1
|
Guo J, Cui L, Lu Q, Zhang Y, Liu Q, Wang X, Wang Y, Liu Z, Yuan Z, Dai M. Cyadox regulates the transcription of different genes by activation of the PI3K signaling pathway in porcine primary hepatocytes. J Cell Biochem 2019; 120:7623-7634. [PMID: 30417433 DOI: 10.1002/jcb.28037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Cyadox, a new derivative of quinoxalines, has been ascertained as an antibiotic with significant growth promoting, low poison, quick absorption, swift elimination, brief residual period, and noncumulative effect. Seven differential expressed genes, including Insulin-like Growth Factor-1 ( IGF-1), Epidermal Growth Factor ( EGF), Poly ADP-ribose polymerase ( PARP), the Defender Against Apoptotic Death 1 ( DAD1), Complement Component 3 ( C3), Transketolase ( TK) and a New gene, were induced by cyadox in swine liver tissues by messenger RNA differential display reverse transcription polymerase chain reaction (DDRT-PCR) in our laboratory. However, the signal mechanism that cyadox altered these genes expression is not completely elucidated. The signaling pathways involved in the expressions of seven genes induced by cyadox were determined in porcine primary hepatocytes by RT-qPCR and the application of various signal pathway inhibitors. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that cyadox could stimulate proliferation of porcine primary hepatocytes in a time-dependent manner. In porcine primary cultured hepatocytes, phosphoinositide 3-kinase (PI3K) and transforming growth factor-β (TGF-β) signal pathways were the main signal pathways involved in the expressions of seven genes induced by cyadox. Taken together, these results demonstrate for the first time that seven cyadox-related genes expressions in porcine primary hepatocytes treated with cyadox are mediated mainly through the PI3K signaling pathway, potentially leading to enhanced cell growth and cell immunity. EGF might be the early response gene of cyadox, and a primary regulator of the other gene expressions such as IGF-1 and DAD1, playing an important role in cell proliferation promoted by cyadox.
Collapse
Affiliation(s)
- Ju Guo
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Luqing Cui
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Qirong Lu
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Yinfeng Zhang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Qianying Liu
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Xu Wang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Yulian Wang
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Zhenli Liu
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Zonghui Yuan
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| | - Menghong Dai
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Pires ADO, Queiroz GDA, de Jesus Silva M, da Silva RR, da Silva HBF, Carneiro NVQ, Fonseca HF, de Santana MBR, Nascimento RS, Alcântara-Neves NM, Costa GNDO, Costa RDS, Barreto ML, Figueiredo CA. Polymorphisms in the DAD1 and OXA1L genes are associated with asthma and atopy in a South American population. Mol Immunol 2018; 101:294-302. [PMID: 30032071 DOI: 10.1016/j.molimm.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/03/2018] [Accepted: 07/07/2018] [Indexed: 12/13/2022]
Abstract
Atopic asthma, which is characterized by the chronic inflammation and morbidity of airways, is a disease of great complexity, and multiple genetic and environmental factors are involved in its etiology. In the first genome-wide association study (GWAS) conducted in Brazil for asthma, a positive association was found between atopic asthma and a variant (rs1999071), which is located between the DAD1 and OXA1L genes, although neither gene has previously been reported to be associated with asthma or allergies. The DAD1 gene is involved in the regulation of programmed cell death, and OXA1L is involved in biogenesis and mitochondrial oxidative phosphorylation. This study aimed to evaluate how polymorphisms in DAD1 and OXA1L are associated with asthma and markers of atopy in individuals from the Salvador cohort of the SCAALA (Social Change Asthma and Allergy in Latin America) program. The DNA of 1220 individuals was genotyped using the Illumina 2.5 Human Omni Bead chip. Logistic regression analyses were performed with PLINK 1.9 software to verify the association between DAD1 and OXA1L polymorphisms and asthma and atopic markers, adjusted for sex, age, helminth infections and ancestry markers, using an additive model. The DAD1 and OXA1L genes were associated with some of the evaluated phenotypes, such as asthma, skin prick test (SPT), specific IgE for aeroallergens, and Th1/Th2-type cytokine production. Using qPCR, as well as in silico gene expression analysis, we have demonstrated that some of the polymorphisms in both genes are able to affect their respective gene expression levels. In addition, DAD1 was over-expressed in asthmatic patients when compared with controls. Thus, our findings demonstrate that variants in both the DAD1 and OXA1L genes may affect atopy and asthma in a Latin American population with a high prevalence of asthma.
Collapse
Affiliation(s)
- Anaque de Oliveira Pires
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | - Gerson de Almeida Queiroz
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | - Milca de Jesus Silva
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | - Raimon Rios da Silva
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | | | | | - Héllen Freitas Fonseca
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | | | - Regina Santos Nascimento
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | | | | | - Ryan Dos Santos Costa
- Laboratory of Immunopharmacology and Molecular Biology, Federal University of Bahia, Salvador, Brazil
| | - Maurício L Barreto
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Brazil
| | | |
Collapse
|
3
|
Divan A, Budd RC, Tobin RP, Newell-Rogers MK. γδ T Cells and dendritic cells in refractory Lyme arthritis. J Leukoc Biol 2015; 97:653-63. [PMID: 25605869 DOI: 10.1189/jlb.2ru0714-343rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lyme disease is a multisystem infection transmitted by tick vectors with an incidence of up to 300,000 individuals/yr in the United States. The primary treatments are oral or i.v. antibiotics. Despite treatment, some individuals do not recover and have prolonged symptoms affecting multiple organs, including the nervous system and connective tissues. Inflammatory arthritis is a common symptom associated with Lyme pathology. In the past decades, γδ T cells have emerged as candidates that contribute to the transition from innate to adaptive responses. These cells are also differentially regulated within the synovia of patients affected by RLA. Here, we review and discuss potential cellular mechanisms involving γδ T cells and DCs in RLA. TLR signaling and antigen processing and presentation will be the key concepts that we review in aid of understanding the impact of γδ T cells in RLA.
Collapse
Affiliation(s)
- Ali Divan
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - Ralph C Budd
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - Richard P Tobin
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| | - M Karen Newell-Rogers
- *Texas A&M Health Science, Temple, Texas, USA; and University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
4
|
Lahiji A, Kucerová-Levisohn M, Lovett J, Holmes R, Zúñiga-Pflücker JC, Ortiz BD. Complete TCR-α gene locus control region activity in T cells derived in vitro from embryonic stem cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:472-9. [PMID: 23720809 DOI: 10.4049/jimmunol.1300521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locus control regions (LCRs) are cis-acting gene regulatory elements with the unique, integration site-independent ability to transfer the characteristics of their locus-of-origin's gene expression pattern to a linked transgene in mice. LCR activities have been discovered in numerous T cell lineage-expressed gene loci. These elements can be adapted to the design of stem cell gene therapy vectors that direct robust therapeutic gene expression to the T cell progeny of engineered stem cells. Currently, transgenic mice provide the only experimental approach that wholly supports all the critical aspects of LCR activity. In this study, we report the manifestation of all key features of mouse TCR-α gene LCR function in T cells derived in vitro from mouse embryonic stem cells. High-level, copy number-related TCR-α LCR-linked reporter gene expression levels are cell type restricted in this system, and upregulated during the expected stage transition of T cell development. We also report that de novo introduction of TCR-α LCR-linked transgenes into existing T cell lines yields incomplete LCR activity. These data indicate that establishing full TCR-α LCR activity requires critical molecular events occurring prior to final T lineage determination. This study also validates a novel, tractable, and more rapid approach for the study of LCR activity in T cells, and its translation to therapeutic genetic engineering.
Collapse
Affiliation(s)
- Armin Lahiji
- Department of Biological Sciences, City University of New York, Hunter College, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
5
|
Knirr S, Gomos-Klein J, Andino BE, Harrow F, Erhard KF, Kovalovsky D, Sant'Angelo DB, Ortiz BD. Ectopic T cell receptor-α locus control region activity in B cells is suppressed by direct linkage to two flanking genes at once. PLoS One 2010; 5:e15527. [PMID: 21124935 PMCID: PMC2989920 DOI: 10.1371/journal.pone.0015527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/06/2010] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms regulating the activity of the TCRα gene are required for the production of the circulating T cell repertoire. Elements of the mouse TCRα locus control region (LCR) play a role in these processes. We previously reported that TCRα LCR DNA supports a gene expression pattern that mimics proper thymus-stage, TCRα gene-like developmental regulation. It also produces transcription of linked reporter genes in peripheral T cells. However, TCRα LCR-driven transgenes display ectopic transcription in B cells in multiple reporter gene systems. The reasons for this important deviation from the normal TCRα gene regulation pattern are unclear. In its natural locus, two genes flank the TCRα LCR, TCRα (upstream) and Dad1 (downstream). We investigated the significance of this gene arrangement to TCRα LCR activity by examining transgenic mice bearing a construct where the LCR was flanked by two separate reporter genes. Surprisingly, the presence of a second, distinct, reporter gene downstream of the LCR virtually eliminated the ectopic B cell expression of the upstream reporter observed in earlier studies. Downstream reporter gene activity was unaffected by the presence of a second gene upstream of the LCR. Our findings indicate that a gene arrangement in which the TCRα LCR is flanked by two distinct transcription units helps to restrict its activity, selectively, on its 5′-flanking gene, the natural TCRα gene position with respect to the LCR. Consistent with these findings, a TCRα/Dad1 locus bacterial artificial chromosome dual-reporter construct did not display the ectopic upstream (TCRα) reporter expression in B cells previously reported for single TCRα transgenes.
Collapse
Affiliation(s)
- Stefan Knirr
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York, United States of America
| | - Janette Gomos-Klein
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York, United States of America
| | - Blanca E. Andino
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York, United States of America
| | - Faith Harrow
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York, United States of America
| | - Karl F. Erhard
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York, United States of America
| | - Damian Kovalovsky
- Division of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Derek B. Sant'Angelo
- Division of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Benjamin D. Ortiz
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Kulke MH, Freed E, Chiang DY, Philips J, Zahrieh D, Glickman JN, Shivdasani RA. High-resolution analysis of genetic alterations in small bowel carcinoid tumors reveals areas of recurrent amplification and loss. Genes Chromosomes Cancer 2008; 47:591-603. [DOI: 10.1002/gcc.20561] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
7
|
Gomos-Klein J, Harrow F, Alarcón J, Ortiz BD. CTCF-Independent, but Not CTCF-Dependent, Elements Significantly Contribute to TCR-α Locus Control Region Activity. THE JOURNAL OF IMMUNOLOGY 2007; 179:1088-95. [PMID: 17617601 DOI: 10.4049/jimmunol.179.2.1088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mouse TCRalpha/TCRdelta/Dad1 gene locus bears a locus control region (LCR) that drives high-level, position-independent, thymic transgene expression in chromatin. It achieves this through DNA sequences that enhance transcription and protect transgene expression from integration site-dependent position effects. The former activity maps to a classical enhancer region (Ealpha). In contrast, the elements supporting the latter capacity that suppresses position effects are incompletely understood. Such elements likely play important roles in their native locus and may resemble insulator/boundary sequences. Insulators support enhancer blocking and/or chromatin barrier activity. Most vertebrate enhancer-blocking insulators are dependent on the CTCF transcription factor and its cognate DNA binding site. However, studies have also revealed CTCF-independent enhancer blocking and barrier insulator activity in the vertebrate genome. The TCRalpha LCR contains a CTCF-dependent and multiple CTCF-independent enhancer-blocking regions whose roles in LCR activity are unknown. Using randomly integrated reporter transgenes in mice, we find that the CTCF region plays a very minor role in LCR function. In contrast, we report the in vivo function of two additional downstream elements located in the region of the LCR that supports CTCF-independent enhancer-blocking activity in cell culture. Internal deletion of either of these elements significantly impairs LCR activity. These results reveal that the position-effect suppression region of the TCRalpha LCR harbors an array of CTCF-independent, positive-acting gene regulatory elements, some of which share characteristics with barrier-type insulators. These elements may help manage the separate regulatory programs of the TCRalpha and Dad1 genes.
Collapse
Affiliation(s)
- Janette Gomos-Klein
- Department of Biological Sciences, City University of New York, Hunter College, New York, NY 10021, USA
| | | | | | | |
Collapse
|
8
|
Harrow F, Ortiz BD. The TCRalpha locus control region specifies thymic, but not peripheral, patterns of TCRalpha gene expression. THE JOURNAL OF IMMUNOLOGY 2006; 175:6659-67. [PMID: 16272321 DOI: 10.4049/jimmunol.175.10.6659] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The molecular mechanisms ensuring the ordered expression of TCR genes are critical for proper T cell development. The mouse TCR alpha-chain gene locus contains a cis-acting locus control region (LCR) that has been shown to direct integration site-independent, lymphoid organ-specific expression of transgenes in vivo. However, the fine cell type specificity and developmental timing of TCRalpha LCR activity are both still unknown. To address these questions, we established a transgenic reporter model of TCRalpha LCR function that allows for analysis of LCR activity in individual cells by the use of flow cytometry. In this study we report the activation of TCRalpha LCR activity at the CD4-CD8-CD25-CD44- stage of thymocyte development that coincides with the onset of endogenous TCRalpha gene rearrangement and expression. Surprisingly, TCRalpha LCR activity appears to decrease in peripheral T cells where TCRalpha mRNA is normally up-regulated. Furthermore, LCR-linked transgene activity is evident in gammadelta T cells and B cells. These data show that the LCR has all the elements required to reliably reproduce a developmentally correct TCRalpha-like expression pattern during thymic development and unexpectedly indicate that separate gene regulatory mechanisms are acting on the TCRalpha gene in peripheral T cells to ensure its high level and fine cell type-specific expression.
Collapse
Affiliation(s)
- Faith Harrow
- Department of Biological Sciences, City University of New York, Hunter College, New York, NY 10021, USA
| | | |
Collapse
|
9
|
Dorschner MO, Hawrylycz M, Humbert R, Wallace JC, Shafer A, Kawamoto J, Mack J, Hall R, Goldy J, Sabo PJ, Kohli A, Li Q, McArthur M, Stamatoyannopoulos JA. High-throughput localization of functional elements by quantitative chromatin profiling. Nat Methods 2004; 1:219-25. [PMID: 15782197 DOI: 10.1038/nmeth721] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 10/19/2004] [Indexed: 11/08/2022]
Abstract
Identification of functional, noncoding elements that regulate transcription in the context of complex genomes is a major goal of modern biology. Localization of functionality to specific sequences is a requirement for genetic and computational studies. Here, we describe a generic approach, quantitative chromatin profiling, that uses quantitative analysis of in vivo chromatin structure over entire gene loci to rapidly and precisely localize cis-regulatory sequences and other functional modalities encoded by DNase I hypersensitive sites. To demonstrate the accuracy of this approach, we analyzed approximately 300 kilobases of human genome sequence from diverse gene loci and cleanly delineated functional elements corresponding to a spectrum of classical cis-regulatory activities including enhancers, promoters, locus control regions and insulators as well as novel elements. Systematic, high-throughput identification of functional elements coinciding with DNase I hypersensitive sites will substantially expand our knowledge of transcriptional regulation and should simplify the search for noncoding genetic variation with phenotypic consequences.
Collapse
Affiliation(s)
- Michael O Dorschner
- Department of Molecular Biology, Regulome, 2211 Elliott Avenue, Suite 600, Seattle, Washington 98121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dujardin HC, Burlen-Defranoux O, Boucontet L, Vieira P, Cumano A, Bandeira A. Regulatory potential and control of Foxp3 expression in newborn CD4+ T cells. Proc Natl Acad Sci U S A 2004; 101:14473-8. [PMID: 15452347 PMCID: PMC521951 DOI: 10.1073/pnas.0403303101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 02/01/2023] Open
Abstract
Thymectomy at day 3 after birth leads to autoimmune disease in some genetic backgrounds. Disease is thought to be caused by the lack/paucity of regulatory T cells. We show that 3-day-old mice already contain a significant compartment of Foxp3-expressing CD25(+)CD4(+) splenocytes. Whereas, in adult spleen, the subsets of regulatory T cells (CD25(+) and/or CD103(+)) express high amounts of Foxp3 mRNA, in 3-day-old mice, both thymic and splenic CD25(+)CD4(+) T cell subsets express lower amounts of Foxp3 mRNA, and CD103(+) cells are barely detected. In adult day 3-thymectomized mice, the CD25(+)CD4(+) T cell subset is overrepresented (most of the cells being CD103(+)) and expresses high amounts of Foxp3 mRNA, independent of the development of autoimmune gastritis. These cells control inflammatory bowel disease and the homeostatic expansion of lymphocytes. This study demonstrates that the peripheral immune system of newborn mice is endowed of a remarkable regulatory potential, which develops considerably in the absence of thymic supply.
Collapse
Affiliation(s)
- Helene C Dujardin
- Unité du Développement des Lymphocytes, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1961, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
11
|
Krangel MS, Carabana J, Abbarategui I, Schlimgen R, Hawwari A. Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor alpha/delta locus. Immunol Rev 2004; 200:224-32. [PMID: 15242408 DOI: 10.1111/j.0105-2896.2004.00155.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
V(D)J recombination proceeds according to defined developmental programs at T-cell receptor (TCR) and immunoglobulin loci as a function of cell lineage and stage of differentiation. Although the molecular details are still lacking, such regulation is thought to occur at the level of accessibility of chromosomal recombination signal sequences to the recombinase. The unique and complex organization of the TCRalpha/delta locus poses intriguing regulatory challenges in this regard: embedded TCRalpha and TCRdelta gene segments rearrange at distinct stages of thymocyte development, there is a highly regulated progression of primary followed by secondary rearrangements involving Jalpha segments, and there are important developmental constraints on V gene segment usage. The locus therefore provides a fascinating laboratory in which to explore the basic mechanisms underlying developmental control. We provide here a current view of cis-acting mechanisms that enforce the TCRalpha/delta locus developmental program, and we emphasize the unresolved issues that command the attention of our and other laboratories.
Collapse
Affiliation(s)
- Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | |
Collapse
|
12
|
Magdinier F, Yusufzai TM, Felsenfeld G. Both CTCF-dependent and -independent Insulators Are Found between the Mouse T Cell Receptor α and Dad1 Genes. J Biol Chem 2004; 279:25381-9. [PMID: 15082712 DOI: 10.1074/jbc.m403121200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The T cell rearrangement of the T cell receptor (TCR) genes TCRalpha and delta is specifically regulated by a complex interplay between enhancer elements and chromatin structure. The alpha enhancer is active in T cells and drives TCRalpha recombination in collaboration with a locus control region-like element located downstream of the Calpha gene on mouse chromosome 14. Twelve kb further down-stream lies another gene, Dad1, with a program of expression different from that of TCRalpha. The approximately 6-kb locus control region element lying between them contains multiple regulatory sites with a variety of roles in regulating the two genes. Previous evidence has indicated that among these there are widely distributed regions with enhancer blocking (insulating) activity. We have shown in this report that one of these sites, not previously examined, strongly binds the insulator protein CCTC-binding factor (CTCF) in vitro and in vivo and can function in an enhancer blocking assay. However, other regions within the 6-kb element that also can block enhancers clearly do not harbor CTCF sites and thus must reflect the presence of a previously undetected and distinct vertebrate insulator activity.
Collapse
Affiliation(s)
- Frédérique Magdinier
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0504, USA
| | | | | |
Collapse
|
13
|
Harrow F, Amuta JU, Hutchinson SR, Akwaa F, Ortiz BD. Factors Binding a Non-classical Cis-element Prevent Heterochromatin Effects on Locus Control Region Activity. J Biol Chem 2004; 279:17842-9. [PMID: 14966120 DOI: 10.1074/jbc.m401258200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A locus control region (LCR) is a cis-acting gene-regulatory element capable of transferring the expression characteristics of its gene locus of origin to a linked transgene. Furthermore, it can do this independently of the site of integration in the genome of transgenic mice. Although most LCRs contain subelements with classical transcriptional enhancer function, key aspects of LCR activity are supported by cis-acting sequences devoid of the ability to act as direct transcriptional enhancers. Very few of these "non-enhancer" LCR components have been characterized. Consequently, the sequence requirements and molecular bases for their functions, as well as their roles in LCR activity, are poorly understood. We have investigated these questions using the LCR from the mouse T cell receptor (TCR) alpha/Dad1 gene locus. Here we focus on DNase hypersensitive site (HS) 6 of the TCRalpha LCR. HS6 does not support classical enhancer activity, yet has gene regulatory activity in an in vivo chromatin context. We have identified three in vivo occupied factor-binding sites within HS6, two of which interact with Runx1 and Elf-1 factors. Deletion of these sites from the LCR impairs its activity in vivo. This mutation renders the transgene locus abnormally inaccessible in chromatin, preventing the normal function of other LCR subelements and reducing transgene mRNA levels. These data show these factor-binding sites are required for preventing heterochromatin formation and indicate that they function to maintain an active TCRalpha LCR assembly in vivo.
Collapse
Affiliation(s)
- Faith Harrow
- Department of Biological Sciences, City University of New York, Hunter College, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
14
|
Lobito AA, Lopes MF, Lenardo MJ. Ectopic T cell receptor expression causes B cell immunodeficiency in transgenic mice. Eur J Immunol 2004; 34:890-898. [PMID: 14991619 DOI: 10.1002/eji.200324675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mice expressing transgenic T cell receptors (TCR) are used to explore important questions in immunity. However, transgene expression may have unexpected effects. We previously reported a B cell immunodeficiency, comprising decreased B cell numbers and diminished antibody responses, in mice that express a transgenic TCR specific for nicotinic acetylcholine receptor; the mice were generated using cassette vectors designed specifically for transgenic TCR expression [see Kouskoff et al. J. Immunol. Methods 1995. 180: 273-280]. We now show data suggesting that this defect is due to the expression and accumulation of TCR alpha and beta chains inside B cells and induction of an endoplasmic reticulum stress response, causing apoptosis at the pre B-I and later B cell stage. Thus, inappropriate transgene expression can profoundly affect B cells, leading to a previously undescribed mechanism of immunodeficiency.
Collapse
Affiliation(s)
- Adrian A Lobito
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
- Present addresses: Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, GB; M. F. Lopes, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | - Marcela F Lopes
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Michael J Lenardo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
15
|
Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4:337-42. [PMID: 12612581 DOI: 10.1038/ni909] [Citation(s) in RCA: 2196] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 02/09/2003] [Indexed: 11/09/2022]
Abstract
The molecular properties that characterize CD4+CD25+ regulatory T cells (TR cells) remain elusive. Absence of the transcription factor Scurfin (also known as forkhead box P3 and encoded by Foxp3) causes a rapidly fatal lymphoproliferative disease, similar to that seen in mice lacking cytolytic T lymphocyte-associated antigen 4 (CTLA-4). Here we show that Foxp3 is highly expressed by T(R) cells and is associated with T(R) cell activity and phenotype. Scurfin-deficient mice lack T(R) cells, whereas mice that overexpress Foxp3 possess more T(R) cells. In Foxp3-overexpressing mice, both CD4+CD25- and CD4-CD8+ T cells show suppressive activity and CD4+CD25- cells express glucocorticoid-induced tumor-necrosis factor receptor-related (GITR) protein. The forced expression of Foxp3 also delays disease in CTLA-4-/- mice, indicating that the Scurfin and CTLA-4 pathways may intersect and providing further insight into the T(R) cell lineage.
Collapse
Affiliation(s)
- Roli Khattri
- Celltech R&D Inc., 1631 220th Street SE, Bothell, Washington 98021, USA
| | | | | | | |
Collapse
|
16
|
Livák F, Petrie HT. Access roads for RAG-ged terrains: control of T cell receptor gene rearrangement at multiple levels. Semin Immunol 2002; 14:297-309. [PMID: 12220931 DOI: 10.1016/s1044-5323(02)00063-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antigen-specific immune response requires the generation of a diverse antigen (Ag)-receptor repertoire. The primary repertoire is generated through somatic gene rearrangement and molded by subsequent cellular selection. Constraints during gene recombination influence the ultimate shape of the repertoire. One major control mechanism of gene rearrangement, investigated for many years, is exerted through regulated chromosomal accessibility of the recombinase to the antigen receptor loci. More recent studies began to explore the role of interactions between the recombinase and its cognate recognition DNA sequences. The emerging results suggest that formation of the primary repertoire is controlled by two, partially independent factors: chromosomal accessibility and direct recombinase-DNA interactions.
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
17
|
Xiong N, Kang C, Raulet DH. Redundant and unique roles of two enhancer elements in the TCRgamma locus in gene regulation and gammadelta T cell development. Immunity 2002; 16:453-63. [PMID: 11911829 DOI: 10.1016/s1074-7613(02)00285-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many mammalian genes, including those encoding antigen receptors, contain more than one enhancer element. Deleting one element often does not prevent expression, but functional redundancy has never been directly demonstrated by gene targeting of multiple elements. We demonstrate that simultaneous deletion of two enhancer/LCR-like elements in the TCR Cgamma1 cluster, HsA and 3'E(Cgamma1), severely diminishes TCRgamma transcription, selectively impairs development of gammadelta thymocyte subsets, but only modestly reduces TCRgamma gene rearrangement, while deletion of each element separately has little effect. In contrast to these results in thymocytes, deletion of HsA alone reduces transcription of one Vgamma gene specifically in peripheral gammadelta T cells. Thus, the two elements exhibit functional redundancy in thymocytes but also have unique functions in other settings.
Collapse
MESH Headings
- Animals
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation/immunology
- Genes, T-Cell Receptor gamma/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Recombination, Genetic
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Na Xiong
- Cancer Research Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, 489 Life Sciences Addition, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
19
|
Mancini SJ, Candéias SM, Di Santo JP, Ferrier P, Marche PN, Jouvin-Marche E. TCRA gene rearrangement in immature thymocytes in absence of CD3, pre-TCR, and TCR signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4485-93. [PMID: 11591775 DOI: 10.4049/jimmunol.167.8.4485] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During thymocyte differentiation, TCRA genes are massively rearranged only after productively rearranged TCRB genes are expressed in association with pTalpha and CD3 complex molecules within a pre-TCR. Signaling from the pre-TCR via the CD3 complex is thought to be required to promote TCRA gene accessibility and recombination. However, alphabeta(+) thymocytes do develop in pTalpha-deficient mice, showing that TCRalpha-chain genes are rearranged, either in CD4(-)CD8(-) or CD4(+)CD8(+) thymocytes, in the absence of pre-TCR expression. In this study, we analyzed the TCRA gene recombination status of early immature thymocytes in mutant mice with arrested thymocyte development, deficient for either CD3 or pTalpha and gammac expression. ADV genes belonging to different families were found rearranged to multiple AJ segments in both cases. Thus, TCRA gene rearrangement is independent of CD3 and gammac signaling. However, CD3 expression was found to play a role in transcription of rearranged TCRalpha-chain genes in CD4(-)CD8(-) thymocytes. Taken together, these results provide new insights into the molecular control of early T cell differentiation.
Collapse
Affiliation(s)
- S J Mancini
- Laboratoire d'Immunochimie, Commissariat à l'Energie Atomique-Grenoble, Département de Biologie Moléculaire et Structurale, Institut National de la Santé et de la Recherche Médicale U548, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | |
Collapse
|
20
|
Ortiz BD, Harrow F, Cado D, Santoso B, Winoto A. Function and factor interactions of a locus control region element in the mouse T cell receptor-alpha/Dad1 gene locus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3836-45. [PMID: 11564801 DOI: 10.4049/jimmunol.167.7.3836] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locus control regions (LCRs) refer to cis-acting elements composed of several DNase I hypersensitive sites, which synergize to protect transgenes from integration-site dependent effects in a tissue-specific manner. LCRs have been identified in many immunologically important gene loci, including one between the TCRdelta/TCRalpha gene segments and the ubiquitously expressed Dad1 gene. Expression of a transgene under the control of all the LCR elements is T cell specific. However, a subfragment of this LCR is functional in a wide variety of tissues. How a ubiquitously active element can participate in tissue-restricted LCR activity is not clear. In this study, we localize the ubiquitously active sequences of the TCR-alpha LCR to an 800-bp region containing a prominent DNase hypersensitive site. In isolation, the activity in this region suppresses position effect transgene silencing in many tissues. A combination of in vivo footprint examination of this element in widely active transgene and EMSAs revealed tissue-unrestricted factor occupancy patterns and binding of several ubiquitously expressed transcription factors. In contrast, tissue-specific, differential protein occupancies at this element were observed in the endogenous locus or full-length LCR transgene. We identified tissue-restricted AML-1 and Elf-1 as proteins that potentially act via this element. These data demonstrate that a widely active LCR module can synergize with other LCR components to produce tissue-specific LCR activity through differential protein occupancy and function and provide evidence to support a role for this LCR module in the regulation of both TCR and Dad1 genes.
Collapse
Affiliation(s)
- B D Ortiz
- Department of Biological Sciences, City University of New York, Hunter College, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
21
|
Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27:68-73. [PMID: 11138001 DOI: 10.1038/83784] [Citation(s) in RCA: 1917] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Scurfy (sf) is an X-linked recessive mouse mutant resulting in lethality in hemizygous males 16-25 days after birth, and is characterized by overproliferation of CD4+CD8- T lymphocytes, extensive multiorgan infiltration and elevation of numerous cytokines. Similar to animals that lack expression of either Ctla-4 or Tgf-beta, the pathology observed in sf mice seems to result from an inability to properly regulate CD4+CD8- T-cell activity. Here we identify the gene defective in sf mice by combining high-resolution genetic and physical mapping with large-scale sequence analysis. The protein encoded by this gene (designated Foxp3) is a new member of the forkhead/winged-helix family of transcriptional regulators and is highly conserved in humans. In sf mice, a frameshift mutation results in a product lacking the forkhead domain. Genetic complementation demonstrates that the protein product of Foxp3, scurfin, is essential for normal immune homeostasis.
Collapse
Affiliation(s)
- M E Brunkow
- Celltech Chiroscience, Inc., Bothell, Washington, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brewster JL, Martin SL, Toms J, Goss D, Wang K, Zachrone K, Davis A, Carlson G, Hood L, Coffin JD. Deletion ofDad1 in mice induces an apoptosis-associated embryonic death. Genesis 2000. [DOI: 10.1002/(sici)1526-968x(200004)26:4<271::aid-gene90>3.0.co;2-e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Hong NA, Flannery M, Hsieh SN, Cado D, Pedersen R, Winoto A. Mice lacking Dad1, the defender against apoptotic death-1, express abnormal N-linked glycoproteins and undergo increased embryonic apoptosis. Dev Biol 2000; 220:76-84. [PMID: 10720432 DOI: 10.1006/dbio.2000.9615] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dad1 has been shown to play a role in preventing apoptotic cell death and in regulating levels of N-linked glycosylation in Saccharomyces cerevisiae and the BHK hamster cell line. To address the in vivo role of Dad1 in these processes during multicellular development, we have analyzed mice carrying a null allele for Dad1. Embryos homozygous for this mutation express abnormal N-glycosylated proteins and are developmentally delayed by embryonic day 7.5. Such mutants exhibit aberrant morphology, impaired mesodermal development, and increased levels of apoptosis in specific tissues. These defects culminate in homozygous embryos failing to turn the posterior axis and subsequent lethality by embryonic day 10.5. Thus, Dad1 is required for proper processing of N-linked glycoproteins and for certain cell survival in the mouse.
Collapse
Affiliation(s)
- N A Hong
- Division of Immunology and Cancer Research Laboratory, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
24
|
Santoso B, Ortiz BD, Winoto A. Control of organ-specific demethylation by an element of the T-cell receptor-alpha locus control region. J Biol Chem 2000; 275:1952-8. [PMID: 10636897 DOI: 10.1074/jbc.275.3.1952] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methylation is important for mammalian development and the control of gene expression. Recent data suggest that DNA methylation causes chromatin closure and gene silencing. During development, tissue specifically expressed gene loci become selectively demethylated in the appropriate cell types by poorly understood processes. Locus control regions (LCRs), which are cis-acting elements providing stable, tissue-specific expression to linked transgenes in chromatin, may play a role in tissue-specific DNA demethylation. We studied the methylation status of the LCR for the mouse T-cell receptor alpha/delta locus using a novel assay for scanning large distances of DNA for methylation sites. Tissue-specific functions of this LCR depend largely on two DNase I-hypersensitive site clusters (HS), HS1 (T-cell receptor alpha enhancer) and HS1'. We report that these HS induce lymphoid organ-specific DNA demethylation in a region located 3.8 kilobases away with little effect on intervening, methylated DNA. This demethylation is impaired in mice with a germline deletion of the HS1/HS1' clusters. Using 5'-deletion mutants of a transgenic LCR reporter gene construct, we show that HS1' can act in the absence of HS1 to direct this tissue-specific DNA demethylation event. Thus, elements of an LCR can control tissue-specific DNA methylation patterns both in transgenes and inside its native locus.
Collapse
Affiliation(s)
- B Santoso
- Cancer Research Laboratory and Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
25
|
Hong NA, Kabra NH, Hsieh SN, Cado D, Winoto A. In Vivo Overexpression of Dad1, the Defender Against Apoptotic Death-1, Enhances T Cell Proliferation But Does Not Protect Against Apoptosis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
The Dad1 protein has been shown to play a role in prevention of apoptosis in certain cell types. Dad1 is also a subunit of the oligosaccharyltransferase enzyme complex that initiates N-linked glycosylation. It is encoded by a gene located adjacent to the TCR α and δ genes on mouse chromosome 14. We have investigated the role of Dad1 during T cell development and activation. We observe that endogenous Dad1 levels are modulated during T cell development to reach maximal expression in mature thymocytes. Transgenic mice that overexpress Dad1 in both the thymus and peripheral immune system have been generated. Apoptosis of thymocytes from such mice is largely unaffected, but peripheral T cells display hyperproliferation in response to stimuli. Therefore, the linkage between the TCR and Dad1 genes may have important consequences for T cell function.
Collapse
Affiliation(s)
- N. A. Hong
- Division of Immunology and Cancer Research Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - N. H. Kabra
- Division of Immunology and Cancer Research Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - S. N. Hsieh
- Division of Immunology and Cancer Research Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - D. Cado
- Division of Immunology and Cancer Research Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - A. Winoto
- Division of Immunology and Cancer Research Laboratory, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
26
|
Zhong XP, Krangel MS. Enhancer-Blocking Activity Within the DNase I Hypersensitive Site 2 to 6 Region Between the TCR α and Dad1 Genes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.1.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Although tightly linked, the TCR α and δ genes are expressed specifically in T lymphocytes, whereas the Dad1 gene is ubiquitously expressed. Between TCR α and Dad1 are eight DNase I hypersensitive sites (HS). HS1 colocalizes with the TCR α enhancer (Eα) and is T cell-specific; HS2, -3, -4, -5, and -6 map downstream of HS1 and are tissue-nonspecific. The region spanning HS2–6 was reported to display chromatin-opening activity and to confer copy number-dependent and integration site-independent transgene expression in transgenic mice. Here, we demonstrate that HS2–6 also displays enhancer-blocking activity, as it can block an enhancer from activating a promoter when located between the two in a chromatin-integrated context, and can do so without repressing either the enhancer or the promoter. Multiple enhancer-blocking elements are arrayed across HS2–6. We show that HS2–6 by itself does not activate transcription in chromatin context, but can synergize with an enhancer when located upstream of an enhancer and promoter. We propose that HS2–6 primarily functions as an insulator or boundary element that may be critical for the autonomous regulation of the TCR α and Dad1 genes.
Collapse
Affiliation(s)
- Xiao-Ping Zhong
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Michael S. Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
27
|
Hernández-Munain C, Sleckman BP, Krangel MS. A developmental switch from TCR delta enhancer to TCR alpha enhancer function during thymocyte maturation. Immunity 1999; 10:723-33. [PMID: 10403647 DOI: 10.1016/s1074-7613(00)80071-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
V(D)J recombination and transcription within the TCR alpha/delta locus are regulated by three characterized cis-acting elements: the TCR delta enhancer (Edelta), TCR alpha enhancer (Ealpha), and T early alpha (TEA) promoter. Analysis of enhancer and promoter occupancy and function in developing thymocytes in vivo indicates Edelta and Ealpha to be developmental-stage-specific enhancers, with Edelta "on" and Ealpha "off" in double-negative III thymocytes and Edelta "off" and Ealpha "on" in double-positive thymocytes. Edelta downregulation reflects a loss of occupancy. Surprisingly, Ealpha and TEA are extensively occupied even prior to activation. TCR delta downregulation in double-positive thymocytes depends on two events, Edelta inactivation and removal of TCR delta from the influence of Ealpha by chromosomal excision.
Collapse
Affiliation(s)
- C Hernández-Munain
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
28
|
Bulger M, van Doorninck JH, Saitoh N, Telling A, Farrell C, Bender MA, Felsenfeld G, Axel R, Groudine M, von Doorninck JH. Conservation of sequence and structure flanking the mouse and human beta-globin loci: the beta-globin genes are embedded within an array of odorant receptor genes. Proc Natl Acad Sci U S A 1999; 96:5129-34. [PMID: 10220430 PMCID: PMC21828 DOI: 10.1073/pnas.96.9.5129] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mouse and human, the beta-globin genes reside in a linear array that is associated with a positive regulatory element located 5' to the genes known as the locus control region (LCR). The sequences of the mouse and human beta-globin LCRs are homologous, indicating conservation of an essential function in beta-globin gene regulation. We have sequenced regions flanking the beta-globin locus in both mouse and human and found that homology associated with the LCR is more extensive than previously known, making up a conserved block of approximately 40 kb. In addition, we have identified DNaseI-hypersensitive sites within the newly sequenced regions in both mouse and human, and these structural features also are conserved. Finally, we have found that both mouse and human beta-globin loci are embedded within an array of odorant receptor genes that are expressed in olfactory epithelium, and we also identify an olfactory receptor gene located 3' of the beta-globin locus in chicken. The data demonstrate an evolutionarily conserved genomic organization for the beta-globin locus and suggest a possible role for the beta-globin LCR in control of expression of these odorant receptor genes and/or the presence of mechanisms to separate regulatory signals in different tissues.
Collapse
Affiliation(s)
- M Bulger
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nishii K, Tsuzuki T, Kumai M, Takeda N, Koga H, Aizawa S, Nishimoto T, Shibata Y. Abnormalities of developmental cell death in Dad1-deficient mice. Genes Cells 1999; 4:243-52. [PMID: 10336695 DOI: 10.1046/j.1365-2443.1999.00256.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Dad1, the defender against apoptotic cell death, comprises the oligosaccharyltransferase complex and is well conserved among eukaryotes. In hamster BHK21-derived tsBN7 cells, loss of Dad1 causes apoptosis which cannot be prevented by Bcl-2. RESULTS To determine the role of Dad1 function in vivo, we prepared by gene targeting, mice harbouring a disrupted Dad1 gene. Homozygous mutants died shortly after they were implanted with the characteristic features of apoptosis. In an in vitro blastocyst culture system, Dad1-null cells displayed abnormalities which were comparable to those obtained in vivo. However, oligosaccharyltransferase activity was apparently retained even after the Dad1-null cells were destined to die. Some live-born heterozygous mutants displayed soft-tissue syndactyly. Mild thymic hypoplasia was also indicated in heterozygotes. CONCLUSION These results suggest the involvement of the Dad1 gene in the acquisition of a common syndactyly phenotype, as well as in the control of programmed cell death during development.
Collapse
Affiliation(s)
- K Nishii
- Department of Developmental Molecular Anatomy, Faculty of Medicine, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ortiz BD, Cado D, Winoto A. A new element within the T-cell receptor alpha locus required for tissue-specific locus control region activity. Mol Cell Biol 1999; 19:1901-9. [PMID: 10022877 PMCID: PMC83983 DOI: 10.1128/mcb.19.3.1901] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Locus control regions (LCRs) are cis-acting regulatory elements thought to provide a tissue-specific open chromatin domain for genes to which they are linked. The gene for T-cell receptor alpha chain (TCRalpha) is exclusively expressed in T cells, and the chromatin at its locus displays differentially open configurations in expressing and nonexpressing tissues. Mouse TCRalpha exists in a complex locus containing three differentially regulated genes. We previously described an LCR in this locus that confers T-lineage-specific expression upon linked transgenes. The 3' portion of this LCR contains an unrestricted chromatin opening activity while the 5' portion contains elements restricting this activity to T cells. This tissue-specificity region contains four known DNase I hypersensitive sites, two located near transcriptional silencers, one at the TCRalpha enhancer, and another located 3' of the enhancer in a 1-kb region of unknown function. Analysis of this region using transgenic mice reveals that the silencer regions contribute negligibly to LCR activity. While the enhancer is required for complete LCR function, its removal has surprisingly little effect on chromatin structure or expression outside the thymus. Rather, the region 3' of the enhancer appears responsible for the tissue-differential chromatin configurations observed at the TCRalpha locus. This region, herein termed the "HS1' element," also increases lymphoid transgene expression while suppressing ectopic transgene activity. Thus, this previously undescribed element is an integral part of the TCRalphaLCR, which influences tissue-specific chromatin structure and gene expression.
Collapse
MESH Headings
- Animals
- Chromatin
- Enhancer Elements, Genetic
- Locus Control Region
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Tissue Distribution
- Transcription, Genetic
- Transgenes
Collapse
Affiliation(s)
- B D Ortiz
- Department of Molecular and Cell Biology, Cancer Research Laboratory and Division of Immunology, University of California, Berkeley, California 94720-3200, USA
| | | | | |
Collapse
|
31
|
Udvardy A. Dividing the empire: boundary chromatin elements delimit the territory of enhancers. EMBO J 1999; 18:1-8. [PMID: 9878044 PMCID: PMC1171096 DOI: 10.1093/emboj/18.1.1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A Udvardy
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, PO Box 521, Hungary
| |
Collapse
|
32
|
Sleckman BP, Bassing CH, Bardon CG, Okada A, Khor B, Bories JC, Monroe R, Alt FW. Accessibility control of variable region gene assembly during T-cell development. Immunol Rev 1998; 165:121-30. [PMID: 9850857 DOI: 10.1111/j.1600-065x.1998.tb01235.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
T-cell development is a complex and ordered process that is regulated in part by the progressive assembly and expression of antigen receptor genes. T cells can be divided into two lineages based on expression of either an alpha beta or gamma delta T-cell antigen receptor (TCR). The genes that encode the TCR beta and gamma chains lie in distinct loci, whereas the genes that encode the TCR alpha and delta chains lie in a single locus (TCR alpha/delta locus). Assembly of TCR variable region genes is mediated by a site-specific recombination process that is common among all lymphocytes. Despite the common nature of this process, recombination of TCR genes is tightly regulated within the context of the developing T cell. TCR beta, gamma and delta variable region genes are assembled prior to TCR alpha variable region genes. Furthermore, assembly of TCR beta variable region genes is regulated within the context of allelic exclusion. The regulation of rearrangement and expression of genes within the TCR alpha/delta locus presents a complicated problem. TCR alpha and delta variable region genes are assembled at different stages of T-cell development, and fully assembled TCR alpha and delta variable region genes must be expressed in distinct lineages of T cells, alpha beta and gamma delta, respectively. We have developed several experimental approaches to assess the role of cis-acting elements in regulating recombination and expression of TCR genes. Here we describe these approaches and discuss our analyses of the regulation of accessibility of the TCR beta and TCR alpha/delta loci during T-cell development.
Collapse
Affiliation(s)
- B P Sleckman
- Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Krangel MS, Hernandez-Munain C, Lauzurica P, McMurry M, Roberts JL, Zhong XP. Developmental regulation of V(D)J recombination at the TCR alpha/delta locus. Immunol Rev 1998; 165:131-47. [PMID: 9850858 DOI: 10.1111/j.1600-065x.1998.tb01236.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The T-cell receptor (TCR) alpha/delta locus includes a large number of V, D, J and C gene segments that are used to produce functional TCR delta and TCR alpha chains expressed by distinct subsets of T lymphocytes. V(D)J recombination events within the locus are regulated as a function of developmental stage and cell lineage during T-lymphocyte differentiation in the thymus. The process of V(D)J recombination is regulated by cis-acting elements that modulate the accessibility of chromosomal substrates to the recombinase. Here we evaluate how the assembly of transcription factor complexes onto enhancers, promoters and other regulatory elements within the TCR alpha/delta locus imparts developmental control to VDJ delta and VJ alpha rearrangement events. Furthermore, we develop the notion that within a complex locus such as the TCR alpha/delta locus, highly localized and region-specific control is likely to require an interplay between positive regulatory elements and blocking or boundary elements that restrict the influence of the positive elements to defined regions of the locus.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Lineage
- Gene Expression Regulation, Developmental
- Gene Rearrangement, T-Lymphocyte
- Genes, Immunoglobulin
- Humans
- Immunoglobulin Joining Region/genetics
- Immunoglobulin Variable Region/genetics
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid
- T-Lymphocytes/cytology
Collapse
Affiliation(s)
- M S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Hempel WM, Leduc I, Mathieu N, Tripathi RK, Ferrier P. Accessibility control of V(D)J recombination: lessons from gene targeting. Adv Immunol 1998; 69:309-52. [PMID: 9646847 DOI: 10.1016/s0065-2776(08)60610-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- W M Hempel
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | | | | | | | |
Collapse
|
35
|
Sim BC, Aftahi N, Reilly C, Bogen B, Schwartz RH, Gascoigne NR, Lo D. Thymic skewing of the CD4/CD8 ratio maps with the T-cell receptor alpha-chain locus. Curr Biol 1998; 8:701-4. [PMID: 9637921 DOI: 10.1016/s0960-9822(98)70276-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The thymic preference for CD4+ T cells over CD8+ T cells is often attributed to a default pathway favouring CD4+ T cells or to homeostatic mechanisms. It is also clear, however, that T-cell receptor (TCR) preferences for major histocompatibility complex (MHC) class I versus class II binding will strongly influence an individual clone's skewing to the CD4 or CD8 subset. The variable region of each TCR alpha chain (V alpha) studied to date is found to be overrepresented in either CD4+ or CD8+ cells, suggesting that each V alpha element can interact more favourably with either MHC class I or class II molecules. Indeed, TCRs appear to have an intrinsic ability to interact with MHC molecules, and single amino acid residues present in germline-encoded complementarity determining region 1 (CDR1) and CDR2 of the V alpha element can be responsible for determining MHC specificity. Interestingly, the degree of CD4/CD8 skewing is variable among different mouse strains and in human populations. Here, we have shown that polymorphism in CD4/CD8 skewing between B6 and BALB/c mice is determined by the stem cell genotype and not by environmental effects, and that it maps in or near the TCR alpha-chain complex, Tcra. This was confirmed by comparing Tcra(b) with Tcra(a) or Tcra(c) haplotypes in congenic mice. We propose that the array of V alpha genes in various Tcra haplotypes exerts influence over the proportion of CD4 and CD8 subsets generated and may account in part for the observed thymic skewing. Thus, while it has been suggested that the TCR genes have been selected by evolution for MHC binding, our results further indicate selection for class II MHC preference.
Collapse
Affiliation(s)
- B C Sim
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The past year has seen interesting advances in our understanding of the action of locus control regions. For the first time, the chromosomal distance was described in detail as a parameter in positive/negative regulation of transcription via gene competition. A number of publications have also described negative regulatory elements which restrict the action of locus control regions and other regulatory regions to specific genes and/or specific tissues. The emerging picture indicates that several very different types of negative regulation ensure that transcriptional activation occurs only in the appropriate cells.
Collapse
Affiliation(s)
- P Fraser
- Erasmus University, Faculty of Medicine, Department of Cell Biology and Genetics, Rotterdam, The Netherlands.
| | | |
Collapse
|
37
|
Sleckman BP, Bardon CG, Ferrini R, Davidson L, Alt FW. Function of the TCR alpha enhancer in alphabeta and gammadelta T cells. Immunity 1997; 7:505-15. [PMID: 9354471 DOI: 10.1016/s1074-7613(00)80372-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have used gene targeted mutational approaches to assess the role of the T cell receptor alpha (TCR alpha) enhancer (E alpha) in the control of TCR alpha and TCR delta gene rearrangement and expression. We show that E alpha functions in cis to promote V alpha to J alpha rearrangement across the entire J alpha locus, a distance of greater than 70 kb. We also show that E alpha is required for normal alphabeta T cell development; in this lineage, E alpha is required for germline J alpha expression, for normal expression levels of rearranged V alpha J alpha genes, and for expression of a diverse V alpha repertoire. In gamma delta T cells, E alpha is not required for VdeltaDJdelta rearrangement, but, surprisingly, is required for normal expression levels of mature VdeltaDJdelta transcripts and for expression of germline J alpha transcripts. Our findings imply that E alpha function is not limited to the TCR alpha components of the TCRalpha/delta locus or to the alpha beta lineage; rather, E alpha function is important in both alphabeta and gammadelta lineage T cells.
Collapse
MESH Headings
- Animals
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Genes, T-Cell Receptor alpha/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Sequence Deletion
- T-Lymphocytes/physiology
- Thymus Gland/cytology
- Transcription, Genetic
Collapse
Affiliation(s)
- B P Sleckman
- Children's Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Ortiz BD, Cado D, Chen V, Diaz PW, Winoto A. Adjacent DNA elements dominantly restrict the ubiquitous activity of a novel chromatin-opening region to specific tissues. EMBO J 1997; 16:5037-45. [PMID: 9305645 PMCID: PMC1170138 DOI: 10.1093/emboj/16.16.5037] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Locus control regions (LCRs) are thought to provide a dominant tissue-specific open chromatin domain that allows for proper gene regulation by enhancers/silencers and their associated transcription factors. Expression of the T-cell receptor alpha (TCR alpha) gene is limited to T cells and its locus exists in different chromatin configurations in expressing and nonexpressing cell types. Here we show that eight DNase I-hypersensitive sites in the TCR alpha locus comprise an LCR that confers T-cell compartment-specific expression upon a linked heterologous transgene. Removal of the three 5'-most hypersensitive sites of this LCR, containing TCR alpha enhancers/silencers, abolishes tissue-differential chromatin structure and results in transgene expression in all tissues examined. The remaining five DNase I-hypersensitive sites therefore constitute a novel control element possessing a widely active chromatin-opening function that allows for ubiquitous expression of a linked transgene in all transgenic founder mice. Furthermore, these data show that cis-acting elements without inherent LCR activity can dominantly modulate chromatin structure to determine tissue-specific gene expression in vivo.
Collapse
Affiliation(s)
- B D Ortiz
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Cell death is an integral part of the functioning of the immune system. For T cells, potentially autoreactive or 'useless' cells are removed through apoptosis in response to signals (or lack of signals) from their T cell receptor complex. A myriad of proteins that can initiate or protect cells from cell death have recently been identified.
Collapse
Affiliation(s)
- A Winoto
- Department of Molecular and Cell Biology, Division of Immunology and Cancer Research Laboratory, Life Science Addition, Berkeley, CA 94720-3200, USA.
| |
Collapse
|