1
|
Malavašič P, Polajžer S, Lovšin N. Anaphase-Promoting Complex Subunit 1 Associates with Bone Mineral Density in Human Osteoporotic Bone. Int J Mol Sci 2023; 24:12895. [PMID: 37629076 PMCID: PMC10454667 DOI: 10.3390/ijms241612895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Genome-wide association studies (GWAS) are one of the most common approaches to identify genetic loci that are associated with bone mineral density (BMD). Such novel genetic loci represent new potential targets for the prevention and treatment of fragility fractures. GWAS have identified hundreds of associations with BMD; however, only a few have been functionally evaluated. A locus significantly associated with femoral neck BMD at the genome-wide level is intronic SNP rs17040773 located in the intronic region of the anaphase-promoting complex subunit 1 (ANAPC1) gene (p = 1.5 × 10-9). Here, we functionally evaluate the role of ANAPC1 in bone remodelling by examining the expression of ANAPC1 in human bone and muscle tissues and during the osteogenic differentiation of human primary mesenchymal stem cells (MSCs). The expression of ANAPC1 was significantly decreased 2.3-fold in bone tissues and 6.2-fold in muscle tissue from osteoporotic patients as compared to the osteoarthritic and control tissues. Next, we show that the expression of ANAPC1 changes during the osteogenic differentiation process of human MSCs. Moreover, the silencing of ANAPC1 in human osteosarcoma (HOS) cells reduced RUNX2 expression, suggesting that ANAPC1 affects osteogenic differentiation through RUNX2. Altogether, our results indicate that ANAPC1 plays a role in bone physiology and in the development of osteoporosis.
Collapse
Affiliation(s)
- Petra Malavašič
- General Hospital Novo Mesto, Šmihelska Cesta 1, 8000 Novo Mesto, Slovenia;
| | - Sara Polajžer
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Abstract
The Anaphase Promoting Complex/Cyclosome (APC/C) is a ubiquitin E3 ligase that functions as the gatekeeper to mitotic exit. APC/C activity is controlled by an interplay of multiple pathways during mitosis, including the spindle assembly checkpoint (SAC), that are not yet fully understood. Here, we show that sumoylation of the APC4 subunit of the APC/C peaks during mitosis and is critical for timely APC/C activation and anaphase onset. We have also identified a functionally important SUMO interacting motif in the cullin-homology domain of APC2 located near the APC4 sumoylation sites and APC/C catalytic core. Our findings provide evidence of an important regulatory role for SUMO modification and binding in affecting APC/C activation and mitotic exit.
Collapse
Affiliation(s)
- Christine C Lee
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michael J Matunis
- Department of Biochemistry and Molecular Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
3
|
Sivakumar S, Gorbsky GJ. Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 2015; 16:82-94. [PMID: 25604195 DOI: 10.1038/nrm3934] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| | - Gary J Gorbsky
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
4
|
Arnold L, Höckner S, Seufert W. Insights into the cellular mechanism of the yeast ubiquitin ligase APC/C-Cdh1 from the analysis of in vivo degrons. Mol Biol Cell 2014; 26:843-58. [PMID: 25540434 PMCID: PMC4342022 DOI: 10.1091/mbc.e14-09-1342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) controls a variety of cellular processes through its ability to target numerous protein substrates for timely degradation. Substrate selection by this ubiquitin ligase depends on related activator proteins, Cdc20 and Cdh1, which bind and activate the APC/C at distinct cell cycle stages. Biochemical and structural studies revealed that Cdc20 and Cdh1 carry conserved receptor domains to recognize specific sequence motifs in substrates, such as D and KEN boxes. The mechanisms for ordered degradation of APC/C substrates, however, remain incompletely understood. Here we describe minimal degradation sequences (degrons) sufficient for rapid APC/C-Cdh1-specific in vivo degradation. The polo kinase Cdc5-derived degron contained an essential KEN motif, whereas a single RxxL-type D box was the relevant signal in the Cdc20-derived degradation domain, indicating that either motif may support specific recognition by Cdh1. In both degrons, the APC/C recognition motif was flanked by a nuclear localization sequence. Forced localization of the degron constructs revealed that proteolysis mediated by APC/C-Cdh1 is restricted to the nucleus and maximally active in the nucleoplasm. Levels of Iqg1, a cytoplasmic Cdh1 substrate, decreased detectably later than the nucleus-localized Cdh1 substrate Ase1, indicating that confinement to the nucleus may allow for temporal control of APC/C-Cdh1-mediated proteolysis.
Collapse
Affiliation(s)
- Lea Arnold
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Sebastian Höckner
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| | - Wolfgang Seufert
- Department of Genetics, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
5
|
Sivakumar S, Daum JR, Tipton AR, Rankin S, Gorbsky GJ. The spindle and kinetochore-associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit. Mol Biol Cell 2014; 25:594-605. [PMID: 24403607 PMCID: PMC3937086 DOI: 10.1091/mbc.e13-07-0421] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The spindle and kinetochore-associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA-mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore-microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit.
Collapse
Affiliation(s)
- Sushama Sivakumar
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | | | | | | | | |
Collapse
|
6
|
Pfaff KL, King RW. Determinants of human cyclin B1 association with mitotic chromosomes. PLoS One 2013; 8:e59169. [PMID: 23505570 PMCID: PMC3594322 DOI: 10.1371/journal.pone.0059169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 02/13/2013] [Indexed: 12/28/2022] Open
Abstract
Cyclin B1–CDK1 activity is essential for mitotic entry, but questions remain regarding how the activity of this kinase is spatially regulated. Previous studies showed that the cyclin B1 subunit localizes to several compartments of a mitotic cell, including the centrosomes, mitotic spindle, kinetochores and chromosomes via distinct sequence elements. Mitotic chromosome association occurs through the unstructured N-terminal domain of cyclin B1 and is independent of CDK1 binding. Here, we use live cell imaging of human cyclin B1 fused to GFP to precisely define the sequence elements within cyclin B1 that mediate its association with condensed mitotic chromosomes. We find that a short, evolutionarily conserved N-terminal motif is required for cyclin B1 to localize to mitotic chromosomes. We further reveal a role for arginine residues within and near the destruction box sequence in the chromosome association of cyclin B1. Additionally, our data suggest that sequences further downstream in cyclin B1, such as the cytoplasmic retention sequence and the cyclin box, may negatively modulate chromosome association. Because multiple basic residues are required for cyclin B1 association with mitotic chromosomes, electrostatic interactions with DNA may facilitate cyclin B1 localization to chromosomes.
Collapse
Affiliation(s)
- Kathleen L. Pfaff
- Harvard Medical School Department of Cell Biology, Boston, Massachusetts, United States of America
| | - Randall W. King
- Harvard Medical School Department of Cell Biology, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
He ML, Chen Y, Chen Q, He Y, Zhao J, Wang J, Yang H, Kung HF. Multiple gene dysfunctions lead to high cancer-susceptibility: evidences from a whole-exome sequencing study. Am J Cancer Res 2011; 1:562-573. [PMID: 21984973 PMCID: PMC3186053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 03/28/2011] [Indexed: 05/31/2023] Open
Abstract
A total of $275 million has been launched to The Cancer Genome Atlas Project for genomic mapping of more than 20 types of cancers. The major challenge is to develop high throughput and cost-effective techniques for human genome sequencing. We developed a targeted exome sequencing technology to routinely determine human exome sequence. As a proof-of-concept, we chose a unique patient, who underwent three high mortalities cancers, i.e., breast, gallbladder and lung cancers, to reveal the genetic cause of high-cancer-susceptibility. Total 24,545 SNPs were detected. 10,868 (44.27%) SNPs were within coding regions, and 1,077 (4.38%) located in the UTRs. 3367 genes were hit by 4480 non-sysnonymous mutations in CDS with truncation of 30 proteins; and 10 mutations occurred at the splice sites that would generate different protein isoforms. Substitutions or premature terminations occurred in 132 proteins encoded by cancer-associated genes. CARD8 was completely loss; ANAPC1 was pre-translationally terminated from the transcripts of one allele. On the Ras-MAPK pathway, 18 genes were homozygously mutated. 15 growth factors/cytokines and their receptors, 9 transcription factors, 6 proteins on WNT signaling pathway, and 16 cell surface and extracellular proteins may be dysfunctioned. Exome sequencing made it possible for individualized cancer therapy.
Collapse
Affiliation(s)
- Ming-Liang He
- Stanley Ho Center for Emerging Infectious Disease, School of Public Health and Primary Care, Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Ying Chen
- Stanley Ho Center for Emerging Infectious Disease, School of Public Health and Primary Care, Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| | - Quan Chen
- Stanley Ho Center for Emerging Infectious Disease, School of Public Health and Primary Care, Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
- Beijing Genomics Institute at ShenzhenShenzhen, China
| | - Yaqing He
- Shenzhen Center for Disease Control and PreventionShenzhen, China
| | - Jing Zhao
- Beijing Genomics Institute at ShenzhenShenzhen, China
| | - Jun Wang
- Beijing Genomics Institute at ShenzhenShenzhen, China
| | - Huanming Yang
- Beijing Genomics Institute at ShenzhenShenzhen, China
| | - Hsiang-Fu Kung
- Stanley Ho Center for Emerging Infectious Disease, School of Public Health and Primary Care, Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
8
|
Mutual regulation between the spindle checkpoint and APC/C. Semin Cell Dev Biol 2011; 22:551-8. [PMID: 21439394 DOI: 10.1016/j.semcdb.2011.03.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/16/2011] [Indexed: 11/21/2022]
Abstract
Accurate chromosome segregation during mitosis is critical for maintaining genomic stability. The spindle checkpoint is a cellular surveillance system that ensures the fidelity of chromosome segregation. In response to sister chromatids not properly captured by spindle microtubules, the spindle checkpoint interferes with the functions of Cdc20, the mitotic activator of the anaphase-promoting complex or cyclosome (APC/C), thereby blocking APC/C-mediated degradation of securin and cyclin B to delay anaphase onset. This review summarizes the recent progress on the mechanisms by which checkpoint proteins inhibit APC/C, the conformational and enzymatic activation of checkpoint proteins, and the emerging roles of APC/C-dependent ubiquitination in checkpoint inactivation.
Collapse
|
9
|
Chuang C, Lin SH, Huang F, Pan J, Josic D, Yu-Lee LY. Acetylation of RNA processing proteins and cell cycle proteins in mitosis. J Proteome Res 2011; 9:4554-64. [PMID: 20812760 DOI: 10.1021/pr100281h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitosis is a highly regulated process in which errors can lead to genomic instability, a hallmark of cancer. During this phase of the cell cycle, transcription is silent and RNA translation is inhibited. Thus, mitosis is largely driven by post-translational modification of proteins, including phosphorylation, methylation, ubiquitination, and sumoylation. Here, we show that protein acetylation is prevalent during mitosis. To identify proteins that are acetylated, we synchronized HeLa cells in early prometaphase and immunoprecipitated lysine-acetylated proteins with antiacetyl-lysine antibody. The immunoprecipitated proteins were identified by LC-ESI-MS/MS analysis. These include proteins involved in RNA translation, RNA processing, cell cycle regulation, transcription, chaperone function, DNA damage repair, metabolism, immune response, and cell structure. Immunoprecipitation followed by Western blot analyses confirmed that two RNA processing proteins, eIF4G and RNA helicase A, and several cell cycle proteins, including APC1, anillin, and NudC, were acetylated in mitosis. We further showed that acetylation of APC1 and NudC was enhanced by apicidin treatment, suggesting that their acetylation was regulated by histone deacetylase. Moreover, treating mitotic cells with apicidin or trichostatin A induced spindle abnormalities and cytokinesis failure. These studies suggest that protein acetylation/deacetylation is likely an important regulatory mechanism in mitosis.
Collapse
Affiliation(s)
- Carol Chuang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
10
|
Lu Y, Wang Z, Ge L, Chen N, Liu H. The RZZ complex and the spindle assembly checkpoint. Cell Struct Funct 2009; 34:31-45. [PMID: 19420794 DOI: 10.1247/csf.08040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The conserved protein Rod is found in various organisms. It is localized on the kinetochores or spindle microtubules during cell division. Rod is required for proper chromosome segregation during both mitosis and meiosis. The effects of rod mutations are similar for both equational and reductional divisions, giving rise to anaphases with lagging chromosomes and/or unequal numbers of chromosomes at the two poles. Recent studies have shown that Rod is a significant component of the mitotic checkpoint. It can form the RZZ complex with Zw10 and Zwilch, which plays an important role in maintaining a functional spindle assembly checkpoint.
Collapse
Affiliation(s)
- Yujian Lu
- MOE Key Laboratory of Arid and Grassland Ecology, Institute of Cell Biology, Life Science School, Lanzhou University, Lanzhou, PR China
| | | | | | | | | |
Collapse
|
11
|
Dubey RN, Nakwal N, Bisht KK, Saini A, Haldar S, Singh J. Interaction of APC/C-E3 ligase with Swi6/HP1 and Clr4/Suv39 in heterochromatin assembly in fission yeast. J Biol Chem 2009; 284:7165-76. [PMID: 19117951 PMCID: PMC2652303 DOI: 10.1074/jbc.m806461200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/22/2008] [Indexed: 11/06/2022] Open
Abstract
Heterochromatin assembly in fission yeast is initiated by binding of Swi6/HP1 to the Lys-9-dimethylated H3 followed by spreading via cooperative recruitment of Swi6/HP1. Recruitment of Cohesin by Swi6/HP1 further stabilizes the heterochromatin structure and integrity. Subsequently, polyubiquitylation of Cut2 by anaphase-promoting complex-cyclosome (APC/C)-ubiquitin-protein isopeptide ligase (E3 ligase) followed by degradation of Cut2 releases Cut1, which cleaves the Rad21 subunit of Cohesin, facilitating sister chromatid separation during mitosis. Here, we demonstrate a surprising role of APC/C in assembly of heterochromatin and silencing at mating type, centromere, and ribosomal DNA loci. Coincidentally with the loss of silencing, recruitment of Swi6, H3-Lys-9-Me2, and Clr4 at dg-dh repeats at cen1 and the K region of mat locus is abrogated in mutants cut4, cut9, and nuc2. Surprisingly, both Cut4 and Cut9 are also highly enriched at these regions in wild type and depleted in swi6Delta mutant. Cut4 and Cut9 interact directly with Swi6/HP1 and Clr4, whereas the mutant Cut4 does not, suggesting that a direct physical interaction of APC subunits Cut4 and Cut9 with Swi6 and Clr4 is instrumental in heterochromatin assembly. The silencing defect in APC mutants is causally related to ubiquitylation activity of APC-E3 ligase. Like swi6 mutant, APC mutants are also defective in Cohesin recruitment and exhibit defects like lagging chromosomes, chromosome loss, and aberrant recombination in the mat region. In addition, APC mutants exhibit a bidirectional expression of dh repeats, suggesting a role in the RNA interference pathway. Thus, APC and heterochromatin proteins Swi6 and Clr4 play a mutually cooperative role in heterochromatin assembly, thereby ensuring chromosomal integrity, inheritance, and segregation during mitosis and meiosis.
Collapse
|
12
|
Kulukian A, Han JS, Cleveland DW. Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Dev Cell 2009; 16:105-17. [PMID: 19154722 DOI: 10.1016/j.devcel.2008.11.005] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/10/2008] [Accepted: 11/10/2008] [Indexed: 11/16/2022]
Abstract
Premature anaphase onset is prevented by the mitotic checkpoint through production of a "wait anaphase" inhibitor(s) that blocks recognition of cyclin B and securin by Cdc20-activated APC/C, an E3 ubiquitin ligase that targets them for destruction. Using physiologically relevant levels of Mad2, Bub3, BubR1, and Cdc20, we demonstrate that unattached kinetochores on purified chromosomes catalytically generate a diffusible Cdc20 inhibitor or inhibit Cdc20 already bound to APC/C. Furthermore, the chromosome-produced inhibitor requires both recruitment of Mad2 by Mad1 that is stably bound at unattached kinetochores and dimerization-competent Mad2. We show that purified chromosomes promote BubR1 binding to APC/C-Cdc20 by acting directly on Mad2, but not BubR1. Our results support a model in which immobilized Mad1/Mad2 at kinetochores provides a template for initial assembly of Mad2 bound to Cdc20 that is then converted to a final mitotic checkpoint inhibitor with Cdc20 bound to BubR1.
Collapse
Affiliation(s)
- Anita Kulukian
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
13
|
Erhardt S, Mellone BG, Betts CM, Zhang W, Karpen GH, Straight AF. Genome-wide analysis reveals a cell cycle-dependent mechanism controlling centromere propagation. ACTA ACUST UNITED AC 2008; 183:805-18. [PMID: 19047461 PMCID: PMC2592830 DOI: 10.1083/jcb.200806038] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Centromeres are the structural and functional foundation for kinetochore formation, spindle attachment, and chromosome segregation. In this study, we isolated factors required for centromere propagation using genome-wide RNA interference screening for defects in centromere protein A (CENP-A; centromere identifier [CID]) localization in Drosophila melanogaster. We identified the proteins CAL1 and CENP-C as essential factors for CID assembly at the centromere. CID, CAL1, and CENP-C coimmunoprecipitate and are mutually dependent for centromere localization and function. We also identified the mitotic cyclin A (CYCA) and the anaphase-promoting complex (APC) inhibitor RCA1/Emi1 as regulators of centromere propagation. We show that CYCA is centromere localized and that CYCA and RCA1/Emi1 couple centromere assembly to the cell cycle through regulation of the fizzy-related/CDH1 subunit of the APC. Our findings identify essential components of the epigenetic machinery that ensures proper specification and propagation of the centromere and suggest a mechanism for coordinating centromere inheritance with cell division.
Collapse
Affiliation(s)
- Sylvia Erhardt
- Department of Genome Dynamics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
14
|
Huang JY, Morley G, Li D, Whitaker M. Cdk1 phosphorylation sites on Cdc27 are required for correct chromosomal localisation and APC/C function in syncytial Drosophila embryos. J Cell Sci 2007; 120:1990-7. [PMID: 17519285 PMCID: PMC2082081 DOI: 10.1242/jcs.006833] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaphase-promoting complex or cyclosome (APC/C) controls the metaphase-to-anaphase transition and mitosis exit by triggering the degradation of key cell cycle regulators such as securin and B-type cyclins. However, little is known about the functions of individual APC/C subunits and how they might regulate APC/C activity in space and time. Here, we report that two potential Cdk1 kinase phosphorylation sites are required for the chromosomal localisation of GFP::Cdc27 during mitosis. Either or both of the highly conserved proline residues in the Cdk1 phosphorylation consensus sequence motifs were mutated to alanine (Cdc27 P304A or P456A). The singly mutated fusion proteins, GFP::Cdc27P304A and GFP::Cdc27P456A, can still localise to mitotic chromosomes in a manner identical to wild-type GFP::Cdc27 and are functional in that they can rescue the phenotype of the cdc27L7123 mutant in vivo. However, when both of the Cdk1 phosphorylation sequence motifs were mutated, the resulting GFP::Cdc27P304A,P456A construct was not localised to the chromosomes during mitosis and was no longer functional, as it failed to rescue mutant phenotypes of the cdc27L7123 gene. High levels of cyclin B and cyclin A were detected in mutant third instar larvae brain samples compared with its wild-type control. These results show for the first time that the two potential Cdk1 phosphorylation sites on Drosophila Cdc27 are required for its chromosomal localisation during mitosis and imply that these localisations specific to Cdc27 are crucial for APC/C functions.
Collapse
Affiliation(s)
- Jun-Yong Huang
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | |
Collapse
|
15
|
Heilman DW, Teodoro JG, Green MR. Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies. J Virol 2006; 80:7535-45. [PMID: 16840333 PMCID: PMC1563728 DOI: 10.1128/jvi.02741-05] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chicken anemia virus protein Apoptin selectively induces apoptosis in transformed cells while leaving normal cells intact. This selectivity is thought to be largely due to cell type-specific localization: Apoptin is cytoplasmic in primary cells and nuclear in transformed cells. The basis of Apoptin cell type-specific localization and activity remains to be determined. Here we show that Apoptin is a nucleocytoplasmic shuttling protein whose localization is mediated by an N-terminal nuclear export signal (NES) and a C-terminal nuclear localization signal (NLS). Both signals are required for cell type-specific localization, since Apoptin fragments containing either the NES or the NLS fail to differentially localize in transformed and primary cells. Significantly, cell type-specific localization can be conferred in trans by coexpression of the two separate fragments, which interact through an Apoptin multimerization domain. We have previously shown that Apoptin interacts with the APC1 subunit of the anaphase-promoting complex/cyclosome (APC/C), resulting in G(2)/M cell cycle arrest and apoptosis in transformed cells. We found that the nucleocytoplasmic shuttling activity is critical for efficient APC1 association and induction of apoptosis in transformed cells. Interestingly, both Apoptin multimerization and APC1 interaction are mediated by domains that overlap with the NES and NLS sequences, respectively. Apoptin expression in transformed cells induces the formation of PML nuclear bodies and recruits APC/C to these subnuclear structures. Our results reveal a mechanism for the selective killing of transformed cells by Apoptin.
Collapse
Affiliation(s)
- Destin W Heilman
- Howard Hughes Medical Institute, and Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | |
Collapse
|
16
|
Nguyen HG, Chinnappan D, Urano T, Ravid K. Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: identification of an aneuploidy-promoting property. Mol Cell Biol 2005; 25:4977-92. [PMID: 15923616 PMCID: PMC1140599 DOI: 10.1128/mcb.25.12.4977-4992.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The kinase Aurora-B, a regulator of chromosome segregation and cytokinesis, is highly expressed in a variety of tumors. During the cell cycle, the level of this protein is tightly controlled, and its deregulated abundance is suspected to contribute to aneuploidy. Here, we provide evidence that Aurora-B is a short-lived protein degraded by the proteasome via the anaphase-promoting cyclosome complex (APC/c) pathway. Aurora-B interacts with the APC/c through the Cdc27 subunit, Aurora-B is ubiquitinated, and its level is increased upon treatment with inhibitors of the proteasome. Aurora-B binds in vivo to the degradation-targeting proteins Cdh1 and Cdc20, the overexpression of which accelerates Aurora-B degradation. Using deletions or point mutations of the five putative degradation signals in Aurora-B, we show that degradation of this protein does not depend on its D-boxes (RXXL), but it does require intact KEN boxes and A-boxes (QRVL) located within the first 65 amino acids. Cells transfected with wild-type or A-box-mutated or KEN box-mutated Aurora-B fused to green fluorescent protein display the protein localized to the chromosomes and then to the midzone during mitosis, but the mutated forms are detected at greater intensities. Hence, we identified the degradation pathway for Aurora-B as well as critical regions for its clearance. Intriguingly, overexpression of a stable form of Aurora-B alone induces aneuploidy and anchorage-independent growth.
Collapse
Affiliation(s)
- Hao G Nguyen
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, K225, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
17
|
Melloy PG, Holloway SL. Changes in the localization of the Saccharomyces cerevisiae anaphase-promoting complex upon microtubule depolymerization and spindle checkpoint activation. Genetics 2005; 167:1079-94. [PMID: 15280225 PMCID: PMC1470941 DOI: 10.1534/genetics.103.025478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase in the ubiquitin-mediated proteolysis pathway (UMP). To understand how the APC/C was targeted to its substrates, we performed a detailed analysis of one of the APC/C components, Cdc23p. In live cells, Cdc23-GFP localized to punctate nuclear spots surrounded by homogenous nuclear signal throughout the cell cycle. These punctate spots colocalized with two outer kinetochore proteins, Slk19p and Okp1p, but not with the spindle pole body protein, Spc42p. In late anaphase, the Cdc23-GFP was also visualized along the length of the mitotic spindle. We hypothesized that spindle checkpoint activation may affect the APC/C nuclear spot localization. Localization of Cdc23-GFP was disrupted upon nocodazole treatment in the kinetochore mutant okp1-5 and in the cdc20-1 mutant. Cdc23-GFP nuclear spot localization was not affected in the ndc10-1 mutant, which is defective in spindle checkpoint function. Additional studies using a mad2Delta strain revealed a microtubule dependency of Cdc23-GFP spot localization, whether or not the checkpoint response was activated. On the basis of these data, we conclude that Cdc23p localization was dependent on microtubules and was affected by specific types of kinetochore disruption.
Collapse
Affiliation(s)
- Patricia G Melloy
- Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
18
|
Nakamura N, Tokumoto T, Ueno S, Iwao Y. The cytoskeleton-dependent localization of cdc2/cyclin B in blastomere cortex duringXenopus embryonic cell cycle. Mol Reprod Dev 2005; 72:336-45. [PMID: 16097011 DOI: 10.1002/mrd.20348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the early development of the frog, Xenopus laevis, blastomeres undergo synchronous divisions at about the 12th cell cycle, followed by asynchronous divisions, which is referred to as mid-blastula transition (MBT). We investigated the distribution of several regulating factors for cell cycles around MBT using immunocytochemistry and confocal fluorescence microscopy. At the 8th cell cycle, most of the cdc2/cyclin B was localized in the cortical cytoplasm throughout the cell cycle, in the centrosomes and the nucleus at interphase and prometaphase, and in the spindles at metaphase and anaphase. Cdc2 was also localized in the chromatins at metaphase and anaphase. Cyclin B1 mRNA was localized in the periphery of the nucleus, but not in the cell cortex. At the 13th cell cycle, the amount of cdc2/cyclin B in the cortical cytoplasm decreased, and the inactive form of cdc2, phosphorylated at tyrosine 15, appeared in the nucleus and the centrosomes at interphase, indicating that the regulation of cdc2 by phosphorylation occurs around MBT. When the blastomeres were treated with nocodazole or latrunculin A at the 8th cell cycle, the amount of cortical cdc2 decreased, but that of cyclin B did not change. The cortical localization of cdc2 is dependent upon both microtubules and microfilaments. Most of the cdc27 was localized in the centrosomes, and in the spindle poles, but no significant difference was observed between the 8th and the 13th cell cycles. It is possible that the cortical MPF activity is regulated by the differential localization between cdc2 and cyclin B.
Collapse
Affiliation(s)
- Norihiko Nakamura
- Department of Biological Science, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| | | | | | | |
Collapse
|
19
|
Acquaviva C, Herzog F, Kraft C, Pines J. The anaphase promoting complex/cyclosome is recruited to centromeres by the spindle assembly checkpoint. Nat Cell Biol 2004; 6:892-8. [PMID: 15322556 DOI: 10.1038/ncb1167] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 07/23/2004] [Indexed: 11/08/2022]
Abstract
The anaphase promoting complex/cyclosome (APC/C) is crucial to the control of cell division (for a review, see ref. 1). It is a multi-subunit ubiquitin ligase that, at defined points during mitosis, targets specific proteins for proteasomal degradation. The APC/C is itself regulated by the spindle or kinetochore checkpoint, which has an important role in maintaining genomic stability by preventing sister chromatid separation until all chromosomes are correctly aligned on the mitotic spindle. The spindle checkpoint regulates the APC/C by inactivating Cdc20, an important co-activator of the APC/C. There is also evidence to indicate that the spindle checkpoint components and Cdc20 are spatially regulated by the mitotic apparatus, in particular they are recruited to improperly attached kinetochores. Here, we show that the APC/C itself co-localizes with components of the spindle checkpoint to improperly attached kinetochores. Indeed, we provide evidence that the spindle checkpoint machinery is required to recruit the APC/C to kinetochores. Our data indicate that the APC/C could be regulated directly by the spindle checkpoint.
Collapse
Affiliation(s)
- Claire Acquaviva
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
20
|
Vigneron S, Prieto S, Bernis C, Labbé JC, Castro A, Lorca T. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 2004; 15:4584-96. [PMID: 15269280 PMCID: PMC519151 DOI: 10.1091/mbc.e04-01-0051] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle checkpoint prevents anaphase onset until all the chromosomes have successfully attached to the spindle microtubules. The mechanisms by which unattached kinetochores trigger and transmit a primary signal are poorly understood, although it seems to be dependent at least in part, on the kinetochore localization of the different checkpoint components. By using protein immunodepletion and mRNA translation in Xenopus egg extracts, we have studied the hierarchic sequence and the interdependent network that governs protein recruitment at the kinetochore in the spindle checkpoint pathway. Our results show that the first regulatory step of this cascade is defined by Aurora B/INCENP complex. Aurora B/INCENP controls the activation of a second regulatory level by inducing at the kinetochore the localization of Mps1, Bub1, Bub3, and CENP-E. This localization, in turn, promotes the recruitment to the kinetochore of Mad1/Mad2, Cdc20, and the anaphase promoting complex (APC). Unlike Aurora B/INCENP, Mps1, Bub1, and CENP-E, the downstream checkpoint protein Mad1 does not regulate the kinetochore localization of either Cdc20 or APC. Similarly, Cdc20 and APC do not require each other to be localized at these chromosome structures. Thus, at the last step of the spindle checkpoint cascade, Mad1/Mad2, Cdc20, and APC are recruited at the kinetochores independently from each other.
Collapse
Affiliation(s)
- Suzanne Vigneron
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique Formation de Recherche en Evolution 2593, 34293 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
21
|
Howell BJ, Moree B, Farrar EM, Stewart S, Fang G, Salmon ED. Spindle Checkpoint Protein Dynamics at Kinetochores in Living Cells. Curr Biol 2004; 14:953-64. [PMID: 15182668 DOI: 10.1016/j.cub.2004.05.053] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 05/18/2004] [Accepted: 05/19/2004] [Indexed: 11/29/2022]
Abstract
BACKGROUND To test current models for how unattached and untense kinetochores prevent Cdc20 activation of the anaphase-promoting complex/cyclosome (APC/C) throughout the spindle and the cytoplasm, we used GFP fusions and live-cell imaging to quantify the abundance and dynamics of spindle checkpoint proteins Mad1, Mad2, Bub1, BubR1, Mps1, and Cdc20 at kinetochores during mitosis in living PtK2 cells. RESULTS Unattached kinetochores in prometaphase bound on average only a small fraction (estimated at 500-5000 molecules) of the total cellular pool of each spindle checkpoint protein. Measurements of fluorescence recovery after photobleaching (FRAP) showed that GFP-Cdc20 and GFP-BubR1 exhibit biphasic exponential kinetics at unattached kinetochores, with approximately 50% displaying very fast kinetics (t1/2 of approximately 1-3 s) and approximately 50% displaying slower kinetics similar to the single exponential kinetics of GFP-Mad2 and GFP-Bub3 (t1/2 of 21-23 s). The slower phase of GFP-Cdc20 likely represents complex formation with Mad2 since it was tension insensitive and, unlike the fast phase, it was absent at metaphase kinetochores that lack Mad2 but retain Cdc20 and was absent at unattached prometaphase kinetochores for the Cdc20 derivative GFP-Cdc20delta1-167, which lacks the major Mad2 binding domain but retains kinetochore localization. GFP-Mps1 exhibited single exponential kinetics at unattached kinetochores with a t1/2 of approximately 10 s, whereas most GFP-Mad1 and GFP-Bub1 were much more stable components. CONCLUSIONS Our data support catalytic models of checkpoint activation where Mad1 and Bub1 are mainly resident, Mad2 free of Mad1, BubR1 and Bub3 free of Bub1, Cdc20, and Mps1 dynamically exchange as part of the diffuse wait-anaphase signal; and Mad2 interacts with Cdc20 at unattached kinetochores.
Collapse
Affiliation(s)
- Bonnie J Howell
- Department of Biology, CB#3280, 607 Fordham Hall, University of North Carolina, Chapel Hill, NC 27599 USA
| | | | | | | | | | | |
Collapse
|
22
|
Spremo-Potparevic B, Zivkovic L, Djelic N, Bajic V. Analysis of premature centromere division (PCD) of the X chromosome in Alzheimer patients through the cell cycle. Exp Gerontol 2004; 39:849-54. [PMID: 15130680 DOI: 10.1016/j.exger.2004.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 01/08/2004] [Accepted: 01/20/2004] [Indexed: 11/29/2022]
Abstract
Cytogenetic analysis of the X chromosome in phytohaemagglutinin stimulated peripheral blood lymphocytes was evaluated in 12 sporadic Alzheimer disease (AD) patients and in 11 healthy subjects. For chromosome analysis two methods were used: (1) standard analysis of G-banded metaphase chromosomes and; (2) fluorescent in situ hybridization (FISH) for the detection of the X chromosome centromeric region in interphase nuclei. Cytogenetic analysis revealed that the X chromosome expresses premature centromere division (PCD) in AD females in 10.53% of metaphase cells and in 15.22% of interphase nuclei. In AD men the percentages were 3.98 and 6.06%, respectively. X chromosome PCD in the female control group showed a percentage of 7.46% in metaphase cells and 9.35% in interphase nuclei and in male controls the percentages were 2.84% in metaphases and 5.54% in interphase nuclei. The results of FISH analysis showed that PCD could occur much earlier than metaphase of mitosis, i.e. in interphase of the cell cycle, immediately after replication. The FISH method can be used for PCD verification in all phases of the cell cycle in various disorders including AD.
Collapse
Affiliation(s)
- Biljana Spremo-Potparevic
- Faculty of Pharmacy, Department of Biology and Human Genetics, Institute of Physiology, Vojvode Stepe 450, 11000 Belgrade, Serbia and Montenegro.
| | | | | | | |
Collapse
|
23
|
Capron A, Serralbo O, Fülöp K, Frugier F, Parmentier Y, Dong A, Lecureuil A, Guerche P, Kondorosi E, Scheres B, Genschik P. The Arabidopsis anaphase-promoting complex or cyclosome: molecular and genetic characterization of the APC2 subunit. THE PLANT CELL 2003; 15:2370-82. [PMID: 14508008 PMCID: PMC197302 DOI: 10.1105/tpc.013847] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 07/26/2003] [Indexed: 05/18/2023]
Abstract
In yeast and animals, the anaphase-promoting complex or cyclosome (APC/C) is an essential ubiquitin protein ligase that regulates mitotic progression and exit by controlling the stability of cell cycle regulatory proteins, such as securin and the mitotic cyclins. In plants, the function, regulation, and substrates of the APC/C are poorly understood. To gain more insight into the roles of the plant APC/C, we characterized at the molecular level one of its subunits, APC2, which is encoded by a single-copy gene in Arabidopsis. We show that the Arabidopsis gene is able to partially complement a budding yeast apc2 ts mutant. By yeast two-hybrid assays, we demonstrate an interaction of APC2 with two other APC/C subunits: APC11 and APC8/CDC23. A reverse-genetic approach identified Arabidopsis plants carrying T-DNA insertions in the APC2 gene. apc2 null mutants are impaired in female megagametogenesis and accumulate a cyclin-beta-glucuronidase reporter protein but do not display metaphase arrest, as observed in other systems. The APC2 gene is expressed in various plant organs and does not seem to be cell cycle regulated. Finally, we report intriguing differences in APC2 protein subcellular localization compared with that in other systems. Our observations support a conserved function of the APC/C in plants but a different mode of regulation.
Collapse
Affiliation(s)
- Arnaud Capron
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 67084 Strasbourg Cédex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhou Y, Ching YP, Ng RWM, Jin DY. Differential expression, localization and activity of two alternatively spliced isoforms of human APC regulator CDH1. Biochem J 2003; 374:349-58. [PMID: 12797865 PMCID: PMC1223613 DOI: 10.1042/bj20030600] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Revised: 05/20/2003] [Accepted: 06/10/2003] [Indexed: 11/17/2022]
Abstract
The timely destruction of key regulators through ubiquitin-mediated proteolysis ensures the orderly progression of the cell cycle. The APC (anaphase-promoting complex) is a major component of this degradation machinery and its activation is required for the execution of critical events. Recent studies have just begun to reveal the complex control of the APC through a regulatory network involving WD40 repeat proteins CDC20 and CDH1. In the present paper, we report on the identification and characterization of human CDH1beta, a novel alternatively spliced isoform of CDH1. Both CDH1alpha and CDH1beta can bind to the APC and stimulate the degradation of cyclin B1, but they are differentially expressed in human tissues and cells. CDH1alpha contains a nuclear localization signal which is absent in CDH1beta. Intracellularly, CDH1alpha appears in the nucleus whereas CDH1beta is a predominantly cytoplasmic protein. The forced overexpression of CDH1alpha in cultured cells correlates with the reduction of nuclear cyclin A, but the steady-state amount of cyclin A does not change noticeably in CDH1beta-overexpressed cells. In Xenopus embryos, ectopic overexpression of human CDH1alpha, but not of CDH1beta, induces cell-cycle arrest during the first G(1) phase at the mid-blastula transition. Taken together, our findings document the differential expression, subcellular localization and cell-cycle-regulatory activity of human CDH1 isoforms.
Collapse
Affiliation(s)
- Yuan Zhou
- Institute of Molecular Biology, The University of Hong Kong, 8th Floor, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Zhou Y, Ching YP, Chun ACS, Jin DY. Nuclear localization of the cell cycle regulator CDH1 and its regulation by phosphorylation. J Biol Chem 2003; 278:12530-6. [PMID: 12560341 DOI: 10.1074/jbc.m212853200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anaphase-promoting complex activated by CDC20 and CDH1 is a major ubiquitination system that controls the destruction of cell cycle regulators. Exactly how ubiquitination is regulated in time and space is incompletely understood. Here we report on the cell cycle-dependent localization of CDH1 and its regulation by phosphorylation. CDH1 localizes dynamically to the nucleus during interphase and to the centrosome during metaphase and anaphase. The nuclear accumulation of CDH1 correlates with a reduction in the steady-state amount of cyclin A, but not of cyclin E. A nuclear localization signal conserved in various species was identified in CDH1, and it sufficiently targets green fluorescent protein to the nucleus. Interestingly, a CDH1-4D mutant mimicking the hyperphosphorylated form was constitutively found in the cytoplasm. In further support of the notion that phosphorylation inhibits nuclear import, the nuclear localization signal of CDH1 with two phospho-accepting serine/threonine residues changed into aspartates was unable to drive heterologous protein into the nucleus. On the other hand, abolition of the cyclin-binding ability of CDH1 has no influence on its nuclear localization. Taken together, our findings document the phosphorylation-dependent localization of CDH1 in vertebrate cells.
Collapse
Affiliation(s)
- Yuan Zhou
- Institute of Molecular Biology and the Department of Biochemistry, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
26
|
Harper JW, Burton JL, Solomon MJ. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev 2002; 16:2179-206. [PMID: 12208841 DOI: 10.1101/gad.1013102] [Citation(s) in RCA: 368] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Wade Harper
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
27
|
Huang JY, Raff JW. The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. J Cell Sci 2002; 115:2847-56. [PMID: 12082146 DOI: 10.1242/jcs.115.14.2847] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila cells, the destruction of cyclin B is spatially regulated. In cellularised embryos, cyclin B is initially degraded on the mitotic spindle and is then degraded in the cytoplasm. In syncytial embryos,only the spindle-associated cyclin B is degraded at the end of mitosis. The anaphase promoting complex/cyclosome (APC/C) targets cyclin B for destruction,but its subcellular localisation remains controversial. We constructed GFP fusions of two core APC/C subunits, Cdc16 and Cdc27. These fusion proteins were incorporated into the endogenous APC/C and were largely localised in the cytoplasm during interphase in living syncytial embryos. Both fusion proteins rapidly accumulated in the nucleus prior to nuclear envelope breakdown but only weakly associated with mitotic spindles throughout mitosis. Thus, the global activation of a spatially restricted APC/C cannot explain the spatially regulated destruction of cyclin B. Instead, different subpopulations of the APC/C must be activated at different times to degrade cyclin B. Surprisingly,we noticed that GFP-Cdc27 associated with mitotic chromosomes, whereas GFP-Cdc16 did not. Moreover, reducing the levels of Cdc16 or Cdc27 by >90%in tissue culture cells led to a transient mitotic arrest that was both biochemically and morphologically distinct. Taken together, our results raise the intriguing possibility that there could be multiple forms of the APC/C that are differentially localised and perform distinct functions.
Collapse
Affiliation(s)
- Jun-yong Huang
- Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, UK
| | | |
Collapse
|
28
|
Lafarga M, Fernández R, Mayo I, Berciano MT, Castaño JG. Proteasome dynamics during cell cycle in rat Schwann cells. Glia 2002; 38:313-28. [PMID: 12007144 DOI: 10.1002/glia.10075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The proteasome is responsible for most of the protein degradation that takes place in the cytoplasm and nucleus. Immunofluorescence and electron microscopy are used to study proteasome dynamics during the cell cycle in rat Schwann cells. During interphase, the proteasome is present in the nucleus and cytoplasm and shows no colocalization with cytoskeletal components. Some cytoplasmic proteasomes always localize in the centrosome both in interphase and in mitotic cells and only associate with microtubules during mitosis. The proteasome exits the nucleus during prophase. In anaphase, the proteasome becomes prominent in the region between the two sets of migrating chromosomes and in association with interzonal microtubules and stem bodies. In telophase, the proteasome begins to reenter the nucleus and is prominent in the midbody region until the end of cytokinesis. The proteasome does not colocalize with actin or vimentin during mitosis, except for colocalization with actin in the sheet-like lamellipodia, which serve as substrate attachments for the cell during mitosis. During S phase, nuclear proteasomes colocalize with foci of BrdU incorporation, but this association changes with time: maximal at early S phase and declining as S phase progresses to the end. These results are discussed in relation to the biochemical pathways involved in cell cycle progression.
Collapse
Affiliation(s)
- Miguel Lafarga
- Departamento de Anatomia y Biología Celular, Universidad de Cantabria, Santander, Spain
| | | | | | | | | |
Collapse
|
29
|
Abstract
The replicated copies of each chromosome, the sister chromatids, are attached prior to their segregation in mitosis and meiosis. This association or cohesion is critical for each sister chromatid to bind to microtubules from opposite spindle poles and thus segregate away from each other at anaphase of mitosis or meiosis II. The cohesin protein complex is essential for cohesion in both mitosis and meiosis, and cleavage of one of the subunits is sufficient for loss of cohesion at anaphase. The localization of the cohesin complex and other cohesion proteins permits evaluation of the positions of sister-chromatid associations within the chromosome structure, as well as the relationship between cohesion and condensation. Recently, two key riddles in the mechanism of meiotic chromosome segregation have yielded to molecular answers. First, analysis of the cohesin complex in meiosis provides molecular support for the long-standing hypothesis that sister-chromatid cohesion links homologs in meiosis I by stabilizing chiasmata. Second, the isolation of the monopolin protein that controls kinetochore behavior in meiosis I defines a functional basis by which sister kinetochores are directed toward the same pole in meiosis I.
Collapse
Affiliation(s)
- J Y Lee
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
30
|
Jörgensen PM, Gräslund S, Betz R, Ståhl S, Larsson C, Höög C. Characterisation of the human APC1, the largest subunit of the anaphase-promoting complex. Gene 2001; 262:51-9. [PMID: 11179667 DOI: 10.1016/s0378-1119(00)00511-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate segregation of sister chromatids during mitosis is necessary to avoid the aneuploidy found in many cancers. The spindle checkpoint, which monitors the metaphase to anaphase transition, has been shown to be defective in cancers with chromosomal instability. This checkpoint regulates the anaphase-promoting complex or cyclosome (APC/C), a cell cycle ubiquitin ligase regulating among other things sister chromatid separation. We have previously investigated the mouse Apc1 protein (previously also called Tsg24), the largest subunit of the APC/C. We have now sequenced a full-length human APC1 cDNA, mapped its chromosomal location, and analysed its intron-exon boundaries. We have also investigated the RNA and protein expression of the Apc1 and other APC/C components in normal and cancer cells and the relative occurrence of expressed sequence tags (ESTs) representing APC subunits from different tissues. The different APC/C subunits are expressed in most tissues and cell types at fairly constant levels relative to each other, suggesting that they perform their functions as part of a complex. A difference from this pattern is however seen for the APC6, which in some cases is more strongly expressed, suggesting a special function for this protein in certain tissues and cell types.
Collapse
Affiliation(s)
- P M Jörgensen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Daum JR, Tugendreich S, Topper LM, Jorgensen PM, Hoog C, Hieter P, Gorbsky GJ. The 3F3/2 anti-phosphoepitope antibody binds the mitotically phosphorylated anaphase-promoting complex/cyclosome. Curr Biol 2000; 10:R850-2. [PMID: 11114529 DOI: 10.1016/s0960-9822(00)00836-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Abstract
Ubiquitin-mediated proteolysis of cell cycle regulators is a crucial process during the cell cycle. The anaphase-promoting complex (APC) is a large, multiprotein complex whose E3-ubiquitin ligase activity is required for the ubiquitination of mitotic cyclins and other regulatory proteins that are targeted for destruction during cell division. The recent identification of new APC subunits and regulatory proteins has begun to reveal some of the intricate mechanisms that govern APC regulation. One mechanism is the use of specificity factors to impose temporal control over substrate degradation. A second mechanism is the APC-mediated proteolysis of specific APC regulators. Finally, components of both the APC and the SCF E3 ubiquitin-ligase complex contain several conserved sequence motifs, including WD-40 repeats and cullin homology domains, which suggest that both complexes may use a similar mechanism for substrate ubiquitination.
Collapse
Affiliation(s)
- A M Page
- Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
33
|
Campbell MS, Daum JR, Gersch MS, Nicklas RB, Gorbsky GJ. Kinetochore "memory" of spindle checkpoint signaling in lysed mitotic cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 46:146-56. [PMID: 10891860 DOI: 10.1002/1097-0169(200006)46:2<146::aid-cm7>3.0.co;2-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The spindle checkpoint prevents errors in mitosis. Cells respond to the presence of kinetochores that are improperly attached to the mitotic spindle by delaying anaphase onset. Evidence suggests that phosphorylations recognized by the 3F3/2 anti-phosphoepitope antibody may be involved in the kinetochore signaling of the spindle checkpoint. Mitotic cells lysed in detergent in the absence of phosphatase inhibitors rapidly lose expression of the 3F3/2 phosphoepitope. However, when ATP is added to lysed and rinsed mitotic cytoskeletons, kinetochores become rephosphorylated by an endogenous, bound kinase. Kinetochore rephosphorylation in vitro produced the same differential phosphorylation seen in appropriately fixed living cells. In chromosomes not yet aligned at the metaphase plate, kinetochores undergo rapid rephosphorylation, while those of fully congressed chromosomes are under-phosphorylated. However, latent 3F3/2 kinase activity is retained at kinetochores of cells at all stages of mitosis including anaphase. This latent activity is revealed when rephosphorylation reactions are carried out for extended times. The endogenous, kinetochore-bound kinase can be chemically inactivated. Remarkably, a soluble kinase activity extracted from mitotic cells also caused differential rephosphorylation of kinetochores whose endogenous kinase had been chemically inactivated. We suggest that, in vivo, microtubule attachment alters the kinetochore 3F3/2 phosphoprotein, causing it to resist phosphorylation. This kinetochore modification is retained after cell lysis, producing a "memory" of the in vivo phosphorylation state.
Collapse
Affiliation(s)
- M S Campbell
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
34
|
Maney T, Ginkel LM, Hunter AW, Wordeman L. The kinetochore of higher eucaryotes: a molecular view. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:67-131. [PMID: 10494625 DOI: 10.1016/s0074-7696(08)62395-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review summarizes results concerning the molecular nature of the higher eucaryotic kinetochore. The first major section of this review includes kinetochore proteins whose general functions remain to be determined, precluding their entry into a discrete functional category. Many of the proteins in this section, however, are likely to be involved in kinetochore formation or structure. The second major section is concerned with how microtubule motor proteins function to cause chromosome movement. The microtubule motors dynein, CENP-E, and MCAK have all been observed at the kinetochore. While their precise functions are not well understood, all three are implicated in chromosome movement during mitosis. Finally, the last section deals with kinetochore components that play a role in the spindle checkpoint; a checkpoint that delays mitosis until all kinetochores have attached to the mitotic spindle. Brief reviews of kinetochore morphology and of an important technical breakthrough that enabled the molecular dissection of the kinetochore are also included.
Collapse
Affiliation(s)
- T Maney
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
35
|
Kurasawa Y, Todokoro K. Identification of human APC10/Doc1 as a subunit of anaphase promoting complex. Oncogene 1999; 18:5131-7. [PMID: 10498862 DOI: 10.1038/sj.onc.1203133] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anaphase-promoting complex or cyclosome (APC) is a ubiquitin ligase which specifically targets mitotic regulatory factors such as Pds1/Cut2 and cyclin B. Identification of the subunits of multiprotein complex APC in several species revealed the highly conserved composition of APC from yeast to human. It has been reported, however, that vertebrate APC is composed of at least eight subunits, APC1 to APC8, while budding yeast APC is constituted of at least 12 components, Apc1 to Apc13. It has not yet been clearly understood whether additional components found in budding yeast, Apc9 to Apc13, are actually composed of mammalian APC. Here we isolated and characterized human APC10/Doc1, and found that APC10/Doc1 binds to APC core subunits throughout the cell cycle. Further, it was found that APC10/Doc1 is localized in centrosomes and mitotic spindles throughout mitosis, while it is also localized in kinetochores from prophase to anaphase and in midbody in telophase and cytokinesis. These results strongly support the notion that human APC10/Doc1 may be one of the APC core subunits rather than the transiently associated regulatory factor.
Collapse
Affiliation(s)
- Y Kurasawa
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), 3-1, Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | |
Collapse
|
36
|
Abstract
The cell-division cycle has to be regulated in both time and space. In the time dimension, the cell ensures that mitosis does not begin until DNA replication is completed and any damaged DNA is repaired, and that DNA replication normally follows mitosis. This is achieved by the synthesis and destruction of specific cell-cycle regulators at the right time in the cell cycle. In the spatial dimension, the cell coordinates dramatic reorganizations of the subcellular architecture at the entrance to and exit from mitosis, largely through the actions of protein kinases and phosphatases that are often localized to specific subcellular structures. Evidence is now accumulating to suggest that the spatial organization of cell-cycle regulators is also important in the temporal control of the cell cycle. Here I will focus on how the locations of the main components of the cell-cycle machinery are regulated as part of the mechanism by which the cell controls when and how it replicates and divides.
Collapse
Affiliation(s)
- J Pines
- Wellcome/CRC Institute, Cambridge, UK.
| |
Collapse
|
37
|
Abstract
The events of late mitosis, from sister-chromatid separation to cytokinesis, are governed by the anaphase-promoting complex (APC), a multisubunit assembly that triggers the ubiquitin-dependent proteloysis of key regulatory proteins. An intricate regulatory network governs APC activity and helps to ensure that late mitotic events are properly timed and coordinated.
Collapse
Affiliation(s)
- D O Morgan
- Department of Physiology, University of California, San Francisco 94143-0444, USA.
| |
Collapse
|
38
|
Abstract
The proteolysis of key regulatory proteins is thought to control progress through mitosis. Here we analyse cyclin B1 degradation in real time and find that it begins as soon as the last chromosome aligns on the metaphase plate, just after the spindle-assembly checkpoint is inactivated. At this point, cyclin B1 staining disappears from the spindle poles and from the chromosomes. Cyclin B1 destruction can subsequently be inactivated throughout metaphase if the spindle checkpoint is reimposed, and this correlates with the reappearance of cyclin B1 on the spindle poles and the chromosomes. These results provide a temporal and spatial link between the spindle-assembly checkpoint and ubiquitin-mediated proteolysis.
Collapse
Affiliation(s)
- P Clute
- Wellcome/CRC Institute, Cambridge, UK
| | | |
Collapse
|
39
|
Fraschini R, Formenti E, Lucchini G, Piatti S. Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via a different pathway from Mad2. J Cell Biol 1999; 145:979-91. [PMID: 10352016 PMCID: PMC2133126 DOI: 10.1083/jcb.145.5.979] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mitotic checkpoint blocks cell cycle progression before anaphase in case of mistakes in the alignment of chromosomes on the mitotic spindle. In budding yeast, the Mad1, 2, 3, and Bub1, 2, 3 proteins mediate this arrest. Vertebrate homologues of Mad1, 2, 3, and Bub1, 3 bind to unattached kinetochores and prevent progression through mitosis by inhibiting Cdc20/APC-mediated proteolysis of anaphase inhibitors, like Pds1 and B-type cyclins. We investigated the role of Bub2 in budding yeast mitotic checkpoint. The following observations indicate that Bub2 and Mad1, 2 probably activate the checkpoint via different pathways: (a) unlike the other Mad and Bub proteins, Bub2 localizes at the spindle pole body (SPB) throughout the cell cycle; (b) the effect of concomitant lack of Mad1 or Mad2 and Bub2 is additive, since nocodazole-treated mad1 bub2 and mad2 bub2 double mutants rereplicate DNA more rapidly and efficiently than either single mutant; (c) cell cycle progression of bub2 cells in the presence of nocodazole requires the Cdc26 APC subunit, which, conversely, is not required for mad2 cells in the same conditions. Altogether, our data suggest that activation of the mitotic checkpoint blocks progression through mitosis by independent and partially redundant mechanisms.
Collapse
Affiliation(s)
- R Fraschini
- Dipartimento di Genetica e Biologia dei Microrganismi, 20133 Milano, Italy
| | | | | | | |
Collapse
|
40
|
Abstract
The initiation of anaphase and exit from mitosis depend on a ubiquitination complex called the anaphase-promoting complex (APC) or cyclosome. The APC is composed of more than 10 constitutive subunits and associates with additional regulatory factors in mitosis and during the G1 phase of the cell cycle. At the metaphase-anaphase transition the APC ubiquitinates proteins such as Pds1 in budding yeast and Cut2 in fission yeast whose subsequent degradation by the 26S proteasome is essential for the initiation of sister chromatid separation. Later in anaphase and telophase the APC promotes the inactivation of the mitotic cyclin-dependent protein kinase 1 by ubiquitinating its activating subunit cyclin B. The APC also mediates the ubiquitin-dependent proteolysis of several other mitotic regulators, including other protein kinases, APC activators, spindle-associated proteins, and inhibitors of DNA replication.
Collapse
Affiliation(s)
- J M Peters
- Research Institute of Molecular Pathology (IMP), Dr.-Bohr Gasse 7, Vienna, A-1030, Austria.
| |
Collapse
|
41
|
Huang J, Raff JW. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J 1999; 18:2184-95. [PMID: 10205172 PMCID: PMC1171302 DOI: 10.1093/emboj/18.8.2184] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have followed the behaviour of a cyclin B-green fluorescent protein (GFP) fusion protein in living Drosophila embryos in order to study how the localization and destruction of cyclin B is regulated in space and time. We show that the fusion protein accumulates at centrosomes in interphase, in the nucleus in prophase, on the mitotic spindle in prometaphase and on the microtubules that overlap in the middle of the spindle in metaphase. In cellularized embryos, toward the end of metaphase, the spindle-associated cyclin B-GFP disappears from the spindle in a wave that starts at the spindle poles and spreads to the spindle equator; when the cyclin B-GFP on the spindle is almost undetectable, the chromosomes enter anaphase, and any remaining cytoplasmic cyclin B-GFP then disappears over the next few minutes. The endogenous cyclin B protein appears to behave in a similar manner. These findings suggest that the inactivation of cyclin B is regulated spatially in Drosophila cells. We show that the anaphase-promoting complex/cyclosome (APC/C) specifically interacts with microtubules in embryo extracts, but it is not confined to the spindle in mitosis, suggesting that the spatially regulated disappearance of cyclin B may reflect the spatially regulated activation of the APC/C.
Collapse
Affiliation(s)
- J Huang
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
42
|
Dobie KW, Hari KL, Maggert KA, Karpen GH. Centromere proteins and chromosome inheritance: a complex affair. Curr Opin Genet Dev 1999; 9:206-17. [PMID: 10322137 DOI: 10.1016/s0959-437x(99)80031-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Centromeres and the associated kinetochores are involved in essential aspects of chromosome transmission. Recent advances have included the identification and understanding of proteins that have a pivotal role in centromere structure, kinetochore formation, and the coordination of chromosome inheritance with the cell cycle in several organisms. A picture is beginning to emerge of the centromere-kinetechore as a complex and dynamic structure with conservation of function at the protein level across diverse species.
Collapse
Affiliation(s)
- K W Dobie
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
43
|
Skibbens RV, Hieter P. Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu Rev Genet 1999; 32:307-37. [PMID: 9928483 DOI: 10.1146/annurev.genet.32.1.307] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether we consider the division of the simplest unicellular organisms into two daughter cells or the generation of haploid gametes by the most complex eukaryotes, no two processes secure the continuance of life more than the proper replication and segregation of the genetic material. The cell cycle, marked in part by the periodic rise and fall of cyclin-dependent kinase (CDK) activities, is the means by which these two processes are separated. DNA damage and mistakes in chromosome segregation are costly, so nature has further devised elaborate checkpoint mechanisms that halt cell cycle progression, allowing time for repairs or corrections. In this article, we review the mitotic checkpoint mechanism that responds to defects in the chromosome segregation machinery and arrests cells in mitosis prior to anaphase onset. At opposite ends of this pathway are the kinetochore, where many checkpoint proteins reside, and the anaphase-promoting complex (APC), the metaphase-to-interphase transition regulator. Throughout this review we focus on budding yeast but reference parallel processes found in other organisms.
Collapse
Affiliation(s)
- R V Skibbens
- Carnegie Institute of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | |
Collapse
|
44
|
Craig JM, Earnshaw WC, Vagnarelli P. Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle progression. Exp Cell Res 1999; 246:249-62. [PMID: 9925740 DOI: 10.1006/excr.1998.4278] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The centromere is a specialized region of the eukaryotic chromosome that is responsible for directing chromosome movements in mitosis and for coordinating the progression of mitotic events at the crucial transition between metaphase and anaphase. In this review, we will focus on recent advances in the understanding of centromere composition at the protein and DNA level and of the role of centromeres in sister-chromatid cohesion and mitotic checkpoint control.
Collapse
Affiliation(s)
- J M Craig
- Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh, EH9 3JR, Scotland, United Kingdom
| | | | | |
Collapse
|
45
|
Cordes VC, Hase ME, Müller L. Molecular segments of protein Tpr that confer nuclear targeting and association with the nuclear pore complex. Exp Cell Res 1998; 245:43-56. [PMID: 9828100 DOI: 10.1006/excr.1998.4246] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tpr is a 267-kDa protein of unknown function recently identified as a constitutive component of the nuclear pore complex (NPC2)-attached intranuclear filaments. Secondary structure predictions suggest that the protein is divided into a large, coiled-coil forming aminoterminal domain and a shorter, highly acidic carboxyterminal domain. To identify which of Tpr's molecular segments determine its specific intranuclear localization, we have constructed expression vectors encoding various Tpr deletion mutants as well as chimeric combinations of Tpr sequences with the soluble cytoplasmic protein pyruvate kinase. Following transfection of cultured mammalian cells, we have identified a short region within Tpr's carboxyterminal domain that is essential and sufficient to mediate nuclear import of Tpr and which can also confer nuclear accumulation of pyruvate kinase. Tpr deletion mutants that contain this nuclear targeting segment, but lack the aminoterminal domain, appear evenly dispersed throughout the nucleus without any noticeable association to the NPC. In contrast, the aminoterminal domain lacking the carboxyterminal region remains located within the cytoplasm, forming aggregate-like structures not associated with the nuclear envelope. However, when tagged to Tpr's short nuclear targeting segment or to the nuclear localization signal of the SV40 large T protein, the aminoterminal domain is imported into the nucleus, where it then associates with the NPC. This association is mediated by shorter molecular segments within the aminoterminal domain which contain clusters of heptad repeats, whereas other regions are dispensable. This assignment of different topogenetic properties to distinct molecular segments of Tpr will now allow the design of future experiments to study the protein's structural properties further and determine its actual function.
Collapse
Affiliation(s)
- V C Cordes
- Medical Nobel Institute, Karolinska Institutet, Stockholm, S-17177, Sweden.
| | | | | |
Collapse
|
46
|
Wassmann K, Benezra R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc Natl Acad Sci U S A 1998; 95:11193-8. [PMID: 9736712 PMCID: PMC21618 DOI: 10.1073/pnas.95.19.11193] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of the mitotic checkpoint pathway in response to mitotic spindle damage in eukaryotic cells delays the exit from mitosis in an attempt to prevent chromosome missegregation. One component of this pathway, hsMad2, has been shown in mammalian cells to physically associate with components of a ubiquitin ligase activity (termed the anaphase promoting complex or APC) when the checkpoint is activated, thereby preventing the degradation of inhibitors of the mitotic exit machinery. In the present report, we demonstrate that the inhibitory association between Mad2 and the APC component Cdc27 also takes place transiently during the early stages of a normal mitosis and is lost before mitotic exit. We also show that Mad2 associates with the APC regulatory protein p55Cdc in mammalian cells as has been reported in yeast. In contrast, however, this complex is present only in nocodazole-arrested or early mitotic cells and is associated with the APC as a Mad2/p55Cdc/Cdc27 ternary complex. Evidence for a Mad2/Cdc27 complex that forms independent of p55Cdc also is presented. These results suggest a model for the regulation of the APC by Mad2 and may explain how the spindle assembly checkpoint apparatus controls the timing of mitosis under normal growth conditions.
Collapse
Affiliation(s)
- K Wassmann
- Cell Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
47
|
Fang G, Yu H, Kirschner MW. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 1998; 12:1871-83. [PMID: 9637688 PMCID: PMC316912 DOI: 10.1101/gad.12.12.1871] [Citation(s) in RCA: 460] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/1998] [Accepted: 04/17/1998] [Indexed: 11/25/2022]
Abstract
The spindle assembly checkpoint mechanism delays anaphase initiation until all chromosomes are aligned at the metaphase plate. Activation of the anaphase-promoting complex (APC) by binding of CDC20 and CDH1 is required for exit from mitosis, and APC has been implicated as a target for the checkpoint intervention. We show that the human checkpoint protein hMAD2 prevents activation of APC by forming a hMAD2-CDC20-APC complex. When injected into Xenopus embryos, hMAD2 arrests cells at mitosis with an inactive APC. The recombinant hMAD2 protein exists in two-folded states: a tetramer and a monomer. Both the tetramer and the monomer bind to CDC20, but only the tetramer inhibits activation of APC and blocks cell cycle progression. Thus, hMAD2 binding is not sufficient for inhibition, and a change in hMAD2 structure may play a role in transducing the checkpoint signal. There are at least three different forms of mitotic APC that can be detected in vivo: an inactive hMAD2-CDC20-APC ternary complex present at metaphase, a CDC20-APC binary complex active in degrading specific substrates at anaphase, and a CDH1-APC complex active later in mitosis and in G1. We conclude that the checkpoint-mediated cell cycle arrest involves hMAD2 receiving an upstream signal to inhibit activation of APC.
Collapse
Affiliation(s)
- G Fang
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
48
|
Su TT, Sprenger F, DiGregorio PJ, Campbell SD, O'Farrell PH. Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation, and is associated with localized dephosphorylation. Genes Dev 1998; 12:1495-503. [PMID: 9585509 PMCID: PMC316833 DOI: 10.1101/gad.12.10.1495] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cyclin proteolysis that accompanies the exit from mitosis in diverse systems appears to be essential for restoration of interphase. The early syncytial divisions of Drosophila embryos, however, occur without detectable oscillations in the total cyclin level or Cdk1 activity. Nonetheless, we found that injection of an established inhibitor of cyclin proteolysis, a cyclin B amino-terminal peptide, prevents exit from mitosis in syncytial embryos. Similarly, injection of a version of Drosophila cyclin B that is refractory to proteolysis results in mitotic arrest. We infer that proteolysis of cyclins is required for exit from syncytial mitoses. This inference can be reconciled with the failure to observe oscillations in total cyclin levels if only a small pool of cyclins is destroyed in each cycle. We find that antibody detection of histone H3 phosphorylation (PH3) acts as a reporter for Cdk1 activity. A gradient of PH3 along anaphase chromosomes suggests local Cdk1 inactivation near the spindle poles in syncytial embryos. This pattern of Cdk1 inactivation would be consistent with local cyclin destruction at centrosomes or kinetochores. The local loss of PH3 during anaphase is specific to the syncytial divisions and is not observed after cellularization. We suggest that exit from mitosis in syncytial cycles is modified to allow nuclear autonomy within a common cytoplasm.
Collapse
Affiliation(s)
- T T Su
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143-0448, USA.
| | | | | | | | | |
Collapse
|