1
|
Birshtein BK. The role of CTCF binding sites in the 3' immunoglobulin heavy chain regulatory region. Front Genet 2012; 3:251. [PMID: 23162572 PMCID: PMC3499808 DOI: 10.3389/fgene.2012.00251] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/26/2012] [Indexed: 01/24/2023] Open
Abstract
The immunoglobulin heavy chain locus undergoes a series of DNA rearrangements and modifications to achieve the construction and expression of individual antibody heavy chain genes in B cells. These events affect variable regions, through VDJ joining and subsequent somatic hypermutation, and constant regions through class switch recombination (CSR). Levels of IgH expression are also regulated during B cell development, resulting in high levels of secreted antibodies from fully differentiated plasma cells. Regulation of these events has been attributed primarily to two cis-elements that work from long distances on their target sequences, i.e., an ∼1 kb intronic enhancer, Eμ, located between the V region segments and the most 5′ constant region gene, Cμ; and an ∼40 kb 3′ regulatory region (3′ RR) that is located downstream of the most 3′ CH gene, Cα. The 3′ RR is a candidate for an “end” of B cell-specific regulation of the Igh locus. The 3′ RR contains several B cell-specific enhancers associated with DNase I hypersensitive sites (hs1–4), which are essential for CSR and for high levels of IgH expression in plasma cells. Downstream of this enhancer-containing region is a region of high-density CTCF binding sites, which extends through hs5, 6, and 7 and further downstream. CTCF, with its enhancer-blocking activities, has been associated with all mammalian insulators and implicated in multiple chromosomal interactions. Here we address the 3′ RR CTCF-binding region as a potential insulator of the Igh locus, an independent regulatory element and a predicted modulator of the activity of 3′ RR enhancers. Using chromosome conformation capture technology, chromatin immunoprecipitation, and genetic approaches, we have found that the 3′ RR with its CTCF-binding region interacts with target sequences in the VH, Eμ, and CH regions through DNA looping as regulated by protein binding. This region impacts on B cell-specific Igh processes at different stages of B cell development.
Collapse
Affiliation(s)
- Barbara K Birshtein
- Department of Cell Biology, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
2
|
Pinaud E, Marquet M, Fiancette R, Péron S, Vincent-Fabert C, Denizot Y, Cogné M. The IgH locus 3' regulatory region: pulling the strings from behind. Adv Immunol 2011; 110:27-70. [PMID: 21762815 DOI: 10.1016/b978-0-12-387663-8.00002-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antigen receptor gene loci are among the most complex in mammals. The IgH locus, encoding the immunoglobulin heavy chain (IgH) in B-lineage cells, undergoes major transcription-dependent DNA remodeling events, namely V(D)J recombination, Ig class-switch recombination (CSR), and somatic hypermutation (SHM). Various cis-regulatory elements (encompassing promoters, enhancers, and chromatin insulators) recruit multiple nuclear factors in order to ensure IgH locus regulation by tightly orchestrated physical and/or functional interactions. Among major IgH cis-acting regions, the large 3' regulatory region (3'RR) located at the 3' boundary of the locus includes several enhancers and harbors an intriguing quasi-palindromic structure. In this review, we report progress insights made over the past decade in order to describe in more details the structure and functions of IgH 3'RRs in mouse and human. Generation of multiple cellular, transgenic and knock-out models helped out to decipher the function of the IgH 3' regulatory elements in the context of normal and pathologic B cells. Beside its interest in physiology, the challenge of elucidating the locus-wide cross talk between distant cis-regulatory elements might provide useful insights into the mechanisms that mediate oncogene deregulation after chromosomal translocations onto the IgH locus.
Collapse
Affiliation(s)
- Eric Pinaud
- UMR CNRS 6101, Centre National de la Recherche Scientifique, Université de Limoges, Limoges, France
| | | | | | | | | | | | | |
Collapse
|
3
|
Zhou J, Ashouian N, Delepine M, Matsuda F, Chevillard C, Riblet R, Schildkraut CL, Birshtein BK. The origin of a developmentally regulated Igh replicon is located near the border of regulatory domains for Igh replication and expression. Proc Natl Acad Sci U S A 2002; 99:13693-8. [PMID: 12370427 PMCID: PMC129745 DOI: 10.1073/pnas.212392399] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Indexed: 11/18/2022] Open
Abstract
The 3' Ig heavy chain locus (Igh) regulatory region is the most downstream known element of the murine Igh gene cluster. We report here that the nearest non-Igh genes-Crip, Crp2, and Mta1-are located approximately 70 kb further downstream and are beyond the end of the domain of Igh transcriptional regulation. We have localized an origin of replication in MEL cells to a 3-kb segment located between the 3' Igh regulatory region and Crip. Sequences downstream of this origin are replicated by forks that move in both directions. Sequences upstream of this origin (Igh-C, -D, and -J) are replicated in a single direction through a 500-kb segment in which no active bidirectional origins can be detected. We propose that this origin may lie at or near the end of the Igh regulation domain.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhou J, Ermakova OV, Riblet R, Birshtein BK, Schildkraut CL. Replication and subnuclear location dynamics of the immunoglobulin heavy-chain locus in B-lineage cells. Mol Cell Biol 2002; 22:4876-89. [PMID: 12052893 PMCID: PMC133899 DOI: 10.1128/mcb.22.13.4876-4889.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The murine immunoglobulin heavy-chain (Igh) locus provides an important model for understanding the replication of tissue-specific gene loci in mammalian cells. We have observed two DNA replication programs with dramatically different temporal replication patterns for the Igh locus in B-lineage cells. In pro- and pre-B-cell lines and in ex vivo-expanded pro-B cells, the entire locus is replicated early in S phase. In three cell lines that exhibit the early-replication pattern, we found that replication forks progress in both directions through the constant-region genes, which is consistent with the activation of multiple initiation sites. In contrast, in plasma cell lines, replication of the Igh locus occurs through a triphasic pattern similar to that previously detected in MEL cells. Sequences downstream of the Igh-C alpha gene replicate early in S, while heavy-chain variable (Vh) gene sequences replicate late in S. An approximately 500-kb transition region connecting sequences that replicate early and late is replicated progressively later in S. The formation of the transition region in different cell lines is independent of the sequences encompassed. In B-cell lines that exhibit a triphasic-replication pattern, replication forks progress in one direction through the examined constant-region genes. Timing data and the direction of replication fork movement indicate that replication of the transition region occurs by a single replication fork, as previously described for MEL cells. Associated with the contrasting replication programs are differences in the subnuclear locations of Igh loci. When the entire locus is replicated early in S, the Igh locus is located away from the nuclear periphery, but when Vh gene sequences replicate late and there is a temporal-transition region, the entire Igh locus is located near the nuclear periphery.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
5
|
Khamlichi AA, Pinaud E, Decourt C, Chauveau C, Cogné M. The 3' IgH regulatory region: a complex structure in a search for a function. Adv Immunol 2001; 75:317-45. [PMID: 10879288 DOI: 10.1016/s0065-2776(00)75008-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A A Khamlichi
- CNRS EP 118, Laboratoire d'Immunologie, Limoges, France
| | | | | | | | | |
Collapse
|
6
|
Abstract
DNA replication initiation sites and initiation frequencies over 12. 5 kb of the human c-myc locus, including 4.6 kb of new 5' sequence, were determined based on short nascent DNA abundance measured by competitive polymerase chain reaction using 21 primer sets. In previous measurements, no comparative quantitation of nascent strand abundance was performed, and distinction of major from minor initiation sites was not feasible. Two major initiation sites were identified in this study. One predominant site has been located at approximately 0.5 kb upstream of exon 1 of the c-myc gene, and a second new major site is located in exon 2. The site in exon 2 has not been previously identified. In addition, there are other sites that may act as less frequently used initiation sites, some of which may correspond to sites in previous reports. Furthermore, a comparison of the abundance of DNA replication intermediates over this same region of the c-myc locus between HeLa and normal skin fibroblast (NSF) cells indicated that the relative distribution was very similar, but that nascent strand abundance in HeLa cells was approximately twice that in NSF relative to the abundance at the lamin B2 origin. This increased activity at initiation sites in the c-myc locus may mainly be influenced by regulators at higher levels in transformed cells like HeLa.
Collapse
Affiliation(s)
- L Tao
- McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
7
|
Abstract
One of the fundamental characteristics of life is the ability of an entity to reproduce itself, which stems from the ability of the DNA molecule to replicate itself. The initiation step of DNA replication, where control over the timing and frequency of replication is exerted, is poorly understood in eukaryotes in general, and in mammalian cells in particular. The cis-acting DNA element defining the position and providing control over initiation is the replication origin. The activation of replication origins seems to be dependent on the presence of both a particular sequence and of structural determinants. In the past few years, the development of new methods for identification and mapping of origins of DNA replication has allowed some understanding of the fundamental elements that control the replication process. This review summarizes some of the major findings of this century, regarding the mechanism of DNA replication, emphasizing what is known about the replication of mammalian DNA. J. Cell. Biochem. Suppls. 32/33:1-14, 1999.
Collapse
|
8
|
Saleque S, Singh M, Birshtein BK. Ig Heavy Chain Expression and Class Switching In Vitro from an Allele Lacking the 3′ Enhancers DNase I-Hypersensitive hs3A and hs1,2. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The murine Ig heavy chain (IgH) 3′ regulatory region contains four enhancers: hs3A, hs1,2, hs3B, and hs4. Various studies have suggested a role for these enhancers in regulating IgH expression and class switching. Here we assess the role of hs3A and hs1,2 in these processes by exploiting a naturally occurring deletion of these enhancers from the expressed, C57BL/6 allele of the F1 pre-B cell line, 70Z/3. Equivalent μ expression in 70Z/3 and 18-81 (which has an intact 3′ region) indicated that hs3A and hs1,2 were not essential for μ expression at the pre-B cell stage. To further examine the role of hs3A and hs1,2 in IgH function at the plasma cell stage, we fused 70Z/3 with the plasmacytoma NSO. Electromobility shift assay analysis of the 70Z/3-NSO hybrids revealed a transcription factor complement conducive to the activation of the 3′ enhancers. Despite the lack of enhancers, hs3A and hs1,2, the level of μ RNA and protein in the 70Z/3-NSO fusion hybrids was substantially elevated relative to its pre-B parent and comparable with that observed in a number of μ-producing spleen cell hybridomas. Additionally, ELISAspot assays showed that the 70Z/3-NSO hybrid underwent spontaneous class switching in culture to IgG1 at a frequency comparable with that of most hybridomas. These results indicate that hs3A and hs1,2 are not essential for high levels of IgH expression or for spontaneous class switching in a plasma cell line.
Collapse
Affiliation(s)
- Shireen Saleque
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Mallika Singh
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Barbara K. Birshtein
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
9
|
Ermakova OV, Nguyen LH, Little RD, Chevillard C, Riblet R, Ashouian N, Birshtein BK, Schildkraut CL. Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line. Mol Cell 1999; 3:321-30. [PMID: 10198634 DOI: 10.1016/s1097-2765(00)80459-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In non-B cell lines, like the murine erythroleukemia cell line (MEL), the most distal IgH constant region gene, C alpha, replicates early in S; other heavy chain constant region genes, joining and diversity segments, and the most proximal Vh gene replicate successively later in S in a 3' to 5' direction proportional to their distance from C alpha. In MEL, replication forks detected in the IgH locus also proceed in the same 3' to 5' direction for approximately 400 kb, beginning downstream of the IgH 3' regulatory region and continuing to the D region, as well as within the Vh81X gene. Downstream of the initiation region is an early replicating domain, and upstream of Vh81X is a late replicating domain. Hence, the gradual transition between early and late replicated domains can be achieved by a single replication fork.
Collapse
Affiliation(s)
- O V Ermakova
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The process by which eukaryotic cells decide when and where to initiate DNA replication has been illuminated in yeast, where specific DNA sequences (replication origins) bind a unique group of proteins (origin recognition complex) next to an easily unwound DNA sequence at which replication can begin. The origin recognition complex provides a platform on which additional proteins assemble to form a pre-replication complex that can be activated at S-phase by specific protein kinases. Remarkably, multicellular eukaryotes, such as frogs, flies, and mammals (metazoa), have counterparts to these yeast proteins that are required for DNA replication. Therefore, one might expect metazoan chromosomes to contain specific replication origins as well, a hypothesis that has long been controversial. In fact, recent results strongly support the view that DNA replication origins in metazoan chromosomes consist of one or more high frequency initiation sites and perhaps several low frequency ones that together can appear as a nonspecific initiation zone. Specific replication origins are established during G1-phase of each cell cycle by multiple parameters that include nuclear structure, chromatin structure, DNA sequence, and perhaps DNA modification. Such complexity endows metazoa with the flexibility to change both the number and locations of replication origins in response to the demands of animal development.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| |
Collapse
|
11
|
Gilbert DM. Replication origins in yeast versus metazoa: separation of the haves and the have nots. Curr Opin Genet Dev 1998; 8:194-9. [PMID: 9610410 DOI: 10.1016/s0959-437x(98)80141-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent flood of information concerning Saccharomyces cerevisiae replication origins and the proteins that interact with them contrasts alarmingly to the trickle of progress in our understanding of metazoan origins. In mammalian cells, origins are complex and heterogeneous, and appear to be selected by features of nuclear architecture that are re-established after each mitosis. Studies in Xenopus egg extracts have shown that once per cell cycle replication does not require specific origin sequences, despite the identification of functional homologues to yeast origin-binding proteins. These observations suggest that initiation of DNA replication in higher eukaryotes is focused to specific genomic regions by features of chromosome structure.
Collapse
Affiliation(s)
- D M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse 13210, USA.
| |
Collapse
|
12
|
DePamphilis ML. Initiation of DNA replication in eukaryotic chromosomes. J Cell Biochem 1998; 72 Suppl 30-31:8-17. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<8::aid-jcb3>3.0.co;2-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 09/15/1998] [Indexed: 11/06/2022]
|