1
|
Chen Q, Chen Y, Bao C, Xiang H, Gao Q, Mao L. Mechanism and complex roles of HSC70/HSPA8 in viral entry. Virus Res 2024; 347:199433. [PMID: 38992806 PMCID: PMC11305274 DOI: 10.1016/j.virusres.2024.199433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The process of viruses entering host cells is complex, involving multiple aspects of the molecular organization of the cell membrane, viral proteins, the interaction of receptor molecules, and cellular signaling. Most viruses depend on endocytosis for uptake, when viruses reach the appropriate location, they are released from the vesicles, undergo uncoating, and release their genomes. Heat shock cognate protein 70(HSC70): also known as HSPA8, a protein involved in mediating clathrin-mediated endocytosis (CME), is involved in various viral entry processes. In this mini-review, our goal is to provide a summary of the function of HSC70 in viral entry. Understanding the interaction networks of HSC70 with viral proteins helps to provide new directions for targeted therapeutic strategies against viral infections.
Collapse
Affiliation(s)
- Qiaoqiao Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Yiwen Chen
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University,Kunshan, Jiangsu, PR China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University,Kunshan, Jiangsu, PR China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University,Kunshan, Jiangsu, PR China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, PR China; Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University,Kunshan, Jiangsu, PR China.
| |
Collapse
|
2
|
Fares MA. Evolution of Multiple Chaperonins: Innovation of Evolutionary Capacitors. PROKARYOTIC CHAPERONINS 2017:149-170. [DOI: 10.1007/978-981-10-4651-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Knapp RT, Wong MJH, Kollmannsberger LK, Gassen NC, Kretzschmar A, Zschocke J, Hafner K, Young JC, Rein T. Hsp70 cochaperones HspBP1 and BAG-1M differentially regulate steroid hormone receptor function. PLoS One 2014; 9:e85415. [PMID: 24454860 PMCID: PMC3891853 DOI: 10.1371/journal.pone.0085415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Hsp70 binding protein 1 (HspBP1) and Bcl2-associated athanogene 1 (BAG-1), the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70) chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), and the androgen receptor (AR). BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology.
Collapse
Affiliation(s)
- Regina T. Knapp
- Max Planck Institute of Psychiatry, Chaperone Research Group, Munich, Germany
| | - Michael J. H. Wong
- McGill University, Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, Montreal, Canada
| | | | - Nils C. Gassen
- Max Planck Institute of Psychiatry, Chaperone Research Group, Munich, Germany
| | - Anja Kretzschmar
- Max Planck Institute of Psychiatry, Chaperone Research Group, Munich, Germany
| | - Jürgen Zschocke
- Max Planck Institute of Psychiatry, Chaperone Research Group, Munich, Germany
| | - Kathrin Hafner
- Max Planck Institute of Psychiatry, Chaperone Research Group, Munich, Germany
| | - Jason C. Young
- McGill University, Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, Montreal, Canada
| | - Theo Rein
- Max Planck Institute of Psychiatry, Chaperone Research Group, Munich, Germany
- * E-mail:
| |
Collapse
|
4
|
Wang TT, Wang N, Liao XL, Meng L, Liu Y, Chen SL. Cloning, molecular characterization and expression analysis of heat shock cognate 70 (Hsc70) cDNA from turbot (Scophthalmus maximus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1377-1386. [PMID: 23543141 DOI: 10.1007/s10695-013-9792-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 03/14/2013] [Indexed: 06/02/2023]
Abstract
As an essential member of the HSP70 family, heat shock cognate 70 (Hsc70) is a constitutively expressed molecular chaperone involved in protein metabolism. In this paper, turbot Hsc70 was cloned and the expression profile was also analyzed. The full-length cDNA of the turbot Hsc70 was 2,292 bp in length, including a 113-bp 5' UTR, a 223-bp 3' UTR and a 1,956-bp open reading frame coding a protein with 651 amino acid residues. Comparison of amino acid sequence revealed the existence of three classical HSP70 family signature motifs, a signature nonapeptide and one repeat of tetrapeptide in turbot Hsc70. The turbot Hsc70-deduced amino acids sequence exhibited 75.4-96.8 % homology with Hsp70s/Hsc70s of 24 other known sequences. In particular, the strongest homology was found with the cognate members of Hsc70 subfamily and the highest identity was found with Japanese flounder Hsc70. Semi-quantitative RT-PCR revealed that turbot Hsc70 transcripts were stably expressed in all tested tissues under normal physiological condition, while the expression levels also increased (~1.5-fold to ~threefold) after heat shock and bacterial infection. In addition, Hsc70 transcripts were detected throughout embryonic development and in turbot embryonic cell line (TEC) in the absence of any stress. Meanwhile, it was also heat inducible, but not cold inducible in TEC. These results suggest that Hsc70 gene may be involved in embryogenesis and cellular protection events under normal and stress condition.
Collapse
Affiliation(s)
- T T Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, China
| | | | | | | | | | | |
Collapse
|
5
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
6
|
Yébenes H, Mesa P, Muñoz IG, Montoya G, Valpuesta JM. Chaperonins: two rings for folding. Trends Biochem Sci 2011; 36:424-32. [PMID: 21723731 DOI: 10.1016/j.tibs.2011.05.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 01/08/2023]
Abstract
Chaperonins are ubiquitous chaperones found in Eubacteria, eukaryotic organelles (group I), Archaea and the eukaryotic cytosol (group II). They all share a common structure and a basic functional mechanism. Although a large amount of information has been gathered for the simpler group I, much less is known about group II chaperonins. Recent crystallographic and electron microscopy structures have provided new insights into the mechanism of these chaperonins and revealed important differences between group I and II chaperonins, mainly in the molecular rearrangements that take place during the functional cycle. These differences are evident for the most complex chaperonin, the eukaryotic cytosolic CCT, which highlights the uniqueness of this important molecular machine.
Collapse
Affiliation(s)
- Hugo Yébenes
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Millson S, Vaughan C, Zhai C, Ali M, Panaretou B, Piper P, Pearl L, Prodromou C. Chaperone ligand-discrimination by the TPR-domain protein Tah1. Biochem J 2008; 413:261-8. [PMID: 18412542 PMCID: PMC2865030 DOI: 10.1042/bj20080105] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 01/22/2023]
Abstract
Tah1 [TPR (tetratricopeptide repeat)-containing protein associated with Hsp (heat-shock protein) 90] has been identified as a TPR-domain protein. TPR-domain proteins are involved in protein-protein interactions and a number have been characterized that interact either with Hsp70 or Hsp90, but a few can bind both chaperones. Independent studies suggest that Tah1 interacts with Hsp90, but whether it can also interact with Hsp70/Ssa1 has not been investigated. Amino-acid-sequence alignments suggest that Tah1 is most similar to the TPR2b domain of Hop (Hsp-organizing protein) which when mutated reduces binding to both Hsp90 and Hsp70. Our alignments suggest that there are three TPR-domain motifs in Tah1, which is consistent with the architecture of the TPR2b domain. In the present study we find that Tah1 is specific for Hsp90, and is able to bind tightly the yeast Hsp90, and the human Hsp90alpha and Hsp90beta proteins, but not the yeast Hsp70 Ssa1 isoform. Tah1 acheives ligand discrimination by favourably binding the methionine residue in the conserved MEEVD motif (Hsp90) and positively discriminating against the first valine residue in the VEEVD motif (Ssa1). In the present study we also show that Tah1 can affect the ATPase activity of Hsp90, in common with some other TPR-domain proteins.
Collapse
Key Words
- atpase activity
- heat-shock protein 90 (hsp90)
- heat-shock protein 70 (hsp70)
- tetratricopeptide-repeat-containing protein associated with heat-shock protein 90 (tah1)
- tetratricopeptide repeat (tpr) domain
- stress-inducible protein 1/heat-shock protein organizing protein/p60 (sti1/hop/p60)
- chip, c-terminal of heat-shock protein 70-interacting protein
- cpr6, cyclosporin-sensitive proline rotamase 6
- fkbp51, fk506-binding protein 51
- gst, glutathione transferase
- hop, heat-shock-protein-organizing protein
- hsp, heat-shock protein
- itc, isothermal titration calorimetry
- sti1, stress-inducible protein 1 (the yeast homologue of hop)
- csti1, c-terminal of sti1
- tah1, tetratricopeptide-repeat-containing protein associated with hsp90
- tpr, tetratricopeptide repeat
Collapse
Affiliation(s)
- Stefan H. Millson
- *Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Cara K. Vaughan
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Chao Zhai
- ‡Pharmaceutical Science Research Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Maruf M. U. Ali
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Barry Panaretou
- ‡Pharmaceutical Science Research Division, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K
| | - Peter W. Piper
- *Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K
| | - Laurence H. Pearl
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| | - Chrisostomos Prodromou
- †Section of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
| |
Collapse
|
8
|
Dobbyn HC, Hill K, Hamilton TL, Spriggs KA, Pickering BM, Coldwell MJ, de Moor CH, Bushell M, Willis AE. Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. Oncogene 2008; 27:1167-74. [PMID: 17700523 PMCID: PMC2570717 DOI: 10.1038/sj.onc.1210723] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 06/25/2007] [Accepted: 07/11/2007] [Indexed: 11/09/2022]
Abstract
There are three major isoforms of BAG-1 in mammalian cells, termed BAG-1L (p50), BAG-1M (p46) and BAG-1S (p36) that function as pro-survival proteins and are associated with tumorigenesis and chemoresistance. Initiation of BAG-1 protein synthesis can occur by both cap-dependent and cap-independent mechanisms and it has been shown that synthesis of BAG-1S is dependent upon the presence of an internal ribosome entry segment (IRES) in the 5'-UTR of BAG-1 mRNA. We have shown previously that BAG-1 IRES-meditated initiation of translation requires two trans-acting factors poly (rC) binding protein 1 (PCBP1) and polypyrimidine tract binding protein (PTB) for function. The former protein allows BAG-1 IRES RNA to attain a structure that permits binding of the ribosome, while the latter protein appears to be involved in ribosome recruitment. Here, we show that the BAG-1 IRES maintains synthesis of BAG-1 protein following exposure of cells to the chemotoxic drug vincristine but not to cisplatin and that this is brought about, in part, by the relocalization of PTB and PCBP1 from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- H C Dobbyn
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Grad I, Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 2007; 275:2-12. [PMID: 17628337 DOI: 10.1016/j.mce.2007.05.018] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/23/2007] [Accepted: 05/24/2007] [Indexed: 12/26/2022]
Abstract
The glucocorticoid receptor is a known regulator of a variety of physiological processes. Its mode of action is well defined: upon hormone binding, it undergoes a conformational change, translocates to the nucleus and modulates the transcription of target genes. Molecular chaperones have a widely recognized role in the folding of newly made proteins, but their participation in further maturation of folded proteins to their active states and beyond tends to be underestimated. This review presents the current knowledge on how the Hsp70 and Hsp90 chaperone machines help to shape the responses to glucocorticoids. We discuss the contributions of these molecular chaperones to folding, activation, intracellular transport, transcriptional regulation, and decay of the glucocorticoid receptor.
Collapse
Affiliation(s)
- Iwona Grad
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, 1211 Genève 4, Switzerland
| | | |
Collapse
|
10
|
Kampinga HH. Chaperones in preventing protein denaturation in living cells and protecting against cellular stress. Handb Exp Pharmacol 2005:1-42. [PMID: 16610353 DOI: 10.1007/3-540-29717-0_1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A variety of cellular internal and external stress conditions can be classified as proteotoxic stresses. Proteotoxic stresses can be defined as stresses that increase the fraction of proteins that are in an unfolded state, thereby enhancing the probability of the formation of intracellular aggregates. These aggregates, if not disposed, can lead to cell death. In response to the appearance of damaged proteins, cells induce the expression of heat shock proteins. These can function as molecular chaperones to prevent protein aggregation and to keep proteins in a state competent for either refolding or degradation. Most knowledge of the function and regulation (by co-factors) of individual heat shock proteins comes from cell free studies on refolding of heat- or chemically denatured, purified proteins. Unlike the experimental situation in a test tube, cells contain multiple chaperones and co-factors often moving in and out different subcompartments that contain a variety of protein substrates at different folding states. Also, within cells folding competes with the degradative machinery. In this chapter, an overview will be provided on how the main cytosolic/nuclear chaperone Hsp70 is regulated, what is known about its interaction with other main cytosolic/nuclear chaperone families (Hsp27, Hsp90, and Hsp110), and how it may function as a molecular chaperone in living mammalian cells to protect against proteotoxic stresses.
Collapse
Affiliation(s)
- H H Kampinga
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, Faculty of Medical Sciences, University of Groningen, The Netherlands.
| |
Collapse
|
11
|
Abstract
The molecular chaperone machinery contains multiple protein components that have 1 or more structural domains composed of tetratricopeptide repeat (TPR) motifs. Many other proteins of separate or unknown function also have TPR domains, so this motif is not exclusive to molecular chaperones. A general function of TPR domains is to bind other polypeptides, but this otherwise prosaic function has been exploited in an assortment of ways that link chaperones and other protein systems into cooperative networks. Among the best-characterized TPR proteins are several cochaperones that participate in assembly and regulation of steroid receptor complexes. Steroid receptors, members of the nuclear receptor subfamily, are hormone-dependent transcription factors that regulate many vertebrate pathways of homeostasis, growth, differentiation, reproduction, and pathology and, as such, have been of great interest to biologists and clinicians. Moreover, the steroid receptors are among the first recognized native clients for chaperones and have been widely studied models for complex chaperone interactions. To provide a coherent, representative minireview of TPR protein function, the scope of this article has been narrowed down primarily to functions of steroid receptor-associated TPR cochaperones.
Collapse
Affiliation(s)
- David F Smith
- S.C. Johnson Research Center, Mayo Clinic Scottsdale, Scottsdale, AZ 85259, USA.
| |
Collapse
|
12
|
Carrigan PE, Riggs DL, Chinkers M, Smith DF. Functional comparison of human and Drosophila Hop reveals novel role in steroid receptor maturation. J Biol Chem 2005; 280:8906-11. [PMID: 15632128 DOI: 10.1074/jbc.m414245200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp70/Hsp90 organizing protein (Hop) coordinates Hsp70 and Hsp90 interactions during assembly of steroid receptor complexes. Hop is composed of three tetratricopeptide repeat (TPR) domains (TPR1, TPR2a, and TPR2b) and two DP repeat domains (DP1 and DP2); Hsp70 interacts directly with TPR1 and Hsp90 with TPR2a, but the function of other domains is less clear. Human Hop and the Saccharomyces cerevisiae ortholog Sti1p, which share a common domain arrangement, are functionally interchangeable in a yeast growth assay and in supporting the efficient maturation of glucocorticoid receptor (GR) function. To gain a better understanding of Hop structure/function relationships, we have extended comparisons to the Hop ortholog from Drosophila melanogaster (dHop), which lacks DP1. Although dHop binds Hsp70 and Hsp90 and can rescue the growth defect in yeast lacking Sti1p, dHop failed to support GR function in yeast, which suggests a novel role for Hop in GR maturation that goes beyond Hsp binding. Chimeric Hop constructs combining human and Drosophila domains demonstrate that the C-terminal domain DP2 is critical for this previously unrecognized role in steroid receptor function.
Collapse
Affiliation(s)
- Patricia E Carrigan
- Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
13
|
Gehring U. Biological activities of HAP46/BAG-1. The HAP46/BAG-1 protein: regulator of HSP70 chaperones, DNA-binding protein and stimulator of transcription. EMBO Rep 2004; 5:148-53. [PMID: 14755308 PMCID: PMC1298994 DOI: 10.1038/sj.embor.7400083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 12/18/2003] [Indexed: 11/08/2022] Open
Abstract
HAP46/BAG-1M and its isoforms affect the protein-folding activities of mammalian HSP70 chaperones. They interact with the ATP-binding domain of HSP70 or HSC70, leaving the substrate-binding site available for further interactions. Trimeric complexes can therefore form with, for example, transcription factors. Moreover, HAP46/BAG-1M and the larger isoform HAP50/BAG-1L bind to DNA non-specifically and enhance transcription in vitro and upon overexpression in intact cells. These factors are linked to positive effects on cell proliferation and survival. This review focuses on DNA-binding activity and transcriptional stimulation by HAP46/BAG-1M, and presents a molecular model for the underlying mechanism. It is proposed that transcription factors are recruited into complexes with HAP46/BAG-1M or HAP50/BAG-1L through HSP70/HSC70 and that response-element-bound complexes that contain HAP46/BAG-1M and/or HAP50/BAG-1L along with HSP70s target and affect the basal transcription machinery.
Collapse
Affiliation(s)
- Ulrich Gehring
- Universität Heidelberg, c/o Molekulare Evolution und Genomik, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Carrigan PE, Nelson GM, Roberts PJ, Stoffer J, Riggs DL, Smith DF. Multiple Domains of the Co-chaperone Hop Are Important for Hsp70 Binding. J Biol Chem 2004; 279:16185-93. [PMID: 14960564 DOI: 10.1074/jbc.m314130200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hop/Sti1 co-chaperone binds to both Hsp70 and Hsp90. Biochemical and co-crystallographic studies have suggested that the EEVD-containing C terminus of Hsp70 or Hsp90 binds specifically to one of the Hop tetratricopeptide repeat domains, TPR1 or TPR2a, respectively. Mutational analyses of Hsp70 and Hop were undertaken to better characterize interactions between the C terminus of Hsp70 and Hop domains. Surprisingly, truncation of EEVD plus as many as 34 additional amino acids from the Hsp70 C terminus did not reduce the ability of Hsp70 mutants to co-immunoprecipitate with Hop, although further truncation eliminated Hop binding. Hop point mutations targeting a carboxylate clamp position in TPR1 disrupted Hsp70 binding, as was expected; however, similar point mutations in TPR2a or TPR2b also inhibited Hsp70 binding in some settings. Using a yeast-based in vivo assay for Hop function, wild type Hop and TPR2b mutants could fully complement deletion of Sti1p; TPR1 and TPR2a point mutants could partially restore activity. Conformations of Hop and Hop mutants were probed by limited proteolysis. The TPR1 mutant digested in a similar manner to wild type; however, TPR2a and TPR2b mutants each displayed greater resistance to chymotryptic digestion. All point mutants retained an ability to dimerize, and none appeared to be grossly misfolded. These results raise questions about current models for Hop/Hsp70 interaction.
Collapse
Affiliation(s)
- Patricia E Carrigan
- Samuel C. Johnson Research Center, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | |
Collapse
|
15
|
Niyaz Y, Frenz I, Petersen G, Gehring U. Transcriptional stimulation by the DNA binding protein Hap46/BAG-1M involves hsp70/hsc70 molecular chaperones. Nucleic Acids Res 2003; 31:2209-16. [PMID: 12682371 PMCID: PMC153731 DOI: 10.1093/nar/gkg303] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The hsp70/hsc70-associating protein Hap46 of human origin, also called BAG-1M (Bcl-2-associated athanogene 1), has been characterized previously as a DNA binding protein, which is able to stimulate transcription. By use of in vitro assays we now show that Hap46-mediated transcriptional activation can occur from linearized as well as from supercoiled circular DNA and does not require the presence of a transcription promoter. Accordingly, we observed no preferential binding of Hap46 to overlapping DNA fragments covering the sequence of the cytomegalovirus (CMV) early promoter, thus suggesting non-specific binding. The C-terminal deletion variant Hap46DeltaC47, which is unable to associate with hsp70/hsc70 molecular chaperones, produced greatly diminished effects on transcription, indicating a significant involvement of hsp70/hsc70 chaperones but not an absolute requirement. In contrast, deletion of the acidic hexarepeat region, as in variant Hap46Delta12-62, did not disturb transcriptional stimulation. While full-length Hap46 readily formed complexes with a series of structurally unrelated transcription factors, variant Hap46DeltaC47 proved incapable of doing so. Together these data suggest that transcriptional stimulation is a major biological activity of Hap46 and point to involvement of hsp70/hsc70 molecular chaperones in transcription in concert with Hap46, thus providing a link between hsp70/hsc70 molecular chaperones and components of the transcription machinery.
Collapse
Affiliation(s)
- Yilmaz Niyaz
- Molekulare Evolution und Genomik, Im Neuenheimer Feld 230, and Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
16
|
Townsend PA, Cutress RI, Sharp A, Brimmell M, Packham G. BAG-1: a multifunctional regulator of cell growth and survival. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1603:83-98. [PMID: 12618309 DOI: 10.1016/s0304-419x(03)00002-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BAG-1 is multifunctional protein which interacts with a wide range of cellular targets to regulate growth control pathways important for normal and malignant cells, including apoptosis, signaling, proliferation, transcription and cell motility. Of particular relevance to tumour cells, BAG-1 interacts with the anti-apoptotic BCL-2 protein, various nuclear hormone receptors and the 70 kDa heat shock proteins, Hsc70 and Hsp70. Interaction with chaperones may account for many of the pleiotropic effects associated with BAG-1 overexpression. Recent studies have shown that BAG-1 expression is frequently altered in malignant cells, and BAG-1 expression may have clinical value as a prognostic/predictive marker. This review summarises current understanding of molecular mechanisms of BAG-1 expression and function.
Collapse
Affiliation(s)
- Paul A Townsend
- Cancer Research UK Oncology Unit, Cancer Sciences Division, School of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | | | | | | |
Collapse
|
17
|
Schmidt U, Wochnik GM, Rosenhagen MC, Young JC, Hartl FU, Holsboer F, Rein T. Essential role of the unusual DNA-binding motif of BAG-1 for inhibition of the glucocorticoid receptor. J Biol Chem 2003; 278:4926-31. [PMID: 12482863 DOI: 10.1074/jbc.m212000200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The co-chaperone BAG-1 is involved in the regulation of steroid hormone receptors, including the glucocorticoid receptor (GR). More recently, BAG-1 was found in the nucleus where it decreases GR transactivation. Moreover, nonspecific DNA binding of BAG-1 has been reported. We discovered that of the N-terminal part of BAG-1M, the first 8 amino acids are sufficient for DNA binding, containing a stretch of three lysines and a stretch of three arginines. Changing the spacing between these stretches had no effect on DNA binding. Surprisingly, this small, nonsequence-specific DNA binding domain was nonetheless necessary for the inhibitory function of BAG-1 for GR-dependent transcription, whereas the following serine- and threonine-rich E(2)X(4) repeat domain was not. Mutational analysis of these two domains revealed that only mutants retaining DNA binding capability were able to down-regulate GR-mediated transactivation. Intriguingly, lack of DNA binding could not be functionally rescued by BAG-1M harboring a point mutation abolishing interaction with hsp70. Thus, DNA binding and hsp70 interaction are required in cis. We propose that the nonsequence-specific DNA-binding protein BAG-1 acts at specific chromosomal loci by interacting with other proteins.
Collapse
Affiliation(s)
- Ulrike Schmidt
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, D-80804 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Hernández MP, Sullivan WP, Toft DO. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 2002; 277:38294-304. [PMID: 12161444 DOI: 10.1074/jbc.m206566200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly coordinated interactions of several molecular chaperones, including hsp70 and hsp90, are required for the folding and conformational regulation of a variety of proteins in eukaryotic cells, such as steroid hormone receptors and many other signal transduction regulators. The protein called Hop serves as an adaptor protein for hsp70 and hsp90 and is thought to optimize their functional cooperation. Here we characterize the assembly of the hsp70-Hop-hsp90 complex and reveal interactions that cause conformational changes between the proteins in the complex. We found that hsp40 plays an integral role in the assembly by enhancing the binding of hsp70 to the Hop complex. This is accomplished by stimulating the conversion of hsp70-ATP to hsp70-ADP, the hsp70 conformation favored for Hop binding. The hsp70-Hop-hsp90 complex is highly dynamic, as has been observed previously for hsp90 in its interaction with client proteins. Nonetheless, hsp90 binds with high affinity to Hop (K(d) = 90 nm), and this binding is not affected by hsp70. hsp70 binds with lower affinity to Hop (K(d) = 1.3 microm) on its own, but this affinity is increased (K(d) = 250 nm) in the presence of hsp90. hsp90 also reduces the number of hsp70 binding sites on the Hop dimer from two sites in the absence of hsp90 to one site in its presence. Hop can inhibit the ATP binding and p23 binding activity of hsp90, yet this can be reversed if hsp70 is present in the complex. Taken together, our results suggest that the assembly of hsp70-Hop-hsp90 complexes is selective and influences the conformational state of each protein.
Collapse
Affiliation(s)
- M Patricia Hernández
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
19
|
Brinker A, Scheufler C, Von Der Mulbe F, Fleckenstein B, Herrmann C, Jung G, Moarefi I, Hartl FU. Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes. J Biol Chem 2002; 277:19265-75. [PMID: 11877417 DOI: 10.1074/jbc.m109002200] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interaction modules containing so-called tetratricopeptide repeats (TPRs) mediate the assembly of Hsp70/Hsp90 multi-chaperone complexes. The TPR1 and TPR2A domains of the Hsp70/Hsp90 adapter protein p60/Hop specifically bind to short peptides corresponding to the C-terminal tails of Hsp70 and Hsp90, respectively, both of which contain the highly conserved sequence motif EEVD-COOH. Here, we quantitatively assessed the contribution of TPR-mediated peptide recognition to Hsp70.Hop.Hsp90 complex formation. The interaction of TPR2A with the C-terminal pentapeptide of Hsp90 (MEEVD) is identified as the core contact for Hop binding to Hsp90. (In peptide sequences, italics are used to highlight residues specific for Hsp70 or Hsp90.) In contrast, formation of the Hsp70.Hop complex depends not only on recognition of the C-terminal Hsp70 heptapeptide (PTIEEVD) by TPR1 but also on additional contacts between Hsp70 and Hop. The sequence motifs for TPR1 and TPR2A binding were defined by alanine scanning of the C-terminal octapeptides of Hsp70 and Hsp90 and by screening of combinatorial peptide libraries. Asp0 and Val-1 of the EEVD motif are identified as general anchor residues, but the highly conserved glutamates of the EEVD sequence, which are critical in Hsp90 binding by TPR2A, do not contribute appreciably to the interaction of Hsp70 with TPR1. Rather, TPR1 prefers hydrophobic amino acids in these positions. Moreover, the TPR domains display a pronounced tendency to interact preferentially with hydrophobic aliphatic and aromatic side chains in positions -4 and -6 of their respective peptide ligands. Ile-4 in Hsp70 and Met-4 in Hsp90 are most important in determining the specific binding of TPR1 and TPR2A, respectively.
Collapse
Affiliation(s)
- Achim Brinker
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18A, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
BAG-1 is a family of cochaperones consisting of at least four polypeptides BAG-1L, BAG-1M/RAP46, BAG-1 and p29. These proteins are translated from the same mRNA at alternative translation initiation sites. They possess conserved carboxy-terminal sequences which enable them to bind and inhibit the action of the molecular chaperone Hsp70/Hsc70. BAG-1 was the first member in the family of the BAG-1 proteins to be isolated. It was identified as an anti-apoptotic protein because of its ability to bind and augment the activity of the anti-death protein, Bcl-2. Since then other BAG-1 proteins have been identified and shown to interact with several cellular factors including nuclear receptors. Recent findings show that the effect of the BAG-1 proteins on nuclear receptors ranges from inhibition to enhancement of the transactivation functions of the receptors. Available data on the negative regulation of glucocorticoid receptor (GR) action by the BAG-1 proteins identify two modes of action: inhibition of the hormone binding activity of the GR and a more direct nuclear action at the level of regulation of the transactivation function of the receptor. In the latter case, the BAG-1 proteins repress DNA binding by the GR in a process that requires prior binding of Hsp70/Hsc70 to the receptor. Positive regulatory action of the BAG-1 proteins on nuclear receptors has also been reported which may involve yet other mechanisms. This review puts together recent findings on the action the BAG-1 proteins and presents them as a novel group of regulators of action of nuclear receptor.
Collapse
Affiliation(s)
- A C Cato
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, PO Box 3640, D-76021, Karlsruhe, Germany.
| | | |
Collapse
|
21
|
Wu SJ, Liu FH, Hu SM, Wang C. Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins. Biochem J 2001; 359:419-26. [PMID: 11583590 PMCID: PMC1222162 DOI: 10.1042/0264-6021:3590419] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A group of tetratricopeptide repeat (TPR)-containing proteins has been shown to interact with the C-terminal domain of the 70 kDa heat-shock cognate protein (hsc70). In the present study, the effect of the TPR-containing proteins, including the C-terminus of hsc70-interacting protein (CHIP), TPR1 and human glutamine-rich TPR-containing protein (hSGT), on refolding of luciferase by DnaJ and hsc70 was investigated. These proteins inhibited the restoration of luciferase activity by the chaperones. The inhibitory effect exerted by TPR1 and hSGT depended upon their binding to hsc70. However, the interaction with hsc70 did not appear to be required for the inhibition of luciferase refolding by CHIP. We also demonstrate that the peptide, GPTIEEVD, corresponding to the C-terminal end of hsc70, abolished the association of [(3)H]hsc70 with CHIP, TPR1 and hSGT. This implied that the GPTIEEVD motif of hsc70 was responsible for interacting with these TPR-containing proteins. However, the GGXP-repeats (where X is any aliphatic residue), another C-terminal conserved motif of vertebrate hsc70s, were not essential for interacting with the TPR-containing proteins. On the basis of mutagenesis studies, it was clear that a unique combination of the functional groups in the GPTIEEVD motif were utilized to interact with each TPR-containing protein, suggesting that inhibitors can be designed and used to elucidate the functional role of these interactions.
Collapse
Affiliation(s)
- S J Wu
- Institute of Molecular Biology, Academia Sinica, 128 Section 2, Academy Road, Taipei, Taiwan
| | | | | | | |
Collapse
|
22
|
Niyaz Y, Zeiner M, Gehring U. Transcriptional activation by the human Hsp70-associating protein Hap50. J Cell Sci 2001; 114:1839-45. [PMID: 11329370 DOI: 10.1242/jcs.114.10.1839] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated human Hap50, the large isoform of the previously characterized Hsp70/Hsc70-associating protein Hap46, also called BAG-1, for effects on transcriptional activities. Overproduction by transient transfection led to enhanced expression of reporter gene constructs in various cell types using different promoters, suggesting independence of promoter type. Similarly, overexpression of Hap50 resulted in increased levels of poly(A)(+)mRNAs in HeLa, COS-7, 3T3 and HTC cells. Concomitantly, the expression of some selected endogenous genes, such as those coding for c-Jun and the glucocorticoid receptor, was enhanced significantly relative to actin. Nuclear runoff transcription assays using HeLa cells showed that the effect is caused by increased transcription rates rather than mRNA stabilization. Activation of transcription by Hap50 occurred at 37 degrees C and did not require prior thermal stress, as is the case for Hap46. In accordance with these biological effects, Hap50 is localized exclusively in the nuclear compartment of different cell types, whereas Hap46 is mostly cytoplasmic in unstressed cells, as revealed by use of fusion constructs with green fluorescent protein. High cellular levels of Hap50 were found to make cells less susceptible to adverse environmental effects such as heat stress. Our data suggest that Hap50 is a nuclear protein that acts in cells to increase the transcription of various genes.
Collapse
Affiliation(s)
- Y Niyaz
- Ruprecht-Karls-Universität Heidelberg, Biochemie-Zentrum Heidelberg, Biologische Chemie, Im Neuenheimer Feld 501, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
23
|
Petersen G, Hahn C, Gehring U. Dissection of the ATP-binding domain of the chaperone hsc70 for interaction with the cofactor Hap46. J Biol Chem 2001; 276:10178-84. [PMID: 11121403 DOI: 10.1074/jbc.m006967200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several unrelated proteins are known that specifically interact with members of the mammalian hsp70 chaperone protein family independent of the hsp70 substrate-binding site. One of these is Hap46, also called BAG-1, which binds to the ATP-binding domain of hsp70 and its constitutively expressed, highly homologous counterpart hsc70, thereby affecting nucleotide binding, as well as protein folding properties, of these molecular chaperones. In an attempt to delineate the potential contact sites on hsp70/hsc70 involved in this interaction we made use of the following two independent approaches: (i) screening of membrane-bound peptide libraries based on the sequence of the ATP-binding domain and (ii) the phage-display technique with random dodecapeptides. These approaches yielded partially overlapping results and identified several possible contact regions. On the space-filling model of hsc70, the two major contact areas for Hap46 delineated in the present study are located on the same side of the molecule on either subdomain that border the central cleft harboring the nucleotide-binding site. We suggest that this bridging affects the conformation of the ATP-binding domain in a way similar to the opening of the nucleotide-binding cleft produced in the bacterial hsp70 homologue DnaK upon binding its regulatory protein GrpE.
Collapse
Affiliation(s)
- G Petersen
- Institut für Molekulare Genetik, Im Neuenheimer Feld 230 and Biochemie-Zentrum Heidelberg, Biologische Chemie, Im Neuenheimer Feld 501, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
24
|
Kimmins S, MacRae TH. Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 2001. [PMID: 11147968 DOI: 10.1379/1466-1268(2000)005<0076:mosrae>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The selective modulation of transcription exerted by steroids depends upon recognition of signalling molecules by properly folded cytoplasmic receptors and their subsequent translocation into the nucleus. These events require a sequential and dynamic series of protein-protein interactions in order to fashion receptors that bind stably to steroids. Central to receptor maturation, therefore, are several molecular chaperones and their accessory proteins; Hsp70, Hsp40, and hip modulate the 3-dimensional conformation of steroid receptors, permitting reaction via hop with Hsp90, arguably the central protein in the process. Binding to Hsp90 leads to dissociation of some proteins from the receptor complex while others are recruited. Notably, p23 stabilizes receptors in a steroid binding state, and the immunophilins, principally CyP40 and Hsp56, arrive late in receptor complex assembly. In this review, the functions of molecular chaperones during steroid receptor maturation are explored, leading to a general mechanistic model indicative of chaperone cooperation in protein folding.
Collapse
Affiliation(s)
- S Kimmins
- Department of Animal Science. Nova Scotia Agricultural College, Truro, Canada
| | | |
Collapse
|
25
|
Nollen EA, Kabakov AE, Brunsting JF, Kanon B, Höhfeld J, Kampinga HH. Modulation of in vivo HSP70 chaperone activity by Hip and Bag-1. J Biol Chem 2001; 276:4677-82. [PMID: 11076956 DOI: 10.1074/jbc.m009745200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperone activity of Hsp70 is influenced by the activities of both positive and negative regulatory proteins. In this study, we provide first time evidence for the stimulating effect of the Hsp70-interacting protein Hip on the chaperone activity in the mammalian cytosol. Overexpressing Hip enhances the refolding of the heat-inactivated reporter enzyme luciferase expressed in hamster lung fibroblasts. Also, it protects luciferase from irreversible denaturation under conditions of ATP depletion. We demonstrate that these stimulating actions depend on both the presence of the central Hsp70-binding site and the amino-terminal homo-oligomerization domain of Hip. The carboxyl terminus (amino acids 257-368) comprising the 7 GGMP repeats (Hsc70-like domain) and the Sti1p-like domain are dispensable for the Hip-mediated stimulation of the cellular chaperone activity. Bag-1, which inhibits the Hsp70 chaperone activity both in vitro and in vivo, was found to compete with the stimulatory action of Hip. In cells overexpressing both Hip and Bag-1, the inhibitory effects of Bag-1 were found to be dominant. Our results reveal that in vivo a complex level of regulation of the cellular chaperone activity exists that not only depends on the concentration of Hsp70 but also on the concentration, affinity, and intracellular localization of positive and negative coregulators. As the Hsp70 chaperone machine is also protective in the absence of ATP, our data also demonstrate that cycling between an ATP/ADP-bound state is not absolutely required for the Hsp70 chaperone machine to be active in vivo.
Collapse
Affiliation(s)
- E A Nollen
- Department of Radiation and Stress Cell Biology, Faculty of Medical Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
26
|
Turner BC, Krajewski S, Krajewska M, Takayama S, Gumbs AA, Carter D, Rebbeck TR, Haffty BG, Reed JC. BAG-1: a novel biomarker predicting long-term survival in early-stage breast cancer. J Clin Oncol 2001; 19:992-1000. [PMID: 11181661 DOI: 10.1200/jco.2001.19.4.992] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Among women with early-stage breast cancer treated with lumpectomy and radiation therapy, 30% to 40% will develop metastatic disease, which is often fatal. A need exists therefore for biomarkers that distinguish patients at high risk of relapse. We performed a retrospective correlative analysis of BAG-1 protein expression in breast tumors derived from a cohort of early-stage breast cancer patients. PATIENTS AND METHODS Archival paraffin blocks from 122 women with stages I to II breast cancer treated with lumpectomy and radiation therapy (median follow-up, 12.1 years) were analyzed by immunohistochemical methods using monoclonal antibodies recognizing BAG-1 and other biomarkers, including Bcl-2, estrogen receptor, progesterone receptor, p53, and HER2/Neu. Immunostaining data were correlated with distant metastasis-free survival (DMFS) and overall survival (OS). RESULTS Cytosolic immunostaining for BAG-1 was upregulated in 79 (65%) of 122 invasive breast cancers (P <.001) compared with normal breast. Elevated BAG-1 was significantly associated with longer DMFS and OS, overall (stages 1 and II) and in node-negative (stage I only) patients, on the basis of univariate and multivariate analyses (DMFS, P =.005; OS, P =.01, in multivariate analysis of all patients; DMFS, P =.005; OS, P =.001, in multivariate analysis of node-negative patients). All other biomarkers failed to reach statistical significance in multivariate analysis. Clinical stage was an independent predictor of OS (P =.04) and DMFS (P =.02). CONCLUSION These findings provide preliminary evidence that BAG-1 represents a potential marker of improved survival in early-stage breast cancer patients, independent of the status of axillary lymph nodes.
Collapse
Affiliation(s)
- B C Turner
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lüders J, Demand J, Papp O, Höhfeld J. Distinct isoforms of the cofactor BAG-1 differentially affect Hsc70 chaperone function. J Biol Chem 2000; 275:14817-23. [PMID: 10809723 DOI: 10.1074/jbc.275.20.14817] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the mammalian cytosol and nucleus the activity of the molecular chaperone Hsc70 is regulated by chaperone cofactors that modulate ATP binding and hydrolysis by Hsc70. Among such cofactors is the anti-apoptotic protein BAG-1. Remarkably, BAG-1 is expressed as multiple isoforms, which are distinguished by their amino termini. We investigated whether distinct isoforms differ with respect to their Hsc70-regulating activity. By comparing the mainly cytosolic isoforms BAG-1M and BAG-1S, opposite effects of the two isoforms were observed in chaperone-assisted folding reactions. Whereas BAG-1M was found to inhibit the Hsc70-mediated refolding of nonnative polypeptide substrates, the BAG-1S isoform stimulated Hsc70 chaperone activity. The opposite effects are not due to differences in the regulation of the ATPase activity of Hsc70 by the two isoforms. Both isoforms stimulated ATP hydrolysis by Hsc70 in an Hsp40-dependent manner through an acceleration of ADP-ATP exchange. Our results reveal that the different amino termini of the distinct BAG-1 isoforms determine the outcome of an Hsc70-mediated folding event, most likely by transiently interacting with the polypeptide substrate. Employing isoforms of a cofactor with different substrate binding properties appears to provide the means to influence the chaperone function of Hsc70 in addition to modulating its ATPase cycle.
Collapse
Affiliation(s)
- J Lüders
- Max Planck Institute for Biochemistry, Department of Molecular Cell Biology, D-82152 Martinsried, Germany
| | | | | | | |
Collapse
|
28
|
Kimmins S, MacRae TH. Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 2000; 5:76-86. [PMID: 11147968 PMCID: PMC312893 DOI: 10.1379/1466-1268(2000)005<0076:mosrae>2.0.co;2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The selective modulation of transcription exerted by steroids depends upon recognition of signalling molecules by properly folded cytoplasmic receptors and their subsequent translocation into the nucleus. These events require a sequential and dynamic series of protein-protein interactions in order to fashion receptors that bind stably to steroids. Central to receptor maturation, therefore, are several molecular chaperones and their accessory proteins; Hsp70, Hsp40, and hip modulate the 3-dimensional conformation of steroid receptors, permitting reaction via hop with Hsp90, arguably the central protein in the process. Binding to Hsp90 leads to dissociation of some proteins from the receptor complex while others are recruited. Notably, p23 stabilizes receptors in a steroid binding state, and the immunophilins, principally CyP40 and Hsp56, arrive late in receptor complex assembly. In this review, the functions of molecular chaperones during steroid receptor maturation are explored, leading to a general mechanistic model indicative of chaperone cooperation in protein folding.
Collapse
Affiliation(s)
- Sarah Kimmins
- Department of Animal Science, Nova Scotia Agricultural College, Truro, NS B2N 5E3, Canada
| | - Thomas H. MacRae
- Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
- Correspondence to: Thomas H. MacRae, Tel: 902 494-6525; Fax: 902 494-3736;
| |
Collapse
|
29
|
Crocoll A, Schneikert J, Hübner S, Martin E, Cato AC. BAG-1M: a potential specificity determinant of corticosteroid receptor action. Kidney Int 2000; 57:1265-9. [PMID: 10760052 DOI: 10.1046/j.1523-1755.2000.00960.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BAG-1M is a eukaryotic cochaperone that associates with several proteins, including the glucocorticoid receptor (GR). It down-regulates GR-mediated transactivation by a mechanism that requires its prior recruitment by the liganded receptor from cytoplasm into the nucleus. In the nucleus, it uses a repeated sequence motif ([EEX4]8) at its NH2 terminus to inhibit DNA binding, as well as transactivation functions of the receptor. The mineralocorticoid receptor (MR), a structural and functional homologue of the GR, is unable to translocate BAG-1M into the nucleus, and its transactivation function is also not affected by this protein. This differential regulation of GR and MR activity could be relevant in classic mineralocorticoid tissues such as the kidney in which GR activity needs to be repressed to allow the MR to exert its action. In in situ hybridization studies, we show that BAG-1M is expressed in the kidney. Its expression pattern, especially in the developing kidney, correlated well with that of the GR. We therefore postulate that BAG-1M may be a specificity determinant in GR and MR action, and may feature prominently in the control of GR activity in kidney development.
Collapse
Affiliation(s)
- A Crocoll
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
30
|
Lüders J, Demand J, Höhfeld J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem 2000; 275:4613-7. [PMID: 10671488 DOI: 10.1074/jbc.275.7.4613] [Citation(s) in RCA: 347] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The BAG-1 protein modulates the chaperone activity of Hsc70 and Hsp70 in the mammalian cytosol and nucleus. Remarkably, BAG-1 possesses a ubiquitin-like domain at its amino terminus, suggesting a link to the ubiquitin/proteasome system. Here we show that BAG-1 is indeed associated with the 26 S proteasome in HeLa cells. Binding of the chaperone cofactor to the proteolytic complex is regulated by ATP hydrolysis and is not mediated by Hsc70 and Hsp70. The presented findings reveal a role of BAG-1 as a physical link between the Hsc70/Hsp70 chaperone system and the proteasome. In fact, targeting of BAG-1 to the proteasome promotes an association of the chaperones with the proteolytic complex in vitro and in vivo. A regulatory function of the chaperone cofactor at the interface between protein folding and protein degradation is thus indicated.
Collapse
Affiliation(s)
- J Lüders
- Department of Molecular Cell Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
31
|
Michels AA, Kanon B, Bensaude O, Kampinga HH. Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells. J Biol Chem 1999; 274:36757-63. [PMID: 10593983 DOI: 10.1074/jbc.274.51.36757] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K., Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272, 33283-33289). We now provide further evidence for a functional interaction between Hsp70 and the J-domain of Hsp40 with denatured luciferase resulting in reactivation of heat-denatured luciferase within living mammalian cells. The stimulating effect of Hsp40 on the Hsp70-mediated refolding is lost when the proteins cannot interact as accomplished by their expression in different intracellular compartments. Likewise, the cooperation between Hsp40 and Hsp70 is lost by introduction of a point mutation in the conserved HPD motif of the Hsp40 J-domain or by deletion of the four C-terminal amino acids of Hsp70 (EEVD motif). Most strikingly, co-expression of a truncated protein restricted to the J-domain of Hsp40 had a dominant negative effect on Hsp70-facilitated luciferase reactivation. Taken together, these experiments indicate for the first time that the Hsp70/Hsp40 chaperones functionally interact with a heat-denatured protein within mammalian cells. The dominant negative effect of the Hsp40 J-domain on the activity of Hsp70 demonstrates the importance of J-domain-containing proteins in Hsp70-dependent processes.
Collapse
Affiliation(s)
- A A Michels
- Department of Radiobiology, Faculty of Medical Sciences, University of Groningen, Bloemsingel 1, 9713 BZ Groningen, The Netherlands
| | | | | | | |
Collapse
|
32
|
Schneikert J, Hübner S, Martin E, Cato AC. A nuclear action of the eukaryotic cochaperone RAP46 in downregulation of glucocorticoid receptor activity. J Cell Biol 1999; 146:929-40. [PMID: 10477749 PMCID: PMC2169481 DOI: 10.1083/jcb.146.5.929] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RAP46 is a eukaryotic cochaperone that associates with several proteins, including the heat shock protein hsp70/hsc70 and the glucocorticoid receptor (GR). Here we show a downregulation of GR-mediated transactivation by RAP46 via a mechanism independent of a cytoplasmic action of this cochaperone. We demonstrate a specific cytoplasmic-nuclear recruitment of RAP46 by the liganded GR that results in inhibition of the transactivation function of the receptor. A repeated sequence motif [EEX(4)](8) at the NH(2) terminus of RAP46 or BAG-1L, a larger isoform of RAP46, is responsible for this downregulation of GR activity. BAG-1, a shorter isoform with only a duplication of the [EEX(4)] sequence, does not inhibit GR activity. The [EEX(4)](8) motif, when linked to an otherwise unrelated protein, abrogated the inhibitory action of endogenous RAP46 on GR-mediated transactivation. The nuclear effects of RAP46 and BAG-1L are specific since GR-mediated inhibition of AP-1 activity was not affected. These studies identify the [EEX(4)](8) sequence as a signature motif for inhibition of GR-mediated transactivation and demonstrate a specific nuclear action of a eukaryotic cochaperone in the regulation of GR activity.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- COS Cells
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Nucleus/metabolism
- Cytoplasm/metabolism
- DNA/genetics
- DNA/metabolism
- DNA-Binding Proteins
- Down-Regulation
- Humans
- Ligands
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/chemistry
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Recombinant Fusion Proteins/antagonists & inhibitors
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Amino Acid/genetics
- Repressor Proteins/chemistry
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Sequence Deletion
- Transcription Factor AP-1/metabolism
- Transcription Factors
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jean Schneikert
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany
| | - Susanne Hübner
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany
| | - Elke Martin
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany
| | - Andrew C.B. Cato
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany
| |
Collapse
|
33
|
Zeiner M, Niyaz Y, Gehring U. The hsp70-associating protein Hap46 binds to DNA and stimulates transcription. Proc Natl Acad Sci U S A 1999; 96:10194-9. [PMID: 10468585 PMCID: PMC17865 DOI: 10.1073/pnas.96.18.10194] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the ubiquitously expressed hsp70-associating protein Hap46, which is also called RAP46 and is homologous to BAG-1, for activities independent of hsp70 interactions. We observed in vitro binding to various DNA fragments but detected no apparent sequence specificity. Deletion of the amino-terminal decapeptide, which contains two clusters of three basic amino acids each, abolished the DNA-binding ability of Hap46. Similarly, exchange of either of these positively charged clusters for three alanines resulted in loss of DNA binding. Using a fusion of Hap46 and green fluorescent protein, we found preferential accumulation in cell nuclei on heat stress as compared with unstressed cells. The repressive effect of heat shock on overall transcriptional activity in human DU145 carcinoma cells was largely prevented when Hap46 was overexpressed by transfection. Such overproduction of Hap46 also resulted in enhanced expression of specific reporter gene constructs and in increased levels of mRNAs specific for hsp70 and hsp40 after temperature stress. In vitro transcription with nuclear extracts was stimulated greatly by Hap46. Like DNA binding, transcriptional enhancement required amino-terminally located basic amino acid residues but not the carboxyl-terminal portion of Hap46 known to participate in hsp70 interaction. Our results show that Hap46 is a bifunctional protein that can interact with both hsp70s and DNA, employing different portions of the molecule. They also suggest that Hap46 is involved in temperature-sensitive regulation of transcription, acting as a general transcriptional activator.
Collapse
Affiliation(s)
- M Zeiner
- Universität Heidelberg, Biochemie-Zentrum Heidelberg, Biologische Chemie, Im Neuenheimer Feld 501, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|