1
|
Perturbations of Transcription and Gene Expression-Associated Processes Alter Distribution of Cell Size Values in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:239-250. [PMID: 30463882 PMCID: PMC6325893 DOI: 10.1534/g3.118.200854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.
Collapse
|
2
|
Sauerwald J, Soneson C, Robinson MD, Luschnig S. Faithful mRNA splicing depends on the Prp19 complex subunit faint sausage and is required for tracheal branching morphogenesis in Drosophila. Development 2017; 144:657-663. [PMID: 28087625 DOI: 10.1242/dev.144535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/30/2016] [Indexed: 01/26/2023]
Abstract
Morphogenesis requires the dynamic regulation of gene expression, including transcription, mRNA maturation and translation. Dysfunction of the general mRNA splicing machinery can cause surprisingly specific cellular phenotypes, but the basis for these effects is not clear. Here, we show that the Drosophila faint sausage (fas) locus, which is implicated in epithelial morphogenesis and has previously been reported to encode a secreted immunoglobulin domain protein, in fact encodes a subunit of the spliceosome-activating Prp19 complex, which is essential for efficient pre-mRNA splicing. Loss of zygotic fas function globally impairs the efficiency of splicing, and is associated with widespread retention of introns in mRNAs and dramatic changes in gene expression. Surprisingly, despite these general effects, zygotic fas mutants show specific defects in tracheal cell migration during mid-embryogenesis when maternally supplied splicing factors have declined. We propose that tracheal branching, which relies on dynamic changes in gene expression, is particularly sensitive for efficient spliceosome function. Our results reveal an entry point to study requirements of the splicing machinery during organogenesis and provide a better understanding of disease phenotypes associated with mutations in general splicing factors.
Collapse
Affiliation(s)
- Julia Sauerwald
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany.,Cluster of Excellence EXC 1003, Cells in Motion (CiM), 48149 Münster, Germany.,Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Charlotte Soneson
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,SIB Swiss Institute of Bioinformatics, 8057 Zürich, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,SIB Swiss Institute of Bioinformatics, 8057 Zürich, Switzerland
| | - Stefan Luschnig
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany .,Cluster of Excellence EXC 1003, Cells in Motion (CiM), 48149 Münster, Germany.,Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
3
|
Stegeman R, Spreacker PJ, Swanson SK, Stephenson R, Florens L, Washburn MP, Weake VM. The Spliceosomal Protein SF3B5 is a Novel Component of Drosophila SAGA that Functions in Gene Expression Independent of Splicing. J Mol Biol 2016; 428:3632-49. [PMID: 27185460 PMCID: PMC5011000 DOI: 10.1016/j.jmb.2016.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/19/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022]
Abstract
The interaction between splicing factors and the transcriptional machinery provides an intriguing link between the coupled processes of transcription and splicing. Here, we show that the two components of the SF3B complex, SF3B3 and SF3B5, that form part of the U2 small nuclear ribonucleoprotein particle (snRNP) are also subunits of the Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator complex in Drosophila melanogaster. Whereas SF3B3 had previously been identified as a human SAGA subunit, SF3B5 had not been identified as a component of SAGA in any species. We show that SF3B3 and SF3B5 bind to SAGA independent of RNA and interact with multiple SAGA subunits including Sgf29 and Spt7 in a yeast two-hybrid assay. Through analysis of sf3b5 mutant flies, we show that SF3B5 is necessary for proper development and cell viability but not for histone acetylation. Although SF3B5 does not appear to function in SAGA's histone-modifying activities, SF3B5 is still required for expression of a subset of SAGA-regulated genes independent of splicing. Thus, our data support an independent function of SF3B5 in SAGA's transcription coactivator activity that is separate from its role in splicing.
Collapse
Affiliation(s)
- Rachel Stegeman
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Peyton J Spreacker
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Robert Stephenson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Gutkowska M, Swiezewska E. Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein. Mol Membr Biol 2012; 29:243-56. [DOI: 10.3109/09687688.2012.693211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Aki S, Nakai H, Aoyama T, Oka A, Tsuge T. AtSAP130/AtSF3b-3 function is required for reproduction in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2011; 52:1330-1339. [PMID: 21680607 DOI: 10.1093/pcp/pcr077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Flowering plants produce multicellular gametophytes through an elaborate regulation of gametogenesis. During female and male gametogenesis in Arabidopsis thaliana, sporogenous cells differentiate and undergo meiosis to produce megaspores and microspores, which in turn go through mitosis to develop into multicellular gametophytes. Here we report that the Arabidopsis spliceosomal protein, SPLICEOSOME-ASSOCIATED PROTEIN 130 (AtSAP130), is required for proper reproduction. AtSAP130 is encoded by two genes, AtSAP130a and AtSAP130b. Plants with reduced expression of the AtSAP130 genes, induced by RNA interference, showed a defect in fertilization. Besides functional impairment observed in the female reproductive organs, analysis focusing on pollen development revealed defects in the transition from the microspore to the bicellular stage. Our results suggest that AtSAP130a and AtSAP130b play an indispensable role in specific spatiotemporal events in reproduction.
Collapse
Affiliation(s)
- Shiori Aki
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 Japan
| | | | | | | | | |
Collapse
|
6
|
Mantina P, MacDonald L, Kulaga A, Zhao L, Hansen D. A mutation in teg-4, which encodes a protein homologous to the SAP130 pre-mRNA splicing factor, disrupts the balance between proliferation and differentiation in the C. elegans germ line. Mech Dev 2009; 126:417-29. [PMID: 19368799 DOI: 10.1016/j.mod.2009.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/31/2023]
Abstract
Dividing stem cells can give rise to two types of daughter cells; self-renewing cells that have virtually the same properties as the parent cell, and differentiating cells that will eventually form part of a tissue. The Caenorhabditis elegans germ line serves as a model to study how the balance between these two types of daughter cells is maintained. A mutation in teg-4 causes over-proliferation of the stem cells, thereby disrupting the balance between proliferation and differentiation. We have cloned teg-4 and found it to encode a protein homologous to the highly conserved splicing factor subunit 3 of SF3b. Our allele of teg-4 partially reduces TEG-4 function. In an effort to determine how teg-4 functions in controlling stem cell proliferation, we have performed genetic epistasis analysis with known factors controlling stem cell proliferation. We found that teg-4 is synthetic tumorous with genes in both major redundant genetic pathways that function downstream of GLP-1/Notch signaling to control the balance between proliferation and differentiation. Therefore, teg-4 is unlikely to function specifically in either of these two genetic pathways. Further, the synthetic tumorous phenotype seen with one of the genes from these pathways is epistatic to glp-1, indicating that teg-4 functions downstream of glp-1, likely as a positive regulator of meiotic entry. We propose that a reduction in teg-4 activity reduces the splicing efficiency of targets involved in controlling the balance between proliferation and differentiation. This results in a shift in the balance towards proliferation, eventually forming a germline tumor.
Collapse
Affiliation(s)
- Pallavi Mantina
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
7
|
Garas M, Dichtl B, Keller W. The role of the putative 3' end processing endonuclease Ysh1p in mRNA and snoRNA synthesis. RNA (NEW YORK, N.Y.) 2008; 14:2671-84. [PMID: 18971324 PMCID: PMC2590971 DOI: 10.1261/rna.1293008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pre-mRNA 3' end formation is tightly linked to upstream and downstream events of eukaryotic mRNA synthesis. The two-step reaction involves endonucleolytic cleavage of the primary transcript followed by poly(A) addition to the upstream cleavage product. To further characterize the putative 3' end processing endonuclease Ysh1p/Brr5p, we isolated and analyzed a number of new temperature- and cold-sensitive mutant alleles. We show that Ysh1p plays a crucial role in 3' end formation and in RNA polymerase II (RNAP II) transcription termination on mRNA genes. In addition, we observed a range of additional functional deficiencies in ysh1 mutant strains, which were partially allele-specific. Interestingly, snoRNA 3' end formation and RNAP II termination were defective on specific snoRNAs in the cold-sensitive ysh1-12 strain. Moreover, we observed the accumulation of several mRNAs including the NRD1 transcript in this mutant. We provide evidence that NRD1 autoregulation is associated with endonucleolytic cleavage and that this process may involve Ysh1p. In addition, the ysh1-12 strain displayed defects in RNA splicing indicating that a functional link may exist between intron removal and 3' end formation in yeast. These observations suggest that Ysh1p has multiple roles in RNA synthesis and processing.
Collapse
Affiliation(s)
- Monika Garas
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
8
|
Cardoza RE, Gutiérrez S, Ortega N, Colina A, Casqueiro J, Martín JF. Expression of a synthetic copy of the bovine chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnol Bioeng 2003; 83:249-59. [PMID: 12783481 DOI: 10.1002/bit.10666] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A copy of the bovine chymosin gene (chy) with a codon usage optimized for its expression in Aspergillus awamori was constructed starting from synthetic oligonucleotides. To study the ability of this filamentous fungus to secrete bovine prochymosin, two plasmids were constructed in which the transcriptional, translational, and secretory control regions of the A. nidulans gpdA gene and pepB genes were coupled to either preprochymosin or prochymosin genes. Secretion of a protein enzymatically and immunologically indistinguishable from bovine chymosin was achieved in A. awamori transformants with each of these constructions. In all cases, the primary translation product (40.5 kDa) was self-processed to a mature chymosin polypeptide having a molecular weight of 35.6 kDa. Immunological assays indicated that most of the chymosin was secreted to the extracellular medium. Hybridization analysis of genomic DNA from chymosin transformants showed chromosomal integration of prochymosin sequences and, in some transformants, multiple copies of the expression cassettes were observed. Expression from the gpdA promoter was constitutive, whereas expression from the pepB promoter was strongly influenced by pH. A very high expression from the pepB promoter was observed during the growth phase. The A. awamori pepB gene terminator was more favorable for chymosin production than the S. cerevisiae CYC1 terminator.
Collapse
Affiliation(s)
- R E Cardoza
- Institute of Biotechnology of León (INBIOTEC), Science Park of León, León, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Vincent K, Wang Q, Jay S, Hobbs K, Rymond BC. Genetic interactions with CLF1 identify additional pre-mRNA splicing factors and a link between activators of yeast vesicular transport and splicing. Genetics 2003; 164:895-907. [PMID: 12871902 PMCID: PMC1462608 DOI: 10.1093/genetics/164.3.895] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information. Twelve mutants were found that show synthetic growth defects when combined with an allele that lacks TPR2 (i.e., clf1Delta2). The identified genes encode the Mud2, Ntc20, Prp16, Prp17, Prp19, Prp22, and Syf2 splicing factors and four proteins without established contribution to splicing (Bud13, Cet1, Cwc2, and Rds3). Each synthetic lethal with clf1Delta2 (slc) mutant is splicing defective in a wild-type CLF1 background. In addition to the splicing factors, SSD1, BTS1, and BET4 were identified as dosage suppressors of clf1Delta2 or selected slc mutants. These results support Clf1 function through multiple stages of the spliceosome cycle, identify additional genes that promote cellular mRNA maturation, and reveal a link between Rab/Ras GTPase activation and the process of pre-mRNA splicing.
Collapse
Affiliation(s)
- Kevin Vincent
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506-0225, USA
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Nuno André Faustino
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
11
|
Scorilas A. Polyadenylate polymerase (PAP) and 3' end pre-mRNA processing: function, assays, and association with disease. Crit Rev Clin Lab Sci 2002; 39:193-224. [PMID: 12120781 DOI: 10.1080/10408360290795510] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polyadenylate polymerase (PAP) is one of the enzymes involved in the formation of the polyadenylate tail of the 3' end of mRNA. Poly (A) tail formation is a significant component of 3' processing, a link in the chain of events, including transcription, splicing, and cleavage/polyadenylation of pre-mRNA. Transcription, capping, splicing, polyadenylation, and transport take place as coupled processes that can regulate one another. The poly(A) tail is found in almost all eukaryotic mRNA and is important in enhancing translation initiation and determining mRNA stability. Control of poly(A) tail synthesis could possibly be a key regulatory step in gene expression. PAP-specific activity values are measured by a highly sensitive assays and immunocytochemical methods. High levels of PAP activity are associated with rapidly proliferating cells, it also prevents apoptosis. Changes of PAP activity may cause a decrease in the rate of polyadenylation in the brain during epileptic seizures. Testis-specific PAP may play an important role in spermiogenesis. PAP was found to be an unfavorable prognostic factor in leukemia and breast cancer. Furthermore, measurements of PAP activity may contribute to the definition of the biological profile of tumor cells. It is crucial to know the specific target causing the elevation of serum PAP, for it to be used as a marker for disease. This review summarizes the recently accumulated knowledge on PAP including its function, assays, and association with various human diseases, and proposes future avenues for research.
Collapse
Affiliation(s)
- Andreas Scorilas
- National Center for Scientific Research Demokritos, IPC, Athens, Greece.
| |
Collapse
|
12
|
Burns CG, Ohi R, Mehta S, O'Toole ET, Winey M, Clark TA, Sugnet CW, Ares M, Gould KL. Removal of a single alpha-tubulin gene intron suppresses cell cycle arrest phenotypes of splicing factor mutations in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:801-15. [PMID: 11784857 PMCID: PMC133559 DOI: 10.1128/mcb.22.3.801-815.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2001] [Accepted: 11/01/2001] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical studies of Schizosaccharomyces pombe and Saccharomyces cerevisiae have identified gene products that play essential functions in both pre-mRNA splicing and cell cycle control. Among these are the conserved, Myb-related CDC5 (also known as Cef1p in S. cerevisiae) proteins. The mechanism by which loss of CDC5/Cef1p function causes both splicing and cell cycle defects has been unclear. Here we provide evidence that cell cycle arrest in a new temperature-sensitive CEF1 mutant, cef1-13, is an indirect consequence of defects in pre-mRNA splicing. Although cef1-13 cells harbor global defects in pre-mRNA splicing discovered through intron microarray analysis, inefficient splicing of the alpha-tubulin-encoding TUB1 mRNA was considered as a potential cause of the cef1-13 cell cycle arrest because cef1-13 cells arrest uniformly at G(2)/M with many hallmarks of a defective microtubule cytoskeleton. Consistent with this possibility, cef1-13 cells possess reduced levels of total TUB1 mRNA and alpha-tubulin protein. Removing the intron from TUB1 in cef1-13 cells boosts TUB1 mRNA and alpha-tubulin expression to near wild-type levels and restores microtubule stability in the cef1-13 mutant. As a result, cef1-13 tub1Deltai cells progress through mitosis and their cell cycle arrest phenotype is alleviated. Removing the TUB1 intron from two other splicing mutants that arrest at G(2)/M, prp17Delta and prp22-1 strains, permits nuclear division, but suppression of the cell cycle block is less efficient. Our data raise the possibility that although cell cycle arrest phenotypes in prp mutants can be explained by defects in pre-mRNA splicing, the transcript(s) whose inefficient splicing contributes to cell cycle arrest is likely to be prp mutant dependent.
Collapse
Affiliation(s)
- C Geoffrey Burns
- Howard Hughes Medical Institute, Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Awasthi S, Palmer R, Castro M, Mobarak CD, Ruby SW. New roles for the Snp1 and Exo84 proteins in yeast pre-mRNA splicing. J Biol Chem 2001; 276:31004-15. [PMID: 11425851 DOI: 10.1074/jbc.m100022200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian 70K protein, a component of the U1 small nuclear ribonucleoprotein involved in pre-mRNA splicing, interacts with a number of proteins important for regulating constitutive and alternative splicing. Similar proteins that interact with the yeast homolog of the 70K protein, Snp1p, have yet to be identified. We used the two-hybrid system to find four U1-Snp1 associating (Usa) proteins. Two of these proteins physically associate with Snp1p as assayed by coimmunoprecipitation. One is Prp8p, a known, essential spliceosomal component. This interaction suggests some novel functions for Snp1p and the U1 small nuclear ribonucleoprotein late in spliceosome development. The other, Exo84p, is a conserved subunit of the exocyst, an eight-protein complex functioning in secretion. We show here that Exo84p is also involved in pre-mRNA splicing. A temperature-sensitive exo84 mutation caused increased ratios of pre-mRNA to mRNA for the Rpl30 and actin transcripts in cells incubated at the non-permissive temperature. The mutation also led to a defect in splicing and prespliceosome formation in vitro; an indication that Exo84p has a direct role in splicing. The results elucidate a surprising link between splicing and secretion.
Collapse
Affiliation(s)
- S Awasthi
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Cancer Research and Treatment Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
14
|
Habara Y, Urushiyama S, Shibuya T, Ohshima Y, Tani T. Mutation in the prp12+ gene encoding a homolog of SAP130/SF3b130 causes differential inhibition of pre-mRNA splicing and arrest of cell-cycle progression in Schizosaccharomyces pombe. RNA (NEW YORK, N.Y.) 2001; 7:671-81. [PMID: 11350031 PMCID: PMC1370119 DOI: 10.1017/s1355838201001200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
prp12-1 is one of the mutants defective in pre-mRNA splicing at a nonpermissive temperature in Schizosaccharomyces pombe. We found that the prp12+ gene encodes a protein highly homologous with a human splicing factor, SAP130/SF3b130, a subunit of a U2 snRNP-associated complex SF3b. Prp12p was shown to interact genetically with Prp10p that is a homolog of SAP155/SF3b155, another subunit in SF3b, suggesting that Prp12p is a functional homolog of human SAP130/SF3b130. Prp12p tagged with GFP is uniformly localized in the nuclear DNA region. In addition to pre-mRNA splicing defects, the prp12-1 mutant produced elongated cells, a typical phenotype of cell division cycle (cdc) mutants, suggesting a possible link between pre-mRNA splicing and cell-cycle progression. We examined kinetics of splicing defects in prp12-1 and several other prp mutants using northern blot hybridization and found that, among all the tested pre-mRNAs, only Tflld pre-mRNA with low splicing efficiency showed detectable splicing defects at the nonpermissive temperature in prp12-1. In addition, we found that other prp mutants with the cdc phenotype also showed differential splicing defects in tested pre-mRNAs at the nonpermissive temperature. On the other hand, prp mutants that do not exhibit the cdc phenotype showed a rapid and complete block of pre-mRNA splicing in all the tested pre-mRNAs at the nonpermissive temperature, indicating that prp mutants with weak splicing defects have a tendency to exhibit the cdc phenotype. These results suggest that the cdc phenotype in prp12-1 is caused by a selective reduction of spliced transcripts encoding a protein (or proteins) required for G2/M transition.
Collapse
Affiliation(s)
- Y Habara
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
15
|
Abstract
The UAP56 gene has been shown to be required for prespliceosome assembly in mammals. We report here the isolation of the Schizosaccharomyces pombe ortholog of this gene by heterologous complementation of a combined PRP40HA(3)/nam8Delta defect in budding yeast. The Saccharomyces cerevisiae ortholog, YDL084w/SUB2, is also able to suppress this defect. We show that SUB2 is involved in splicing in vivo as well as in vitro. Sub2 defective extracts form a stalled intermediate that contains U2snRNP and can be chased into functional spliceosomes. Our experiments also suggest a role for this protein in events that precede prespliceosome formation. Data reported here as well as in the accompanying papers strongly implicate Sub2p in multiple steps of the spliceosome assembly process.
Collapse
Affiliation(s)
- D Libri
- Centre National de la Recherche Scientifique, Center Génétique Moléculaire, 91190 Gif sur Yvette, France.
| | | | | | | |
Collapse
|
16
|
Payne WE, Kaiser CA, Bevis BJ, Soderholm J, Fu D, Sears IB, Glick BS. Isolation of Pichia pastoris genes involved in ER-to-Golgi transport. Yeast 2000; 16:979-93. [PMID: 10923020 DOI: 10.1002/1097-0061(200008)16:11<979::aid-yea594>3.0.co;2-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pichia pastoris has discrete transitional ER sites and coherent Golgi stacks, making this yeast an ideal system for studying the organization of the early secretory pathway. To provide molecular tools for this endeavour, we isolated P. pastoris homologues of the SEC12, SEC13, SEC17, SEC18 and SAR1 genes. The P. pastoris SEC12, SEC13, SEC17 and SEC18 genes were shown to complement the corresponding S. cerevisiae mutants. The SEC17 and SAR1 genes contain introns at the same relative positions in both P. pastoris and S. cerevisiae, whereas the SEC13 gene contains an intron in P. pastoris but not in S. cerevisiae. Intron structure is similar in the two yeasts, although the favoured 5' splice sequence appears to be GTAAGT in P. pastoris vs. GTATGT in S. cerevisiae. The predicted amino acid sequences of Sec13p, Sec17p, Sec18p and Sar1p show strong conservation in the two yeasts. By contrast, the predicted lumenal domain of Sec12p is much larger in P. pastoris, suggesting that this domain may help localize Sec12p to transitional ER sites. A comparison of the SEC12 loci in various budding yeasts indicates that the SEC12-related gene SED4 is probably unique to the Saccharomyces lineage.
Collapse
Affiliation(s)
- W E Payne
- Department of Biology, 68-533, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The pre-mRNA splicing machinery consists of five small nuclear RNAs (U1, U2, U4, U5 and U6) and more than fifty proteins. Over the past year, important advances have been made in understanding how these factors function to achieve fidelity in splicing. Of particular note were the discoveries that the splicing factor U2AF(35) recognizes the AG dinucleotide at the 3' splice site early in spliceosome assembly, that a DEAD-box ATPase, Prp28, triggers specific rearrangements of the spliceosome, and that the splicing factor hSlu7 functions in the fidelity of AG choice during catalytic step II of splicing.
Collapse
Affiliation(s)
- R Reed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Nanduri J, Mitra S, Andrei C, Liu Y, Yu Y, Hitomi M, Tartakoff AM. An unexpected link between the secretory path and the organization of the nucleus. J Biol Chem 1999; 274:33785-9. [PMID: 10559272 DOI: 10.1074/jbc.274.47.33785] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast sec mutations define the machinery of vesicular traffic. Surprisingly, many of these mutations also inhibit ribosome biogenesis by reducing transcription of rRNA and genes encoding ribosomal proteins. We observe that these mutants reversibly inhibit protein import into the nucleus, with import cargo accumulating at the nucleoplasmic face of nuclear pore complexes, as when Ran-GTP cannot bind importins. They also rapidly and reversibly relocate multiple nucleolar and nucleoplasmic proteins to the cytoplasm. The import block and relocation are antagonized by overexpression of yeast Ran, Hog1p kinase, or Ssa/Hsp70 proteins or by inhibition of protein synthesis. These nucleocytoplasmic signaling events document an extraordinary plasticity of nuclear organization.
Collapse
Affiliation(s)
- J Nanduri
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Das BK, Xia L, Palandjian L, Gozani O, Chyung Y, Reed R. Characterization of a protein complex containing spliceosomal proteins SAPs 49, 130, 145, and 155. Mol Cell Biol 1999; 19:6796-802. [PMID: 10490618 PMCID: PMC84676 DOI: 10.1128/mcb.19.10.6796] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SF3b is a U2 snRNP-associated protein complex essential for spliceosome assembly. Although evidence that SF3b contains the spliceosomal proteins SAPs 49, 130, 145, and 155 has accumulated, a protein-mediated association between all of these proteins has yet to be directly demonstrated. Here we report the isolation of a cDNA encoding SAP 130, which completes the cloning of the putative SF3b complex proteins. Using antibodies to SAP 130 and other putative SF3b components, we showed that SAPs 130, 145, and 155 are present in a protein complex in nuclear extracts and that these proteins associate with one another in purified U2 snRNP. Moreover, SAPs 155 and 130 interact with each other (directly or indirectly) within this complex, and SAPs 49 and 145 are known to interact directly with each other. Thus, together with prior work, our studies indicate that SAPs 49, 130, 145, and 155 are indeed components of SF3b. The Saccharomyces cerevisiae homologs of SAPs 49 and 145 are encoded by essential genes. We show here that the S. cerevisiae homologs of SAPs 130 and 155 (scSAP 130/RSE1 and scSAP 155, respectively) are also essential. Recently, the SF3b proteins were found in purified U12 snRNP, which functionally substitutes for U2 snRNP in the minor spliceosome. This high level of conservation, together with the prior observation that the SF3b proteins interact with pre-mRNA very close to the branch site, suggest that the SF3b complex plays a critical role near or at the spliceosome catalytic core.
Collapse
Affiliation(s)
- B K Das
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
20
|
Caspary F, Shevchenko A, Wilm M, Séraphin B. Partial purification of the yeast U2 snRNP reveals a novel yeast pre-mRNA splicing factor required for pre-spliceosome assembly. EMBO J 1999; 18:3463-74. [PMID: 10369685 PMCID: PMC1171425 DOI: 10.1093/emboj/18.12.3463] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have partially purified the U2 snRNP of Saccharomyces cerevisiae. Identification of some proteins consistently found in the purified fractions by nanoelectrospray mass spectrometry indicated the presence of a novel splicing factor named Rse1p. The RSE1 gene is essential and codes for a 148.2 kDa protein. We demonstrated that Rse1p associates specifically with U2 snRNA at low salt concentrations. In addition, we showed that Rse1p is a component of the pre-spliceosome. Depletion of Rse1p and analysis of a conditional mutant indicated that Rse1p was required for efficient splicing in vivo. In vitro Rse1p is required for the formation of pre-spliceosomes. Database searches revealed that Rse1p is conserved in humans and that it belongs to a large protein family that includes polyadenylation factors and DNA repair proteins. The characteristics of Rse1p suggest that its human homologue could be a subunit of the SF3 splicing factor.
Collapse
Affiliation(s)
- F Caspary
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
21
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 818] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
22
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999. [PMID: 10357856 DOI: 10.1007/s13146-011-0050-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|