1
|
Reuter LM, Khadayate SP, Mossler A, Liebl K, Faull SV, Karimi MM, Speck C. MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nat Commun 2024; 15:7306. [PMID: 39181881 PMCID: PMC11344781 DOI: 10.1038/s41467-024-51538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Origin recognition complex (ORC)-dependent loading of the replicative helicase MCM2-7 onto replication origins in G1-phase forms the basis of replication fork establishment in S-phase. However, how ORC and MCM2-7 facilitate genome-wide DNA licensing is not fully understood. Mapping the molecular footprints of budding yeast ORC and MCM2-7 genome-wide, we discovered that MCM2-7 loading is associated with ORC release from origins and redistribution to non-origin sites. Our bioinformatic analysis revealed that origins are compact units, where a single MCM2-7 double hexamer blocks repetitive loading through steric ORC binding site occlusion. Analyses of A-elements and an improved B2-element consensus motif uncovered that DNA shape, DNA flexibility, and the correct, face-to-face spacing of the two DNA elements are hallmarks of ORC-binding and efficient helicase loading sites. Thus, our work identified fundamental principles for MCM2-7 helicase loading that explain how origin licensing is realised across the genome.
Collapse
Affiliation(s)
- L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz, Germany.
| | | | - Audrey Mossler
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Sarah V Faull
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.
| |
Collapse
|
2
|
Warner MD, Azmi IF, Kang S, Zhao Y, Bell SP. Replication origin-flanking roadblocks reveal origin-licensing dynamics and altered sequence dependence. J Biol Chem 2017; 292:21417-21430. [PMID: 29074622 PMCID: PMC5766963 DOI: 10.1074/jbc.m117.815639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, DNA replication initiates from multiple origins of replication for timely genome duplication. These sites are selected by origin licensing, during which the core enzyme of the eukaryotic DNA replicative helicase, the Mcm2-7 (minichromosome maintenance) complex, is loaded at each origin. This origin licensing requires loading two Mcm2-7 helicases around origin DNA in a head-to-head orientation. Current models suggest that the origin-recognition complex (ORC) and cell-division cycle 6 (Cdc6) proteins recognize and encircle origin DNA and assemble an Mcm2-7 double-hexamer around adjacent double-stranded DNA. To test this model and assess the location of Mcm2-7 initial loading, we placed DNA-protein roadblocks at defined positions adjacent to the essential ORC-binding site within Saccharomyces cerevisiae origin DNA. Roadblocks were made either by covalent cross-linking of the HpaII methyltransferase to DNA or through binding of a transcription activator-like effector (TALE) protein. Contrary to the sites of Mcm2-7 recruitment being precisely defined, only single roadblocks that inhibited ORC-DNA binding showed helicase loading defects. We observed inhibition of helicase loading without inhibition of ORC-DNA binding only when roadblocks were placed on both sides of the origin to restrict sliding of a helicase-loading intermediate. Consistent with a sliding helicase-loading intermediate, when either one of the flanking roadblocks was eliminated, the remaining roadblock had no effect on helicase loading. Interestingly, either origin-flanking nucleosomes or roadblocks resulted in helicase loading being dependent on an additional origin sequence known to be a weaker ORC-DNA-binding site. Together, our findings support a model in which sliding helicase-loading intermediates increase the flexibility of the DNA sequence requirements for origin licensing.
Collapse
Affiliation(s)
- Megan D Warner
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Ishara F Azmi
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Sukhyun Kang
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Yanding Zhao
- the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Stephen P Bell
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| |
Collapse
|
3
|
Ayuda-Durán P, Devesa F, Gomes F, Sequeira-Mendes J, Avila-Zarza C, Gómez M, Calzada A. The CDK regulators Cdh1 and Sic1 promote efficient usage of DNA replication origins to prevent chromosomal instability at a chromosome arm. Nucleic Acids Res 2014; 42:7057-68. [PMID: 24753426 PMCID: PMC4066753 DOI: 10.1093/nar/gku313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Robustness and completion of DNA replication rely on redundant DNA replication origins. Reduced efficiency of origin licensing is proposed to contribute to chromosome instability in CDK-deregulated cell cycles, a frequent alteration in oncogenesis. However, the mechanism by which this instability occurs is largely unknown. Current models suggest that limited origin numbers would reduce fork density favouring chromosome rearrangements, but experimental support in CDK-deregulated cells is lacking. We have investigated the pattern of origin firing efficiency in budding yeast cells lacking the CDK regulators Cdh1 and Sic1. We show that each regulator is required for efficient origin activity, and that both cooperate non-redundantly. Notably, origins are differentially sensitive to CDK deregulation. Origin sensitivity is independent on normal origin efficiency, firing timing or chromosomal location. Interestingly, at a chromosome arm, there is a shortage of origin firing involving active and dormant origins, and the extent of shortage correlates with the severity of CDK deregulation and chromosome instability. We therefore propose that CDK deregulation in G1 phase compromises origin redundancy by decreasing the number of active and dormant origins, leading to origin shortage and increased chromosome instability.
Collapse
Affiliation(s)
- Pilar Ayuda-Durán
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Fernando Devesa
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Fábia Gomes
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| | - Joana Sequeira-Mendes
- Centro de Biología Molecular Severo Ochoa CBMSO-CSIC/UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | | | - María Gómez
- Centro de Biología Molecular Severo Ochoa CBMSO-CSIC/UAM, Nicolás Cabrera 1, Madrid 28049, Spain
| | - Arturo Calzada
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CNB-CSIC, Darwin 3, Madrid 28049, Spain
| |
Collapse
|
4
|
GC-rich DNA elements enable replication origin activity in the methylotrophic yeast Pichia pastoris. PLoS Genet 2014; 10:e1004169. [PMID: 24603708 PMCID: PMC3945215 DOI: 10.1371/journal.pgen.1004169] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
The well-studied DNA replication origins of the model budding and fission yeasts are A/T-rich elements. However, unlike their yeast counterparts, both plant and metazoan origins are G/C-rich and are associated with transcription start sites. Here we show that an industrially important methylotrophic budding yeast, Pichia pastoris, simultaneously employs at least two types of replication origins--a G/C-rich type associated with transcription start sites and an A/T-rich type more reminiscent of typical budding and fission yeast origins. We used a suite of massively parallel sequencing tools to map and dissect P. pastoris origins comprehensively, to measure their replication dynamics, and to assay the global positioning of nucleosomes across the genome. Our results suggest that some functional overlap exists between promoter sequences and G/C-rich replication origins in P. pastoris and imply an evolutionary bifurcation of the modes of replication initiation.
Collapse
|
5
|
Lõoke M, Kristjuhan K, Värv S, Kristjuhan A. Chromatin-dependent and -independent regulation of DNA replication origin activation in budding yeast. EMBO Rep 2012; 14:191-8. [PMID: 23222539 PMCID: PMC3596130 DOI: 10.1038/embor.2012.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/13/2012] [Accepted: 11/13/2012] [Indexed: 11/09/2022] Open
Abstract
To elucidate the role of the chromatin environment in the regulation of replication origin activation, autonomously replicating sequences were inserted into identical locations in the budding yeast genome and their activation times in S phase determined. Chromatin-dependent origins adopt to the firing time of the surrounding locus. In contrast, the origins containing two binding sites for Forkhead transcription factors are activated early in the S phase regardless of their location in the genome. Our results also show that genuinely late-replicating parts of the genome can be converted into early-replicating loci by insertion of a chromatin-independent early replication origin, ARS607, whereas insertion of two Forkhead-binding sites is not sufficient for conversion.
Collapse
Affiliation(s)
- Marko Lõoke
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu 51010, Estonia
| | | | | | | |
Collapse
|
6
|
Chatre L, Ricchetti M. Nuclear mitochondrial DNA activates replication in Saccharomyces cerevisiae. PLoS One 2011; 6:e17235. [PMID: 21408151 PMCID: PMC3050842 DOI: 10.1371/journal.pone.0017235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/26/2011] [Indexed: 11/18/2022] Open
Abstract
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in.
Collapse
Affiliation(s)
- Laurent Chatre
- Departement d'Immunologie, Institut Pasteur, Paris, France
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
| | - Miria Ricchetti
- Departement d'Immunologie, Institut Pasteur, Paris, France
- Unité de Génétique Moléculaire des Levures, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
7
|
Analysis of chromosome III replicators reveals an unusual structure for the ARS318 silencer origin and a conserved WTW sequence within the origin recognition complex binding site. Mol Cell Biol 2008; 28:5071-81. [PMID: 18573888 DOI: 10.1128/mcb.00206-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae chromosome III encodes 11 autonomously replicating sequence (ARS) elements that function as chromosomal replicators. The essential 11-bp ARS consensus sequence (ACS) that binds the origin recognition complex (ORC) has been experimentally defined for most of these replicators but not for ARS318 (HMR-I), which is one of the HMR silencers. In this study, we performed a comprehensive linker scan analysis of ARS318. Unexpectedly, this replicator depends on a 9/11-bp match to the ACS that positions the ORC binding site only 6 bp away from an Abf1p binding site. Although a largely inactive replicator on the chromosome, ARS318 becomes active if the nearby HMR-E silencer is deleted. We also performed a multiple sequence alignment of confirmed replicators on chromosomes III, VI, and VII. This analysis revealed a highly conserved WTW motif 17 to 19 bp from the ACS that is functionally important and is apparent in the 228 phylogenetically conserved ARS elements among the six sensu stricto Saccharomyces species.
Collapse
|
8
|
Liu G, Bissler JJ, Sinden RR, Leffak M. Unstable spinocerebellar ataxia type 10 (ATTCT*(AGAAT) repeats are associated with aberrant replication at the ATX10 locus and replication origin-dependent expansion at an ectopic site in human cells. Mol Cell Biol 2007; 27:7828-38. [PMID: 17846122 PMCID: PMC2169150 DOI: 10.1128/mcb.01276-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is associated with expansion of (ATTCT)n repeats (where n is the number of repeats) within the ataxin 10 (ATX10/E46L) gene. The demonstration that (ATTCT)n tracts can act as DNA unwinding elements (DUEs) in vitro has suggested that aberrant replication origin activity occurs at expanded (ATTCT)n tracts and may lead to their instability. Here, we confirm these predictions. The wild-type ATX10 locus displays inefficient origin activity, but origin activity is elevated at the expanded ATX10 loci in patient-derived cells. To test whether (ATTCT)n tracts can potentiate origin activity, cell lines were constructed that contain ectopic copies of the c-myc replicator in which the essential DUE was replaced by ATX10 DUEs with (ATTCT)n. ATX10 DUEs containing (ATTCT)27 or (ATTCT)48, but not (ATTCT)8 or (ATTCT)13, could substitute functionally for the c-myc DUE, but (ATTCT)48 could not act as an autonomous replicator. Significantly, chimeric c-myc replicators containing ATX10 DUEs displayed length-dependent (ATTCT)n instability. By 250 population doublings, dramatic two- and fourfold length expansions were observed for (ATTCT)27 and (ATTCT)48 but not for (ATTCT)8 or (ATTCT)13. These results implicate replication origin activity as one molecular mechanism associated with the instability of (ATTCT)n tracts that are longer than normal length.
Collapse
Affiliation(s)
- Guoqi Liu
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | |
Collapse
|
9
|
Kim MS, Lim HS, Ahn SJ, Jeong YK, Kim CG, Lee HH. Enhanced expression of EGFP gene in CHSE-214 cells by an ARS element from mud loach (Misgurnus mizolepis). Plasmid 2007; 58:228-39. [PMID: 17586046 DOI: 10.1016/j.plasmid.2007.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/16/2007] [Accepted: 05/01/2007] [Indexed: 10/23/2022]
Abstract
The origins of replication are associated with nuclear matrices or are found in close proximity to matrix attachment regions (MARs). In this report, fish MARs were cloned into an autonomously replicating sequence (ARS) cloning vector and were screened for ARS elements in Saccharomyces cerevisiae. Sixteen clones were isolated that were able to grow on the selective plates. In particular, an ARS905 that shows high efficiency among them was selected for this study. Southern hybridization indicated the autonomous replication of the transformation vector containing the ARS905 element. DNA sequences analysis showed that the ARS905 contained two ARS consensus sequences as well as MAR motifs, such as AT tracts, ORI patterns, and ATC tracts. In vitro matrix binding analysis, major matrix binding activity and ARS function coincided in a subfragment of the ARS905. To analyze the effects of ARS905 on expression of a reporter gene, an ARS905(E1158) with ARS activity was inserted into pBaEGFP(+) containing mud loach beta-actin promoter, EGFP as a reporter gene, and SV40 poly(A) signal. The pBaEGFP(+)-ARS905(E1158) was transfected into a fish cell line, CHSE-214. The intensity of EGFP transfected cells was a 7-fold of the control at 11days post-transfection. These results indicate that ARS905 enhances the expression of the EGFP gene and that it should be as a component of expression vectors in further fish biotechnological studies.
Collapse
Affiliation(s)
- Moo-Sang Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Irene C, Maciariello C, Micheli G, Theis JF, Newlon CS, Fabiani L. DNA elements modulating the KARS12 chromosomal replicator in Kluyveromyces lactis. Mol Genet Genomics 2006; 277:287-99. [PMID: 17136349 DOI: 10.1007/s00438-006-0188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/21/2006] [Indexed: 12/24/2022]
Abstract
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.
Collapse
Affiliation(s)
- Carmela Irene
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Piazzale A. Moro, 5, Roma, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Bolon YT, Bielinsky AK. The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Res 2006; 34:5069-80. [PMID: 16984967 PMCID: PMC1635292 DOI: 10.1093/nar/gkl661] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the quest to define autonomously replicating sequences (ARSs) in eukaryotic cells, an ARS consensus sequence (ACS) has emerged for budding yeast. This ACS is recognized by the replication initiator, the origin recognition complex (ORC). However, not every match to the ACS constitutes a replication origin. Here, we investigated the requirements for ORC binding to origins that carry multiple, redundant ACSs, such as ARS603. Previous studies raised the possibility that these ACSs function as individual ORC binding sites. Detailed mutational analysis of the two ACSs in ARS603 revealed that they function in concert and give rise to an initiation pattern compatible with a single bipartite ORC binding site. Consistent with this notion, deletion of one base pair between the ACS matches abolished ORC binding at ARS603. Importantly, loss of ORC binding in vitro correlated with the loss of ARS activity in vivo. Our results argue that replication origins in yeast are in general comprised of bipartite ORC binding sites that cannot function in random alignment but must conform to a configuration that permits ORC binding. These requirements help to explain why only a limited number of ACS matches in the yeast genome qualify as ORC binding sites.
Collapse
Affiliation(s)
| | - Anja-Katrin Bielinsky
- To whom correspondence should be addressed. Tel: +1 612 624 2469; Fax: +1 612 625 2163;
| |
Collapse
|
12
|
Nieduszynski CA, Knox Y, Donaldson AD. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev 2006; 20:1874-9. [PMID: 16847347 PMCID: PMC1522085 DOI: 10.1101/gad.385306] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We discovered that sequences essential for replication origin function are frequently conserved in sensu stricto Saccharomyces species. Here we use analysis of phylogenetic conservation to identify replication origin sequences throughout the Saccharomyces cerevisiae genome at base pair resolution. Origin activity was confirmed for each of 228 predicted sites--representing 86% of apparent origin regions. This is the first study to determine the genome-wide location of replication origins at a resolution sufficient to identify the sequence elements bound by replication proteins. Our results demonstrate that phylogenetic conservation can be used to identify the origin sequences responsible for replicating a eukaryotic genome.
Collapse
|
13
|
Ghosh M, Kemp M, Liu G, Ritzi M, Schepers A, Leffak M. Differential binding of replication proteins across the human c-myc replicator. Mol Cell Biol 2006; 26:5270-83. [PMID: 16809765 PMCID: PMC1592723 DOI: 10.1128/mcb.02137-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The binding of the prereplication complex proteins Orc1, Orc2, Mcm3, Mcm7, and Cdc6 and the novel DNA unwinding element (DUE) binding protein DUE-B to the endogenous human c-myc replicator was studied by chromatin immunoprecipitation. In G(1)-arrested HeLa cells, Mcm3, Mcm7, and DUE-B were prominent near the DUE, while Orc1 and Orc2 were least abundant near the DUE and more abundant at flanking sites. Cdc6 binding mirrored that of Orc2 in G(1)-arrested cells but decreased in asynchronous or M-phase cells. Similarly, the signals from Orc1, Mcm3, and Mcm7 were at background levels in cells arrested in M phase, whereas Orc2 retained the distribution seen in G(1)-phase cells. Previously shown to cause histone hyperacetylation and delocalization of replication initiation, trichostatin A treatment of cells led to a parallel qualitative change in the distribution of Mcm3, but not Orc2, across the c-myc replicator. Orc2, Mcm3, and DUE-B were also bound at an ectopic c-myc replicator, where deletion of sequences essential for origin activity was associated with the loss of DUE-B binding or the alteration of chromatin structure and loss of Mcm3 binding. These results show that proteins implicated in replication initiation are selectively and differentially bound across the c-myc replicator, dependent on discrete structural elements in DNA or chromatin.
Collapse
Affiliation(s)
- Maloy Ghosh
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, USA
| | | | | | | | | | | |
Collapse
|
14
|
Polonskaya Z, Benham CJ, Hearing J. Role for a region of helically unstable DNA within the Epstein–Barr virus latent cycle origin of DNA replication oriP in origin function. Virology 2004; 328:282-91. [PMID: 15464848 DOI: 10.1016/j.virol.2004.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 05/27/2004] [Accepted: 07/23/2004] [Indexed: 11/26/2022]
Abstract
The minimal replicator of the Epstein-Barr virus (EBV) latent cycle origin of DNA replication oriP is composed of two binding sites for the Epstein-Barr virus nuclear antigen-1 (EBNA-1) and flanking inverted repeats that bind the telomere repeat binding factor TRF2. Although not required for minimal replicator activity, additional binding sites for EBNA-1 and TRF2 and one or more auxiliary elements located to the right of the EBNA-1/TRF2 sites are required for the efficient replication of oriP plasmids. Another region of oriP that is predicted to be destabilized by DNA supercoiling is shown here to be an important functional component of oriP. The ability of DNA fragments of unrelated sequence and possessing supercoiled-induced DNA duplex destabilized (SIDD) structures, but not fragments characterized by helically stable DNA, to substitute for this component of oriP demonstrates a role for the SIDD region in the initiation of oriP-plasmid DNA replication.
Collapse
Affiliation(s)
- Zhanna Polonskaya
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
15
|
Huang Y, Kowalski D. PATTERNFINDER: combined analysis of DNA regulatory sequences and double-helix stability. BMC Bioinformatics 2004; 5:134. [PMID: 15383143 PMCID: PMC520813 DOI: 10.1186/1471-2105-5-134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022] Open
Abstract
Background Regulatory regions that function in DNA replication and gene transcription contain specific sequences that bind proteins as well as less-specific sequences in which the double helix is often easy to unwind. Progress towards predicting and characterizing regulatory regions could be accelerated by computer programs that perform a combined analysis of specific sequences and DNA unwinding properties. Results Here we present PATTERNFINDER, a web server that searches DNA sequences for matches to specific or flexible patterns, and analyzes DNA helical stability. A batch mode of the program generates a tabular map of matches to multiple, different patterns. Regions flanking pattern matches can be targeted for helical stability analysis to identify sequences with a minimum free energy for DNA unwinding. As an example application, we analyzed a regulatory region of the human c-myc proto-oncogene consisting of a single-strand-specific protein binding site within a DNA region that unwindsin vivo. The predicted region of minimal helical stability overlapped both the protein binding site and the unwound DNA region identified experimentally. Conclusions The PATTERNFINDER web server permits localization of known functional elements or landmarks in DNA sequences as well as prediction of potential new elements. Batch analysis of multiple patterns facilitates the annotation of DNA regulatory regions. Identifying specific pattern matches linked to DNA with low helical stability is useful in characterizing regulatory regions for transcription, replication and other processes and may predict functional DNA unwinding elements. PATTERNFINDER can be accessed freely at:
Collapse
Affiliation(s)
- Yanlin Huang
- Cancer Genetics Department, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Microsoft Corp., Redmond, WA 98052, USA
| | - David Kowalski
- Cancer Genetics Department, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
16
|
Irene C, Maciariello C, Cioci F, Camilloni G, Newlon CS, Fabiani L. Identification of the sequences required for chromosomal replicator function in Kluyveromyces lactis. Mol Microbiol 2004; 51:1413-23. [PMID: 14982634 DOI: 10.1046/j.1365-2958.2003.03914.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The analysis of replication intermediates of a Kluyveromyces lactis chromosomal autonomous replicating sequence (ARS), KARS101, has shown that it is active as a chromosomal replicator. KARS101 contains a 50 bp sequence conserved in two other K. lactis ARS elements. The deletion of the conserved sequence in KARS101 completely abolished replicator activity, in both the plasmids and the chromosome. Gel shift assays indicated that this sequence binds proteins present in K. lactis nuclear extracts, and a 40 bp sequence, previously defined as the core essential for K. lactis ARS function, is required for efficient binding. Reminiscent of the origin replication complex (ORC), the binding appears to be ATP dependent. A similar pattern of protection of the core was seen with in vitro footprinting. KARS101 also functions as an ARS sequence in Saccharomyces cerevisiae. A comparative study using S. cerevisiae nuclear extracts revealed that the sequence required for binding is a dodecanucleotide related to the S. cerevisiae ARS consensus sequence and essential for S. cerevisiae ARS activity.
Collapse
Affiliation(s)
- Carmela Irene
- Dipartimento Biologia Cellulare e dello Sviluppo, Universita La Sapienza, Piazzale A Moro, 5, Rome Italy
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Isabelle A Lucas
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
18
|
Saha S, Shan Y, Mesner LD, Hamlin JL. The promoter of the Chinese hamster ovary dihydrofolate reductase gene regulates the activity of the local origin and helps define its boundaries. Genes Dev 2004; 18:397-410. [PMID: 14977920 PMCID: PMC359394 DOI: 10.1101/gad.1171404] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Accepted: 01/09/2004] [Indexed: 11/25/2022]
Abstract
The dihydrofolate reductase (DHFR) and 2BE2121 genes in the Chinese hamster are convergently transcribed in late G1 and ea ly S phase, and bracket an early-firing origin of replication that consists of a 55-kb zone of potential initiation sites. To test whether transcription through the DHFR gene is required to activate this origin in early S phase, we examined the two-dimension (2D) gel patterns of replication intermediates from several variants in which parts or all of the DHFR promote had been deleted. In those variants in which transcription was undetectable, initiation in the intergenic space was markedly suppressed (but not eliminated) in early S phase. Further more, replication of the locus required virtually the entire S period, as opposed to the usual 3-4 h. However, restoration of transcription with either the wild-type Chinese hamster promote or a Drosophila-based construct restored origin activity to the wild-type pattern. Surprisingly, 2D gel analysis of promote less variants revealed that initiation occurs at a low level in ea ly S phase not only in the intergenic region, but also in the body of the DHFR gene. The latter phenomenon has never been observed in the wild-type locus. These studies suggest that transcription through the gene normally increases the efficiency of origin firing in early S phase, but also suppresses initiation in the body of the gene, thus helping to define the boundaries of the downstream origin.
Collapse
Affiliation(s)
- Swati Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
19
|
Huang Y, Kowalski D. WEB-THERMODYN: Sequence analysis software for profiling DNA helical stability. Nucleic Acids Res 2003; 31:3819-21. [PMID: 12824427 PMCID: PMC168969 DOI: 10.1093/nar/gkg562] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
WEB-THERMODYN analyzes DNA sequences and computes the DNA helical stability, i.e. the free energy required to unwind and separate the strands of the double helix. A helical stability profile across a selected DNA region or the entire sequence is generated by sliding-window analysis. WEB-THERMODYN can predict sites of low helical stability present at regulatory regions for transcription and replication and can be used to test the influence of mutations. The program can be accessed at: http://wings.buffalo.edu/gsa/dna/dk/WEBTHERMODYN/.
Collapse
Affiliation(s)
- Yanlin Huang
- Cancer Genetics Department, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
20
|
Takahashi N, Tsutsumi S, Tsuchiya T, Stillman B, Mizushima T. Functions of sensor 1 and sensor 2 regions of Saccharomyces cerevisiae Cdc6p in vivo and in vitro. J Biol Chem 2002; 277:16033-40. [PMID: 11827963 DOI: 10.1074/jbc.m108615200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc6p is a key regulator of the cell cycle in eukaryotes and is a member of the AAA(+) (ATPases associated with a variety of cellular activities) family of proteins. In this family of proteins, the sensor 1 and sensor 2 regions are important for their function and ATPase activity. Here, site-directed mutagenesis has been used to examine the role of these regions of Saccharomyces cerevisiae Cdc6p in controlling the cell cycle progression and initiation of DNA replication. Two important amino acid residues (Asn(263) in sensor 1 and Arg(332) in sensor 2) were identified as key residues for Cdc6p function in vivo. Cells expressing mutant Cdc6p (N263A or R332E) grew slowly and accumulated in the S phase. In cells expressing mutant Cdc6p, loading of the minichromosome maintenance (MCM) complex of proteins was decreased, suggesting that the slow progression of S phase in these cells was due to inefficient MCM loading on chromatin. Purified wild type Cdc6p but not mutant Cdc6p (N263A and R332E) caused the structural modification of origin recognition complex proteins. These results are consistent with the idea that Cdc6p uses its ATPase activity to change the conformation of origin recognition complex, and then together they recruit the MCM complex.
Collapse
Affiliation(s)
- Naoko Takahashi
- Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|
21
|
Wilmes GM, Bell SP. The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation. Proc Natl Acad Sci U S A 2002; 99:101-6. [PMID: 11756674 PMCID: PMC117521 DOI: 10.1073/pnas.012578499] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The minimal requirements for a eukaryotic origin of replication are an initiator binding site and a region of helically unstable DNA [DNA unwinding element (DUE)]. Budding yeast origins consist of modular elements, and one of these elements, B2, has been proposed to act as a DUE. To test this hypothesis, we screened for sequences that function at the B2 element of ARS1. We found that the B2 element required A-rich sequences, but that the function of these identified sequences did not correlate with helical instability. Instead, the sequences that substituted fully for B2 function showed similarity to the ARS consensus sequence (ACS). The ACS is the binding site for the initiator origin recognition complex (ORC), but the selected sequences are not strong ORC binding sites in vitro. Nonfunctional B2 sequences show a corresponding loss in Mcm2-7p origin association. The function of these mutant sequences is rescued by Cdc6p overexpression. We propose that the B2 element requires specific sequences to bind a component of the pre-RC.
Collapse
Affiliation(s)
- Gwendolyn M Wilmes
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
22
|
Bodmer-Glavas M, Edler K, Barberis A. RNA polymerase II and III transcription factors can stimulate DNA replication by modifying origin chromatin structures. Nucleic Acids Res 2001; 29:4570-80. [PMID: 11713306 PMCID: PMC92542 DOI: 10.1093/nar/29.22.4570] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many transcription factors are multifunctional and also influence DNA replication. So far, their mechanism of action has remained elusive. Here we show that a DNA-binding protein could rely on the same biochemical activity that activates transcription to stimulate replication from the yeast chromosomal ARS1 origin. Unexpectedly, the ability to stimulate replication from this origin was not restricted to polymerase II transcription factors, but was a property shared by polymerase III factors. Furthermore, activation of replication did not depend on the process of transcription, but rather on the ability of DNA-binding transcription factors to remodel chromatin. The natural ARS1 activator Abf1 and the other transcription factors that stimulated replication remodeled chromatin in a very similar manner. Moreover, the presence of a histone H3 mutant that was previously shown to generally increase transcription also facilitated replication from ARS1 and partially compensated for the absence of a transcription factor. We propose that multifunctional transcription factors work by influencing the chromatin architecture at replication origins so as to generate a structure that is favorable to the initiation of replication.
Collapse
Affiliation(s)
- M Bodmer-Glavas
- Institute of Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
23
|
Sharma K, Weinberger M, Huberman JA. Roles for internal and flanking sequences in regulating the activity of mating-type-silencer-associated replication origins in Saccharomyces cerevisiae. Genetics 2001; 159:35-45. [PMID: 11560885 PMCID: PMC1461791 DOI: 10.1093/genetics/159.1.35] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
ARS301 and ARS302 are inactive replication origins located at the left end of budding yeast (Saccharomyces cerevisiae) chromosome III, where they are associated with the HML-E and -I silencers of the HML mating type cassette. Although they function as replication origins in plasmids, they do not serve as origins in their normal chromosomal locations, because they are programmed to fire so late in S phase that they are passively replicated by the replication fork from neighboring early-firing ARS305 before they have a chance to fire on their own. We asked whether the nucleotide sequences required for plasmid origin function of these silencer-associated chromosomally inactive origins differ from the sequences needed for plasmid origin function by nonsilencer-associated chromosomally active origins. We could not detect consistent differences in sequence requirements for the two types of origins. Next, we asked whether sequences within or flanking these origins are responsible for their chromosomal inactivity. Our results demonstrate that both flanking and internal sequences contribute to chromosomal inactivity, presumably by programming these origins to fire late in S phase. In ARS301, the function of the internal sequences determining chromosomal inactivity is dependent on the checkpoint proteins Mec1p and Rad53p.
Collapse
Affiliation(s)
- K Sharma
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263-0001, USA
| | | | | |
Collapse
|
24
|
Wang Y, Vujcic M, Kowalski D. DNA replication forks pause at silent origins near the HML locus in budding yeast. Mol Cell Biol 2001; 21:4938-48. [PMID: 11438651 PMCID: PMC87221 DOI: 10.1128/mcb.21.15.4938-4948.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromosomal replicators in budding yeast contain an autonomously replicating sequence (ARS) that functions in a plasmid, but certain ARSs are silent as replication origins in their natural chromosomal context. In chromosome III, the HML ARS cluster (ARS302-ARS303-ARS320) and ARS301 flank the transcriptionally silent mating-type locus HML, and all of these ARSs are silent as replication origins. ARS301 and ARS302 function in transcriptional silencing mediated by the origin recognition complex (ORC) and a heterochromatin structure, while the functions of ARS303 and ARS320 are not known. In this work, we discovered replication fork pause sites at the HML ARS cluster and ARS301 by analyzing DNA replication intermediates from the chromosome via two-dimensional gel electrophoresis. The replication fork pause at the HML ARS cluster was independent of cis- and trans-acting mutations that abrogate transcriptional silencing at HML. Deletion of the HML ARS cluster led to loss of the pause site. Insertion of a single, heterologous ARS (ARS305) in place of the HML ARS cluster reconstituted the pause site, as did multiple copies of DNA elements (A and B1) that bind ORC. The orc2-1 mutation, known to alter replication timing at origins, did not detectably affect the pause but activated the silent origin at the HML ARS cluster in a minority of cells. Delaying the time of fork arrival at HML led to the elimination of the pause sites at the HML ARS cluster and at the copy of ARS305 inserted in place of the cluster. Loss of the pause sites was accompanied by activation of the silent origins in the majority of cells. Thus, replication fork movement near HML pauses at a silent origin which is competent for replication initiation but kept silent through Orc2p, a component of the replication initiator. Possible functions for replication fork pause sites in checkpoints, S-phase regulation, mating-type switching, and transcriptionally silent heterochromatin are discussed.
Collapse
Affiliation(s)
- Y Wang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
25
|
Theis JF, Newlon CS. Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites. Mol Cell Biol 2001; 21:2790-801. [PMID: 11283258 PMCID: PMC86909 DOI: 10.1128/mcb.21.8.2790-2801.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.
Collapse
Affiliation(s)
- J F Theis
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
26
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
27
|
Abstract
Chromosomal origins of DNA replication in eukaryotic cells not only are crucial for understanding the basic process of DNA duplication but also provide a tool to analyze how cell cycle regulators are linked to the replication machinery. During the past decade much progress has been made in identifying replication origins in eukaryotic genomes. More recently, replication initiation point (RIP) mapping has allowed us to detect start sites for DNA synthesis at the nucleotide level and thus to monitor replication initiation events at the origin very precisely. Beyond giving us the precise positions of start sites, the application of RIP mapping in yeast and human cells has revealed a single, defined start point at which replication initiates, a scenario very reminiscent of transcription initiation. More importantly, studies in yeast have shown that the binding site for the initiator, the origin recognition complex (ORC), lies immediately adjacent to the replication start point, which suggests that ORC directs the initiation machinery to a distinct site. Therefore, in our pursuit of identifying ORC-binding sites in higher eukaryotes, RIP mapping may lead the way.
Collapse
Affiliation(s)
- A K Bielinsky
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
28
|
Abstract
Xenopus egg extracts initiate replication at specific origin sites within mammalian G1-phase nuclei. Similarly, S-phase extracts from Saccharomyces cerevisiae initiate DNA replication within yeast nuclei at specific yeast origin sequences. Here we show that Xenopus egg extracts can initiate DNA replication within G1-phase yeast nuclei but do not recognize yeast origin sequences. When G1-phase yeast nuclei were introduced into Xenopus egg extract, semiconservative, aphidicolin-sensitive DNA synthesis was induced after a brief lag period and was restricted to a single round of replication. The specificity of initiation within the yeast 2 microm plasmid as well as in the vicinity of the chromosomal origin ARS1 was evaluated by neutral two-dimensional gel electrophoresis of replication intermediates. At both locations, replication was found to initiate outside of the ARS element. Manipulation of both cis- and trans-acting elements in the yeast genome before introduction of nuclei into Xenopus egg extract may provide a system with which to elucidate the requirements for vertebrate origin recognition.
Collapse
Affiliation(s)
- J R Wu
- Shanghai Institute of Biochemistry and Shanghai Research Center of Life Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | |
Collapse
|
29
|
Abstract
The mechanism for initiation of eukaryotic DNA replication is highly conserved: the proteins required to initiate replication, the sequence of events leading to initiation, and the regulation of initiation are remarkably similar throughout the eukaryotic kingdom. Nevertheless, there is a liberal attitude when it comes to selecting initiation sites. Differences appear to exist in the composition of replication origins and in the way proteins recognize these origins. In fact, some multicellular eukaryotes (the metazoans) can change the number and locations of initiation sites during animal development, revealing that selection of initiation sites depends on epigenetic as well as genetic parameters. Here we have attempted to summarize our understanding of this process, to identify the similarities and differences between single cell and multicellular eukaryotes, and to examine the extent to which origin recognition proteins and replication origins have been conserved among eukaryotes. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J A Bogan
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
30
|
Mizushima T, Takahashi N, Stillman B. Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes Dev 2000. [DOI: 10.1101/gad.14.13.1631] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An interaction between the origin recognition complex (ORC) and Cdc6p is the first and a key step in the initiation of chromosomal DNA replication. We describe the assembly of an origin-dependent complex containing ORC and Cdc6p from Saccharomyces cerevisiae. Cdc6p increases the DNA binding specificity of ORC by inhibiting non-specific DNA binding of ORC. Cdc6p induces a concomitant change in the conformation of ORC and mutations in the Cdc6p Walker A and Walker B motifs, or ATP-γ-S inhibited these activities of Cdc6p. These data suggest that Cdc6p modifies ORC function at DNA replication origins. On the basis of these results in yeast, we propose that Cdc6p may be an essential determinant of origin specificity in metazoan species.
Collapse
|
31
|
Mizushima T, Takahashi N, Stillman B. Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes Dev 2000; 14:1631-41. [PMID: 10887157 PMCID: PMC316732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
An interaction between the origin recognition complex (ORC) and Cdc6p is the first and a key step in the initiation of chromosomal DNA replication. We describe the assembly of an origin-dependent complex containing ORC and Cdc6p from Saccharomyces cerevisiae. Cdc6p increases the DNA binding specificity of ORC by inhibiting non-specific DNA binding of ORC. Cdc6p induces a concomitant change in the conformation of ORC and mutations in the Cdc6p Walker A and Walker B motifs, or ATP-gamma-S inhibited these activities of Cdc6p. These data suggest that Cdc6p modifies ORC function at DNA replication origins. On the basis of these results in yeast, we propose that Cdc6p may be an essential determinant of origin specificity in metazoan species.
Collapse
Affiliation(s)
- T Mizushima
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
32
|
Zou L, Stillman B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol 2000; 20:3086-96. [PMID: 10757793 PMCID: PMC85601 DOI: 10.1128/mcb.20.9.3086-3096.2000] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, replication origins are activated with characteristic timing during S phase. S-phase cyclin-dependent kinases (S-CDKs) and Cdc7p-Dbf4p kinase are required for origin activation throughout S phase. The activation of S-CDKs leads to association of Cdc45p with chromatin, raising the possibility that Cdc45p defines the assembly of a new complex at each origin. Here we show that both Cdc45p and replication protein A (RPA) bind to Mcm2p at the G(1)-S transition in an S-CDK-dependent manner. During S phase, Cdc45p associates with different replication origins at specific times. The origin associations of Cdc45p and RPA are mutually dependent, and both S-CDKs and Cdc7p-Dbf4p are required for efficient binding of Cdc45p to origins. These findings suggest that S-CDKs and Cdc7p-Dbf4p promote loading of Cdc45p and RPA onto a preformed prereplication complex at each origin with preprogrammed timing. The ARS1 association of Mcm2p, but not that of the origin recognition complex, is diminished by disruption of the B2 element of ARS1, a potential origin DNA-unwinding element. Cdc45p is required for recruiting DNA polymerase alpha onto chromatin, and it associates with Mcm2p, RPA, and DNA polymerase epsilon only during S phase. These results suggest that the complex containing Cdc45p, RPA, and MCMs is involved in origin unwinding and assembly of replication forks at each origin.
Collapse
Affiliation(s)
- L Zou
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
33
|
Ducker CE, Simpson RT. The organized chromatin domain of the repressed yeast a cell-specific gene STE6 contains two molecules of the corepressor Tup1p per nucleosome. EMBO J 2000; 19:400-9. [PMID: 10654939 PMCID: PMC305577 DOI: 10.1093/emboj/19.3.400] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In yeast alpha cells the a cell-specific genes STE6 and BAR1 are packaged as gene-sized chromatin domains of positioned nucleosomes. Organized chromatin depends on Tup1p, a corepressor that interacts with the N-terminal regions of H3 and H4. If Tup1p functions to organize or stabilize a chromatin domain, the protein might be expected to be present at a level stoichiometric with nucleosomes. Chromatin immunoprecipitation assays using Tup1p antibodies showed Tup1p to be associated with the entire genomic STE6 coding region. To determine stoichiometry of Tup1p associated with the gene, a yeast plasmid containing varying lengths of the STE6 gene including flanking control regions and an Escherichia coli lac operator sequence was constructed. After assembly into chromatin in vivo in Saccharomyces cerevisiae, minichromosomes were isolated using an immobilized lac repressor. In these experiments, Tup1p was found to be specifically associated with repressed STE6 chromatin in vivo at a ratio of about two molecules of the corepressor per nucleosome. These observations strongly suggest a structural role for Tup1p in repression and constrain models for organized chromatin in repressive domains.
Collapse
Affiliation(s)
- C E Ducker
- Department of Biochemistry and Molecular Biology, 308 Althouse, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
34
|
Wilderman PJ, Hu B, Woodworth ME. Conformational changes in simian virus 40 rearranged regulatory regions: effects of the 21-base-pair promoters and their location. J Virol 1999; 73:10254-63. [PMID: 10559342 PMCID: PMC113079 DOI: 10.1128/jvi.73.12.10254-10263.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 (SV40) is an excellent model system for investigating the cis- and trans-acting factors involved in eukaryotic DNA replication because it uses host enzymes, with the exception of the virus-encoded T-antigen (T-ag), to replicate its genome. Although its origin of replication (ori) is essential for DNA replication, there are transcriptional promoters and enhancers that affect DNA replication efficiency. T-ag binds to sites I to III within and around ori with different affinities and induces structural changes. We were interested in determining if the position of the promoters relative to ori influences the binding of T-ag to these regions. Furthermore, we characterized the DNA structural changes that occur as a result of protein binding when the promoters are absent and also when the promoters are moved from their wild-type position upstream of ori to a position downstream of ori. Using sequence- and conformation-specific chemical probes, our data indicate that (i) the conformation of site I is influenced by T-ag binding and by flanking sequences, (ii) the conformation of the promoters after T-ag binding is dependent on their location, and (iii) unwinding of ori is influenced by the location of the promoters and their presence or absence. These differences in DNA conformation may help explain decreases in relative DNA replication efficiency that occur when the promoters are absent or located downstream of ori.
Collapse
Affiliation(s)
- P J Wilderman
- Department of Microbiology, Miami University, Oxford, Ohio 45056, USA
| | | | | |
Collapse
|
35
|
Kohzaki H, Ito Y, Murakami Y. Context-dependent modulation of replication activity of Saccharomyces cerevisiae autonomously replicating sequences by transcription factors. Mol Cell Biol 1999; 19:7428-35. [PMID: 10523631 PMCID: PMC84736 DOI: 10.1128/mcb.19.11.7428] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evidence for transcription factor involvement in the initiation of DNA replication at certain replication origins in Saccharomyces cerevisiae mainly comes from an indirect assay which measures the mitotic stability of plasmids containing an autonomously replicating sequence (ARS), a selectable marker gene, and a centromere. In order to eliminate the effect of transcription factor binding to the selectable marker gene or centromere in such assays, we have adapted the DpnI assay to directly measure ARS replication activity in vivo by using ARS plasmids devoid of extraneous transcription elements. Using this assay, we found that the B3 element of ARS1, which serves as a binding site for the transcription factor Abf1p, does not stimulate ARS activity on plasmids lacking a centromere and a selectable marker gene. We also found with such plasmids that exogenous expression of the strong transcriptional activators Gal4 and Gal4-VP16 inhibited the replication activity of ARS1 when B3 was replaced by the Gal4 binding site, although these activators had previously been shown to stimulate replication activity in the stability assay. Moreover, a chromosomally inactive ARS, ARS301, which was active by itself on a plasmid, was inactivated by placing an Abf1p binding site in its vicinity. These results indicate that the sequences surrounding the ARS as well as properties of the ARS element itself determine its response to transcription factors.
Collapse
Affiliation(s)
- H Kohzaki
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
36
|
Austin RJ, Orr-Weaver TL, Bell SP. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev 1999; 13:2639-49. [PMID: 10541550 PMCID: PMC317108 DOI: 10.1101/gad.13.20.2639] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast Saccharomyces cerevisiae, sequence-specific DNA binding by the origin recognition complex (ORC) is responsible for selecting origins of DNA replication. In metazoans, origin selection is poorly understood and it is unknown whether specific DNA binding by metazoan ORC controls replication. To address this problem, we used in vivo and in vitro approaches to demonstrate that Drosophila ORC (DmORC) binds to replication elements that direct repeated initiation of replication to amplify the Drosophila chorion gene loci in the follicle cells of egg chambers. Using immunolocalization, we observe that ACE3, a 440-bp chorion element that contains information sufficient to drive amplification, directs DmORC localization in follicle cells. Similarly, in vivo cross-linking and chromatin immunoprecipitation assays demonstrate association of DmORC with both ACE3 and two other amplification control elements, AER-d and ACE1. To demonstrate that the in vivo localization of DmORC is related to its DNA-binding properties, we find that purified DmORC binds to ACE3 and AER-d in vitro, and like its S. cerevisiae counterpart, this binding is dependent on ATP. Our findings suggest that sequence-specific DNA binding by ORC regulates initiation of metazoan DNA replication. Furthermore, adaptation of this experimental approach will allow for the identification of additional metazoan ORC DNA-binding sites and potentially origins of replication.
Collapse
Affiliation(s)
- R J Austin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
37
|
Huberman JA. Genetic methods for characterizing the cis-acting components of yeast DNA replication origins. Methods 1999; 18:356-67. [PMID: 10454997 DOI: 10.1006/meth.1999.0792] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small circular plasmids containing replication origins and, in some cases, centromeres, can replicate autonomously in the nuclei of all tested yeast species. Because this autonomous replication is dependent on the replication origin within the plasmid, measurements of the efficiency of autonomous replication (by the methods summarized here) permit evaluation of the effects of mutations on origin function. Although alternative methods are available for genetic characterization of replication origins in other organisms, the simplicity of the autonomous replication assay in yeasts has permitted development of the deepest understanding to date of eukaryotic replication origin structure. This information has come primarily from studies with Saccharomyces cerevisiae. However, there are many other yeast species, each with its own variety of replication origins. Use of the methods summarized here to characterize origins in other yeast species is likely to provide additional insights into eukaryotic replication origin structure.
Collapse
Affiliation(s)
- J A Huberman
- Department of Genetics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, New York 14263-0001, USA.
| |
Collapse
|
38
|
Abstract
The yeast SWI/SNF complex is required for expression of many genes and for the full functioning of several transcriptional activators. Genetic and biochemical studies indicate that SWI/SNF uses the energy of ATP hydrolysis to antagonize chromatin-mediated transcriptional repression. We have tested the possibility that SWI/SNF might also play a role in DNA replication. A mitotic minichromosome stability assay was used to investigate the replication efficiency of a variety of autonomous replication sequences (ARSs) in the presence and absence of SWI/SNF. The stability of minichromosomes that contain ARS1, ARS309 or ARS307 is not altered by lack of SWI/SNF, whereas the functioning of ARS121 is crippled when SWI/SNF is inactivated. The SWI/SNF dependence of ARS121 does not require the replication enhancer factor, ABF1, and thus, it appears to be a property of a minimal ARS121 origin. Likewise, a minimal derivative of ARS1 that lacks the ABF1 replication enhancer acquires SWI/SNF dependence. Replacing the ABF1 binding site at ARS1 with a binding site for the LexA-GAL4 chimeric activator also creates a SWI/SNF-dependent ARS. Our studies suggest that the SWI/SNF chromatin remodeling complex can play a role in both replication and transcription and, furthermore, that SWI/SNF dependence of ARS elements is a property of both an ARS-specific replication enhancer and the overall organization of ARS sequence elements.
Collapse
Affiliation(s)
- J F Flanagan
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical Center, Worcester, MA 01605, USA
| | | |
Collapse
|
39
|
Abstract
Differentiation of mammalian cells implies cessation of DNA replication and cell proliferation; the potential controls of this coupling are examined here. It is clear that the known or proposed mechanisms of down-regulation of replicative cellular activities vary in different lineages of cell differentiation, and occur in all phases of the cell cycle. In G1 these regulators include p21/Cip1 or p27/Kip1, pRb, and p53; the novel, recently reported mechanisms of their action are summarized. In S phase the availability of nucleotide precursors, the origin recognition complex (ORC), and other replication proteins may be important in differentiation, and in G2 phase the cdc2/cyclin B complex and replication licensing factors determine normal G2 traverse versus an arrest or polyploidisation. Other replication-related mechanisms include transcription factors, e.g., Sp1, telomerase, and nuclear matrix changes. Thus, differentiation alters the activity not only of the various checkpoint proteins, but also of the components of the replicative machinery itself.
Collapse
Affiliation(s)
- F D Coffman
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey, 07103, USA.
| | | |
Collapse
|
40
|
Abstract
Initiation sites for DNA synthesis in the chromosomal autonomously replicating sequence (ARS)1 of Saccharomyces cerevisiae were detected at the nucleotide level. The transition from discontinuous to continuous synthesis defines the origin of bidirectional replication (OBR), which mapped adjacent to the origin recognition complex binding site. To ascertain which sites represented starts for leading or lagging strands, we characterized DNA replication from ARS1 in a cdc9 (DNA ligase I) mutant, defective for joining Okazaki fragments. Leading strand synthesis in ARS1 initiated at only a single site, the OBR. Thus, replication in S. cerevisiae is not initiated stochastically by choosing one out of multiple possible sites but, rather, is a highly regulated process with one precise start point.
Collapse
Affiliation(s)
- A K Bielinsky
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
41
|
Vernis L, Chasles M, Pasero P, Lepingle A, Gaillardin C, Fournier P. Short DNA fragments without sequence similarity are initiation sites for replication in the chromosome of the yeast Yarrowia lipolytica. Mol Biol Cell 1999; 10:757-69. [PMID: 10069816 PMCID: PMC25200 DOI: 10.1091/mbc.10.3.757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, 78850 Thiverval-Grignon, France.
| | | | | | | | | | | |
Collapse
|
42
|
Hurst ST, Rivier DH. Identification of a compound origin of replication at the HMR-E locus in Saccharomyces cerevisiae. J Biol Chem 1999; 274:4155-9. [PMID: 9933610 DOI: 10.1074/jbc.274.7.4155] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic chromosomal origins of replication are best defined in Saccharomyces cerevisiae. Previous analysis of yeast origins suggests that they are relatively simple structures comprised of three or four small DNA sequence elements contained within approximately 100-200-base pair regions (Gilbert, D. M. (1998) Curr. Opin. Genet. Dev. 8, 194-199). In contrast, the sequence elements that may comprise origins in multicellular eukaryotes are largely unknown. The yeast HMR-E region is both a chromosomal origin of replication and a silencer that represses transcription of adjacent genes through a position effect. The analysis presented here indicated that HMR-E had a novel DNA structure that was more complex than defined for other yeast origins, and thus revealed that there is variation in the structural complexity of yeast origins. In contrast to "simple" yeast origins, the origin at HMR-E consisted of at least three independent subregions that had the capacity to initiate replication. We have termed HMR-E a compound origin to reflect its structural complexity. Furthermore, only one origin within the compound origin was a silencer.
Collapse
Affiliation(s)
- S T Hurst
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
43
|
Abstract
The process by which eukaryotic cells decide when and where to initiate DNA replication has been illuminated in yeast, where specific DNA sequences (replication origins) bind a unique group of proteins (origin recognition complex) next to an easily unwound DNA sequence at which replication can begin. The origin recognition complex provides a platform on which additional proteins assemble to form a pre-replication complex that can be activated at S-phase by specific protein kinases. Remarkably, multicellular eukaryotes, such as frogs, flies, and mammals (metazoa), have counterparts to these yeast proteins that are required for DNA replication. Therefore, one might expect metazoan chromosomes to contain specific replication origins as well, a hypothesis that has long been controversial. In fact, recent results strongly support the view that DNA replication origins in metazoan chromosomes consist of one or more high frequency initiation sites and perhaps several low frequency ones that together can appear as a nonspecific initiation zone. Specific replication origins are established during G1-phase of each cell cycle by multiple parameters that include nuclear structure, chromatin structure, DNA sequence, and perhaps DNA modification. Such complexity endows metazoa with the flexibility to change both the number and locations of replication origins in response to the demands of animal development.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| |
Collapse
|
44
|
Kim SM, Huberman JA. Multiple orientation-dependent, synergistically interacting, similar domains in the ribosomal DNA replication origin of the fission yeast, Schizosaccharomyces pombe. Mol Cell Biol 1998; 18:7294-303. [PMID: 9819416 PMCID: PMC109311 DOI: 10.1128/mcb.18.12.7294] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/1998] [Accepted: 08/19/1998] [Indexed: 11/20/2022] Open
Abstract
Previous investigations have shown that the fission yeast, Schizosaccharomyces pombe, has DNA replication origins (500 to 1500 bp) that are larger than those in the budding yeast, Saccharomyces cerevisiae (100 to 150 bp). Deletion and linker substitution analyses of two fission yeast origins revealed that they contain multiple important regions with AT-rich asymmetric (abundant A residues in one strand and T residues in the complementary strand) sequence motifs. In this work we present the characterization of a third fission yeast replication origin, ars3001, which is relatively small ( approximately 570 bp) and responsible for replication of ribosomal DNA. Like previously studied fission yeast origins, ars3001 contains multiple important regions. The three most important of these regions resemble each other in several ways: each region is essential for origin function and is at least partially orientation dependent, each region contains similar clusters of A+T-rich asymmetric sequences, and the regions can partially substitute for each other. These observations suggest that ars3001 function requires synergistic interactions between domains binding similar proteins. It is likely that this requirement extends to other fission yeast origins, explaining why such origins are larger than those of budding yeast.
Collapse
Affiliation(s)
- S M Kim
- Department of Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | |
Collapse
|
45
|
Magrath C, Lund K, Miller CA, Hyman LE. Overlapping 3'-end formation signals and ARS elements: tightly linked but functionally separable. Gene 1998; 222:69-75. [PMID: 9813245 DOI: 10.1016/s0378-1119(98)00479-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
3'-End formation signals are closely associated with autonomous replicating sequences (ARSs) in Saccharomyces cerevisiae in that ARSs frequently contain signals that direct 3'-end formation (Chen et al., 1996). Mutationally-inactivated ARSs that co-reside with 3'-end formation sequences do not disrupt 3'-end formation, thus demonstrating that replication function does not affect termination function. To test the corollary possibility that 3'-end formation is important for replication function, we made point mutations in ARS305 that increase readthrough of the 3'-end formation signals and determined plasmid replication efficiency. Replication efficiency, as assessed by plasmid stability assays, was not altered by mutations affecting 3'-end formation when transcription through the ARS was either absent or highly-induced. Under conditions of high-level transcription through the ARS, the rate of plasmid loss in both wild-type and mutated terminators increased over five-fold from rates observed during transcriptionally repressed conditions. This result indicates that the native 3'-end formation signal is incapable of protecting the replication function when high levels of transcription are directed into the ARS. Thus, the compact nature of the S. cerevisiae genome, rather than a functional inter-dependence, may account for close association of transcription terminators and ARSs.
Collapse
Affiliation(s)
- C Magrath
- Tulane University, Interdisciplinary Program in Molecular and Cell Biology, New Orleans, LA, USA
| | | | | | | |
Collapse
|
46
|
Gilbert DM. Replication origins in yeast versus metazoa: separation of the haves and the have nots. Curr Opin Genet Dev 1998; 8:194-9. [PMID: 9610410 DOI: 10.1016/s0959-437x(98)80141-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent flood of information concerning Saccharomyces cerevisiae replication origins and the proteins that interact with them contrasts alarmingly to the trickle of progress in our understanding of metazoan origins. In mammalian cells, origins are complex and heterogeneous, and appear to be selected by features of nuclear architecture that are re-established after each mitosis. Studies in Xenopus egg extracts have shown that once per cell cycle replication does not require specific origin sequences, despite the identification of functional homologues to yeast origin-binding proteins. These observations suggest that initiation of DNA replication in higher eukaryotes is focused to specific genomic regions by features of chromosome structure.
Collapse
Affiliation(s)
- D M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse 13210, USA.
| |
Collapse
|
47
|
Abstract
Sites of DNA synthesis initiation have been detected at the nucleotide level in a yeast origin of bidirectional replication with the use of replication initiation point mapping. The ARS1 origin of Saccharomyces cerevisiae showed a transition from discontinuous to continuous DNA synthesis in an 18-base pair region (nucleotides 828 to 845) from within element B1 toward B2, adjacent to the binding site for the origin recognition complex, the putative initiator protein.
Collapse
Affiliation(s)
- A K Bielinsky
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
48
|
DePamphilis ML. Initiation of DNA replication in eukaryotic chromosomes. J Cell Biochem 1998; 72 Suppl 30-31:8-17. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<8::aid-jcb3>3.0.co;2-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 09/15/1998] [Indexed: 11/06/2022]
|
49
|
Abstract
Replication in eukaryotes is bidirectional and semi-discontinuous. This asymmetry provides the basis for mapping the origin of bidirectional replication (OBR), which is the transition point from discontinuous to continuous synthesis. The regions of each DNA strand complementary to the leading strand or lagging strand can be measured by the methods of imbalanced DNA synthesis or Okazaki fragment distribution, respectively. The resolution of both of these hybridization-based procedures is a few hundred base pairs. Nucleotide resolution was previously achieved for viral origins by mapping the initiation sites of Okazaki fragments on sequencing gels. To overcome the background caused by nicked DNA, all DNA ends were phosphorylated, RNA primers were removed from the Okazaki fragments by NaOH hydrolysis, and the hydroxyl ends thus created were phosphorylated with 32P. Unfortunately, this method was not sensitive enough to map eukaryotic cellular origins. A new method, replication initiation point (RIP) mapping, that is 1000-fold more sensitive and has been applied to yeast ARS1 where the OBR is mapped to and 18-bp region from within element B1 toward B2 is described here. RIP mapping utilizes Vent (exo-) polymerase to extend from a labeled primer to the DNA/RNA junctions of nascent strand template in an asynchronous population of replicating molecules. The DNA is digested with lambda-exonuclease prior to primer extension to remove nicked contaminating DNA.
Collapse
Affiliation(s)
- S A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
50
|
Clyne RK, Kelly TJ. Identification of autonomously replicating sequence (ARS) elements in eukaryotic cells. Methods 1997; 13:221-33. [PMID: 9441849 DOI: 10.1006/meth.1997.0522] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Autonomously replicating sequence (ARS) elements were first identified in the budding yeast Saccharomyces cerevisiae as chromosomal DNA fragments that promoted high frequency of transformation and extrachromosomal maintenance of plasmid DNA. These specific sequence elements were subsequently shown to function as origins of DNA replication. Detailed analysis of the structure and function of ARS elements has been limited largely to S. cerevisiae and more recently the fission yeast Schizosaccharomyces pombe. Characterization of ARS activity in other eukaryotes is far less complete. Here we describe the ARS assay developed in yeast and its application to the study of origin function in other eukaryotes. Other available methods for detecting autonomous replication in these systems are also presented.
Collapse
Affiliation(s)
- R K Clyne
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|