1
|
Dexl S, Reichelt R, Kraatz K, Schulz S, Grohmann D, Bartlett M, Thomm M. Displacement of the transcription factor B reader domain during transcription initiation. Nucleic Acids Res 2018; 46:10066-10081. [PMID: 30102372 PMCID: PMC6212726 DOI: 10.1093/nar/gky699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 01/15/2023] Open
Abstract
Transcription initiation by archaeal RNA polymerase (RNAP) and eukaryotic RNAP II requires the general transcription factor (TF) B/ IIB. Structural analyses of eukaryotic transcription initiation complexes locate the B-reader domain of TFIIB in close proximity to the active site of RNAP II. Here, we present the first crosslinking mapping data that describe the dynamic transitions of an archaeal TFB to provide evidence for structural rearrangements within the transcription complex during transition from initiation to early elongation phase of transcription. Using a highly specific UV-inducible crosslinking system based on the unnatural amino acid para-benzoyl-phenylalanine allowed us to analyze contacts of the Pyrococcus furiosus TFB B-reader domain with site-specific radiolabeled DNA templates in preinitiation and initially transcribing complexes. Crosslink reactions at different initiation steps demonstrate interactions of TFB with DNA at registers +6 to +14, and reduced contacts at +15, with structural transitions of the B-reader domain detected at register +10. Our data suggest that the B-reader domain of TFB interacts with nascent RNA at register +6 and +8 and it is displaced from the transcribed-strand during the transition from +9 to +10, followed by the collapse of the transcription bubble and release of TFB from register +15 onwards.
Collapse
Affiliation(s)
- Stefan Dexl
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Robert Reichelt
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Katharina Kraatz
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Schulz
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Dina Grohmann
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| | - Michael Bartlett
- Department of Biology, Portland State University, Portland, OR 972707-0751, USA
| | - Michael Thomm
- Department of Microbiology and Archaea Center, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Abstract
Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
Collapse
|
3
|
Sainsbury S, Niesser J, Cramer P. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature 2012; 493:437-40. [PMID: 23151482 DOI: 10.1038/nature11715] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/26/2012] [Indexed: 01/24/2023]
Abstract
The general transcription factor (TF) IIB is required for RNA polymerase (Pol) II initiation and extends with its B-reader element into the Pol II active centre cleft. Low-resolution structures of the Pol II-TFIIB complex indicated how TFIIB functions in DNA recruitment, but they lacked nucleic acids and half of the B-reader, leaving other TFIIB functions enigmatic. Here we report crystal structures of the Pol II-TFIIB complex from the yeast Saccharomyces cerevisiae at 3.4 Å resolution and of an initially transcribing complex that additionally contains the DNA template and a 6-nucleotide RNA product. The structures reveal the entire B-reader and protein-nucleic acid interactions, and together with functional data lead to a more complete understanding of transcription initiation. TFIIB partially closes the polymerase cleft to position DNA and assist in its opening. The B-reader does not reach the active site but binds the DNA template strand upstream to assist in the recognition of the initiator sequence and in positioning the transcription start site. TFIIB rearranges active-site residues, induces binding of the catalytic metal ion B, and stimulates initial RNA synthesis allosterically. TFIIB then prevents the emerging DNA-RNA hybrid duplex from tilting, which would impair RNA synthesis. When the RNA grows beyond 6 nucleotides, it is separated from DNA and is directed to its exit tunnel by the B-reader loop. Once the RNA grows to 12-13 nucleotides, it clashes with TFIIB, triggering TFIIB displacement and elongation complex formation. Similar mechanisms may underlie all cellular transcription because all eukaryotic and archaeal RNA polymerases use TFIIB-like factors, and the bacterial initiation factor sigma has TFIIB-like topology and contains the loop region 3.2 that resembles the B-reader loop in location, charge and function. TFIIB and its counterparts may thus account for the two fundamental properties that distinguish RNA from DNA polymerases: primer-independent chain initiation and product separation from the template.
Collapse
Affiliation(s)
- Sarah Sainsbury
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | |
Collapse
|
4
|
Yang C, Ponticelli AS. Evidence that RNA polymerase II and not TFIIB is responsible for the difference in transcription initiation patterns between Saccharomyces cerevisiae and Schizosaccharomyces pombe. Nucleic Acids Res 2012; 40:6495-507. [PMID: 22510268 PMCID: PMC3413132 DOI: 10.1093/nar/gks323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The basal eukaryotic transcription machinery for protein coding genes is highly conserved from unicellular yeast to higher eukaryotes. Whereas TATA-containing promoters in human cells usually contain a single transcription start site (TSS) located ∼30 bp downstream of the TATA element, transcription in the yeast Schizosaccharomyces pombe and Saccharomyces cerevisiae typically initiates at multiple sites within a window ranging from 30 to 70 bp or 40 to 200 bp downstream of a TATA element, respectively. By exchanging highly purified factors between reconstituted S. pombe and S. cerevisiae transcription systems, we confirmed previous observations that the dual exchange of RNA polymerase II (RNAPII) and transcription factor IIB (TFIIB) confer the distinct initiation patterns between these yeast species. Surprisingly, however, further genetic and biochemical assays of TFIIB chimeras revealed that TFIIB and the proposed B-finger/reader domain do not play a role in determining the distinct initiation patterns between S. pombe and S. cerevisiae, but rather, these patterns are solely due to differences in RNAPII. These results are discussed within the context of a proposed model for the mechanistic coupling of the efficiency of early phosphodiester bond formation during productive TSS utilization and intrinsic elongation proficiency.
Collapse
Affiliation(s)
- Chen Yang
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214-3000, USA
| | | |
Collapse
|
5
|
Goel S, Krishnamurthy S, Hampsey M. Mechanism of start site selection by RNA polymerase II: interplay between TFIIB and Ssl2/XPB helicase subunit of TFIIH. J Biol Chem 2011; 287:557-567. [PMID: 22081613 DOI: 10.1074/jbc.m111.281576] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIB is essential for transcription initiation by RNA polymerase II. TFIIB also cross-links to terminator regions and is required for gene loops that juxtapose promoter-terminator elements in a transcription-dependent manner. The Saccharomyces cerevisiae sua7-1 mutation encodes an altered form of TFIIB (E62K) that is defective for both start site selection and gene looping. Here we report the isolation of an ssl2 mutant, encoding an altered form of TFIIH, as a suppressor of the cold-sensitive growth defect of the sua7-1 mutation. Ssl2 (Rad25) is orthologous to human XPB and is a member of the SF2 family of ATP-dependent DNA helicases. The ssl2 suppressor allele encodes an arginine replacement of the conserved histidine residue (H508R) located within the DEVH-containing helicase domain. In addition to suppressing the TFIIB E62K growth defect, Ssl2 H508R partially restores both normal start site selection and gene looping. Moreover, Ssl2, like TFIIB, associates with promoter and terminator regions, and the diminished association of TFIIB E62K with the PMA1 terminator is restored by the Ssl2 H508R suppressor. These results define a novel, functional interaction between TFIIB and Ssl2 that affects start site selection and gene looping.
Collapse
Affiliation(s)
- Shivani Goel
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | | | - Michael Hampsey
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854.
| |
Collapse
|
6
|
Architecture of the yeast RNA polymerase II open complex and regulation of activity by TFIIF. Mol Cell Biol 2011; 32:12-25. [PMID: 22025674 DOI: 10.1128/mcb.06242-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the function and architecture of the open complex state of RNA polymerase II (Pol II), Saccharomyces cerevisiae minimal open complexes were assembled by using a series of heteroduplex HIS4 promoters, TATA binding protein (TBP), TFIIB, and Pol II. The yeast system demonstrates great flexibility in the position of active open complexes, spanning 30 to 80 bp downstream from TATA, consistent with the transcription start site scanning behavior of yeast Pol II. TFIIF unexpectedly modulates the activity of the open complexes, either repressing or stimulating initiation. The response to TFIIF was dependent on the sequence of the template strand within the single-stranded bubble. Mutations in the TFIIB reader and linker region, which were inactive on duplex DNA, were suppressed by the heteroduplex templates, showing that a major function of the TFIIB reader and linker is in the initiation or stabilization of single-stranded DNA. Probing of the architecture of the minimal open complexes with TFIIB-FeBABE [TFIIB-p-bromoacetamidobenzyl-EDTA-iron(III)] derivatives showed that the TFIIB core domain is surprisingly positioned away from Pol II, and the addition of TFIIF repositions the TFIIB core domain to the Pol II wall domain. Together, our results show an unexpected architecture of minimal open complexes and the regulation of activity by TFIIF and the TFIIB core domain.
Collapse
|
7
|
Wiesler SC, Weinzierl ROJ. The linker domain of basal transcription factor TFIIB controls distinct recruitment and transcription stimulation functions. Nucleic Acids Res 2010; 39:464-74. [PMID: 20851833 PMCID: PMC3025549 DOI: 10.1093/nar/gkq809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA polymerases (RNAPs) require basal transcription factors to assist them during transcription initiation. One of these factors, TFIIB, combines promoter recognition, recruitment of RNAP, promoter melting, start site selection and various post-initiation functions. The ability of 381 site-directed mutants in the TFIIB 'linker domain' to stimulate abortive transcription was systematically quantitated using promoter-independent dinucleotide extension assays. The results revealed two distinct clusters (mjTFIIB E78-R80 and mjTFIIB R90-G94, respectively) that were particularly sensitive to substitutions. In contrast, a short sequence (mjTFIIB A81-K89) between these two clusters tolerated radical single amino acid substitutions; short deletions in that region even caused a marked increase in the ability of TFIIB to stimulate abortive transcription ('superstimulation'). The superstimulating activity did, however, not correlate with increased recruitment of the TFIIB/RNAP complex because substitutions in a particular residue (mjTFIIB K87) increased recruitment by more than 5-fold without affecting the rate of abortive transcript stimulation. Our work demonstrates that highly localized changes within the TFIIB linker have profound, yet surprisingly disconnected, effects on RNAP recruitment, TFIIB/RNAP complex stability and the rate of transcription initiation. The identification of superstimulating TFIIB variants reveals the existence of a previously unknown rate-limiting step acting on the earliest stages of gene expression.
Collapse
Affiliation(s)
- Simone C Wiesler
- Imperial College London, Department of Life Sciences, London, UK
| | | |
Collapse
|
8
|
RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 2009; 462:323-30. [PMID: 19820686 DOI: 10.1038/nature08548] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
Abstract
To initiate gene transcription, RNA polymerase II (Pol II) requires the transcription factor IIB (B). Here we present the crystal structure of the complete Pol II-B complex at 4.3 A resolution, and complementary functional data. The results indicate the mechanism of transcription initiation, including the transition to RNA elongation. Promoter DNA is positioned over the Pol II active centre cleft with the 'B-core' domain that binds the wall at the end of the cleft. DNA is then opened with the help of the 'B-linker' that binds the Pol II rudder and clamp coiled-coil at the edge of the cleft. The DNA template strand slips into the cleft and is scanned for the transcription start site with the help of the 'B-reader' that approaches the active site. Synthesis of the RNA chain and rewinding of upstream DNA displace the B-reader and B-linker, respectively, to trigger B release and elongation complex formation.
Collapse
|
9
|
Thompson NE, Glaser BT, Foley KM, Burton ZF, Burgess RR. Minimal promoter systems reveal the importance of conserved residues in the B-finger of human transcription factor IIB. J Biol Chem 2009; 284:24754-66. [PMID: 19590095 DOI: 10.1074/jbc.m109.030486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The "B-finger" of transcription factor IIB (TFIIB) is highly conserved and believed to play a role in the initiation process. We performed alanine substitutions across the B-finger of human TFIIB, made change-of-charge mutations in selected residues, and substituted the B-finger sequence from other organisms. Mutant proteins were examined in two minimal promoter systems (containing only RNA polymerase II, TATA-binding protein, and TFIIB) and in a complex system, using TFIIB-immunodepleted HeLa cell nuclear extract (NE). Mutations in conserved residues located on the sides of the B-finger had the greatest effect on activity in both minimal promoter systems, with mutations in residues Glu-51 and Arg-66 eliminating activity. The double change-of-charge mutant (E51R:R66E) did not show activity in either minimal promoter system. Mutations in the nonconserved residues at the tip of the B-finger did not significantly affect activity. However, all of the mutations in the B-finger showed at least 25% activity in the HeLa cell NE. Chimeric proteins, containing B-finger sequences from species with conserved residues on the side of the B-finger, showed wild-type activity in a minimal promoter system and in the HeLa cell NE. However, chimeric proteins whose sequence showed divergence on the sides of the B-finger had reduced activity. Transcription factor IIF (TFIIF) partially restored activity of the inactive mutants in the minimal promoter system, suggesting that TFIIF in HeLa cell NE helps to rescue the inactive mutations by interacting with either the B-finger or another component of the initiation complex that is influenced by the B-finger.
Collapse
Affiliation(s)
- Nancy E Thompson
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
10
|
Sevilimedu A, Shi H, Lis JT. TFIIB aptamers inhibit transcription by perturbing PIC formation at distinct stages. Nucleic Acids Res 2008; 36:3118-27. [PMID: 18403417 PMCID: PMC2396426 DOI: 10.1093/nar/gkn163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transcription in eukaryotes is a multistep process involving the assembly and disassembly of numerous inter- and intramolecular interactions between transcription factors and nucleic acids. The roles of each of these interactions and the regions responsible for them have been identified and studied primarily by the use of mutants, which destroy the inherent properties of the interacting surface. A less intrusive but potentially effective way to study the interactions as well as the surfaces responsible for them is the use of RNA aptamers that bind to the interacting factors. Here, we report the isolation and characterization of high-affinity RNA aptamers that bind to the yeast general transcription factor TFIIB. These aptamers fall into two classes that interfere with TFIIB's interactions with either TBP or RNA polymerase II, both of which are crucial for transcription in yeast. We demonstrate the high affinity and specificity of these reagents, their effect on transcription and preinitiation complex formation and discuss their potential use to address mechanistic questions in vitro as well as in vivo.
Collapse
Affiliation(s)
- Aarti Sevilimedu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
11
|
Functions of Saccharomyces cerevisiae TFIIF during transcription start site utilization. Mol Cell Biol 2008; 28:3757-66. [PMID: 18362165 DOI: 10.1128/mcb.02272-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that substitutions in the Tfg1 or Tfg2 subunits of Saccharomyces cerevisiae transcription factor IIF (TFIIF) can cause upstream shifts in start site utilization, resulting in initiation patterns that more closely resemble those of higher eukaryotes. In this study, we report the results from multiple biochemical assays analyzing the activities of wild-type yeast TFIIF and the TFIIF Tfg1 mutant containing the E346A substitution (Tfg1-E346A). We demonstrate that TFIIF stimulates formation of the first two phosphodiester bonds and dramatically stabilizes a short RNA-DNA hybrid in the RNA polymerase II (RNAPII) active center and, importantly, that the Tfg1-E346A substitution coordinately enhances early bond formation and the processivity of early elongation in vitro. These results are discussed within a proposed model for the role of yeast TFIIF in modulating conformational changes in the RNAPII active center during initiation and early elongation.
Collapse
|
12
|
Kasahara K, Ki S, Aoyama K, Takahashi H, Kokubo T. Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res 2008; 36:1343-57. [PMID: 18187511 PMCID: PMC2275077 DOI: 10.1093/nar/gkm1068] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccharomyces cerevisiae HMO1, a high mobility group B (HMGB) protein, associates with the rRNA locus and with the promoters of many ribosomal protein genes (RPGs). Here, the Sos recruitment system was used to show that HMO1 interacts with TBP and the N-terminal domain (TAND) of TAF1, which are integral components of TFIID. Biochemical studies revealed that HMO1 copurifies with TFIID and directly interacts with TBP but not with TAND. Deletion of HMO1 (Δhmo1) causes a severe cold-sensitive growth defect and decreases transcription of some TAND-dependent genes. Δhmo1 also affects TFIID occupancy at some RPG promoters in a promoter-specific manner. Interestingly, over-expression of HMO1 delays colony formation of taf1 mutants lacking TAND (taf1ΔTAND), but not of the wild-type strain, indicating a functional link between HMO1 and TAND. Furthermore, Δhmo1 exhibits synthetic growth defects in some spt15 (TBP) and toa1 (TFIIA) mutants while it rescues growth defects of some sua7 (TFIIB) mutants. Importantly, Δhmo1 causes an upstream shift in transcriptional start sites of RPS5, RPS16A, RPL23B, RPL27B and RPL32, but not of RPS31, RPL10, TEF2 and ADH1, indicating that HMO1 may participate in start site selection of a subset of class II genes presumably via its interaction with TFIID.
Collapse
Affiliation(s)
- Koji Kasahara
- Division of Molecular and Cellular Biology, International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, 230-0045, Japan
| | | | | | | | | |
Collapse
|
13
|
Abstract
The TBP (TATA-box-binding protein), Tbp1p, plays a vital role in all three classes of transcription by RNA polymerases I-III. A TBP1(E186D) mutation had been described that affected interaction of Tbp1p with TFIIB (transcription factor IIB) and that caused slow-growth, temperature-sensitivity, 3-aminotriazole-sensitivity as well as a gal(-) phenotype. We used the TBP1(E186D) mutant for suppressor screens, and we isolated TFIIB/SUA7(E202G) as an allele-specific suppressor of all phenotypes caused by the TBP1(E186D) mutation. Our results show that the SUA7(E202G) mutation restored binding of TFIIB to Tbp1(E186D)p. In addition, we observed that Tbp1(E186D)p was expressed at a lower level than wild-type Tbp1p, and that SUA7(E202G) restored the protein level of Tbp1(E186D)p. This suggested that the TBP1(E186D) mutation might have generated its phenotypes by making Tbp1p the limiting factor for activated transcription. DNA microarray analysis indicated that the TBP1(E186D) temperature-sensitivity and slow-growth phenotypes might have been caused by insufficient amounts of Tbp1p for efficient transcription of the rRNA genes by RNA polymerase I.
Collapse
Affiliation(s)
- Boon Shang Chew
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Norbert Lehming
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
- To whom correspondence should be addressed (email )
| |
Collapse
|
14
|
Deng W, Roberts SGE. TFIIB and the regulation of transcription by RNA polymerase II. Chromosoma 2007; 116:417-29. [PMID: 17593382 DOI: 10.1007/s00412-007-0113-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 02/01/2023]
Abstract
Accurate transcription of a gene by RNA polymerase II requires the assembly of a group of general transcription factors at the promoter. The general transcription factor TFIIB plays a central role in preinitiation complex assembly, providing a bridge between promoter-bound TFIID and RNA polymerase II. TFIIB makes extensive contact with the core promoter via two independent DNA-recognition modules. In addition to interacting with other general transcription factors, TFIIB directly modulates the catalytic center of RNA polymerase II in the transcription complex. Moreover, TFIIB has been proposed as a target of transcriptional activator proteins that act to stimulate preinitiation complex assembly. In this review, we will discuss our current understanding of these activities of TFIIB.
Collapse
Affiliation(s)
- Wensheng Deng
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
15
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
16
|
Majovski RC, Khaperskyy DA, Ghazy MA, Ponticelli AS. A functional role for the switch 2 region of yeast RNA polymerase II in transcription start site utilization and abortive initiation. J Biol Chem 2005; 280:34917-23. [PMID: 16081422 DOI: 10.1074/jbc.m502932200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of mRNA from eukaryotic protein-encoding genes. In this study, site-directed mutagenesis was employed to probe the function of residues within the Saccharomyces cerevisiae RNAPII active center in the mechanism of transcription start site utilization. We report here the identification of two mutations in the switch 2 region, rpb1-K332A and rpb1-R344A, which conferred conditional growth properties and downstream shifts in start site utilization. Analyses of double mutant strains demonstrated functional interactions between these switch 2 mutations and a mutation in the largest subunit of transcription factor IIF (TFIIF) that confers upstream shifts in start site usage. Importantly, biochemical analyses demonstrated that purified Rpb1-R344A mutant polymerase exhibited impaired ability to stabilize a short RNA-DNA hybrid in the active center, an increased frequency of abortive transcription in runoff assays, and both a downstream shift and increased abortive initiation in reconstituted transcription assays. These results provide evidence for a role of switch 2 during start site utilization and indicate that RNA-DNA hybrid stability at the 3'-end of the transcript is a determinant in this process. We discuss these results within the context of a proposed model regarding the concerted roles of RNAPII, TFIIB, and TFIIF during mRNA 5'-end formation in S. cerevisiae.
Collapse
Affiliation(s)
- Robert C Majovski
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | | | |
Collapse
|
17
|
Ruvalcaba-Salazar OK, del Carmen Ramírez-Estudillo M, Montiel-Condado D, Recillas-Targa F, Vargas M, Hernández-Rivas R. Recombinant and native Plasmodium falciparum TATA-binding-protein binds to a specific TATA box element in promoter regions. Mol Biochem Parasitol 2005; 140:183-96. [PMID: 15760658 DOI: 10.1016/j.molbiopara.2005.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 01/05/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
RNA polymerase II promoters in Plasmodium spp., like in most eukaryotes, have a bipartite structure. However, the identification of a functional TATA box located within the Plasmodium spp. core promoters has been difficult, mainly because of its high A+T content. Only few putative trans-acting elements have been identified in the malaria parasite genome such as a gene orthologous to the TATA box binding protein (PfTBP). In this study, we demonstrate that PfTBP is part of the DNA-protein complexes formed in the kahrp and gbp-130 gene promoter regions. Supershift and footprinting assays performed with a GST-PfTBP fusion protein showed that PfTBP associates with a consensus TATA box sequence located 81 base pairs upstream of the transcription start site in the kahrp promoter region and with a TATA box-like (TGTAA) sequence at position -186 of the gbp-130 gene promoter region. Chromatin immunoprecipitation assays confirmed that native PfTBP is able to associate in vivo with both TATA box elements. This is the first study that reports the identification of cis-acting sequences (TATAA and TGTAA) and their corresponding trans-acting (PfTBP) factor in P. falciparum.
Collapse
Affiliation(s)
- Omar K Ruvalcaba-Salazar
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Apartado Postal 14-740, 07360 México
| | | | | | | | | | | |
Collapse
|
18
|
Tubon TC, Tansey WP, Herr W. A nonconserved surface of the TFIIB zinc ribbon domain plays a direct role in RNA polymerase II recruitment. Mol Cell Biol 2004; 24:2863-74. [PMID: 15024075 PMCID: PMC371104 DOI: 10.1128/mcb.24.7.2863-2874.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIB is a highly conserved and essential component of the eukaryotic RNA polymerase II (pol II) transcription initiation machinery. It consists of a single polypeptide with two conserved structural domains: an amino-terminal zinc ribbon structure (TFIIB(ZR)) and a carboxy-terminal core (TFIIB(CORE)). We have analyzed the role of the amino-terminal region of human TFIIB in transcription in vivo and in vitro. We identified a small nonconserved surface of the TFIIB(ZR) that is required for pol II transcription in vivo and for different types of basal pol II transcription in vitro. Consistent with a general role in transcription, this TFIIB(ZR) surface is directly involved in the recruitment of pol II to a TATA box-containing promoter. Curiously, although the amino-terminal human TFIIB(ZR) domain can recruit both human pol II and yeast (Saccharomyces cerevisiae) pol II, the yeast TFIIB amino-terminal region recruits yeast pol II but not human pol II. Thus, a critical process in transcription from many different promoters-pol II recruitment-has changed in sequence specificity during eukaryotic evolution.
Collapse
Affiliation(s)
- Thomas C Tubon
- Graduate Program in Genetics, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
19
|
Chen BS, Hampsey M. Functional interaction between TFIIB and the Rpb2 subunit of RNA polymerase II: implications for the mechanism of transcription initiation. Mol Cell Biol 2004; 24:3983-91. [PMID: 15082791 PMCID: PMC387735 DOI: 10.1128/mcb.24.9.3983-3991.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 10/31/2003] [Accepted: 02/02/2004] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIB is required for accurate initiation, although the mechanism by which RNA polymerase II (RNAP II) identifies initiation sites is not well understood. Here we describe results from genetic and biochemical analyses of an altered form of yeast TFIIB containing an arginine-78 --> cysteine (R78C) replacement in the "B-finger" domain. TFIIB R78C shifts start site selection downstream of normal and confers a cold-sensitive growth defect (Csm(-)). Suppression of the R78C Csm(-) phenotype identified a functional interaction between TFIIB and the Rpb2 subunit of RNAP II and defined a novel role for Rpb2 in start site selection. The rpb2 suppressor encodes a glycine-369 --> serine (G369S) replacement, located in the "lobe" domain of Rpb2 and near the Rpb9 subunit, which was identified previously as an effector of start site selection. The Rpb2-Rpb9 "lobe-jaw" region of RNAP II is downstream of the catalytic center and distal to the site of RNAP II-TFIIB interaction. A TFIIB R78C mutant extract was defective for promoter-specific run-on transcription but yielded an altered pattern of abortive initiation products, indicating that the R78C defect does not preclude initiation. The sua7-3 rpb2-101 double mutant was sensitive to 6-azauracil in vivo and to nucleoside triphosphate substrate depletion in vitro. In the context of the recent X-ray structure of the yeast RNAP II-TFIIB complex, these results define a functional interaction between the B-finger domain of TFIIB and the distal lobe-jaw region of RNAP II and provide insight into the mechanism of start site selection.
Collapse
Affiliation(s)
- Bo-Shiun Chen
- Division of Nucleic Acids Enzymology, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
20
|
Glossop JA, Dafforn TR, Roberts SGE. A conformational change in TFIIB is required for activator-mediated assembly of the preinitiation complex. Nucleic Acids Res 2004; 32:1829-35. [PMID: 15037660 PMCID: PMC390344 DOI: 10.1093/nar/gkh504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 03/04/2004] [Accepted: 03/04/2004] [Indexed: 11/14/2022] Open
Abstract
TFIIB plays a pivotal role during assembly of the RNA polymerase II transcription preinitiation complex. TFIIB is composed of two domains that engage in an intramolecular interaction that can be disrupted by the VP16 activation domain. In this study, we describe a novel human TFIIB derivative harbouring two point mutations in the highly conserved N-terminal charged cluster domain. This mutant, TFIIB R53E:R66E, exhibits an enhanced affinity in its intramolecular interaction when compared with wild-type TFIIB. Consistent with this, the mutant displays a significantly reduced affinity for VP16. However, its ability to complex with TATA-binding protein at a model promoter is equivalent to that of wild-type TFIIB. Furthermore, this TFIIB derivative is able to support high order preinitiation complex assembly in the absence of an activator. Strikingly though, an activator fails to recruit the TFIIB mutant to the promoter. Taken together, our results show that a TFIIB conformational change is critical for the formation of activator-dependent transcription complexes.
Collapse
Affiliation(s)
- James A Glossop
- School of Biological Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
21
|
Bushnell DA, Westover KD, Davis RE, Kornberg RD. Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 Angstroms. Science 2004; 303:983-8. [PMID: 14963322 DOI: 10.1126/science.1090838] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The structure of the general transcription factor IIB (TFIIB) in a complex with RNA polymerase II reveals three features crucial for transcription initiation: an N-terminal zinc ribbon domain of TFIIB that contacts the "dock" domain of the polymerase, near the path of RNA exit from a transcribing enzyme; a "finger" domain of TFIIB that is inserted into the polymerase active center; and a C-terminal domain, whose interaction with both the polymerase and with a TATA box-binding protein (TBP)-promoter DNA complex orients the DNA for unwinding and transcription. TFIIB stabilizes an early initiation complex, containing an incomplete RNA-DNA hybrid region. It may interact with the template strand, which sets the location of the transcription start site, and may interfere with RNA exit, which leads to abortive initiation or promoter escape. The trajectory of promoter DNA determined by the C-terminal domain of TFIIB traverses sites of interaction with TFIIE, TFIIF, and TFIIH, serving to define their roles in the transcription initiation process.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- Crystallization
- Crystallography, X-Ray
- DNA/chemistry
- DNA/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Hybridization
- Promoter Regions, Genetic
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- TATA Box
- TATA-Box Binding Protein/chemistry
- TATA-Box Binding Protein/metabolism
- Templates, Genetic
- Transcription Factor TFIIB/chemistry
- Transcription Factor TFIIB/metabolism
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Zinc/chemistry
Collapse
Affiliation(s)
- David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | | | | | | |
Collapse
|
22
|
Zheng L, Hoeflich KP, Elsby LM, Ghosh M, Roberts SGE, Ikura M. FRET evidence for a conformational change in TFIIB upon TBP-DNA binding. ACTA ACUST UNITED AC 2004; 271:792-800. [PMID: 14764096 DOI: 10.1111/j.1432-1033.2004.03983.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a critical step of the preinitiation complex assembly in transcription, the general transcription factor TFIIB forms a complex with the TATA-box binding protein (TBP) bound to a promoter element. Transcriptional activators such as the herpes simplex virus VP16 facilitate this complex formation through conformational activation of TFIIB, a focal molecule of transcriptional initiation and activation. Here, we used fluorescence resonance energy transfer to investigate conformational states of human TFIIB fused to enhanced cyan fluorescent protein and enhanced yellow fluorescent protein at its N- and C-terminus, respectively. A significant reduction in fluorescence resonance energy transfer ratio was observed when this fusion protein, hereafter named CYIIB, was mixed with promoter-loaded TBP. The rate for the TFIIB-TBP-DNA complex formation is accelerated drastically by GAL4-VP16 and is also dependent on the type of promoter sequences. These results provide compelling evidence for a 'closed-to-open' conformational change of TFIIB upon binding to the TBP-DNA complex, which probably involves alternation of the spatial orientation between the N-terminal zinc ribbon domain and the C-terminal conserved core domain responsible for direct interactions with TBP and a DNA element.
Collapse
Affiliation(s)
- Le Zheng
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Albrecht RA, Jang HK, Kim SK, O'Callaghan DJ. Direct interaction of TFIIB and the IE protein of equine herpesvirus 1 is required for maximal trans-activation function. Virology 2004; 316:302-12. [PMID: 14644612 DOI: 10.1016/j.virol.2003.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we reported that the immediate-early (IE) protein of equine herpesvirus 1 (EHV-1) associates with transcription factor TFIIB [J. Virol. 75 (2001), 10219]. In the current study, the IE protein purified as a glutathione-S-transferase (GST) fusion protein was shown to interact directly with purified TFIIB in GST-pulldown assays. A panel of TFIIB mutants employed in protein-binding assays revealed that residues 125 to 174 within the first direct repeat of TFIIB mediate its interaction with the IE protein. This interaction is physiologically relevant as transient transfection assays demonstrated that (1). exogenous native TFIIB did not perturb IE protein function, and (2). ectopic expression of a TFIIB mutant that lacked the IE protein interactive domain significantly diminished the ability of the IE protein to trans-activate EHV-1 promoters. These results suggest that an interaction of the IE protein with TFIIB is an important aspect of the regulatory role of the IE protein in the trans-activation of EHV-1 promoters.
Collapse
Affiliation(s)
- Randy A Albrecht
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | |
Collapse
|
24
|
Abstract
The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- Stephen T Smale
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
25
|
Renfrow MB, Naryshkin N, Lewis LM, Chen HT, Ebright RH, Scott RA. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex. J Biol Chem 2003; 279:2825-31. [PMID: 14597623 DOI: 10.1074/jbc.m311433200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription initiation in all three domains of life requires the assembly of large multiprotein complexes at DNA promoters before RNA polymerase (RNAP)-catalyzed transcript synthesis. Core RNAP subunits show homology among the three domains of life, and recent structural information supports this homology. General transcription factors are required for productive transcription initiation complex formation. The archaeal general transcription factors TATA-element-binding protein (TBP), which mediates promoter recognition, and transcription factor B (TFB), which mediates recruitment of RNAP, show extensive homology to eukaryal TBP and TFIIB. Crystallographic information is becoming available for fragments of transcription initiation complexes (e.g. RNAP, TBP-TFB-DNA, TBP-TFIIB-DNA), but understanding the molecular topography of complete initiation complexes still requires biochemical and biophysical characterization of protein-protein and protein-DNA interactions. In published work, systematic site-specific protein-DNA photocrosslinking has been used to define positions of RNAP subunits and general transcription factors in bacterial and eukaryal initiation complexes. In this work, we have used systematic site-specific protein-DNA photocrosslinking to define positions of RNAP subunits and general transcription factors in an archaeal initiation complex. Employing a set of 41 derivatized DNA fragments, each having a phenyl azide photoactivable crosslinking agent incorporated at a single, defined site within positions -40 to +1 of the gdh promoter of the hyperthermophilic marine archaea, Pyrococcus furiosus (Pf), we have determined the locations of PfRNAP subunits PfTBP and PfTFB relative to promoter DNA. The resulting topographical information supports the striking homology with the eukaryal initiation complex and permits one major new conclusion, which is that PfTFB interacts with promoter DNA not only in the TATA-element region but also in the transcription-bubble region, near the transcription start site. Comparison with crystallographic information implicates the PfTFB N-terminal domain in the interaction with the transcription-bubble region. The results are discussed in relation to the known effects of substitutions in the TFB and TFIIB N-terminal domains on transcription initiation and transcription start-site selection.
Collapse
Affiliation(s)
- Matthew B Renfrow
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-2256, USA
| | | | | | | | | | | |
Collapse
|
26
|
Ziegler LM, Khaperskyy DA, Ammerman ML, Ponticelli AS. Yeast RNA polymerase II lacking the Rpb9 subunit is impaired for interaction with transcription factor IIF. J Biol Chem 2003; 278:48950-6. [PMID: 14522989 DOI: 10.1074/jbc.m309656200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that transcription factors IIB (TFIIB), IIF (TFIIF), and RNA polymerase II (RNAPII) play important roles in determining the position of mRNA 5'-ends in the yeast Saccharomyces cerevisiae. Yeast strains containing a deletion of the small, nonessential Rpb9 subunit of RNAPII exhibit an upstream shift in the positions of mRNA 5'-ends, whereas mutation of the large subunit of yeast TFIIF (Tfg1) can suppress downstream shifts that are conferred by mutations in TFIIB. In this study, we report an approach for the production of functional recombinant yeast holo-TFIIF (Tfg1-Tfg2 complex) and use of the recombinant protein in both reconstituted transcription assays and gel mobility shifts in order to investigate the biochemical alterations associated with the deltaRpb9 polymerase. The results demonstrated that upstream shifts in the positions of mRNA 5'-ends could be conferred by the deltaRpb9 RNAPII in transcription reactions reconstituted with highly purified yeast general transcription factors and, importantly, that these shifts are associated with an impaired interaction between the DeltaRpb9 polymerase and TFIIF. Potential mechanisms by which an altered interaction between the DeltaRpb9 RNAPII and TFIIF confers an upstream shift in the positions of mRNA 5'-ends are discussed.
Collapse
Affiliation(s)
- Lynn M Ziegler
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | | | |
Collapse
|
27
|
Abstract
RNA polymerase II (Pol II) is recruited to promoters by interaction with general transcription factors. The zinc ribbon domain of the general factor TFIIB is essential for Pol II recruitment. Site-specific photocrosslinking and directed hydroxyl radical probing were used to map the location of the TFIIB zinc ribbon domain on Pol II within the transcription preinitiation complex (PIC). These results, along with mutational analysis, suggest that in the PIC, the TFIIB ribbon domain interacts with a surface of the Pol II Dock domain where it overlaps the RNA exit point. This surface is best conserved in polymerases that require a TFIIB-like factor. Our results suggest a general mechanism for interaction of TFIIB-like factors and RNA polymerases and a mechanism for the function of the ribbon domain.
Collapse
Affiliation(s)
- Hung-Ta Chen
- Fred Hutchinson Cancer Research Center and Howard Hughes Medical Institute, 1100 Fairview Avenue N., Mail Stop A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
28
|
Zeng X, Zhang D, Dorsey M, Ma J. Hypomutable regions of yeast TFIIB in a unigenic evolution test represent structural domains. Gene 2003; 309:49-56. [PMID: 12727357 DOI: 10.1016/s0378-1119(03)00492-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As genome sequences of many organisms - including humans - are being decoded, there is a great need for genetic tools to analyze newly discovered genes/proteins. A 'unigenic evolution' approach has been previously proposed for dissecting protein domains, which is based on the assumption that functionally important regions of a protein may tolerate missense mutations less well than other regions. We describe a unigenic evolution analysis of general transcription factor IIB (TFIIB) - a protein that is well characterized both structurally and functionally - to better understand the molecular basis of this genetic approach. The overall distribution profile of hypomutable regions within yeast TFIIB correlates extremely well with the known compact structural domains, suggesting that the unigenic evolution approach can help reveal structural properties of a protein. We further show that a small region located immediately carboxyl-terminal to the zinc ribbon motif is functionally important despite its strong hypermutability. Our study further demonstrates the usefulness of the unigenic evolution approach in dissecting protein domains, but suggests that the mutability of different regions of a protein in such a test is determined primarily by their structural properties.
Collapse
Affiliation(s)
- Xiao Zeng
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
29
|
Fairley JA, Evans R, Hawkes NA, Roberts SGE. Core promoter-dependent TFIIB conformation and a role for TFIIB conformation in transcription start site selection. Mol Cell Biol 2002; 22:6697-705. [PMID: 12215527 PMCID: PMC134048 DOI: 10.1128/mcb.22.19.6697-6705.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 06/21/2002] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIIB plays a central role in the selection of the transcription initiation site. The mechanisms involved are not clear, however. In this study, we analyze core promoter features that are responsible for the susceptibility to mutations in TFIIB and cause a shift in the transcription start site. We show that TFIIB can modulate both the 5' and 3' parameters of transcription start site selection in a manner dependent upon the sequence of the initiator. Mutations in TFIIB that cause aberrant transcription start site selection concentrate in a region that plays a pivotal role in modulating TFIIB conformation. Using epitope-specific antibody probes, we show that a TFIIB mutant that causes aberrant transcription start site selection assembles at the promoter in a conformation different from that for wild-type TFIIB. In addition, we uncover a core promoter-dependent effect on TFIIB conformation and provide evidence for novel sequence-specific TFIIB promoter contacts.
Collapse
|
30
|
Zhang DY, Carson DJ, Ma J. The role of TFIIB-RNA polymerase II interaction in start site selection in yeast cells. Nucleic Acids Res 2002; 30:3078-85. [PMID: 12136090 PMCID: PMC135743 DOI: 10.1093/nar/gkf422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Revised: 05/20/2002] [Accepted: 05/20/2002] [Indexed: 11/14/2022] Open
Abstract
Previous studies have established a critical role of both TFIIB and RNA polymerase II (RNAPII) in start site selection in the yeast Saccharomyces cerevisiae. However, it remains unclear how the TFIIB-RNAPII interaction impacts on this process since such an interaction can potentially influence both preinitiation complex (PIC) stability and conformation. In this study, we further investigate the role of TFIIB in start site selection by characterizing our newly generated TFIIB mutants, two of which exhibit a novel upstream shift of start sites in vivo. We took advantage of an artificial recruitment system in which an RNAPII holoenzyme component is covalently linked to a DNA-binding domain for more direct and stable recruitment. We show that TFIIB mutations can exert their effects on start site selection in such an artificial recruitment system even though it has a relaxed requirement for TFIIB. We further show that these TFIIB mutants have normal affinity for RNAPII and do not alter the promoter melting/scanning step. Finally, we show that overexpressing the genetically isolated TFIIB mutant E62K, which has a reduced affinity for RNAPII, can correct its start site selection defect. We discuss a model in which the TFIIB-RNAPII interaction controls the start site selection process by influencing the conformation of PIC prior to or during PIC assembly, as opposed to PIC stability.
Collapse
Affiliation(s)
- Dong-Yi Zhang
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
31
|
Affiliation(s)
- J Soppa
- Institute for Microbiology, Biocentre Niederursel, J. W. Goethe University Frankfurt, D-60439 Frankfurt, Germany
| |
Collapse
|
32
|
Faitar SL, Brodie SA, Ponticelli AS. Promoter-specific shifts in transcription initiation conferred by yeast TFIIB mutations are determined by the sequence in the immediate vicinity of the start sites. Mol Cell Biol 2001; 21:4427-40. [PMID: 11416123 PMCID: PMC87103 DOI: 10.1128/mcb.21.14.4427-4440.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor IIB (TFIIB) is required for transcription of class II genes by RNA polymerase II. Previous studies demonstrated that mutations in the Saccharomyces cerevisiae SUA7 gene, which encodes TFIIB, can alter transcription initiation patterns in vivo. To further delineate the functional domain and residues of TFIIB involved in transcription start site utilization, a genetic selection was used to isolate S. cerevisiae TFIIB mutants exhibiting downstream shifts in transcription initiation in vivo. Both dominant and recessive mutations conferring downstream shifts were identified at multiple positions within a highly conserved homology block in the N-terminal region of the protein. The TFIIB mutations conferred downstream shifts in transcription initiation at the ADH1 and CYC1 promoters, whereas no significant shifts were observed at the HIS3 promoter. Analysis of a series of ADH1-HIS3 hybrid promoters and variant ADH1 and HIS3 promoters containing insertions, deletions, or site-directed base substitutions revealed that the feature that renders a promoter sensitive to TFIIB mutations is the sequence in the immediate vicinity of the normal start sites. We discuss these results in light of possible models for the mechanism of start site utilization by S. cerevisiae RNA polymerase II and the role played by TFIIB.
Collapse
Affiliation(s)
- S L Faitar
- Department of Biochemistry and the Center for Advanced Molecular Biology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214-3000, USA
| | | | | |
Collapse
|
33
|
Kobor MS, Simon LD, Omichinski J, Zhong G, Archambault J, Greenblatt J. A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae. Mol Cell Biol 2000; 20:7438-49. [PMID: 11003641 PMCID: PMC86297 DOI: 10.1128/mcb.20.20.7438-7449.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription by RNA polymerase II is accompanied by cyclic phosphorylation and dephosphorylation of the carboxy-terminal heptapeptide repeat domain (CTD) of its largest subunit. We have used deletion and point mutations in Fcp1p, a TFIIF-interacting CTD phosphatase, to show that the integrity of its BRCT domain, like that of its catalytic domain, is important for cell viability, mRNA synthesis, and CTD dephosphorylation in vivo. Although regions of Fcp1p carboxy terminal to its BRCT domain and at its amino terminus were not essential for viability, deletion of either of these regions affected the phosphorylation state of the CTD. Two portions of this carboxy-terminal region of Fcp1p bound directly to the first cyclin-like repeat in the core domain of the general transcription factor TFIIB, as well as to the RAP74 subunit of TFIIF. These regulatory interactions with Fcp1p involved closely related amino acid sequence motifs in TFIIB and RAP74. Mutating the Fcp1p-binding motif KEFGK in the RAP74 (Tfg1p) subunit of TFIIF to EEFGE led to both synthetic phenotypes in certain fcp1 tfg1 double mutants and a reduced ability of Fcp1p to activate transcription when it is artificially tethered to a promoter. These results suggest strongly that this KEFGK motif in RAP74 mediates its interaction with Fcp1p in vivo.
Collapse
Affiliation(s)
- M S Kobor
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Chen HT, Legault P, Glushka J, Omichinski JG, Scott RA. Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci 2000; 9:1743-52. [PMID: 11045620 PMCID: PMC2144703 DOI: 10.1110/ps.9.9.1743] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Transcription factor IIB (TFIIB) is an essential component in the formation of the transcription initiation complex in eucaryal and archaeal transcription. TFIIB interacts with a promoter complex containing the TATA-binding protein (TBP) to facilitate interaction with RNA polymerase II (RNA pol II) and the associated transcription factor IIF (TFIIF). TFIIB contains a zinc-binding motif near the N-terminus that is directly involved in the interaction with RNA pol II/TFIIF and plays a crucial role in selecting the transcription initiation site. The solution structure of the N-terminal residues 2-59 of human TFIIB was determined by multidimensional NMR spectroscopy. The structure consists of a nearly tetrahedral Zn(Cys)3(His)1 site confined by type I and "rubredoxin" turns, three antiparallel beta-strands, and disordered loops. The structure is similar to the reported zinc-ribbon motifs in several transcription-related proteins from archaea and eucarya, including Pyrococcus furiosus transcription factor B (PfTFB), human and yeast transcription factor IIS (TFIIS), and Thermococcus celer RNA polymerase II subunit M (TcRPOM). The zinc-ribbon structure of TFIIB, in conjunction with the biochemical analyses, suggests that residues on the beta-sheet are involved in the interaction with RNA pol II/TFIIF, while the zinc-binding site may increase the stability of the beta-sheet.
Collapse
Affiliation(s)
- H T Chen
- Center for Metalloenzyme Studies, University of Georgia, Athens 30602-2556, USA
| | | | | | | | | |
Collapse
|
35
|
Zhang DY, Dorsey MJ, Voth WP, Carson DJ, Zeng X, Stillman DJ, Ma J. Intramolecular interaction of yeast TFIIB in transcription control. Nucleic Acids Res 2000; 28:1913-20. [PMID: 10756191 PMCID: PMC103289 DOI: 10.1093/nar/28.9.1913] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The general transcription factor TFIIB is a key component in the eukaryotic RNA polymerase II (RNAPII) transcriptional machinery. We have previously shown that a yeast TFIIB mutant (called YR1m4) with four amino acid residues in a species-specific region changed to corresponding human residues affects the expression of genes activated by different activators in vivo. We report here that YR1m4 can interact with several affected activators in vitro. In addition, YR1m4 and other mutants with amino acid alterations within the same region can interact with TATA-binding protein (TBP) and RNAPII normally. However, YR1m4 is defective in supporting activator-independent transcription in assays con-ducted both in vitro and in vivo. We further demonstrate that the interaction between the C-terminal core domain and the N-terminal region is weakened in YR1m4 and other related TFIIB mutants. These results suggest that the intramolecular interaction property of yeast TFIIB plays an important role in transcription regulation in cells.
Collapse
Affiliation(s)
- D Y Zhang
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Bell SD, Jackson SP. The role of transcription factor B in transcription initiation and promoter clearance in the archaeon Sulfolobus acidocaldarius. J Biol Chem 2000; 275:12934-40. [PMID: 10777593 DOI: 10.1074/jbc.275.17.12934] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms of transcription initiation appear to be remarkably conserved between archaea and eucaryotes. For instance, there is homology between archaeal and eucaryotic basal transcription factors. Also, the archaeal RNA polymerase (RNAP) resembles eucaryotic nuclear RNAPs in subunit composition and at the amino acid sequence level. Here, we examine the role of transcription factor B, the archaeal homologue of eucaryotic transcription factor IIB, in transcription initiation. We show that the N-terminal region of transcription factor B is required for RNAP recruitment. Furthermore, we reveal that mutation of a conserved residue immediately C-terminal of the N-terminal zinc ribbon motif abrogates transcription on certain promoters. Finally, we identify the promoter sequences responsive to this mutation and demonstrate that the effect of the mutation is to block a late stage in transcription initiation, following formation of the promoter open complex.
Collapse
Affiliation(s)
- S D Bell
- Wellcome Trust and the Cancer Research Campaign Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom
| | | |
Collapse
|
37
|
Hahn S, Roberts S. The zinc ribbon domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcription initiation. Genes Dev 2000; 14:719-30. [PMID: 10733531 PMCID: PMC316465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The function of the conserved zinc-binding domains in the related Pol II- and Pol III-specific factors TFIIB and Brf was investigated. Three-dimensional structure modeling and mutagenesis studies indicated that for both factors, the functional surface of the zinc ribbon fold consists of a small conserved patch of residues located on one face of the domain comprised mainly of the second and third antiparallel beta strands. Previous studies have shown that the TFIIB zinc ribbon is essential for recruitment of Pol II into the preinitiation complex. In contrast, Pol III recruitment assays and in vitro transcription demonstrate that the disruption of the Brf zinc ribbon does not lead to a defect in Pol III recruitment but, rather, a defect in open complex formation. Therefore, the same conserved surface of the zinc ribbon domain has been adapted to serve distinct roles in the Pol II and Pol III transcription machinery.
Collapse
Affiliation(s)
- S Hahn
- Howard Hughes Medical Institute and Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 USA.
| | | |
Collapse
|
38
|
Hahn S, Roberts S. The zinc ribbon domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcription initiation. Genes Dev 2000. [DOI: 10.1101/gad.14.6.719] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The function of the conserved zinc-binding domains in the related Pol II- and Pol III-specific factors TFIIB and Brf was investigated. Three-dimensional structure modeling and mutagenesis studies indicated that for both factors, the functional surface of the zinc ribbon fold consists of a small conserved patch of residues located on one face of the domain comprised mainly of the second and third antiparallel β strands. Previous studies have shown that the TFIIB zinc ribbon is essential for recruitment of Pol II into the preinitiation complex. In contrast, Pol III recruitment assays and in vitro transcription demonstrate that the disruption of the Brf zinc ribbon does not lead to a defect in Pol III recruitment but, rather, a defect in open complex formation. Therefore, the same conserved surface of the zinc ribbon domain has been adapted to serve distinct roles in the Pol II and Pol III transcription machinery.
Collapse
|
39
|
Serpe M, Joshi A, Kosman DJ. Structure-function analysis of the protein-binding domains of Mac1p, a copper-dependent transcriptional activator of copper uptake in Saccharomyces cerevisiae. J Biol Chem 1999; 274:29211-9. [PMID: 10506178 DOI: 10.1074/jbc.274.41.29211] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mac1 protein in Saccharomyces cerevisiae is essential for the expression of yeast high affinity copper uptake. A positive transcription factor, Mac1p binds via its N-terminal domain to GCTC elements in the promoters of CTR1 and FRE1, encoding a copper permease and metal reductase, respectively. Mac1p-dependent transcriptional activation is negatively regulated by copper. We have mapped the domains in Mac1p responsible for its nuclear localization and for the protein-protein interactions that underlie its transcriptional activity. Immunofluorescence studies indicate that Mac1p contains two nuclear localization signals, one each in the N- and C-terminal halves of the protein. Yeast one-hybrid analysis demonstrates that the copper-dependent transcriptional activity in Mac1p resides primarily in a cysteine-rich element encompassing residues 264-279. Two-hybrid analysis indicates that a copper-independent Mac1p-Mac1p interaction linked to DNA binding is due primarily to a predicted helix in the C-terminal region of the protein encompassing residues 388-406. Point mutations within this putative helix abrogate the Mac1-Mac1 interaction in vivo and formation of a ternary (Mac1p)(2).DNA complex in vitro. When produced in normal abundance, Mac1pI396D and Mac1pF400D helix mutants do not support transcriptional activation in vivo consistent with an essential Mac1p dimerization in transcriptional activation. Lastly, the one- and two-hybrid data indicate that an intramolecular interaction between the DNA-binding and transactivation domains negatively modulates Mac1p activity.
Collapse
Affiliation(s)
- M Serpe
- Department of Biochemistry, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
40
|
Wu WH, Pinto I, Chen BS, Hampsey M. Mutational analysis of yeast TFIIB. A functional relationship between Ssu72 and Sub1/Tsp1 defined by allele-specific interactions with TFIIB. Genetics 1999; 153:643-52. [PMID: 10511545 PMCID: PMC1460761 DOI: 10.1093/genetics/153.2.643] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TFIIB is an essential component of the RNA polymerase II core transcriptional machinery. Previous studies have defined TFIIB domains required for interaction with other transcription factors and for basal transcription in vitro. In the study reported here we investigated the TFIIB structural requirements for transcription initiation in vivo. A library of sua7 mutations encoding altered forms of yeast TFIIB was generated by error-prone polymerase chain reaction and screened for conditional growth defects. Twenty-two single amino acid replacements in TFIIB were defined and characterized. These replacements are distributed throughout the protein and occur primarily at phylogenetically conserved positions. Most replacements have little or no effect on the steady-state protein levels, implying that each affects TFIIB function rather than synthesis or stability. In contrast to the initial sua7 mutants, all replacements, with one exception, have no effect on start site selection, indicating that specific TFIIB structural defects affect transcriptional accuracy. This collection of sua7 alleles, including the initial sua7 alleles, was used to investigate the allele specificity of interactions between ssu72 and sub1, both of which were initially identified as either suppressors (SUB1 2mu) or enhancers (sub1Delta, ssu72-1) of sua7 mutations. We show that the interactions of ssu72-1 and sub1Delta with sua7 are allele specific; that the allele specificities of ssu72 and sub1 overlap; and that each of the sua7 alleles that interacts with ssu72 and sub1 affects the accuracy of transcription start site selection. These results demonstrate functional interactions among TFIIB, Ssu72, and Sub1 and suggest that these interactions play a role in the mechanism of start site selection by RNA polymerase II.
Collapse
Affiliation(s)
- W H Wu
- Department of Biochemistry, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
41
|
Cho EJ, Buratowski S. Evidence that transcription factor IIB is required for a post-assembly step in transcription initiation. J Biol Chem 1999; 274:25807-13. [PMID: 10464320 DOI: 10.1074/jbc.274.36.25807] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of glutamate 62 to lysine in yeast transcription factor (TF) IIB (Sua7) causes a cold-sensitive phenotype. This mutant also leads to preferential transcription of downstream start sites on some promoters in vivo. To explore the molecular nature of these phenotypes, the TFIIB E62K mutant was characterized in vitro. The mutant interacts with TATA-binding protein normally. In three different assays, the mutant can also interact with RNA polymerase II and recruit it and the other basal transcription factors to a promoter. Despite the ability to assemble a transcription complex, the TFIIB E62K protein is severely defective in transcription in vitro. Therefore, the role of TFIIB must be more than simply bridging TATA-binding protein and polymerase at the promoter. We propose that the region around Glu-62 in yeast TFIIB plays a role in start site selection, perhaps mediating a conformational change in the polymerase or the DNA during the search for initiation sites. This step may be related to the yeast-specific spacing between TATA elements and start sites since mutations of the corresponding glutamate in mammalian TFIIB do not produce a similar effect.
Collapse
Affiliation(s)
- E J Cho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
42
|
Bangur CS, Faitar SL, Folster JP, Ponticelli AS. An interaction between the N-terminal region and the core domain of yeast TFIIB promotes the formation of TATA-binding protein-TFIIB-DNA complexes. J Biol Chem 1999; 274:23203-9. [PMID: 10438492 DOI: 10.1074/jbc.274.33.23203] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor IIB (TFIIB) plays an essential role in transcription of protein-coding genes by eukaryotic RNA polymerase II. We previously identified a yeast TFIIB mutant (R64E) that exhibited increased activity in the formation of stable TATA-binding protein-TFIIB-DNA (DB) complexes in vitro. We report here that the homologous human TFIIB mutant (R53E) also displayed increased activity in DB complex formation in vitro. Biochemical analyses revealed that the increased activity of the R64E mutant in DB complex formation was associated with an altered protease sensitivity of the protein and an enhanced interaction between the N-terminal region and the C-terminal core domain. These results suggest that the intramolecular interaction in yeast TFIIB stabilizes a productive conformation of the protein for the association with promoter-bound TATA-binding protein.
Collapse
Affiliation(s)
- C S Bangur
- Department of Biochemistry and the Center for Advanced Molecular Biology and Immunology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | | | |
Collapse
|
43
|
Hawkes NA, Roberts SG. The role of human TFIIB in transcription start site selection in vitro and in vivo. J Biol Chem 1999; 274:14337-43. [PMID: 10318856 DOI: 10.1074/jbc.274.20.14337] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor TFIIB plays a crucial role in selecting the transcription initiation site in yeast. We have analyzed the human homologs of TFIIB mutants that have previously been shown to affect transcription start site selection in the yeast Saccharomyces cerevisiae. Despite the distinct mechanisms of transcription start site selection observed in S. cerevisiae and humans, the role of TFIIB in this process is similar. However, unlike their yeast counterparts, the human mutants do not show a severe defect in supporting either basal transcription or transcription stimulated by an acidic activator in vitro. Transient transfection analysis revealed that, in addition to a role in transcription start site selection, human TFIIB residue Arg-66 performs a critical function in vivo that is bypassed in vitro. Furthermore, although correct transcription start site selection is dependent upon an arginine residue at position 66 in human TFIIB, innate function in vivo is determined by the charge of the residue alone. Our observations raise questions as to the evolutionary conservation of TFIIB and uncover an additional function for TFIIB that is required in vivo but can be bypassed in vitro.
Collapse
Affiliation(s)
- N A Hawkes
- Division of Gene Expression, Department of Biochemistry, Wellcome Trust Building, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | |
Collapse
|
44
|
Pardee TS, Bangur CS, Ponticelli AS. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J Biol Chem 1998; 273:17859-64. [PMID: 9651390 DOI: 10.1074/jbc.273.28.17859] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The general transcription factor IIB (TFIIB) is required for accurate and efficient transcription of protein-coding genes by RNA polymerase II (RNAPII). To define functional domains in the highly conserved N-terminal region of TFIIB, we have analyzed 14 site-directed substitution mutants of yeast TFIIB for their ability to support cell viability, transcription in vitro, accurate start site selection in vitro and in vivo, and to form stable complexes with purified RNAPII in vitro. Mutations impairing the formation of stable TFIIB.RNAPII complexes mapped to the zinc ribbon fold, whereas mutations conferring downstream shifts in transcription start site selection were identified at multiple positions within a highly conserved homology block adjacent and C-terminal to the zinc ribbon. These results demonstrate that the N-terminal region of yeast TFIIB contains two separable and adjacent functional domains involved in stable RNAPII binding and transcription start site selection, suggesting that downstream shifts in transcription start site selection do not result from impairment of stable TFIIB.RNAPII binding. We discuss models for yeast start site selection in which TFIIB may affect the ability of preinitiation complexes to interact with downstream DNA or to affect start site recognition by a scanning polymerase.
Collapse
Affiliation(s)
- T S Pardee
- Department of Biochemistry and the Center for Advanced Molecular Biology and Immunology, School of Medicine and Biomedical Sciences, State University of New York, Buffalo New York 14214-3000, USA
| | | | | |
Collapse
|
45
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
46
|
Chou S, Struhl K. Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains. Mol Cell Biol 1997; 17:6794-802. [PMID: 9372910 PMCID: PMC232535 DOI: 10.1128/mcb.17.12.6794] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Biochemical experiments indicate that the general transcription factor IIB (TFIIB) can interact directly with acidic activation domains and that activators can stimulate transcription by increasing recruitment of TFIIB to promoters. For promoters at which recruitment of TFIIB to promoters is limiting in vivo, one would predict that transcriptional activity should be particularly sensitive to TFIIB mutations that decrease the association of TFIIB with promoter DNA and/or with activation domains; i.e., such TFIIB mutations should exacerbate a limiting step that occurs in wild-type cells. Here, we describe mutations on the DNA-binding surface of TFIIB that severely affect both TATA-binding protein (TBP)-TFIIB-TATA complex formation and interaction with the VP16 activation domain in vitro. These TFIIB mutations affect the stability of the TBP-TFIIB-TATA complex in vivo because they are synthetically lethal in combination with TBP mutants impaired for TFIIB binding. Interestingly, these TFIIB derivatives support viability, and they efficiently respond to Gal4-VP16 and natural acidic activators in different promoter contexts. These results suggest that in vivo, recruitment of TFIIB is not generally a limiting step for acidic activators. However, one TFIIB derivative shows reduced transcription of GAL4, suggesting that TFIIB may be limiting at a subset of promoters in vivo.
Collapse
Affiliation(s)
- S Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|