of CCL5 gene expression by LMP-1. These results indicate that the activation of the NF-kappaB pathway by LMP-1 is required for the activation of CCL5 expression.
Collapse
Affiliation(s)
- Jun-Nosuke Uchihara
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Reimers K, Buchholz K, Werchau H. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B. Virology 2005; 331:260-8. [PMID: 15629770 DOI: 10.1016/j.virol.2004.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 08/04/2004] [Accepted: 10/08/2004] [Indexed: 11/21/2022]
Abstract
Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-kappaB). The activation of NF-kappaB has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-kappaB in A549 cells. Electromobility shift assays show increased NF-kappaB complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cells revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-kappaB depends on the C-terminus of the RSV M2-1 protein, as shown by NF-kappaB-induced gene expression of a reporter gene construct.
Collapse
Affiliation(s)
- Kerstin Reimers
- Klinik für Plastische, Hand-und Wiederherstellungschirurgie, Podbielskistrasse 380, D-30659 Hannover, Germany.
| | | | | |
Collapse
|
40
|
Baetz D, Shaw J, Kirshenbaum LA. Nuclear factor-kappaB decoys suppress endotoxin-induced lung injury. Mol Pharmacol 2005; 67:977-9. [PMID: 15673601 DOI: 10.1124/mol.105.011296] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Delphine Baetz
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre Rm. 3016, 351 Taché Avenue, Winnipeg, Manitoba, Canada, R2H 2A6
| | | | | |
Collapse
|
41
|
Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN. A Novel NF-κB Pathway Involving IKKβ and p65/RelA Ser-536 Phosphorylation Results in p53 Inhibition in the Absence of NF-κB Transcriptional Activity. J Biol Chem 2005; 280:10326-32. [PMID: 15611068 DOI: 10.1074/jbc.m412643200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nuclear factor kappaB (NF-kappaB) plays an important role in regulating cellular transformation and apoptosis. The human T-cell lymphotropic virus type I protein, Tax, which is critical for viral transformation, modulates the transcription of several cellular genes through activation of NF-kappaB. We have demonstrated previously that Tax inhibits p53 activity through the p65/RelA subunit of NF-kappaB. We now present evidence that suggests that the upstream kinase IKKbeta plays an important role in Tax-induced p53 inhibition through phosphorylation of p65/RelA at Ser-536. First, mouse embryo fibroblast (MEF) IKKbeta-/-cells did not support Tax-mediated p53 inhibition, whereas MEFs lacking IKKalpha allowed Tax inhibition of p53. Second, transfection of IKKbeta wild type (WT), but not a kinase-dead mutant, into IKKbeta-/-cells rescued p53 inhibition by Tax. Third, the IKKbeta-specific inhibitor SC-514 decreased the ability of Tax to inhibit p53. Fourth, we show that phosphorylation of p65/RelA at Ser-536 is important for Tax inhibition of p53 using MEF p65/RelA-/-cells transfected with p65/RelA WT or mutant plasmids. Moreover, Tax induced p65/RelA Ser-536 phosphorylation in WT or IKKalpha-/- cells but failed to induce the phosphorylation of p65/RelA Ser-536 in IKKbeta-/-cells, suggesting a link between IKKbeta and p65/RelA phosphorylation. Consistent with this observation, blocking IKKbeta kinase activity by SC-514 decreases the phosphorylation of p65/RelA at Ser-536 in the presence of Tax in human T-cell lymphotropic virus type I-transformed cells. Finally, the ability of Tax to inhibit p53 is distinguished from the NF-kappaB transcription activation pathway. Our work, therefore, describes a novel Tax-NF-kappaB p65/RelA pathway that functions to inhibit p53 but does not require NF-kappaB transcription activity.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Virus Tumor Biology Section, Laboratory of Cellular Oncology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | | | | | | | | |
Collapse
|
42
|
Matsuda T, Almasan A, Tomita M, Uchihara JN, Masuda M, Ohshiro K, Takasu N, Yagita H, Ohta T, Mori N. Resistance to Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis and constitutive expression of Apo2L/TRAIL in human T-cell leukemia virus type 1-infected T-cell lines. J Virol 2005; 79:1367-78. [PMID: 15650163 PMCID: PMC544134 DOI: 10.1128/jvi.79.3.1367-1378.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adult T-cell leukemia (ATL), a CD4+-T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1), is difficult to cure, and novel treatments are urgently needed. Apo2 ligand (Apo2L; also tumor necrosis factor-related apoptosis-inducing ligand [TRAIL]) has been implicated in antitumor therapy. We found that HTLV-1-infected T-cell lines and primary ATL cells were more resistant to Apo2L-induced apoptosis than uninfected cells. Interestingly, HTLV-1-infected T-cell lines and primary ATL cells constitutively expressed Apo2L mRNA. Inducible expression of the viral oncoprotein Tax in a T-cell line up-regulated Apo2L mRNA. Analysis of the Apo2L promoter revealed that this gene is activated by Tax via the activation of NF-kappaB. The sensitivity to Apo2L was not correlated with expression levels of Apo2L receptors, intracellular regulators of apoptosis (FLICE-inhibitory protein and active Akt). NF-kappaB plays a crucial role in the pathogenesis and survival of ATL cells. The resistance to Apo2L-induced apoptosis was reversed by N-acetyl-L-leucinyl-L-leucinyl-lLnorleucinal (LLnL), an NF-kappaB inhibitor. LLnL significantly induced the Apo2L receptors DR4 and DR5. Our results suggest that the constitutive activation of NF-kappaB is essential for Apo2L gene induction and protection against Apo2L-induced apoptosis and that suppression of NF-kappaB may be a useful adjunct in clinical use of Apo2L against ATL.
Collapse
Affiliation(s)
- Takehiro Matsuda
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Clifton DR, Rydkina E, Freeman RS, Sahni SK. NF-kappaB activation during Rickettsia rickettsii infection of endothelial cells involves the activation of catalytic IkappaB kinases IKKalpha and IKKbeta and phosphorylation-proteolysis of the inhibitor protein IkappaBalpha. Infect Immun 2005; 73:155-65. [PMID: 15618150 PMCID: PMC538953 DOI: 10.1128/iai.73.1.155-165.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rocky Mountain spotted fever, a systemic tick-borne illness caused by the obligate intracellular bacterium Rickettsia rickettsii, is associated with widespread infection of the vascular endothelium. R. rickettsii infection induces a biphasic pattern of the nuclear factor-kappaB (NF-kappaB) activation in cultured human endothelial cells (ECs), characterized by an early transient phase at 3 h and a late sustained phase evident at 18 to 24 h. To elucidate the underlying mechanisms, we investigated the expression of NF-kappaB subunits, p65 and p50, and IkappaB proteins, IkappaBalpha and IkappaBbeta. The transcript and protein levels of p50, p65, and IkappaBbeta remained relatively unchanged during the course of infection, but Ser-32 phosphorylation of IkappaBalpha at 3 h was significantly increased over the basal level in uninfected cells concomitant with a significant increase in the expression of IkappaBalpha mRNA. The level of IkappaBalpha mRNA gradually returned toward baseline, whereas that of total IkappaBalpha protein remained lower than the corresponding controls. The activities of IKKalpha and IKKbeta, the catalytic subunits of IkappaB kinase (IKK) complex, as measured by in vitro kinase assays with immunoprecipitates from uninfected and R. rickettsii-infected ECs, revealed significant increases at 2 h after infection. The activation of IKK and early phase of NF-kappaB response were inhibited by heat treatment and completely abolished by formalin fixation of rickettsiae. The IKK inhibitors parthenolide and aspirin blocked the activities of infection-induced IKKalpha and IKKbeta, leading to attenuation of nuclear translocation of NF-kappaB. Also, increased activity of IKKalpha was evident later during the infection, coinciding with the late phase of NF-kappaB activation. Thus, activation of catalytic components of the IKK complex represents an important upstream signaling event in the pathway for R. rickettsii-induced NF-kappaB activation. Since NF-kappaB is a critical regulator of inflammatory genes and prevents host cell death during infection via antiapoptotic functions, selective inhibition of IKK may provide a potential target for enhanced clearance of rickettsiae and an effective strategy to reduce inflammatory damage to the host during rickettsial infections.
Collapse
Affiliation(s)
- Dawn R Clifton
- Hemostasis and Thrombosis Program, Hematology-Oncology Unit, Department of Medicine, P.O. Box 610, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
44
|
Regula KM, Baetz D, Kirshenbaum LA. Nuclear Factor-κB Represses Hypoxia-Induced Mitochondrial Defects and Cell Death of Ventricular Myocytes. Circulation 2004; 110:3795-802. [PMID: 15596562 DOI: 10.1161/01.cir.0000150537.59754.55] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background—
Oxygen deprivation for prolonged periods of time provokes cardiac cell death and ventricular dysfunction. Preventing inappropriate cardiac cell death in patients with ischemic heart disease would be of significant therapeutic value as a means to improve ventricular performance. In the present study, we wished to ascertain whether activation of the cellular factor nuclear factor (NF)-κB suppresses mitochondrial defects and cell death of ventricular myocytes during hypoxic injury.
Methods and Results—
In contrast to normoxic control cells, ventricular myocytes subjected to hypoxia displayed a 9.1-fold increase (
P
<0.05) in cell death, as determined by Hoechst 33258 nuclear staining and vital dyes. Mitochondrial defects consistent with permeability transition pore opening, loss of mitochondrial membrane potential (ΔΨm), and Smac release were observed in cells subjected to hypoxia. An increase in postmitochondrial caspase 9 and caspase 3 activity was observed in hypoxic myocytes. Adenovirus-mediated delivery of wild-type IKKβ (IKKβwt) resulted in a significant increase in NF-κB-dependent DNA binding and gene transcription in ventricular myocytes. Interestingly, subcellular fractionation of myocytes revealed that the p65 subunit of NF-κB was localized to mitochondria. Hypoxia-induced mitochondrial defects and cell death were suppressed in cells expressing IKKβwt but not in cells expressing the kinase-defective IKKβ mutant.
Conclusions—
To the best of our knowledge, the data provide the first direct evidence that activation of the NF-κB signaling pathways is sufficient to suppress cell death of ventricular myocytes during hypoxia. Moreover, our data further suggest that NF-κB averts cell death through a mechanism that prevents perturbations to the mitochondrion during hypoxic injury.
Collapse
Affiliation(s)
- Kelly M Regula
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
45
|
Mori N, Krensky AM, Ohshima K, Tomita M, Matsuda T, Ohta T, Yamada Y, Tomonaga M, Ikeda S, Yamamoto N. Elevated expression of CCL5/RANTES in adult T-cell leukemia cells: possible transactivation of the CCL5 gene by human T-cell leukemia virus type I tax. Int J Cancer 2004; 111:548-57. [PMID: 15239133 DOI: 10.1002/ijc.20266] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HTLV-I is the etiologic agent of ATL and of tropical spastic paraparesis/HTLV-I-associated myelopathy. Infiltration of various tissues by circulating leukemic cells and HTLV-I-infected T cells is a characteristic of ATL and HTLV-I-associated inflammatory diseases. Chemokines play important roles in migration and tissue localization of various lymphocyte subsets. Here, we report the highly frequent expression of CCL5 (RANTES) in ATL and HTLV-I-infected T-cell lines. Among various human T-cell lines, those infected with HTLV-I selectively expressed the CCL5 gene and secreted CCL5. Furthermore, CCL5 was expressed by leukemic cells in peripheral blood and lymph nodes from patients with ATL. Inducible expression of HTLV-I transcriptional activator Tax in a human T-cell line Jurkat, up-regulated CCL5 mRNA and induced CCL5 secretion. Analysis of the CCL5 promoter revealed that this gene is activated by Tax, via the activation of NF-kappaB, whose responsive element, R(A/B), is located at positions -71 to -43 relative to the putative transcription start site. Aberrant expression of CCL5 by HTLV-I-infected T cells may impact on the pathophysiology of HTLV-I-associated diseases.
Collapse
Affiliation(s)
- Naoki Mori
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Demachi A, Nagata H, Morio T, Oyoshi MK, Zhang Y, Tabata N, Kimura N, Shimizu N, Yamamoto K. Characterization of Epstein-Barr virus (EBV)-positive NK cells isolated from hydroa vacciniforme-like eruptions. Microbiol Immunol 2003; 47:543-52. [PMID: 12953848 DOI: 10.1111/j.1348-0421.2003.tb03416.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, the involvement of Epstein-Barr virus (EBV) in hydroa vacciniforme (HV)-like eruptions has been suggested. To elucidate the role of EBV in this disease, we isolated EBV-infected cell clones from peripheral blood mononuclear cells (PBMC) and the skin lesions of a patient with HV-like eruptions; cells isolated from PBMC were designated SNK-12, and those from the eruption SNK-11. Both cells expressed CD16, CD56, and HLA-DR and had germline configurations of the T-cell receptor and the immunoglobulin genes, indicating that the cell clones were of NK cell lineage. The analysis of EBV terminal repeats indicated that the cells were monoclonal, had identical clonality, and originated from EBV-positive cells in the PBMC and eruption. Both clones expressed EBNA-1, but not EBNA-2. Although LMP-1 was weakly detected in SNK-11, no LMP-1 was detected in SNK-12. Interestingly, EBV-infected cells required less IL-2 for in vitro growth in the later phase of this disease and this appeared to correlate with the expression of LMP-1, suggesting that the proliferative capacity of the EBV-positive NK cells increased during the time course of the disease, and LMP-1 expression might be responsible for that. This is the first report of the isolation of EBV-infected cells from the skin lesions of HV-like eruptions and strongly suggests that the HV-like eruption in the patient was caused by clonal NK cells with latent EBV infection.
Collapse
MESH Headings
- Cell Culture Techniques
- Cell Lineage
- Cell Separation
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/pathology
- Epstein-Barr Virus Infections/virology
- Epstein-Barr Virus Nuclear Antigens/biosynthesis
- Gene Expression
- Genes, Immunoglobulin
- Genes, T-Cell Receptor
- Genes, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/pathogenicity
- Immunophenotyping
- Interleukin-2/metabolism
- Killer Cells, Natural/pathology
- Killer Cells, Natural/virology
- Skin Diseases, Vesiculobullous/immunology
- Skin Diseases, Vesiculobullous/pathology
- Skin Diseases, Vesiculobullous/virology
- Viral Matrix Proteins/biosynthesis
- Viral Proteins
Collapse
Affiliation(s)
- Ayako Demachi
- Department of Virology, Division of Medical Science, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wu C, Ghosh S. Differential phosphorylation of the signal-responsive domain of I kappa B alpha and I kappa B beta by I kappa B kinases. J Biol Chem 2003; 278:31980-7. [PMID: 12791687 DOI: 10.1074/jbc.m304278200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NF-kappa B activity is regulated by its association with the inhibitory I kappa B proteins, among which I kappa B alpha and I kappa B beta are the most abundant. I kappa B proteins are widely expressed in different cells and tissues and bind to similar combinations of NF-kappa B proteins. The degradation of I kappa B proteins allows nuclear translocation of NF-kappa B and hence plays a critical role in NF-kappa B activation. Previous studies have demonstrated that, although both I kappa B proteins are phosphorylated by the same I kappa B kinase (IKK) complex, and their ubiquitination and degradation following phosphorylation are carried out by the same ubiquitination/degradation machinery, their kinetics of degradation are quite different. To better understand the underlying mechanism of the differences in degradation kinetics, we have carried out a systematic, comparative analysis of the ability of the IKK catalytic subunits to phosphorylate I kappa B alpha and I kappa B beta. We found that, whereas IKK alpha is a weak kinase for the N-terminal serines of both I kappa B isoforms, IKK beta is an efficient kinase for those residues in I kappa B alpha. However, IKK beta phosphorylates the N-terminal serines of I kappa B beta far less efficiently, thereby providing an explanation for the slower rate of degradation observed for I kappa B beta. Mutational analysis indicated that the regions around the two N-terminal serines collectively influence the relative phosphorylation efficiency, and no individual residue is critical. These findings provide the first systematic analysis of the ability of I kappa B alpha and I kappa B beta to serve as substrates for IKKs and help provide a possible explanation for the differential degradation kinetics of I kappa B alpha and I kappa B beta.
Collapse
Affiliation(s)
- Chun Wu
- Section of Immunobiology and the Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
48
|
Mori N, Morishita M, Tsukazaki T, Yamamoto N. Repression of Smad-dependent transforming growth factor-beta signaling by Epstein-Barr virus latent membrane protein 1 through nuclear factor-kappaB. Int J Cancer 2003; 105:661-8. [PMID: 12740915 DOI: 10.1002/ijc.11146] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
EBV-encoded LMP-1 is absolutely required for EBV transformation of cells. Previous studies showed that LMP-1 is responsible for mediating resistance to the anti-proliferative effects of TGF-beta that characterizes EBV-transformed cells. To clarify the mechanisms of resistance to TGF-beta by LMP-1, we examined the effect of expression of LMP-1 on the activity of TGF-beta-responsive promoters. Interestingly, LMP-1 inhibited TGF-beta-responsive promoters activity despite lack of direct interaction of LMP-1 and Smad proteins, intracellular signaling molecules in the TGF-beta signal transduction pathway. Although TGF-beta treatment increased the expression of p15, TGF-beta-induced gene, this effect was counteracted by expression of LMP-1. The repressive effect was mapped to the NF-kappaB activation domains in the cytoplasmic carboxyl terminus of LMP-1. Furthermore, LMP-1-mediated inhibition of TGF-beta-responsive promoter was markedly restored after inhibition of NF-kappaB activity. LMP-1 failed to affect receptor-dependent formation of heteromers containing Smad proteins as well as the DNA-binding activity of Smad proteins. Overexpression of the transcriptional coactivator CBP and p300 abrogated the inhibitory effect of LMP-1 on the TGF-beta-responsive promoter. Our results suggest that LMP-1 represses the TGF-beta signaling through the NF-kappaB signaling pathway at transcriptional level by competing for a limited pool of transcriptional coactivators. These results enhance our understanding of the molecular mechanisms of viral pathogenesis in EBV-associated malignancies.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Carcinoma, Hepatocellular/pathology
- Cell Cycle Proteins/biosynthesis
- Cell Line
- Cell Transformation, Viral/physiology
- Cyclin-Dependent Kinase Inhibitor p15
- Cyclin-Dependent Kinase Inhibitor p16/biosynthesis
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Viral
- Genes, Reporter
- Genes, p16
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Humans
- I-kappa B Proteins/genetics
- I-kappa B Proteins/physiology
- Liver Neoplasms/pathology
- Lung
- Mink
- Models, Genetic
- NF-KappaB Inhibitor alpha
- NF-kappa B/metabolism
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Promoter Regions, Genetic
- Protein Serine-Threonine Kinases
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/physiology
- Recombinant Fusion Proteins/physiology
- Signal Transduction
- Smad2 Protein
- Smad3 Protein
- Smad4 Protein
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/physiology
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/antagonists & inhibitors
- Tumor Suppressor Proteins
- Viral Matrix Proteins/physiology
Collapse
Affiliation(s)
- Naoki Mori
- Department of Virology, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| | | | | | | |
Collapse
|
49
|
Mori N, Krensky AM, Geleziunas R, Wada A, Hirayama T, Sasakawa C, Yamamoto N. Helicobacter pylori induces RANTES through activation of NF-kappa B. Infect Immun 2003; 71:3748-56. [PMID: 12819056 PMCID: PMC162018 DOI: 10.1128/iai.71.7.3748-3756.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Helicobacter pylori-infected gastric mucosa displays a conspicuous infiltration of mononuclear cells and neutrophils. RANTES (short for "regulated upon activation, normal T cell expressed and secreted") is a chemoattractant cytokine (chemokine) important in the infiltration of T lymphocytes and monocytes. RANTES may therefore contribute to the cellular infiltrate in the H. pylori-infected gastric mucosa. The aim of this study was to analyze the molecular mechanism responsible for H. pylori-mediated RANTES expression. We observed that gastric epithelial cells produced RANTES upon coculture with H. pylori. In addition, H. pylori induced RANTES mRNA expression and an increase in luciferase activity in cells which were transfected with a luciferase reporter construct derived from the RANTES promoter, in gastric epithelial cells, indicating that the induction of RANTES production occurred at the transcriptional level. Induction of RANTES was dependent on an intact cag pathogenicity island. Activation of the RANTES promoter by H. pylori occurred through the action of NF-kappa B. Transfection of kinase-deficient mutants of I kappa B kinase (IKK) and NF-kappa B-inducing kinase (NIK) inhibited H. pylori-mediated RANTES activation. In contrast, tumor necrosis factor alpha- or interleukin-1/Toll-like receptor signaling molecules-such as mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1, MyD88, and interleukin-1 receptor-associated kinase-did not play a role in RANTES activation by H. pylori. Collectively, H. pylori induced NF-kappa B activation through an intracellular signaling pathway that involved IKK and NIK, leading to RANTES gene transcription. RANTES induction by H. pylori may play an important role in gastric inflammation.
Collapse
Affiliation(s)
- Naoki Mori
- Department of Virology, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Chen Y, Wu J, Ghosh G. KappaB-Ras binds to the unique insert within the ankyrin repeat domain of IkappaBbeta and regulates cytoplasmic retention of IkappaBbeta x NF-kappaB complexes. J Biol Chem 2003; 278:23101-6. [PMID: 12672800 DOI: 10.1074/jbc.m301021200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The IkappaBalpha and IkappaBbeta proteins inhibit the transcriptional potential of active NF-kappaB dimers through stable complex formation. It has been shown that inactive IkappaBalpha x NF-kappaB complexes shuttle in and out of the nucleus, whereas IkappaBbeta x NF-kappaB complexes are retained exclusively in the cytoplasm of resting cells. The biochemical mechanism underlying this functional difference and its consequences are unknown. Although the two IkappaB proteins are significantly homologous, IkappaBbeta contains a unique 47-amino acid insertion of unknown function within its ankyrin repeat domain. In this study, we assess the role of the IkappaBbeta insert in regulating cytoplasmic retention of IkappaBbeta.NF-kappaB complexes. Deletion of the IkappaBbeta insert renders IkappaBbeta x NF-kappaB complexes capable of shuttling between the nucleus and cytoplasm, similar to IkappaBalpha x NF-kappaB complexes. A small Ras-like G-protein, kappaB-Ras, participates with the IkappaBbeta insert to effectively mask the NF-kappaB nuclear localization potential. Similarly, a complex between NF-kappaB and a mutant IkappaBbeta protein containing four serine to alanine mutations within its C-terminal proline, glutamic acid, serine, and threonine-rich sequence exhibits nucleocytoplasmic shuttling. This suggests a phosphorylation state-dependent role for the C-terminal proline, glutamic acid, serine, and threonine-rich sequence of IkappaBbeta in proper localization of IkappaBbeta x NF-kappaB complexes. These results are consistent with structural studies, which predicted that binary IkappaBbeta x NF-kappaB complexes should be capable of nuclear translocation, and with previous observations that hypophosphorylated IkappaBbeta.NF-kappaB complexes can reside in the nucleus.
Collapse
Affiliation(s)
- Yi Chen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0359, USA
| | | | | |
Collapse
|