1
|
In-stem molecular beacon targeted to a 5'-region of tRNA inclusive of the D arm that detects mature tRNA with high sensitivity. PLoS One 2019; 14:e0211505. [PMID: 30695081 PMCID: PMC6351059 DOI: 10.1371/journal.pone.0211505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 01/12/2023] Open
Abstract
Cellular functions are regulated by the up- and down-regulation and localization of RNA molecules. Therefore, many RNA detection methods have been developed to analyze RNA levels and localization. Molecular beacon (MB) is one of the major methods for quantitative RNA detection and analysis of RNA localization. Most oligonucleotide-based probes, including MB, are designed to target a long flexible region on the target RNA molecule, e.g., a single-stranded region. Recently, analyses of tRNA localization and levels became important, as it has been shown that environmental stresses and chemical reagents induce nuclear accumulation of tRNA and tRNA degradation in mammalian cells. However, tRNA is highly structured and does not harbor any long flexible regions. Hence, only a few methods are currently available for detecting tRNA. In the present study, we attempted to detect elongator tRNAMet (eMet) and initiator tRNAMet (iMet) by using an in-stem molecular beacon (ISMB), characterized by more effective quenching and significantly higher sensitivity than those of conventional MB. We found that ISMB1 targeted a 5′- region that includes the D arm of tRNA and that it detected eMet and iMet transcripts as well as mature eMet with high sensitivity. Moreover, the analysis revealed that the formation of the ISMB/tRNA transcript complex required more time than the formation of an ISMB/unstructured short RNA complex. These results suggest that ISMB-based tRNA detection can be a useful tool for various biological and medical studies.
Collapse
|
2
|
Monestier A, Aleksandrov A, Coureux PD, Panvert M, Mechulam Y, Schmitt E. The structure of an E. coli tRNA fMet A 1-U 72 variant shows an unusual conformation of the A 1-U 72 base pair. RNA (NEW YORK, N.Y.) 2017; 23:673-682. [PMID: 28143889 PMCID: PMC5393177 DOI: 10.1261/rna.057877.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
Translation initiation in eukaryotes and archaea involves a methionylated initiator tRNA delivered to the ribosome in a ternary complex with e/aIF2 and GTP. Eukaryotic and archaeal initiator tRNAs contain a highly conserved A1-U72 base pair at the top of the acceptor stem. The importance of this base pair to discriminate initiator tRNAs from elongator tRNAs has been established previously using genetics and biochemistry. However, no structural data illustrating how the A1-U72 base pair participates in the accurate selection of the initiator tRNAs by the translation initiation systems are available. Here, we describe the crystal structure of a mutant E. coli initiator tRNAfMetA1-U72, aminoacylated with methionine, in which the C1:A72 mismatch at the end of the tRNA acceptor stem has been changed to an A1-U72 base pair. Sequence alignments show that the mutant E. coli tRNA is a good mimic of archaeal initiator tRNAs. The crystal structure, determined at 2.8 Å resolution, shows that the A1-U72 pair adopts an unusual arrangement. A1 is in a syn conformation and forms a single H-bond interaction with U72 This interaction requires protonation of the N1 atom of A1 Moreover, the 5' phosphoryl group folds back into the major groove of the acceptor stem and interacts with the N7 atom of G2 A possible role of this unusual geometry of the A1-U72 pair in the recognition of the initiator tRNA by its partners during eukaryotic and archaeal translation initiation is discussed.
Collapse
Affiliation(s)
- Auriane Monestier
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Alexey Aleksandrov
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Pierre-Damien Coureux
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Michel Panvert
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| |
Collapse
|
3
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
4
|
Conserved residues in yeast initiator tRNA calibrate initiation accuracy by regulating preinitiation complex stability at the start codon. Genes Dev 2014; 28:502-20. [PMID: 24589778 PMCID: PMC3950347 DOI: 10.1101/gad.236547.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic initiator tRNA (tRNAi) contains several highly conserved, unique sequence features, yet their importance in accurate start codon selection is unknown. Using genetic and biochemical analyses, Dong et al. show that conserved bases throughout tRNAi, from the anticodon stem to the acceptor stem, play key roles in ensuring the fidelity of start codon recognition. This work delineates specific molecular functions for signature initiator tRNA residues and establishes their importance for initiation accuracy in living eukaryotic cells. Eukaryotic initiator tRNA (tRNAi) contains several highly conserved unique sequence features, but their importance in accurate start codon selection was unknown. Here we show that conserved bases throughout tRNAi, from the anticodon stem to acceptor stem, play key roles in ensuring the fidelity of start codon recognition in yeast cells. Substituting the conserved G31:C39 base pair in the anticodon stem with different pairs reduces accuracy (the Sui− [suppressor of initiation codon] phenotype), whereas eliminating base pairing increases accuracy (the Ssu− [suppressor of Sui−] phenotype). The latter defect is fully suppressed by a Sui− substitution of T-loop residue A54. These genetic data are paralleled by opposing effects of Sui− and Ssu− substitutions on the stability of methionylated tRNAi (Met-tRNAi) binding (in the ternary complex [TC] with eIF2-GTP) to reconstituted preinitiation complexes (PICs). Disrupting the C3:G70 base pair in the acceptor stem produces a Sui− phenotype and also reduces the rate of TC binding to 40S subunits in vitro and in vivo. Both defects are suppressed by an Ssu− substitution in eIF1A that stabilizes the open/POUT conformation of the PIC that exists prior to start codon recognition. Our data indicate that these signature sequences of tRNAi regulate accuracy by distinct mechanisms, promoting the open/POUT conformation of the PIC (for C3:G70) or destabilizing the closed/PIN state (for G31:C39 and A54) that is critical for start codon recognition.
Collapse
|
5
|
Abstract
In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
6
|
Moisá SJ, Shike DW, Graugnard DE, Rodriguez-Zas SL, Everts RE, Lewin HA, Faulkner DB, Berger LL, Loor JJ. Bioinformatics analysis of transcriptome dynamics during growth in angus cattle longissimus muscle. Bioinform Biol Insights 2013; 7:253-70. [PMID: 23943656 PMCID: PMC3738383 DOI: 10.4137/bbi.s12328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcriptome dynamics in the longissimus muscle (LM) of young Angus cattle were evaluated at 0, 60, 120, and 220 days from early-weaning. Bioinformatic analysis was performed using the dynamic impact approach (DIA) by means of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. Between 0 to 120 days (growing phase) most of the highly-impacted pathways (eg, ascorbate and aldarate metabolism, drug metabolism, cytochrome P450 and Retinol metabolism) were inhibited. The phase between 120 to 220 days (finishing phase) was characterized by the most striking differences with 3,784 differentially expressed genes (DEGs). Analysis of those DEGs revealed that the most impacted KEGG canonical pathway was glycosylphosphatidylinositol (GPI)-anchor biosynthesis, which was inhibited. Furthermore, inhibition of calpastatin and activation of tyrosine aminotransferase ubiquitination at 220 days promotes proteasomal degradation, while the concurrent activation of ribosomal proteins promotes protein synthesis. Therefore, the balance of these processes likely results in a steady-state of protein turnover during the finishing phase. Results underscore the importance of transcriptome dynamics in LM during growth.
Collapse
Affiliation(s)
- Sonia J Moisá
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA. ; Division of Nutritional Sciences, University of Illinois, Urbana, Illinois USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Valásek LS. 'Ribozoomin'--translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr Protein Pept Sci 2013; 13:305-30. [PMID: 22708493 PMCID: PMC3434475 DOI: 10.2174/138920312801619385] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 01/16/2012] [Accepted: 02/16/2012] [Indexed: 02/05/2023]
Abstract
Protein synthesis is a fundamental biological mechanism bringing the DNA-encoded genetic information into
life by its translation into molecular effectors - proteins. The initiation phase of translation is one of the key points of gene
regulation in eukaryotes, playing a role in processes from neuronal function to development. Indeed, the importance of the
study of protein synthesis is increasing with the growing list of genetic diseases caused by mutations that affect mRNA
translation. To grasp how this regulation is achieved or altered in the latter case, we must first understand the molecular
details of all underlying processes of the translational cycle with the main focus put on its initiation. In this review I discuss
recent advances in our comprehension of the molecular basis of particular initiation reactions set into the context of
how and where individual eIFs bind to the small ribosomal subunit in the pre-initiation complex. I also summarize our
current knowledge on how eukaryotic initiation factor eIF3 controls gene expression in the gene-specific manner via reinitiation.
Collapse
Affiliation(s)
- Leos Shivaya Valásek
- Laboratory of Eukaryotic Gene Regulation, Institute of Microbiology AS CR, Prague, Czech Republic.
| |
Collapse
|
8
|
Katibah GE, Lee HJ, Huizar JP, Vogan JM, Alber T, Collins K. tRNA binding, structure, and localization of the human interferon-induced protein IFIT5. Mol Cell 2013; 49:743-50. [PMID: 23317505 PMCID: PMC3615435 DOI: 10.1016/j.molcel.2012.12.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
Interferon-induced proteins, including the largely uncharacterized interferon-induced tetratricopeptide repeat (IFIT) protein family, provide defenses against pathogens. Differing from expectations for tetratricopeptide repeat (TPR) proteins and from human IFIT1, IFIT2, and IFIT3, we show that human IFIT5 recognizes cellular RNA instead of protein partners. In vivo and in vitro, IFIT5 bound to endogenous 5'-phosphate-capped RNAs, including transfer RNAs. The crystal structure of IFIT5 revealed a convoluted intramolecular packing of eight TPRs as a fold that we name the TPR eddy. Additional, non-TPR structural elements contribute to an RNA binding cleft. Instead of general cytoplasmic distribution, IFIT5 concentrated in actin-rich protrusions from the apical cell surface colocalized with the RNA-binding retinoic acid-inducible gene-I (RIG-I). These findings establish compartmentalized cellular RNA binding activity as a mechanism for IFIT5 function and reveal the TPR eddy as a scaffold for RNA recognition.
Collapse
MESH Headings
- Actins/metabolism
- Amino Acid Substitution
- Animals
- Crystallography, X-Ray
- DEAD Box Protein 58
- DEAD-box RNA Helicases/chemistry
- DEAD-box RNA Helicases/isolation & purification
- DEAD-box RNA Helicases/metabolism
- HEK293 Cells
- Humans
- Mice
- Models, Molecular
- Mutagenesis, Site-Directed
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/isolation & purification
- Neoplasm Proteins/metabolism
- Protein Binding
- Protein Interaction Mapping
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Transport
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/metabolism
- Receptors, Immunologic
Collapse
Affiliation(s)
- George E. Katibah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ho Jun Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - John P. Huizar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Jacob M. Vogan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Tom Alber
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720
| |
Collapse
|
9
|
Naveau M, Lazennec-Schurdevin C, Panvert M, Dubiez E, Mechulam Y, Schmitt E. Roles of yeast eIF2α and eIF2β subunits in the binding of the initiator methionyl-tRNA. Nucleic Acids Res 2013; 41:1047-57. [PMID: 23193270 PMCID: PMC3553985 DOI: 10.1093/nar/gks1180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 01/09/2023] Open
Abstract
Heterotrimeric eukaryotic/archaeal translation initiation factor 2 (e/aIF2) binds initiator methionyl-tRNA and plays a key role in the selection of the start codon on messenger RNA. tRNA binding was extensively studied in the archaeal system. The γ subunit is able to bind tRNA, but the α subunit is required to reach high affinity whereas the β subunit has only a minor role. In Saccharomyces cerevisiae however, the available data suggest an opposite scenario with β having the most important contribution to tRNA-binding affinity. In order to overcome difficulties with purification of the yeast eIF2γ subunit, we designed chimeric eIF2 by assembling yeast α and β subunits to archaeal γ subunit. We show that the β subunit of yeast has indeed an important role, with the eukaryote-specific N- and C-terminal domains being necessary to obtain full tRNA-binding affinity. The α subunit apparently has a modest contribution. However, the positive effect of α on tRNA binding can be progressively increased upon shortening the acidic C-terminal extension. These results, together with small angle X-ray scattering experiments, support the idea that in yeast eIF2, the tRNA molecule is bound by the α subunit in a manner similar to that observed in the archaeal aIF2-GDPNP-tRNA complex.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, F-91128 Palaiseau Cedex, France
| |
Collapse
|
10
|
Kang T, Kwon NH, Lee JY, Park MC, Kang E, Kim HH, Kang TJ, Kim S. AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex. J Mol Biol 2012; 423:475-81. [PMID: 22867704 DOI: 10.1016/j.jmb.2012.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs) are nonenzymatic scaffolding proteins that comprise multisynthetase complex (MSC) with nine aminoacyl-tRNA synthetases in higher eukaryotes. Among the three AIMPs, AIMP3/p18 is strongly anchored to methionyl-tRNA synthetase (MRS) in the MSC. MRS attaches methionine (Met) to initiator tRNA (tRNA(i)(Met)) and plays an important role in translation initiation. It is known that AIMP3 is dispatched to nucleus or nuclear membrane to induce DNA damage response or senescence; however, the role of AIMP3 in translation as a component of MSC and the meaning of its interaction with MRS are still unclear. Herein, we observed that AIMP3 specifically interacted with Met-tRNA(i)(Met)in vitro, while it showed little or reduced interaction with unacylated or lysine-charged tRNA(i)(Met). In addition, AIMP3 discriminates Met-tRNA(i)(Met) from Met-charged elongator tRNA based on filter-binding assay. Pull-down assay revealed that AIMP3 and MRS had noncompetitive interaction with eukaryotic initiation factor 2 (eIF2) γ subunit (eIF2γ), which is in charge of binding with Met-tRNA(i)(Met) for the delivery of Met-tRNA(i)(Met) to ribosome. AIMP3 recruited active eIF2γ to the MRS-AIMP3 complex, and the level of Met-tRNA(i)(Met) bound to eIF2 complex was reduced by AIMP3 knockdown resulting in reduced protein synthesis. All these results suggested the novel function of AIMP3 as a critical mediator of Met-tRNA(i)(Met) transfer from MRS to eIF2 complex for the accurate and efficient translation initiation.
Collapse
Affiliation(s)
- Taehee Kang
- Medicinal Bioconvergence Research Center, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schmitt E, Panvert M, Lazennec-Schurdevin C, Coureux PD, Perez J, Thompson A, Mechulam Y. Structure of the ternary initiation complex aIF2-GDPNP-methionylated initiator tRNA. Nat Struct Mol Biol 2012; 19:450-4. [PMID: 22447243 DOI: 10.1038/nsmb.2259] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/07/2012] [Indexed: 01/09/2023]
Abstract
Eukaryotic and archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that has a crucial role in the selection of the correct start codon on messenger RNA. We report the 5-Å resolution crystal structure of the ternary complex formed by archaeal aIF2 from Sulfolobus solfataricus, the GTP analog GDPNP and methionylated initiator tRNA. The 3D model is further supported by solution studies using small-angle X-ray scattering. The tRNA is bound by the α and γ subunits of aIF2. Contacts involve the elbow of the tRNA and the minor groove of the acceptor stem, but not the T-stem minor groove. We conclude that despite considerable structural homology between the core γ subunit of aIF2 and the elongation factor EF1A, these two G proteins of the translation apparatus use very different tRNA-binding strategies.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité mixte de Recherche 7654, Ecole Polytechnique, Centre National de la Recherche Scientifique, Palaiseau, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Stolboushkina EA, Garber MB. Eukaryotic type translation initiation factor 2: structure-functional aspects. BIOCHEMISTRY (MOSCOW) 2011; 76:283-94. [PMID: 21568863 DOI: 10.1134/s0006297911030011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Translation initiation factor 2 (IF2) is one of key components of the translation initiation system in living cells. In bacteria IF2 is a multidomain monomeric protein, while in eukaryotic and archaean cells e/aIF2 is heterotrimer (αβγ). Data, including our own, on eukaryotic type translation initiation factor 2 (e/aIF2) structure and functioning are presented. There are also new data on initiation factors eIF5 and eIF2B that directly interact with eIF2 and control its participation in nucleotide exchange.
Collapse
Affiliation(s)
- E A Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | |
Collapse
|
13
|
Sokabe M, Fraser CS, Hershey JWB. The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit. Nucleic Acids Res 2011; 40:905-13. [PMID: 21940399 PMCID: PMC3258154 DOI: 10.1093/nar/gkr772] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The delivery of Met-tRNAi to the 40S ribosomal subunit is thought to occur by way of a ternary complex (TC) comprising eIF2, GTP and Met-tRNAi. We have generated from purified human proteins a stable multifactor complex (MFC) comprising eIF1, eIF2, eIF3 and eIF5, similar to the MFC reported in yeast and plants. A human MFC free of the ribosome also is detected in HeLa cells and rabbit reticulocytes, indicating that it exists in vivo. In vitro, the MFC-GTP binds Met-tRNAi and delivers the tRNA to the ribosome at the same rate as the TC. However, MFC-GDP shows a greatly reduced affinity to Met-tRNAi compared to that for eIF2-GDP, suggesting that MFC components may play a role in the release of eIF2-GDP from the ribosome following AUG recognition. Since an MFC–Met-tRNAi complex is detected in cell lysates, it may be responsible for Met-tRNAi–40S ribosome binding in vivo, possibly together with the TC. However, the MFC protein components also bind individually to 40S ribosomes, creating the possibility that Met-tRNAi might bind directly to such 40S-factor complexes. Thus, three distinct pathways for Met-tRNAi delivery to the 40S ribosomal subunit are identified, but which one predominates in vivo remains to be elucidated.
Collapse
Affiliation(s)
- Masaaki Sokabe
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
14
|
Schmitt E, Naveau M, Mechulam Y. Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett 2009; 584:405-12. [PMID: 19896944 DOI: 10.1016/j.febslet.2009.11.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/02/2009] [Indexed: 12/31/2022]
Abstract
Eukaryotic/archaeal translation initiation factor 2 (e/aIF2) is a heterotrimeric GTPase that plays a key role in selection of the correct start codon on messenger RNA. This review integrates structural and functional data to discuss the involvement of the three subunits in initiator tRNA binding. A possible role of the peripheral subunits in modulating the guanine nucleotide cycle on the core subunit is also addressed.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Ecole Polytechnique, Laboratoire de Biochimie, F-91128 Palaiseau Cedex, France.
| | | | | |
Collapse
|
15
|
Kolitz SE, Lorsch JR. Eukaryotic initiator tRNA: finely tuned and ready for action. FEBS Lett 2009; 584:396-404. [PMID: 19925799 DOI: 10.1016/j.febslet.2009.11.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 12/17/2022]
Abstract
The initiator tRNA must serve functions distinct from those of other tRNAs, evading binding to elongation factors and instead binding directly to the ribosomal P site with the aid of initiation factors. It plays a key role in decoding the start codon, setting the frame for translation of the mRNA. Sequence elements and modifications of the initiator tRNA distinguish it from the elongator methionyl tRNA and help it to perform its varied tasks. These identity elements appear to finely tune the structure of the initiator tRNA, and growing evidence suggests that the body of the tRNA is involved in transmitting the signal that the start codon has been found to the rest of the pre-initiation complex.
Collapse
Affiliation(s)
- Sarah E Kolitz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
16
|
Fraser CS. The molecular basis of translational control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:1-51. [PMID: 20374738 DOI: 10.1016/s1877-1173(09)90001-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our current understanding of eukaryotic protein synthesis has emerged from many years of biochemical, genetic and biophysical approaches. Significant insight into the molecular details of the mechanism has been obtained, although there are clearly many aspects of the process that remain to be resolved. Importantly, our understanding of the mechanism has identified a number of key stages in the pathway that contribute to the regulation of general and gene-specific translation. Not surprisingly, translational control is now widely accepted to play a role in aspects of cell stress, growth, development, synaptic function, aging, and disease. This chapter reviews the mechanism of eukaryotic protein synthesis and its relevance to translational control.
Collapse
Affiliation(s)
- Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| |
Collapse
|
17
|
Hartmann RK, Gössringer M, Späth B, Fischer S, Marchfelder A. The making of tRNAs and more - RNase P and tRNase Z. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:319-68. [PMID: 19215776 DOI: 10.1016/s0079-6603(08)00808-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transfer-RNA (tRNA) molecules are essential players in protein biosynthesis. They are transcribed as precursors, which have to be extensively processed at both ends to become functional adaptors in protein synthesis. Two endonucleases that directly interact with the tRNA moiety, RNase P and tRNase Z, remove extraneous nucleotides on the molecule's 5'- and 3'-side, respectively. The ribonucleoprotein enzyme RNase P was identified almost 40 years ago and is considered a vestige from the "RNA world". Here, we present the state of affairs on prokaryotic RNase P, with a focus on recent findings on its role in RNA metabolism. tRNase Z was only identified 6 years ago, and we do not yet have a comprehensive understanding of its function. The current knowledge on prokaryotic tRNase Z in tRNA 3'-processing is reviewed here. A second, tRNase Z-independent pathway of tRNA 3'-end maturation involving 3'-exonucleases will also be discussed.
Collapse
Affiliation(s)
- Roland K Hartmann
- Philipps-Universität Marburg, Institut für Pharmazeutische Chemie, Marbacher Weg 6, D-35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
18
|
Abstract
The universality of ribonuclease P (RNase P), the ribonucleoprotein essential for transfer RNA (tRNA) 5' maturation, is challenged in the archaeon Nanoarchaeum equitans. Neither extensive computational analysis of the genome nor biochemical tests in cell extracts revealed the existence of this enzyme. Here we show that the conserved placement of its tRNA gene promoters allows the synthesis of leaderless tRNAs, whose presence was verified by the observation of 5' triphosphorylated mature tRNA species. Initiation of tRNA gene transcription requires a purine, which coincides with the finding that tRNAs with a cytosine in position 1 display unusually extended 5' termini with an extra purine residue. These tRNAs were shown to be substrates for their cognate aminoacyl-tRNA synthetases. These findings demonstrate how nature can cope with the loss of the universal and supposedly ancient RNase P through genomic rearrangement at tRNA genes under the pressure of genome condensation.
Collapse
|
19
|
Kapp LD, Kolitz SE, Lorsch JR. Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation. RNA (NEW YORK, N.Y.) 2006; 12:751-64. [PMID: 16565414 PMCID: PMC1440903 DOI: 10.1261/rna.2263906] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.
Collapse
MESH Headings
- Base Sequence
- Conserved Sequence
- Eukaryotic Initiation Factor-1/isolation & purification
- Eukaryotic Initiation Factor-1/metabolism
- Eukaryotic Initiation Factor-2/isolation & purification
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-5/isolation & purification
- Eukaryotic Initiation Factor-5/metabolism
- Eukaryotic Initiation Factors/isolation & purification
- Eukaryotic Initiation Factors/metabolism
- Guanosine Triphosphate/metabolism
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Protein Biosynthesis
- Protein Structure, Tertiary
- Puromycin/analogs & derivatives
- Puromycin/analysis
- Puromycin/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/isolation & purification
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
20
|
Olejnik J, Gite S, Mamaev S, Rothschild KJ. N-terminal labeling of proteins using initiator tRNA. Methods 2005; 36:252-60. [PMID: 16076451 DOI: 10.1016/j.ymeth.2005.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/25/2022] Open
Abstract
Methodology based on tRNA mediated protein engineering is described for the introduction of fluorophores and other labels at the N-terminus of proteins produced in cell-free translation systems. One method for low-level (trace) N-terminal labeling is based on the use of an Escherichia coli initiator tRNA(fMet) misaminoacylated with methionine modified at the alpha-amino group. In addition to the normal formyl group, the protein translational machinery incorporates the fluorophore BODIPY-FL and the affinity tag biotin at an N-terminal end of the nascent protein. A second method for higher N-terminal labeling uses a chemically aminoacylated amber initiator suppressor tRNA and a DNA template which contains a complementary amber (UAG) codon instead of the normal initiation (AUG) codon. This more versatile approach is demonstrated using a variety of N-terminal markers including fluorescein, biotin, PC-biotin, and a novel dual marker conjugate (Biotin/BODIPY-FL).
Collapse
Affiliation(s)
- Jerzy Olejnik
- AmberGen, 1106 Commonwealth Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
21
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
22
|
Crausaz Esseiva A, Maréchal-Drouard L, Cosset A, Schneider A. The T-stem determines the cytosolic or mitochondrial localization of trypanosomal tRNAsMet. Mol Biol Cell 2004; 15:2750-7. [PMID: 15064351 PMCID: PMC420099 DOI: 10.1091/mbc.e03-11-0821] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mitochondrion of Trypanosoma brucei lacks tRNA genes. Organellar translation therefore depends on import of cytosolic, nucleus-encoded tRNAs. Except for the cytosol-specific initiator tRNA(Met), all trypanosomal tRNAs function in both the cytosol and the mitochondrion. The initiator tRNA(Met) is closely related to the imported elongator tRNA(Met). Thus, the distinct localization of the two tRNAs(Met) must be specified by the 26 nucleotides, which differ between the two molecules. Using transgenic T. brucei cell lines and subsequent cell fractionation, we show that the T-stem is both required and sufficient to specify the localization of the tRNAs(Met). Furthermore, it was shown that the tRNA(Met) T-stem localization determinants are also functional in the context of two other tRNAs. In vivo analysis of the modified nucleotides found in the initiator tRNA(Met) indicates that the T-stem localization determinants do not require modified nucleotides. In contrast, import of native tRNAs(Met) into isolated mitochondria suggests that nucleotide modifications might be involved in regulating the extent of import of elongator tRNA(Met).
Collapse
Affiliation(s)
- Anne Crausaz Esseiva
- Department of Biology/Zoology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | | |
Collapse
|
23
|
Yatime L, Schmitt E, Blanquet S, Mechulam Y. Functional Molecular Mapping of Archaeal Translation Initiation Factor 2. J Biol Chem 2004; 279:15984-93. [PMID: 14761973 DOI: 10.1074/jbc.m311561200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (alphabetagamma) carrying methionylated initiator tRNA to the small subunit of the ribosome. The three-dimensional structure of aIF2gamma from the Archaea Pyrococcus abyssi was previously solved. This subunit forms the core of the heterotrimer. The alpha and beta subunits bind the gamma, but do not interact together. aIF2gamma shows a high resemblance with elongation factor EF1-A. In this study, we characterize the role of each subunit in the binding of the methionylated initiator tRNA. Studying various aminoacyl-tRNA ligands shows that the methionyl group is a major determinant for recognition by aIF2. aIF2gamma alone is able to specifically bind Met-tRNAiMet, although with a reduced affinity as compared with the intact trimer. Site-directed mutagenesis confirms a binding mode of the tRNA molecule similar to that observed with the elongation factor. Under our assay conditions, aIF2beta is not involved in the docking of the tRNA molecule. In contrast, aIF2alpha provides the heterotrimer its full tRNA binding affinity. Furthermore, the isolated C-domain of aIF2alpha is responsible for binding of the alpha subunit to gamma. This binding involves an idiosyncratic loop of domain 2 of aIF2gamma. Association of the C-domain of aIF2alpha to aIF2gamma is enough to retrieve the binding affinity of tRNA for aIF2. The N-terminal and central domains of aIF2alpha do not interfere with tRNA binding. However, the N-domain of aIF2alpha interacts with RNA unspecifically. Based on this property, a possible contribution of aIF2alpha to formation of a productive complex between aIF2 and the small ribosomal subunit is envisaged.
Collapse
Affiliation(s)
- Laure Yatime
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, F-91128 Palaiseau cedex, France
| | | | | | | |
Collapse
|
24
|
Mamaev S, Olejnik J, Olejnik EK, Rothschild KJ. Cell-free N-terminal protein labeling using initiator suppressor tRNA. Anal Biochem 2004; 326:25-32. [PMID: 14769332 DOI: 10.1016/j.ab.2003.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Indexed: 11/17/2022]
Abstract
A highly efficient method for the introduction of fluorophores and other markers at the N terminus of proteins produced in a cell-free extract has been developed. The method utilizes an amber (CUA) initiator suppressor tRNA chemically aminoacylated with a fluorophore-amino acid conjugate which is introduced into an Escherichia coli S30 cell-free translation system. The DNA template contains a complementary amber (UAG) codon instead of the normal initiation (AUG) codon. Using this approach, the fluorophore BODIPY-F1 (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a- diaza-s-indacene-3-propionic acid) has been incorporated at the N terminus of several model proteins. The specific labeling achieved (27-67%) using this approach is much higher than that of wild-type tRNAs. Several potential biophysical and biotechnological applications of this new technology are described.
Collapse
Affiliation(s)
- Sergey Mamaev
- AmberGen, Inc., 1106 Commonwealth Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
25
|
Kapp LD, Lorsch JR. GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J Mol Biol 2004; 335:923-36. [PMID: 14698289 DOI: 10.1016/j.jmb.2003.11.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a G-protein that functions as a central switch in the initiation of protein synthesis. In its GTP-bound state it delivers the methionyl initiator tRNA (Met-tRNA(i)) to the small ribosomal subunit and releases it upon GTP hydrolysis following the recognition of the initiation codon. We have developed a complete thermodynamic framework for the assembly of the Saccharomyces cerevisiae eIF2.GTP.Met-tRNA(i) ternary complex and have determined the effect of the conversion of GTP to GDP on eIF2's affinity for Met-tRNA(i) in solution. In its GTP-bound state the factor forms a positive interaction with the methionine moiety on Met-tRNA(i) that is disrupted when GTP is replaced with GDP, while contacts between the factor and the body of the tRNA remain intact. This positive interaction with the methionine residue on the tRNA may serve to ensure that only charged initiator tRNA enters the initiation pathway. The toggling on and off of the factor's interaction with the methionine residue is likely to play an important role in the mechanism of initiator tRNA release upon initiation codon recognition. In addition, we show that the conserved base-pair A1:U72, which is known to be a critical identity element distinguishing initiator from elongator methionyl tRNA, is required for recognition of the methionine moiety by eIF2. Our data suggest that a role of this base-pair is to orient the methionine moiety on the initiator tRNA in its recognition pocket on eIF2.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street 625 WBSB, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
26
|
Schmitt E, Blanquet S, Mechulam Y. The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors. EMBO J 2002; 21:1821-32. [PMID: 11927566 PMCID: PMC125960 DOI: 10.1093/emboj/21.7.1821] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric factor e/aIF2 plays a central role in eukaryotic/archaeal initiation of translation. By delivering the initiator methionyl-tRNA to the ribosome, e/aIF2 ensures specificity of initiation codon selection. The three subunits of aIF2 from the hyperthermophilic archaeon Pyrococcus abyssi could be overproduced in Escherichia coli. The beta and gamma subunits each contain a tightly bound zinc. The large gamma subunit is shown to form the structural core for trimer assembly. The crystal structures of aIF2gamma, free or complexed to GDP-Mg(2+) or GDPNP-Mg(2+), were resolved at resolutions better than 2 A. aIF2gamma displays marked similarities to elongation factors. A distinctive feature of e/aIF2gamma is a subdomain containing a zinc-binding knuckle. Examination of the nucleotide-complexed aIF2gamma structures suggests mechanisms of action and tRNA binding properties similar to those of an elongation factor. Implications for the mechanism of translation initiation in both eukarya and archaea are discussed. In particular, positioning of the initiator tRNA in the ribosomal A site during the search for the initiation codon is envisaged.
Collapse
Affiliation(s)
- Emmanuelle Schmitt
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, F-91128 Palaiseau cedex, France.
| | | | | |
Collapse
|
27
|
Pestova TV, Hellen CU. Preparation and activity of synthetic unmodified mammalian tRNAi(Met) in initiation of translation in vitro. RNA (NEW YORK, N.Y.) 2001; 7:1496-505. [PMID: 11680854 PMCID: PMC1370193 DOI: 10.1017/s135583820101038x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Translation of eukaryotic mRNA is initiated by a unique amino-acyl tRNA, Met-tRNAi(Met), which passes through a complex series of highly specific interactions with components of the translation apparatus during the initiation process. To facilitate in vitro biochemical and molecular biological analysis of these interactions in fully reconstituted translation initiation reactions, we generated mammalian tRNAi(Met) by in vitro transcription that lacked all eight base modifications present in native tRNAi(Met). Here we report a method for in vitro transcription and aminoacylation of synthetic unmodified initiator tRNAi(Met) that is active in every stage of the initiation process, including aminoacylation by methionyl-tRNA synthetase, binding of Met-tRNAi(Met) to eIF2-GTP to form a ternary complex, binding of the ternary complexes to 40S ribosomal subunits to form 43S complexes, binding of the 43S complex to a native capped eukaryotic mRNA, and scanning on its 5' untranslated region to the correct initiation codon to form a 48S complex, and finally joining with a 60S subunit to assemble an 80S ribosome that is competent to catalyze formation of the first peptide bond using the [35S]methionine residue attached to the acceptor terminus of the tRNAi(Met) transcript.
Collapse
MESH Headings
- Acylation
- Animals
- Base Sequence
- Chromatography, Ion Exchange
- DNA
- Eukaryotic Initiation Factor-2/metabolism
- Guanosine Triphosphate/metabolism
- In Vitro Techniques
- Molecular Sequence Data
- Peptidyl Transferases/metabolism
- Promoter Regions, Genetic
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/isolation & purification
- RNA, Transfer, Met/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- T V Pestova
- Department of Microbiology and Immunology, State University of New York Health Sciences Center at Brooklyn, 11203-2098, USA.
| | | |
Collapse
|
28
|
Kowal AK, Kohrer C, RajBhandary UL. Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci U S A 2001; 98:2268-73. [PMID: 11226228 PMCID: PMC30127 DOI: 10.1073/pnas.031488298] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2000] [Indexed: 01/07/2023] Open
Abstract
Two critical requirements for developing methods for the site-specific incorporation of amino acid analogues into proteins in vivo are (i) a suppressor tRNA that is not aminoacylated by any of the endogenous aminoacyl-tRNA synthetases (aaRSs) and (ii) an aminoacyl-tRNA synthetase that aminoacylates the suppressor tRNA but no other tRNA in the cell. Here we describe two such aaRS-suppressor tRNA pairs, one for use in the yeast Saccharomyces cerevisiae and another for use in Escherichia coli. The "21st synthetase-tRNA pairs" include E. coli glutaminyl-tRNA synthetase (GlnRS) along with an amber suppressor derived from human initiator tRNA, for use in yeast, and mutants of the yeast tyrosyl-tRNA synthetase (TyrRS) along with an amber suppressor derived from E. coli initiator tRNA, for use in E. coli. The suppressor tRNAs are aminoacylated in vivo only in the presence of the heterologous aaRSs, and the aminoacylated tRNAs function efficiently in suppression of amber codons. Plasmids carrying the E. coli GlnRS gene can be stably maintained in yeast. However, plasmids carrying the yeast TyrRS gene could not be stably maintained in E. coli. This lack of stability is most likely due to the fact that the wild-type yeast TyrRS misaminoacylates the E. coli proline tRNA. By using error-prone PCR, we have isolated and characterized three mutants of yeast TyrRS, which can be stably expressed in E. coli. These mutants still aminoacylate the suppressor tRNA essentially quantitatively in vivo but show increased discrimination in vitro for the suppressor tRNA over the E. coli proline tRNA by factors of 2.2- to 6.8-fold.
Collapse
Affiliation(s)
- A K Kowal
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
29
|
Abstract
The mechanisms whereby ribosomes engage a messenger RNA and select the start site for translation differ between prokaryotes and eukaryotes. Initiation sites in polycistronic prokaryotic mRNAs are usually selected via base pairing with ribosomal RNA. That straightforward mechanism is made complicated and interesting by cis- and trans-acting elements employed to regulate translation. Initiation sites in eukaryotic mRNAs are reached via a scanning mechanism which predicts that translation should start at the AUG codon nearest the 5' end of the mRNA. Interest has focused on mechanisms that occasionally allow escape from this first-AUG rule. With natural mRNAs, three escape mechanisms - context-dependent leaky scanning, reinitiation, and possibly direct internal initiation - allow access to AUG codons which, although not first, are still close to the 5' end of the mRNA. This constraint on the initiation step of translation in eukaryotes dictates the location of transcriptional promoters and may have contributed to the evolution of splicing.The binding of Met-tRNA to ribosomes is mediated by a GTP-binding protein in both prokaryotes and eukaryotes, but the more complex structure of the eukaryotic factor (eIF-2) and its association with other proteins underlie some aspects of initiation unique to eukaryotes. Modulation of GTP hydrolysis by eIF-2 is important during the scanning phase of initiation, while modulating the release of GDP from eIF-2 is a key mechanism for regulating translation in eukaryotes. Our understanding of how some other protein factors participate in the initiation phase of translation is in flux. Genetic tests suggest that some proteins conventionally counted as eukaryotic initiation factors may not be required for translation, while other tests have uncovered interesting new candidates. Some popular ideas about the initiation pathway are predicated on static interactions between isolated factors and mRNA. The need for functional testing of these complexes is discussed. Interspersed with these theoretical topics are some practical points concerning the interpretation of cDNA sequences and the use of in vitro translation systems. Some human diseases resulting from defects in the initiation step of translation are also discussed.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Drabkin HJ, Estrella M, Rajbhandary UL. Initiator-elongator discrimination in vertebrate tRNAs for protein synthesis. Mol Cell Biol 1998; 18:1459-66. [PMID: 9488462 PMCID: PMC108860 DOI: 10.1128/mcb.18.3.1459] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for the elongation step. We show, in vivo and in vitro, that the primary sequence feature that prevents the human initiator tRNA from acting in the elongation step is the nature of base pairs 50:64 and 51:63 in the TpsiC stem of the initiator tRNA. Various considerations suggest that this is due to sequence-dependent perturbation of the sugar phosphate backbone in the TpsiC stem of initiator tRNA, which most likely blocks binding of the elongation factor to the tRNA. Because the sequences of all vertebrate initiator tRNAs are identical, our findings with the human initiator tRNA are likely to be valid for all vertebrate systems. We have developed reporter systems that can be used to monitor, in mammalian cells, the activity in elongation of mutant human initiator tRNAs carrying anticodon sequence mutations from CAU to CCU (the C35 mutant) or to CUA (the U35A36 mutant). Combination of the anticodon sequence mutation with mutations in base pairs 50:64 and 51:63 yielded tRNAs that act as elongators in mammalian cells. Further mutation of the A1:U72 base pair, which is conserved in virtually all eukaryotic initiator tRNAs, to G1:C72 in the C35 mutant background yielded tRNAs that were even more active in elongation. In addition, in a rabbit reticulocyte in vitro protein-synthesizing system, a tRNA carrying the TpsiC stem and the A1:U72-to-G1:C72 mutations was almost as active in elongation as the elongator methionine tRNA. The combination of mutant initiator tRNA with the CCU anticodon and the reporter system developed here provides the first example of missense suppression in mammalian cells.
Collapse
Affiliation(s)
- H J Drabkin
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|