1
|
Hayashi N, Oki M. Altered metabolic regulation owing to gsp1 mutations encoding the nuclear small G protein in Saccharomyces cerevisiae. Curr Genet 2019; 66:335-344. [PMID: 31372715 DOI: 10.1007/s00294-019-01022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 11/30/2022]
Abstract
Nutrient metabolism is regulated for adaptation to, for example, environmental alterations, cellular stress, cell cycle, and cellular ageing. This regulatory network consists of cross-talk between cytoplasmic organelles and the nucleus. The ras-like nuclear small G protein, Ran, functions in nuclear-cytosolic transport and regulatory signal transmission. In yeast, some genes involved in the Ran system in yeast are required for growth on glycerol medium. Growth deficiency, due to mutations in the GSP1 gene, which encodes Ran, is allele specific. Specifically in this study, the gsp1-1894 cells lost mitochondria, and could not grow on media containing glycerol, galactose or maltose. However, the gsp1-1894 cells grew better on a high salt medium (1 M NaCl) and had increased expression levels of GPD1-lacZ. Furthermore, disruption of the HOG1 gene suppressed their growth deficiency on glycerol medium. These findings suggest that altered activation of Hog1 in the gsp1-1894 cells resulted in the loss of mitochondria and inhibition of glycerol metabolism. Growth deficiency of the gsp1-1894 cells on galactose medium was further suppressed by high dosage of the SIP2 DNA, which encodes the cytosolic β subunit of AMPK. This suggests that higher cytosolic activity of AMPK is required for the utilization of an alternative carbon source in gsp1-1894 cells.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Department of Health and Nutrition, Faculty of Human Health Science, Kanazawa Gakuin University, 10 Sue-machi, Kanazawa, Ishikawa, 920-1392, Japan.
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
2
|
Matsuura Y. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs. J Mol Biol 2015; 428:2025-39. [PMID: 26519791 DOI: 10.1016/j.jmb.2015.09.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
3
|
Koyama M, Shirai N, Matsuura Y. Structural insights into how Yrb2p accelerates the assembly of the Xpo1p nuclear export complex. Cell Rep 2014; 9:983-95. [PMID: 25437554 DOI: 10.1016/j.celrep.2014.09.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/25/2014] [Accepted: 09/28/2014] [Indexed: 11/29/2022] Open
Abstract
Proteins and ribonucleoproteins containing a nuclear export signal (NES) assemble with the exportin Xpo1p (yeast CRM1) and Gsp1p-GTP (yeast Ran-GTP) in the nucleus and exit through the nuclear pore complex. In the cytoplasm, Yrb1p (yeast RanBP1) displaces NES from Xpo1p. Efficient export of NES-cargoes requires Yrb2p (yeast RanBP3), a primarily nuclear protein containing nucleoporin-like phenylalanine-glycine (FG) repeats and a low-affinity Gsp1p-binding domain (RanBD). Here, we show that Yrb2p strikingly accelerates the association of Gsp1p-GTP and NES to Xpo1p. We have solved the crystal structure of the Xpo1p-Yrb2p-Gsp1p-GTP complex, a key assembly intermediate that can bind cargo rapidly. Although the NES-binding cleft of Xpo1p is closed in this intermediate, our data suggest that preloading of Gsp1p-GTP onto Xpo1p by Yrb2p, conformational flexibility of Xpo1p, and the low affinity of RanBD enable active displacement of Yrb2p RanBD by NES to occur effectively. The structure also reveals the major binding sites for FG repeats on Xpo1p.
Collapse
Affiliation(s)
- Masako Koyama
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602 Furo-cho, Chikusa-ku, Nagoya City, Japan
| | - Natsuki Shirai
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602 Furo-cho, Chikusa-ku, Nagoya City, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, 464-8602 Furo-cho, Chikusa-ku, Nagoya City, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, 464-8602 Furo-cho, Chikusa-ku, Nagoya City, Japan.
| |
Collapse
|
4
|
McGuire AT, Mangroo D. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex. Traffic 2011; 13:234-56. [PMID: 22008473 DOI: 10.1111/j.1600-0854.2011.01304.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 01/17/2023]
Abstract
Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC.
Collapse
Affiliation(s)
- Andrew T McGuire
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
5
|
Ran-dependent nuclear export mediators: a structural perspective. EMBO J 2011; 30:3457-74. [PMID: 21878989 DOI: 10.1038/emboj.2011.287] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/22/2011] [Indexed: 12/25/2022] Open
Abstract
Nuclear export is an essential eukaryotic activity. It proceeds through nuclear pore complexes (NPCs) and is mediated by soluble receptors that shuttle between nucleus and cytoplasm. RanGTPase-dependent export mediators (exportins) constitute the largest class of these carriers and are functionally highly versatile. All of these exportins load their substrates in response to RanGTP binding in the nucleus and traverse NPCs as ternary RanGTP-exportin-cargo complexes to the cytoplasm, where GTP hydrolysis leads to export complex disassembly. The different exportins vary greatly in their substrate range. Recent structural studies of both protein- and RNA-specific exporters have illuminated how exportins bind their cargoes, how Ran triggers cargo loading and how export complexes are disassembled in the cytoplasm. Here, we review the current state of knowledge and highlight emerging principles as well as prevailing questions.
Collapse
|
6
|
|
7
|
Neuber A, Franke J, Wittstruck A, Schlenstedt G, Sommer T, Stade K. Nuclear export receptor Xpo1/Crm1 is physically and functionally linked to the spindle pole body in budding yeast. Mol Cell Biol 2008; 28:5348-58. [PMID: 18573877 PMCID: PMC2519715 DOI: 10.1128/mcb.02043-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/28/2007] [Accepted: 06/16/2008] [Indexed: 01/13/2023] Open
Abstract
The spindle pole body (SPB) represents the microtubule organizing center in the budding yeast Saccharomyces cerevisiae. It is a highly structured organelle embedded in the nuclear membrane, which is required to anchor microtubules on both sides of the nuclear envelope. The protein Spc72, a component of the SPB, is located at the cytoplasmic face of this organelle and serves as a receptor for the gamma-tubulin complex. In this paper we show that it is also a binding partner of the nuclear export receptor Xpo1/Crm1. Xpo1 binds its cargoes in a Ran-dependent fashion via a short leucine-rich nuclear export signal (NES). We show that binding of Spc72 to Xpo1 depends on Ran-GTP and a functional NES in Spc72. Mutations in this NES have severe consequences for mitotic spindle morphology in vivo. This is also the case for xpo1 mutants, which show a reduction in cytoplasmic microtubules. In addition, we find a subpopulation of Xpo1 localized at the SPB. Based on these data, we propose a functional link between Xpo1 and the SPB and discuss a role for this exportin in spindle biogenesis in budding yeast.
Collapse
Affiliation(s)
- Anja Neuber
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Str. 10, 13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Yoon SO, Shin S, Liu Y, Ballif BA, Woo MS, Gygi SP, Blenis J. Ran-binding protein 3 phosphorylation links the Ras and PI3-kinase pathways to nucleocytoplasmic transport. Mol Cell 2008; 29:362-75. [PMID: 18280241 DOI: 10.1016/j.molcel.2007.12.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 08/17/2007] [Accepted: 12/15/2007] [Indexed: 10/22/2022]
Abstract
The major participants of the Ras/ERK and PI3-kinase (PI3K) pathways are well characterized. The cellular response to activation of these pathways, however, can vary dramatically. How differences in signal strength, timing, spatial location, and cellular context promote specific cell-fate decisions remains unclear. Nuclear transport processes can have a major impact on the determination of cell fate; however, little is known regarding how nuclear transport is regulated by or regulates these pathways. Here we show that RSK and Akt, which are activated downstream of Ras/ERK and PI3K, respectively, modulate the Ran gradient and nuclear transport by interacting with, phosphorylating, and regulating Ran-binding protein 3 (RanBP3) function. Our findings highlight an important link between two major cell-fate determinants: nuclear transport and the Ras/ERK/RSK and PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Sang-Oh Yoon
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Hayashi N, Kobayashi M, Shimizu H, Yamamoto KI, Murakami S, Nishimoto T. Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2007; 363:788-94. [PMID: 17904525 DOI: 10.1016/j.bbrc.2007.09.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 11/29/2022]
Abstract
The Ran GTPase system regulates the direction and timing of several cellular events, such as nuclear-cytosolic transport, centrosome formation, and nuclear envelope assembly in telophase. To gain insight into the Ran system's involvement in chromatin formation, we investigated gene silencing at the telomere in several mutants of the budding yeast Saccharomyces cerevisiae, which had defects in genes involved in the Ran system. A mutation of the RanGAP gene, rna1-1, caused reduced silencing at the telomere, and partial disruption of the nuclear Ran binding factor, yrb2-delta2, increased this silencing. The reduced telomere silencing in rna1-1 cells was suppressed by a high dosage of the SIR3 gene or the SIT4 gene. Furthermore, hyperphosphorylated Sir3 protein accumulated in the rna1-1 mutant. These results suggest that RanGAP is required for the heterochromatin structure at the telomere in budding yeast.
Collapse
Affiliation(s)
- Naoyuki Hayashi
- Department of Molecular Pathology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Aguilera J, Randez-Gil F, Prieto JA. Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 2007; 31:327-41. [PMID: 17298585 DOI: 10.1111/j.1574-6976.2007.00066.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The response of yeast cells to sudden temperature downshifts has received little attention compared with other stress conditions. Like other organisms, both prokaryotes and eukaryotes, in Saccharomyces cerevisiae a decrease in temperature induces the expression of many genes involved in transcription and translation, some of which display a cold-sensitivity phenotype. However, little is known about the role played by many cold-responsive genes, the sensing and regulatory mechanisms that control this response or the biochemical adaptations at or near 0 degrees C. This review focuses on the physiological significance of cold-shock responses, emphasizing the molecular mechanisms that generate and transmit cold signals. There is now enough experimental evidence to conclude that exposure to low temperature protects yeast cells against freeze injury through the cold-induced accumulation of trehalose, glycerol and heat-shock proteins. Recent results also show that changes in membrane fluidity are the primary signal triggering the cold-shock response. Notably, this signal is transduced and regulated through classical stress pathways and transcriptional factors, the high-osmolarity glycerol mitogen-activated protein kinase pathway and Msn2/4p. Alternative cold-stress generators and transducers will also be presented and discussed.
Collapse
Affiliation(s)
- Jaime Aguilera
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
11
|
Seiser RM, Sundberg AE, Wollam BJ, Zobel-Thropp P, Baldwin K, Spector MD, Lycan DE. Ltv1 is required for efficient nuclear export of the ribosomal small subunit in Saccharomyces cerevisiae. Genetics 2006; 174:679-91. [PMID: 16888326 PMCID: PMC1602086 DOI: 10.1534/genetics.106.062117] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/31/2006] [Indexed: 01/28/2023] Open
Abstract
In eukaryotes, 40S and 60S ribosomal subunits are assembled in the nucleus and exported to the cytoplasm independently of one another. Nuclear export of the 60S requires the adapter protein Nmd3, but no analogous adapter has been identified for the 40S. Ltv1 is a nonessential, nonribosomal protein that is required for 40S subunit biogenesis in yeast. Cells lacking LTV1 grow slowly, are hypersensitive to inhibitors of protein synthesis, and produce about half as many 40S subunits as do wild-type cells. Ltv1 interacts with Crm1, co-sediments in sucrose gradients with 43S/40S subunits, and copurifies with late 43S particles. Here we show that Ltv1 shuttles between nucleus and cytoplasm in a Crm1-dependent manner and that it contains a functional NES that is sufficient to direct the export of an NLS-containing reporter. Small subunit export is reduced in Deltaltv1 mutants, as judged by the altered distribution of the 5'-ITS1 rRNA and the 40S ribosomal protein RpS3. Finally, we show a genetic interaction between LTV1 and YRB2, a gene that encodes a Ran-GTP-, Crm1-binding protein that facilitates the small subunit export. We propose that Ltv1 functions as one of several possible adapter proteins that link the nuclear export machinery to the small subunit.
Collapse
Affiliation(s)
- Robert M Seiser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Clément M, Deshaies F, de Repentigny L, Belhumeur P. The nuclear GTPase Gsp1p can affect proper telomeric function through the Sir4 protein inSaccharomyces cerevisiae. Mol Microbiol 2006; 62:453-68. [PMID: 16956377 DOI: 10.1111/j.1365-2958.2006.05374.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The small Ras-like GTPase Ran/Gsp1p is a highly conserved nuclear protein required for the nucleocytoplasmic trafficking of macromolecules. Recent findings suggest that the Ran/Gsp1p pathway may have additional roles in several aspects of nuclear structure and function, including spindle assembly, nuclear envelope formation, nuclear pore complex assembly and RNA processing. Here, we provide evidence that Gsp1p can regulate telomeric function in Saccharomyces cerevisiae. We show that overexpression of PRP20, encoding the Gsp1p GDP/GTP nuclear exchange factor, specifically weakens telomeric silencing without detectably affecting nucleocytoplasmic transport. In addition to this silencing defect, we show that Rap1p and Sir3p delocalize from their normal telomeric foci. Interestingly, Gsp1p was found to interact genetically and physically with the telomeric component Sir4p. Taken together, these results suggest that the GSP1 pathway could regulate proper telomeric function in yeast through Sir4p.
Collapse
Affiliation(s)
- Martin Clément
- Département de microbiologie et immunologie, Université de Montréal, C P 6128, succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
13
|
Nishijima H, Nakayama JI, Yoshioka T, Kusano A, Nishitani H, Shibahara KI, Nishimoto T. Nuclear RanGAP is required for the heterochromatin assembly and is reciprocally regulated by histone H3 and Clr4 histone methyltransferase in Schizosaccharomyces pombe. Mol Biol Cell 2006; 17:2524-36. [PMID: 16540522 PMCID: PMC1474784 DOI: 10.1091/mbc.e05-09-0893] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the Ran GTPase-activating protein RanGAP mainly functions in the cytoplasm, several lines of evidence indicate a nuclear function of RanGAP. We found that Schizosaccharomyces pombe RanGAP, SpRna1, bound the core of histone H3 (H3) and enhanced Clr4-mediated H3-lysine 9 (K9) methylation. This enhancement was not observed for methylation of the H3-tail containing K9 and was independent of SpRna1-RanGAP activity, suggesting that SpRna1 itself enhances Clr4-mediated H3-K9 methylation via H3. Although most SpRna1 is in the cytoplasm, some cofractionated with H3. Sprna1(ts) mutations caused decreases in Swi6 localization and H3-K9 methylation at all three heterochromatic regions of S. pombe. Thus, nuclear SpRna1 seems to be involved in heterochromatin assembly. All core histones bound SpRna1 and inhibited SpRna1-RanGAP activity. In contrast, Clr4 abolished the inhibitory effect of H3 on the RanGAP activity of SpRna1 but partially affected the other histones. SpRna1 formed a trimeric complex with H3 and Clr4, suggesting that nuclear SpRna1 is reciprocally regulated by histones, especially H3, and Clr4 on the chromatin to function for higher order chromatin assembly. We also found that SpRna1 formed a stable complex with Xpo1/Crm1 plus Ran-GTP, in the presence of H3.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; and
| | - Jun-ichi Nakayama
- Laboratory for Chromatin Dynamics, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Tomoko Yoshioka
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayumi Kusano
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideo Nishitani
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; and
| | - Takeharu Nishimoto
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Address correspondence to: Takeharu Nishimoto (
)
| |
Collapse
|
14
|
Dilworth DJ, Tackett AJ, Rogers RS, Yi EC, Christmas RH, Smith JJ, Siegel AF, Chait BT, Wozniak RW, Aitchison JD. The mobile nucleoporin Nup2p and chromatin-bound Prp20p function in endogenous NPC-mediated transcriptional control. ACTA ACUST UNITED AC 2006; 171:955-65. [PMID: 16365162 PMCID: PMC2171315 DOI: 10.1083/jcb.200509061] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) govern macromolecular transport between the nucleus and cytoplasm and serve as key positional markers within the nucleus. Several protein components of yeast NPCs have been implicated in the epigenetic control of gene expression. Among these, Nup2p is unique as it transiently associates with NPCs and, when artificially tethered to DNA, can prevent the spread of transcriptional activation or repression between flanking genes, a function termed boundary activity. To understand this function of Nup2p, we investigated the interactions of Nup2p with other proteins and with DNA using immunopurifications coupled with mass spectrometry and microarray analyses. These data combined with functional assays of boundary activity and epigenetic variegation suggest that Nup2p and the Ran guanylyl-nucleotide exchange factor, Prp20p, interact at specific chromatin regions and enable the NPC to play an active role in chromatin organization by facilitating the transition of chromatin between activity states.
Collapse
|
15
|
Hirose E, Mukai M, Shimada A, Nishitani H, Shibata Y, Nishimoto T. Loss of RanGEF/Pim1 activity abolishes the orchestration of Ran-mediated mitotic cellular events in S. pombe. Genes Cells 2005; 11:29-46. [PMID: 16371130 DOI: 10.1111/j.1365-2443.2005.00919.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RCC1, a conserved chromosomal protein with a seven-bladed propeller is a GDP/GTP nucleotide exchange factor for RanGTPase that mediates various cellular events. We isolated 16 temperature-sensitive (ts) mutants of S. pombeRCC1-homolog, pim1+, by error-prone PCR. Five pim1(ts) mutants had a single mutation. The obtained pim1(ts) mutations and previously reported mutations were localized on similar sites in seven RCC1 repeats. Those mutations resulted in a reduced binding of Pim1 with Spi1. All pim1(ts) mutants showed a defect in nucleocytoplasmic protein transports, whereas the majority of them showed a normal mRNA export. In all pim1(ts) examined, chromosomal DNA replication was completed. However, mitotic spindle formation was abrogated, the septum was formed being uncoupled with nuclear division and abnormally widened, thus resulting in chromosomal DNA mis-segregation and the accumulation of enucleated cells. As a result, a defect of RanGEF/Pim1 abolished the orchestration of sequential mitotic events, spindle formation, septation and cytokinesis that are essential to produce two identical daughter cells.
Collapse
Affiliation(s)
- Eiji Hirose
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1, Maidashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Nakashima N, Sekiguchi T, Nishimoto T. Saccharomyces cerevisiae GTPase complex: Gtr1p-Gtr2p regulates cell-proliferation through Saccharomyces cerevisiae Ran-binding protein, Yrb2p. Biochem Biophys Res Commun 2005; 336:639-45. [PMID: 16143306 DOI: 10.1016/j.bbrc.2005.08.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/16/2005] [Indexed: 11/25/2022]
Abstract
A Gtr1p GTPase, the GDP mutant of which suppresses both temperature-sensitive mutants of Saccharomyces cerevisiae RanGEF/Prp20p and RanGAP/Rna1p, was presently found to interact with Yrb2p, the S. cerevisiae homologue of mammalian Ran-binding protein 3. Gtr1p bound the Ran-binding domain of Yrb2p. In contrast, Gtr2p, a partner of Gtr1p, did not bind Yrb2p, although it bound Gtr1p. A triple mutant: yrb2delta gtr1delta gtr2delta was lethal, while a double mutant: gtr1delta gtr2delta survived well, indicating that Yrb2p protected cells from the killing effect of gtr1delta gtr2delta. Recombinant Gtr1p and Gtr2p were purified as a complex from Escherichia coli. The resulting Gtr1p-Gtr2p complex was comprised of an equal amount of Gtr1p and Gtr2p, which inhibited the Rna1p/Yrb2 dependent RanGAP activity. Thus, the Gtr1p-Gtr2p cycle was suggested to regulate the Ran cycle through Yrb2p.
Collapse
Affiliation(s)
- Yonggang Wang
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
In this article, we identify a cold-sensitive mutant of Xpo1p designated as xop1-2 (but will be referred to from here on as xpo1-ok) that is synthetically lethal with srm1-1, a Saccharomyces cerevisiae RCC1 homolog. xpo1-ok was a novel mutated allele with a single point mutation, T283P. Suppressors of xpo1-ok were isolated, and one of them was found to encode a novel nuclear envelope integral membrane protein designated as Brl1p (Brr6 like protein no. 1). Brl1p is homologous with Brr6p at the C-terminal domain, which is well conserved in the Brr6/Brl1 family. To characterize the function of Brl1p, a series of temperature-sensitive mutants of Brl1p were isolated. All of brl1 mutations were localized to the conserved C-terminal domain that is essential for a function of Brl1p. Some brl1 alleles showed defects in nuclear export of either mRNA or protein, and nuclear pore clustering, similar to brr6-1. The cellular localization of Brl1p is also similar to that of Brr6p. The genetic analysis suggested that Brl1p functionally interacts with Brr6p. An interaction of Brl1p with Brr6p was shown by the two-hybrid method. We hypothesize that Brl1p functions for nuclear export as a complex with Brr6p.
Collapse
Affiliation(s)
- Yoh-Hei Saitoh
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
18
|
Younis I, Green PL. The human T-cell leukemia virus Rex protein. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:431-45. [PMID: 15574380 PMCID: PMC2659543 DOI: 10.2741/1539] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A critical step in the life cycle of complex retroviruses, including HTLV-1 and HTLV-2 is the ability of these viruses to adopt a mechanism by which the genome-length unspliced mRNA as well as the partially spliced mRNAs are exported from the nucleus instead of being subjected to splicing or degradation. In HTLV, this is accomplished through the expression of the viral Rex, which recognizes a specific response element on the incompletely spliced mRNAs, stabilizes them, inhibits their splicing, and utilizes the CRM1-dependent cellular pathway for transporting them from the nucleus to the cytoplasm. Rex itself is regulated by phosphorylation, which implies that proper activation of the protein in response to certain cellular cues is an important tool for the virus to ensure that specific viral gene expression is allowed only when the host cell can provide the best conditions for virion production. Having such a critical role in HTLV life cycle, Rex is indispensable for efficient viral replication, infection and spread. Indeed, Rex is considered to regulate the switch between the latent and productive phases of the HTLV life cycle. Without a functional Rex, the virus would still produce regulatory and some accessory gene products; however, structural and enzymatic post-transcriptional gene expression would be severely repressed, essentially leading to non-productive viral replication. More detailed understanding of the exact molecular mechanism of action of Rex will thus allow for better design of therapeutic drugs against Rex function and ultimately HTLV replication. Herein we summarize the progress made towards understanding Rex function and its role in the HTLV life cycle.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
19
|
Neuwald AF, Kannan N, Poleksic A, Hata N, Liu JS. Ran's C-terminal, basic patch, and nucleotide exchange mechanisms in light of a canonical structure for Rab, Rho, Ras, and Ran GTPases. Genome Res 2003; 13:673-92. [PMID: 12671004 PMCID: PMC430177 DOI: 10.1101/gr.862303] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Proteins comprising the core of the eukaryotic cellular machinery are often highly conserved, presumably due to selective constraints maintaining important structural features. We have developed statistical procedures to decompose these constraints into distinct categories and to pinpoint critical structural features within each category. When applied to P-loop GTPases, this revealed within Rab, Rho, Ras, and Ran a canonical network of molecular interactions centered on bound nucleotide. This network presumably performs a crucial structural and/or mechanistic role considering that it has persisted for more than a billion years after the divergence of these families. We call these 'FY-pivot' GTPases after their most distinguishing feature, a phenylalanine or tyrosine that functions as a pivot within this network. Specific families deviate somewhat from canonical features in interesting ways, presumably reflecting their functional specialization during evolution. We illustrate this here for Ran GTPases, within which two highly conserved histidines, His30 and His139, strikingly diverge from their canonical counterparts. These, along with other residues specifically conserved in Ran, such as Tyr98, Lys99, and Phe138, appear to work in conjunction with FY-pivot canonical residues to facilitate alternative conformations in which these histidines are strategically positioned to couple Ran's basic patch and C-terminal switch to nucleotide exchange and effector binding. Other core components of the cellular machinery are likewise amenable to this approach, which we term Contrast Hierarchical Alignment and Interaction Network (CHAIN) analysis.
Collapse
Affiliation(s)
- Andrew F Neuwald
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | | | | | | | |
Collapse
|
20
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
21
|
Fornerod M, Ohno M. Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 2002; 35:67-91. [PMID: 11791409 DOI: 10.1007/978-3-540-44603-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maarten Fornerod
- EMBL, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
22
|
Abstract
Eukaryotic ribosome biogenesis requires multiple steps of nuclear transport because ribosomes are assembled in the nucleus while protein synthesis occurs in the cytoplasm. Using an in situ RNA localization assay in the yeast Saccharomyces cerevisiae, we determined that efficient nuclear export of the small ribosomal subunit requires Yrb2, a factor involved in Crm1-mediated export. Furthermore, in cells lacking YRB2, the stability and abundance of the small ribosomal subunit is decreased in comparison with the large ribosomal subunit. To identify additional factors affecting small subunit export, we performed a large-scale screen of temperature-sensitive mutants. We isolated new alleles of several nucleoporins and Ran-GTPase regulators. Together with further analysis of existing mutants, we show that nucleoporins previously shown to be defective in ribosomal assembly are also defective in export of the small ribosomal subunit.
Collapse
Affiliation(s)
- Terence I Moy
- Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
23
|
Affiliation(s)
- F Ralf Bischoff
- Division for Molecular Biology of Mitosis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
24
|
Clément M, Fournier H, Ouspenski II, de Repentigny L, Belhumeur P. Molecular cloning of CaYRB1, the Candida albicans RanBP1/YRB1 homologue. Yeast 2001; 18:915-22. [PMID: 11447597 DOI: 10.1002/yea.734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The yeast Ran binding protein 1 (Yrb1p) is a small protein of 23 kDa that is highly conserved among eukaryotes. It stimulates the GTPase activity of Gsp1p in the presence of the GTPase activating protein Rna1p. In addition to its role in nucleocytoplasmic transport of macromolecules, YRB1/RanBP1 could be involved in the regulation of microtubules structure and dynamics. Since microtubules are tightly associated with morphological changes, we have been interested to study the role and function of YRB1 in the pathogenic fungus Candida albicans, where there is regulated change in cellular morphology. The gene product of CaYRB1 encodes a 212 amino acid protein displaying 73% homology to the S. cerevisiae homologue. The bacterially expressed gene product has an apparent molecular weight of 35.7 kDa. We show that it can complement a S. cerevisiae yrb1 null mutant and that its mRNA does not appear to be regulated in response to conditions inducing morphological changes in C. albicans.
Collapse
Affiliation(s)
- M Clément
- Department of Microbiology and Immunology, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
25
|
Lindsay ME, Holaska JM, Welch K, Paschal BM, Macara IG. Ran-binding protein 3 is a cofactor for Crm1-mediated nuclear protein export. J Cell Biol 2001; 153:1391-402. [PMID: 11425870 PMCID: PMC2150735 DOI: 10.1083/jcb.153.7.1391] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2001] [Accepted: 05/18/2001] [Indexed: 11/25/2022] Open
Abstract
Crm1 is a member of the karyopherin family of nucleocytoplasmic transport receptors and mediates the export of proteins from the nucleus by forming a ternary complex with cargo and Ran:GTP. This complex translocates through the nuclear pores and dissociates in the cytosol. The yeast protein Yrb2p participates in this pathway and binds Crm1, but its mechanism of action has not been established. We show that the human orthologue of Yrb2p, Ran-binding protein 3 (RanBP3), acts as a cofactor for Crm1-mediated export in a permeabilized cell assay. RanBP3 binds directly to Crm1, and the complex possesses an enhanced affinity for both Ran:GTP and cargo. RanBP3 shuttles between the nucleus and the cytoplasm by a Crm1-dependent mechanism, and the Crm1--RanBP3-NES-Ran:GTP quarternary complex can associate with nucleoporins. We infer that this complex translocates through the nuclear pore to the cytoplasm where it is disassembled by RanBP1 and Ran GTPase--activating protein.
Collapse
Affiliation(s)
- M E Lindsay
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22098, USA.
| | | | | | | | | |
Collapse
|
26
|
Suzuki N, Noguchi E, Nakashima N, Oki M, Ohba T, Tartakoff A, Ohishi M, Nishimoto T. The Saccharomyces cerevisiae small GTPase, Gsp1p/Ran, is involved in 3' processing of 7S-to-5.8S rRNA and in degradation of the excised 5'-A0 fragment of 35S pre-rRNA, both of which are carried out by the exosome. Genetics 2001; 158:613-25. [PMID: 11404326 PMCID: PMC1461697 DOI: 10.1093/genetics/158.2.613] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dis3p, a subunit of the exosome, interacts directly with Ran. To clarify the relationship between the exosome and the RanGTPase cycle, a series of temperature-sensitive Saccharomyces cerevisiae dis3 mutants were isolated and their 5.8S rRNA processing was compared with processing in strains with mutations in a S. cerevisiae Ran homologue, Gsp1p. In both dis3 and gsp1 mutants, 3' processing of 7S-to-5.8S rRNA was blocked at three identical sites in an allele-specific manner. In contrast, the 5' end of 5.8S rRNA was terminated normally in gsp1 and in dis3. Inhibition of 5.8S rRNA maturation in gsp1 was rescued by overexpression of nuclear exosome components Dis3p, Rrp4p, and Mtr4p, but not by a cytoplasmic exosome component, Ski2p. Furthermore, gsp1 and dis3 accumulated the 5'-A0 fragment of 35S pre-rRNA, which is also degraded by the exosome, and the level of 27S rRNA was reduced. Neither 5.8S rRNA intermediates nor 5'-A0 fragments were observed in mutants defective in the nucleocytoplasmic transport, indicating that Gsp1p regulates rRNA processing through Dis3p, independent of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- N Suzuki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maedashi, Higashiku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Renault L, Kuhlmann J, Henkel A, Wittinghofer A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 2001; 105:245-55. [PMID: 11336674 DOI: 10.1016/s0092-8674(01)00315-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
RCC1 (regulator of chromosome condensation), a beta propeller chromatin-bound protein, is the guanine nucleotide exchange factor (GEF) for the nuclear GTP binding protein Ran. We report here the 1.8 A crystal structure of a Ran*RCC1 complex in the absence of nucleotide, an intermediate in the multistep GEF reaction. In contrast to previous structures, the phosphate binding region of the nucleotide binding site is perturbed only marginally, possibly due to the presence of a polyvalent anion in the P loop. Biochemical experiments show that a sulfate ion stabilizes the Ran*RCC1 complex and inhibits dissociation by guanine nucleotides. Based on the available structural and biochemical evidence, we present a unified scenario for the GEF mechanism where interaction of the P loop lysine with an acidic residue is a crucial element for the overall reaction.
Collapse
Affiliation(s)
- L Renault
- Max-Planck-Institut für Molekulare Physiologie, Postfach 50 02 47, 44202, Dortmund, Germany
| | | | | | | |
Collapse
|
28
|
Sekiguchi T, Hirose E, Nakashima N, Ii M, Nishimoto T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 2001; 276:7246-57. [PMID: 11073942 DOI: 10.1074/jbc.m004389200] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rag A/Gtr1p are G proteins and are known to be involved in the RCC1-Ran pathway. We employed the two-hybrid method using Rag A as the bait to identify proteins binding to Rag A, and we isolated two novel human G proteins, Rag C and Rag D. Rag C demonstrates homology with Rag D (81.1% identity) and with Gtr2p of Saccharomyces cerevisiae (46.1% identity), and it belongs to the Rag A subfamily of the Ras family. Rag C and Rag D contain conserved GTP-binding motifs (PM-1, -2, and -3) in their N-terminal regions. Recombinant glutathione S-transferase fusion protein of Rag C efficiently bound to both [(3)H]GTP and [(3)H]GDP. Rag A was associated with both Rag C and Rag D in their C-terminal regions where a potential leucine zipper motif and a coiled-coil structure were found. Rag C and D were associated with both the GDP and GTP forms of Rag A. Both Rag C and Rag D changed their subcellular localization, depending on the nucleotide-bound state of Rag A. In a similar way, the disruption of S. cerevisiae GTR1 resulted in a change in the localization of Gtr2p.
Collapse
Affiliation(s)
- T Sekiguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
29
|
Maurer P, Redd M, Solsbacher J, Bischoff FR, Greiner M, Podtelejnikov AV, Mann M, Stade K, Weis K, Schlenstedt G. The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). Mol Biol Cell 2001; 12:539-49. [PMID: 11251069 PMCID: PMC30962 DOI: 10.1091/mbc.12.3.539] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2000] [Revised: 10/18/2000] [Accepted: 01/09/2001] [Indexed: 11/11/2022] Open
Abstract
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin beta-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p.
Collapse
Affiliation(s)
- P Maurer
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, 66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oki M, Nishimoto T. Yrb1p interaction with the gsp1p C terminus blocks Mog1p stimulation of GTP release from Gsp1p. J Biol Chem 2000; 275:32894-900. [PMID: 10921930 DOI: 10.1074/jbc.m910251199] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mog1p, a multicopy suppressor of gsp1, the temperature-sensitive mutant of the Saccharomyces cerevisiae Ran homologue, binds to GTP-Gsp1p but not to GDP-Gsp1p. The function of Mog1p in the Ran cycle is as yet unknown. This study found that Mog1p releases a nucleotide from GTP-Gsp1p but not from GDP-Gsp1p. Yrb1p, the S. cerevisiae homologue of RanBP1, which is a strong inhibitor of RCC1-stimulated nucleotide release, also inhibited the Mog1p-stimulated nucleotide release from GTP-Gsp1p. At a concentration corresponding to the molar concentration of GTP-Gsp1p, Yrb1p completely inhibited the Mog1p-stimulated nucleotide release. Consistently, the Yrb1p.GTP-Gsp1p complex was more stable than the Mog1p.GTP-Gsp1p complex. Yrb1p did not inhibit the Mog1p-stimulated nucleotide release from GTP-Gsp1DeltaC. The Gsp1DeltaC protein lacks the final eight amino acids of the C terminus, and for this reason, the interaction between GTP-Gsp1DeltaC and Yrb1p was strongly reduced. On the other hand, Mog1p binds to GTP-Gsp1DeltaC more efficiently than to GTP-Gsp1p.
Collapse
Affiliation(s)
- M Oki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
31
|
Ciufo LF, Brown JD. Nuclear export of yeast signal recognition particle lacking Srp54p by the Xpo1p/Crm1p NES-dependent pathway. Curr Biol 2000; 10:1256-64. [PMID: 11069106 DOI: 10.1016/s0960-9822(00)00743-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The movement of macromolecules through the nuclear pores requires energy and transport receptors that bind both cargo and nuclear pores. Different molecules/complexes often require different transport receptors. The signal recognition particle (SRP) is a conserved cytosolic ribonucleoprotein that targets proteins to the endoplasmic reticulum. Previous studies have shown that the export of SRP RNA from the nucleus requires trans-acting factors and that SRP may be at least partly assembled in the nucleus, but little else is known about how it is assembled and exported into the cytoplasm. RESULTS Of the six proteins that constitute the yeast SRP, we found that all except Srp54p were imported into the nucleus. Four of these had nucleolar pools. The same four proteins are required for stability of the yeast SRP RNA scR1, suggesting that they assemble with the RNA in the nucleus to form a central core SRP. This core SRP was a competent export substrate. Of the remaining components, Sec65p entered the nucleus and was assembled onto the core particle there, whereas Srp54p was solely cytoplasmic. The export of SRP from the nucleus required the transport receptor Xpo1p/Crm1p and Yrb2p, both components of the pathway that exports leucine-rich nuclear export signal (NES)-containing proteins from the nucleus. CONCLUSIONS The SRP is assembled in the nucleus into a complex lacking only Srp54p. It is then exported through the NES pathway into the cytoplasm where Srp54p binds to it. This transport route for a ribonucleoprotein complex is so far unique in yeast.
Collapse
Affiliation(s)
- L F Ciufo
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | |
Collapse
|
32
|
Künzler M, Gerstberger T, Stutz F, Bischoff FR, Hurt E. Yeast Ran-binding protein 1 (Yrb1) shuttles between the nucleus and cytoplasm and is exported from the nucleus via a CRM1 (XPO1)-dependent pathway. Mol Cell Biol 2000; 20:4295-308. [PMID: 10825193 PMCID: PMC85797 DOI: 10.1128/mcb.20.12.4295-4308.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/1999] [Accepted: 03/29/2000] [Indexed: 11/20/2022] Open
Abstract
The RanGTP-binding protein RanBP1, which is located in the cytoplasm, has been implicated in release of nuclear export complexes from the cytoplasmic side of the nuclear pore complex. Here we show that Yrb1 (the yeast homolog of RanBP1) shuttles between the nucleus and the cytoplasm. Nuclear import of Yrb1 is a facilitated process that requires a short basic sequence within the Ran-binding domain (RBD). By contrast, nuclear export of Yrb1 requires an intact RBD, which forms a ternary complex with the Xpo1 (Crm1) NES receptor in the presence of RanGTP. Nuclear export of Yrb1, however, is insensitive towards leptomycin B, suggesting a novel type of substrate recognition between Yrb1 and Xpo1. Taken together, these data suggest that ongoing nuclear import and export is an important feature of Yrb1 function in vivo.
Collapse
Affiliation(s)
- M Künzler
- Ruprecht-Karls-Universität Heidelberg, Biochemie-Zentrum Heidelberg (BZH), Germany
| | | | | | | | | |
Collapse
|
33
|
Abstract
Among the Ras family, Ran is a unique small G protein. It does not have a lipid modification motif at the C-terminus to bind to the membrane, which is often observed within the Ras family. Ran may therefore interact with a wide range of proteins in various intracellular locations. This means that Ran could play many different roles like nucleocytoplasmic transport, microtubule assembly and so on. All of the Ran functions should be regulated by RanGEF and RanGAP. It is an interesting issue why RCC1, a RanGEF, is localized in the nucleus and RanGAP1/Ran1p in the cytoplasm. It is possible that RCC1 checks the state of chromosomal DNA replication and transfers it to the downstream events through Ran; thereby, RCC1 would be involved in coupling the spatial localization of cellular macromolecules with the cell cycle progression. In this context, Ran will be a very important cell cycle mediator. There is yet another G protein cascade, Gtr1-Gtr2, which interacts with the Ran cycle.
Collapse
Affiliation(s)
- T Nishimoto
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
34
|
Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 2000; 148:635-51. [PMID: 10684247 PMCID: PMC2169373 DOI: 10.1083/jcb.148.4.635] [Citation(s) in RCA: 1122] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2000] [Accepted: 01/24/2000] [Indexed: 01/07/2023] Open
Abstract
An understanding of how the nuclear pore complex (NPC) mediates nucleocytoplasmic exchange requires a comprehensive inventory of the molecular components of the NPC and a knowledge of how each component contributes to the overall structure of this large molecular translocation machine. Therefore, we have taken a comprehensive approach to classify all components of the yeast NPC (nucleoporins). This involved identifying all the proteins present in a highly enriched NPC fraction, determining which of these proteins were nucleoporins, and localizing each nucleoporin within the NPC. Using these data, we present a map of the molecular architecture of the yeast NPC and provide evidence for a Brownian affinity gating mechanism for nucleocytoplasmic transport.
Collapse
Affiliation(s)
- M P Rout
- The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The compartmentation of eukaryotic cells requires all nuclear proteins to be imported from the cytoplasm, whereas, for example, transfer RNAs, messenger RNAs, and ribosomes are made in the nucleus and need to be exported to the cytoplasm. Nuclear import and export proceed through nuclear pore complexes and can occur along a great number of distinct pathways, many of which are mediated by importin beta-related nuclear transport receptors. These receptors shuttle between nucleus and cytoplasm, and they bind transport substrates either directly or via adapter molecules. They all cooperate with the RanGTPase system to regulate the interactions with their cargoes. Another focus of our review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin beta-related factors. We discuss mechanistic aspects and the energetics of transport receptor function and describe a number of pathways in detail.
Collapse
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany.
| | | |
Collapse
|
36
|
Welch K, Franke J, Köhler M, Macara IG. RanBP3 contains an unusual nuclear localization signal that is imported preferentially by importin-alpha3. Mol Cell Biol 1999; 19:8400-11. [PMID: 10567565 PMCID: PMC84936 DOI: 10.1128/mcb.19.12.8400] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The full range of sequences that constitute nuclear localization signals (NLSs) remains to be established. Even though the sequence of the classical NLS contains polybasic residues that are recognized by importin-alpha, this import receptor can also bind cargo that contains no recognizable signal, such as STAT1. The situation is further complicated by the existence of six mammalian importin-alpha family members. We report the identification of an unusual type of NLS in human Ran binding protein 3 (RanBP3) that binds preferentially to importin-alpha3. RanBP3 contains a variant Ran binding domain most similar to that found in the yeast protein Yrb2p. Anti-RanBP3 immunofluorescence is predominantly nuclear. Microinjection of glutathione S-transferase-green fluorescent protein-RanBP3 fusions demonstrated that a region at the N terminus is essential and sufficient for nuclear localization. Deletion analysis further mapped the signal sequence to residues 40 to 57. This signal resembles the NLSs of c-Myc and Pho4p. However, several residues essential for import via the c-Myc NLS are unnecessary in the RanBP3 NLS. RanBP3 NLS-mediated import was blocked by competitive inhibitors of importin-alpha or importin-beta or by the absence of importin-alpha. Binding assays using recombinant importin-alpha1, -alpha3, -alpha4, -alpha5, and -alpha7 revealed a preferential interaction of the RanBP3 NLS with importin-alpha3 and -alpha4, in contrast to the simian virus 40 T-antigen NLS, which interacted to similar extents with all of the isoforms. Nuclear import of the RanBP3 NLS was most efficient in the presence of importin-alpha3. These results demonstrate that members of the importin-alpha family possess distinct preferences for certain NLS sequences and that the NLS consensus sequence is broader than was hitherto suspected.
Collapse
Affiliation(s)
- K Welch
- Markey Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
37
|
Booth JW, Belanger KD, Sannella MI, Davis LI. The yeast nucleoporin Nup2p is involved in nuclear export of importin alpha/Srp1p. J Biol Chem 1999; 274:32360-7. [PMID: 10542277 DOI: 10.1074/jbc.274.45.32360] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importin alpha.beta heterodimer mediates nuclear import of proteins containing classical nuclear localization signals. After carrying its cargo into the nucleus, the importin dimer dissociates, and Srp1p (the yeast importin alpha subunit) is recycled to the cytoplasm in a complex with Cse1p and RanGTP. Nup2p is a yeast FXFG nucleoporin that contains a Ran-binding domain. We find that export of Srp1p from the nucleus is impaired in Deltanup2 mutants. Also, Srp1p fusion proteins accumulate at the nuclear rim in wild-type cells but accumulate in the nuclear interior in Deltanup2 cells. A deletion of NUP2 shows genetic interactions with mutants in SRP1 and PRP20, which encodes the Ran nucleotide exchange factor. Srp1p binds directly to an N-terminal domain of Nup2p. This region of Nup2p is sufficient to allow accumulation of an Srp1p fusion protein at the nuclear rim, but the C-terminal Ran-binding domain of Nup2p is required for efficient Srp1p export. Formation of the Srp1p.Cse1p. RanGTP export complex releases Srp1p from its binding site in Nup2p. We propose that Nup2p may act as a scaffold that facilitates formation of the Srp1p export complex.
Collapse
Affiliation(s)
- J W Booth
- W.M. Keck Institute for Cellular Visualization, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Ran is a G protein similar to Ras, but it has no membrane binding site. RanGEF, RCC1, is on chromatin and RanGAP, RanGAP1/Rna1p is in cytoplasm. Ran, thus, shuttles between the nucleus and the cytoplasm to complete its GTPase cycle, carrying out nucleocytoplasmic transport of macromolecules. A majority of Ran binding proteins, thus far found, are required for this process. A recently found novel Ran-binding protein, RanBPM, however, is localized in the centrosome. Subsequently, four groups reported that RanGTP, but not RanGDP, can induce microtubule self-organization in Xenopus egg extracts where no nuclear membrane is present. Thus, Ran is suggested to have a new role beyond the nucleocytoplasmic transport of macromolecules. In both microtubule assembly and nucleocytoplasmic transport, chromosomal localization of RCC1 is important to carry out the functions of RanGTPase. In this regard, a future intriguing question is how RCC1 interacts with chromatin DNA.
Collapse
Affiliation(s)
- T Nishimoto
- Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
39
|
Nakashima N, Noguchi E, Nishimoto T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 1999; 152:853-67. [PMID: 10388807 PMCID: PMC1460653 DOI: 10.1093/genetics/152.3.853] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prp20p and Rna1p are GDP/GTP exchanging and GTPase-activating factors of Gsp1p, respectively, and their mutations, prp20-1 and rna1-1, can both be suppressed by Saccharomyces cerevisiae gtr1-11. We found that gtr1-11 caused a single amino acid substitution in Gtr1p, forming S20L, which is a putative GDP-bound mutant protein, while Gtr1p has been reported to bind to GTP alone. Consistently, gtr1-S20N, another putative GDP-bound mutant, suppressed both prp20-1 and rna1-1. On the other hand, gtr1-Q65L, a putative GTP-bound mutant, was inhibitory to prp20-1 and rna1-1. Thus, the role that Gtr1p plays in vivo appears to depend upon the nucleotide bound to it. Our data suggested that the GTP-bound Gtr1p, but not the GDP-bound Gtr1p, interacts with itself through its C-terminal tail. S. cerevisiae possesses a novel gene, GTR2, which is homologous to GTR1. Gtr2p interacts with itself in the presence of Gtr1p. The disruption of GTR2 suppressed prp20-1 and abolished the inhibitory effect of gtr1-Q65L on prp20-1. This finding, taken together with the fact that Gtr1p-S20L is a putative, inactive GDP-bound mutant, implies that Gtr1p negatively regulates the Ran/Gsp1p GTPase cycle through Gtr2p.
Collapse
Affiliation(s)
- N Nakashima
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
40
|
Novoa I, Rush MG, D'Eustachio P. Isolated mammalian and Schizosaccharomyces pombe ran-binding domains rescue S. pombe sbp1 (RanBP1) genomic mutants. Mol Biol Cell 1999; 10:2175-90. [PMID: 10397757 PMCID: PMC25432 DOI: 10.1091/mbc.10.7.2175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian Ran-binding protein-1 (RanBP1) and its fission yeast homologue, sbp1p, are cytosolic proteins that interact with the GTP-charged form of Ran GTPase through a conserved Ran-binding domain (RBD). In vitro, this interaction can accelerate the Ran GTPase-activating protein-mediated hydrolysis of GTP on Ran and the turnover of nuclear import and export complexes. To analyze RanBP1 function in vivo, we expressed exogenous RanBP1, sbp1p, and the RBD of each in mammalian cells, in wild-type fission yeast, and in yeast whose endogenous sbp1 gene was disrupted. Mammalian cells and wild-type yeast expressing moderate levels of each protein were viable and displayed normal nuclear protein import. sbp1(-) yeast were inviable but could be rescued by all four exogenous proteins. Two RBDs of the mammalian nucleoporin RanBP2 also rescued sbp1(-) yeast. In mammalian cells, wild-type yeast, and rescued mutant yeast, exogenous full-length RanBP1 and sbp1p localized predominantly to the cytosol, whereas exogenous RBDs localized predominantly to the cell nucleus. These results suggest that only the RBD of sbp1p is required for its function in fission yeast, and that this function may not require confinement of the RBD to the cytosol. The results also indicate that the polar amino-terminal portion of sbp1p mediates cytosolic localization of the protein in both yeast and mammalian cells.
Collapse
Affiliation(s)
- I Novoa
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
41
|
Floer M, Blobel G. Putative reaction intermediates in Crm1-mediated nuclear protein export. J Biol Chem 1999; 274:16279-86. [PMID: 10347184 DOI: 10.1074/jbc.274.23.16279] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We discovered several novel interactions between proteins involved in Crm1-mediated nuclear export of the nuclear export signal containing human immunodeficiency virus type 1 protein Rev. First, a Rev/Crm1/RanGTP complex (where Ran is Ras-related nuclear protein) reacts with some nucleoporins (Nup42 and Nup159) but not others (NSP1, Nup116, and Nup1), forming a Nup/Crm1/RanGTP complex and concomitantly releasing Rev. Second, RanBP1 (or homologous proteins) can displace Nup and form a ternary RanBP1/RanGTP/Crm1 complex that can be disassembled by RanGAP via GTP hydrolysis. Third, and most surprisingly, RanBP1/RanGTP/Crm1 can be disassembled without GTP hydrolysis by the nucleotide exchange factor RanGEF. Recycling of a Ran/RanGEF complex by GTP and Mg2+ is stimulated by both Crm1 and Rev, allowing reformation of a Rev/Crm1/RanGTP complex. Based on these reactions we propose a model for Crm1-mediated export.
Collapse
Affiliation(s)
- M Floer
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
42
|
Oki M, Nishimoto T. A protein required for nuclear-protein import, Mog1p, directly interacts with GTP-Gsp1p, the Saccharomyces cerevisiae ran homologue. Proc Natl Acad Sci U S A 1998; 95:15388-93. [PMID: 9860978 PMCID: PMC28052 DOI: 10.1073/pnas.95.26.15388] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously isolated 25 temperature-sensitive gsp1 alleles of Saccharomyces cerevisiae Ran homologue, each of which possesses amino acid changes that differ from each other. We report here isolation of three multicopy suppressors-PDE2, NTF2, and a gene designated MOG1-all of which rescued a growth defect of these gsp1 strains. The gsp1 suppression occurred even in the absence of GSP2, another S. cerevisiae GSP1-like gene. Previously, NTF2 was reported to suppress gsp1 but not PDE2. Mog1p, with a calculated molecular mass of 24 kDa, was found to be encoded by the yeast ORF YJR074W. Both MOG1 and NTF2 suppressed a series of gsp1 alleles with similar efficiency, and both suppressed gsp1 even with a single gene dose. Consistent with the high efficiency of gsp1 suppression, Mog1p directly bound to GTP, but not to GDP-Gsp1p. The disruption of MOG1 made yeast temperature-sensitive for growth. Deltamog1, which was suppressed by overexpression of NTF2, was found to have a defect in both classic and nonclassic nuclear localization signal-dependent nuclear-protein imports, but not in mRNA export. Thus, Mog1p, which was localized in the nucleus, is a Gsp1p-binding protein involved in nuclear-protein import and that functionally interacts with Ntf2p. Furthermore, the finding that PDE2 suppressed both gsp1 and rna1-1 indicates that the Ran GTPase cycle is regulated by the Ras-cAMP pathway.
Collapse
Affiliation(s)
- M Oki
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
43
|
Nakamura M, Masuda H, Horii J, Kuma KI, Yokoyama N, Ohba T, Nishitani H, Miyata T, Tanaka M, Nishimoto T. When overexpressed, a novel centrosomal protein, RanBPM, causes ectopic microtubule nucleation similar to gamma-tubulin. J Cell Biol 1998; 143:1041-52. [PMID: 9817760 PMCID: PMC2132962 DOI: 10.1083/jcb.143.4.1041] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel human protein with a molecular mass of 55 kD, designated RanBPM, was isolated with the two-hybrid method using Ran as a bait. Mouse and hamster RanBPM possessed a polypeptide identical to the human one. Furthermore, Saccharomyces cerevisiae was found to have a gene, YGL227w, the COOH-terminal half of which is 30% identical to RanBPM. Anti-RanBPM antibodies revealed that RanBPM was localized within the centrosome throughout the cell cycle. Overexpression of RanBPM produced multiple spots which were colocalized with gamma-tubulin and acted as ectopic microtubule nucleation sites, resulting in a reorganization of microtubule network. RanBPM cosedimented with the centrosomal fractions by sucrose- density gradient centrifugation. The formation of microtubule asters was inhibited not only by anti- RanBPM antibodies, but also by nonhydrolyzable GTP-Ran. Indeed, RanBPM specifically interacted with GTP-Ran in two-hybrid assay. The central part of asters stained by anti-RanBPM antibodies or by the mAb to gamma-tubulin was faded by the addition of GTPgammaS-Ran, but not by the addition of anti-RanBPM anti- bodies. These results provide evidence that the Ran-binding protein, RanBPM, is involved in microtubule nucleation, thereby suggesting that Ran regulates the centrosome through RanBPM.
Collapse
Affiliation(s)
- M Nakamura
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-82, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Taura T, Krebber H, Silver PA. A member of the Ran-binding protein family, Yrb2p, is involved in nuclear protein export. Proc Natl Acad Sci U S A 1998; 95:7427-32. [PMID: 9636166 PMCID: PMC22639 DOI: 10.1073/pnas.95.13.7427] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/1998] [Accepted: 04/27/1998] [Indexed: 02/07/2023] Open
Abstract
Yeast cells mutated in YRB2, which encodes a nuclear protein with similarity to other Ran-binding proteins, fail to export nuclear export signal (NES)-containing proteins including HIV Rev out of the nucleus. Unlike Xpo1p/Crm1p/exportin, an NES receptor, Yrb2p does not shuttle between the nucleus and the cytoplasm but instead remains inside the nucleus. However, by both biochemical and genetic criteria, Yrb2p interacts with Xpo1p and not with other members of the importin/karyopherin beta superfamily. Moreover, the Yrb2p region containing nucleoporin-like FG repeats is important for NES-mediated protein export. Taken together, these data suggest that Yrb2p acts inside the nucleus to mediate the action of Xpo1p in at least one of several nuclear export pathways.
Collapse
Affiliation(s)
- T Taura
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and The Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Abstract
Significant and exciting advances in the field of RNA and protein export have been made recently, due in large part to discovery of the roles played by Ran, a small, soluble GTPase present in both the nucleus and cytoplasm of all eukaryotic cells. Ran is thought to be primarily bound to GTP in the nucleus and to GDP in the cytoplasm, as a result of the assymetric distribution of factors that interact with Ran to promote guanine nucleotide exchange (in the nucleus) and GTP hydrolysis (in the cytoplasm). A key function of the nuclear Ran.GTP is to support formation of complexes containing an export receptor (an exportin) and cargos such as RNAs, RNPs or proteins that are destined for export. In the cytoplasm, removal of the Ran.GTP from the complex results in its destabilization and release of the export cargo. Although Ran.GTP is required for formation of the export complex, GTP hydrolysis does not appear to be necessary for translocation through the nuclear pore complex or cytoplasmic release. Nevertheless, the GTPase of Ran does appear to be required in as yet unidentified intranuclear steps prior to export of some, but not all, RNAs.
Collapse
Affiliation(s)
- J E Dahlberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, WI 53706, USA.
| | | |
Collapse
|
46
|
Mueller L, Cordes VC, Bischoff FR, Ponstingl H. Human RanBP3, a group of nuclear RanGTP binding proteins. FEBS Lett 1998; 427:330-6. [PMID: 9637251 DOI: 10.1016/s0014-5793(98)00459-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A group of novel human Ran-binding proteins, RanBP3, was identified using the yeast two-hybrid system via Ran-mediated interaction with the nucleotide exchange factor RCC1. Several open reading frames, representing putative alternatively spliced products, were established by cDNA cloning. Two of them, RanBP3-a and RanBP3-b, encode nuclear hydrophilic proteins of 499 and 562 amino acid residues. The sequences contain FXFG motifs, characteristic of a subgroup of nucleoporins, and a C-terminal domain showing similarity to the Ran-binding protein RanBP1. These proteins are localized in the nucleus, preferentially bind RanGTP and may be nuclear effectors of the Ran pathway.
Collapse
Affiliation(s)
- L Mueller
- Division for Molecular Biology of Mitosis, German Cancer Research Center, Heidelberg.
| | | | | | | |
Collapse
|
47
|
Stochaj U, Héjazi M, Belhumeur P. The small GTPase Gsp1p binds to the repeat domain of the nucleoporin Nsp1p. Biochem J 1998; 330 ( Pt 1):421-7. [PMID: 9461539 PMCID: PMC1219156 DOI: 10.1042/bj3300421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The small GTPase Gsp1p of Saccharomyces cerevisiae and its homologue Ran play essential roles in several nuclear processes, such as cell-cycle progression, nuclear organization and nucleocytoplasmic traffic of RNA and proteins. Gsp1p/Ran is an abundant nuclear protein that interacts with different cytoplasmic and nuclear factors. Several of the previously identified Ran-binding proteins located at the nuclear-pore complex carry a specific Ran-binding domain. So far, direct interactions between the GTPase and other proteins have been mostly characterized in higher eukaryotes. Here we report that the yeast protein Gsp1p can directly bind to the nucleoporin Nsp1p in vitro. Nsp1p does not contain a Ran-binding domain and therefore represents a distinct type of nucleoporin that associates with Gsp1p. We demonstrate that the middle domain of Nsp1p is sufficient to mediate this interaction. Importantly, we show that a conserved cluster of positively charged amino acid residues of Gsp1p located at positions 142-144 is essential for the binding reaction. Thus we have identified Nsp1p as a new candidate protein located at the nuclear pore complex of the yeast S. cerevisiae that interacts directly with Gsp1p. We further demonstrate that both Gsp1p and Nsp1p are components of larger protein complexes in vivo, supporting the idea that the association between both proteins takes place in growing cells.
Collapse
Affiliation(s)
- U Stochaj
- Physiology Department, McGill University, 3655 Drummond Street, Montreal, PQ, Canada H3G 1Y6
| | | | | |
Collapse
|
48
|
Matunis MJ, Wu J, Blobel G. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 1998; 140:499-509. [PMID: 9456312 PMCID: PMC2140169 DOI: 10.1083/jcb.140.3.499] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1997] [Revised: 11/14/1997] [Indexed: 02/06/2023] Open
Abstract
RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- M J Matunis
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York 10021, USA.
| | | | | |
Collapse
|
49
|
He X, Hayashi N, Walcott NG, Azuma Y, Patterson TE, Bischoff FR, Nishimoto T, Sazer S. The identification of cDNAs that affect the mitosis-to-interphase transition in Schizosaccharomyces pombe, including sbp1, which encodes a spi1p-GTP-binding protein. Genetics 1998; 148:645-56. [PMID: 9504913 PMCID: PMC1459816 DOI: 10.1093/genetics/148.2.645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Perturbations of the spi1p GTPase system in fission yeast, caused by mutation or overexpression of several regulatory proteins, result in a unique terminal phenotype that includes condensed chromosomes, a wide medial septum, and a fragmented nuclear envelope. To identify potential regulators or targets of the spi1p GTPase system, a screen for cDNAs whose overexpression results in this terminal phenotype was conducted, and seven clones that represent three genes, named med1, med2, and med3 (mitotic exit defect), were identified. Their genetic interaction with the spi1p GTPase system was established by showing that the spi1p guanine nucleotide exchange factor mutant pim1-d1ts was hypersensitive to their overexpression. med1 encodes a homologue of the human Ran-binding protein, RanBP1, and has been renamed sbp1 (spi1-binding protein). sbp1p binds to spi1p-GTP and costimulates the GTPase-activating protein (GAP)-catalyzed GTPase activity. Cells in which sbp1p is depleted or overproduced phenocopy cells in which the balance between spi1p-GTP and spi1p-GDP is perturbed by other means. Therefore, sbp1p mediates and/or regulates the essential functions of the spi1p GTPase system. med2 and med3 encode novel fission yeast proteins that, based on our phenotypic analyses, are likely to identify additional regulators or effectors of the spi1p GTPase system.
Collapse
Affiliation(s)
- X He
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hirose E, Nakashima N, Sekiguchi T, Nishimoto T. RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway. J Cell Sci 1998; 111 ( Pt 1):11-21. [PMID: 9394008 DOI: 10.1242/jcs.111.1.11] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human RagA and RagB is reported to be 52% identical to a putative GTPase of Saccharomyces cerevisiae, Gtr1p. According to the reported nucleotide sequence, we amplified human RagA and RagBs cDNAs from the human B cell cDNA library with PCR. Both cDNAs rescued a cold sensitivity of S. cerevisiae, gtr1-11. Furthermore, we introduced into the cloned human RagA cDNA, the mutation ‘T21L’ corresponding to the gtr1-11 mutation which has been reported to suppress not only all of rcc1-, temperature-sensitive mutants of Ran/Gsp1p GTPase GDP/GTP-exchanging factor, but also rna1-1, a temperature-sensitive mutant of Ran/Gsp1p GTPase-activating protein. The resulting RagAgtr1-11 cDNA partially, but significantly, suppressed both rcc1- and rna1-1 mutations. These results indicated that RagA and RagBs are functional homologues of S. cervisiae Gtr1p. Interestingly, while wild-type human RagA and RagBs were localized within the cytoplasm, similar to S. cerevisiae Gtr1p, the mutated human RagAgtr1-11 corresponding to a dominant negative form of RagA was distributed in discrete speckles in the nucleus, being localized side by side with SC-35, a non-snRNP of the splicing complex. In contrast, a dominant positive form of RagA, Q66L was localized in the cytoplasm. Thus, RagA was suggested to shuttle between the cytoplasm and the nucleus, depending on the bound nucleotide state.
Collapse
Affiliation(s)
- E Hirose
- Department of Molecular Biology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|