1
|
Kallert E, Almena Rodriguez L, Husmann JÅ, Blatt K, Kersten C. Structure-based virtual screening of unbiased and RNA-focused libraries to identify new ligands for the HCV IRES model system. RSC Med Chem 2024; 15:1527-1538. [PMID: 38784459 PMCID: PMC11110755 DOI: 10.1039/d3md00696d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
Targeting RNA including viral RNAs with small molecules is an emerging field. The hepatitis C virus internal ribosome entry site (HCV IRES) is a potential target for translation inhibitor development to raise drug resistance mutation preparedness. Using RNA-focused and unbiased molecule libraries, a structure-based virtual screening (VS) by molecular docking and pharmacophore analysis was performed against the HCV IRES subdomain IIa. VS hits were validated by a microscale thermophoresis (MST) binding assay and a Förster resonance energy transfer (FRET) assay elucidating ligand-induced conformational changes. Ten hit molecules were identified with potencies in the high to medium micromolar range proving the suitability of structure-based virtual screenings against RNA-targets. Hit compounds from a 2-guanidino-quinazoline series, like the strongest binder, compound 8b with an EC50 of 61 μM, show low molecular weight, moderate lipophilicity and reduced basicity compared to previously reported IRES ligands. Therefore, it can be considered as a potential starting point for further optimization by chemical derivatization.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Laura Almena Rodriguez
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Jan-Åke Husmann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Kathrin Blatt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University BioZentrum I, Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| |
Collapse
|
2
|
Dang TTV, Colin J, Janbon G. Alternative Transcription Start Site Usage and Functional Implications in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1044. [PMID: 36294609 PMCID: PMC9604717 DOI: 10.3390/jof8101044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic fungi require delicate gene regulation mechanisms to adapt to diverse living environments and escape host immune systems. Recent advances in sequencing technology have exposed the complexity of the fungal genome, thus allowing the gradual disentanglement of multiple layers of gene expression control. Alternative transcription start site (aTSS) usage, previously reported to be prominent in mammals and to play important roles in physiopathology, is also present in fungi to fine-tune gene expression. Depending on the alteration in their sequences, RNA isoforms arising from aTSSs acquire different characteristics that significantly alter their stability and translational capacity as well as the properties and biologic functions of the resulting proteins. Disrupted control of aTSS usage has been reported to severely impair growth, virulence, and the infectious capacity of pathogenic fungi. Here, we discuss principle concepts, mechanisms, and the functional implication of aTSS usage in fungi.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Jessie Colin
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, F-75014 Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| |
Collapse
|
3
|
Zgadzay Y, Kolosova O, Stetsenko A, Wu C, Bruchlen D, Usachev K, Validov S, Jenner L, Rogachev A, Yusupova G, Sachs MS, Guskov A, Yusupov M. E-site drug specificity of the human pathogen Candida albicans ribosome. SCIENCE ADVANCES 2022; 8:eabn1062. [PMID: 35613268 PMCID: PMC9132455 DOI: 10.1126/sciadv.abn1062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/07/2022] [Indexed: 05/20/2023]
Abstract
Candida albicans is a widespread commensal fungus with substantial pathogenic potential and steadily increasing resistance to current antifungal drugs. It is known to be resistant to cycloheximide (CHX) that binds to the E-transfer RNA binding site of the ribosome. Because of lack of structural information, it is neither possible to understand the nature of the resistance nor to develop novel inhibitors. To overcome this issue, we determined the structure of the vacant C. albicans 80S ribosome at 2.3 angstroms and its complexes with bound inhibitors at resolutions better than 2.9 angstroms using cryo-electron microscopy. Our structures reveal how a change in a conserved amino acid in ribosomal protein eL42 explains CHX resistance in C. albicans and forms a basis for further antifungal drug development.
Collapse
Affiliation(s)
- Yury Zgadzay
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Olga Kolosova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France
| | - Artem Stetsenko
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - David Bruchlen
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France
| | - Konstantin Usachev
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”, Kazan, Russia
| | - Shamil Validov
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”, Kazan, Russia
| | - Lasse Jenner
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France
| | - Andrey Rogachev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The Joint Institute for Nuclear Research, Dubna, Russia
| | - Gulnara Yusupova
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France
| | - Matthew S. Sachs
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Albert Guskov
- Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Corresponding author. (A.G.); (M.Y.)
| | - Marat Yusupov
- Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch, France
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Federal Research Center “Kazan Scientific Center of Russian Academy of Sciences”, Kazan, Russia
- Corresponding author. (A.G.); (M.Y.)
| |
Collapse
|
4
|
Li X, Wang Z, Fu Y, Cheng X, Zhang Y, Fan B, Zhu C, Chen Z. Two ubiquitin-associated ER proteins interact with COPT copper transporters and modulate their accumulation. PLANT PHYSIOLOGY 2021; 187:2469-2484. [PMID: 34618061 PMCID: PMC8644684 DOI: 10.1093/plphys/kiab381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/13/2021] [Indexed: 06/02/2023]
Abstract
The endoplasmic reticulum (ER) contains an elaborate protein quality control network that promotes protein folding and prevents accumulation of misfolded proteins. Evolutionarily conserved UBIQUITIN-ASSOCIATED DOMAIN-CONTAINING PROTEIN 2 (UBAC2) is involved in ER-associated protein degradation in metazoans. We have previously reported that two close UBAC2 homologs from Arabidopsis (Arabidopsis thaliana) not only participate in selective autophagy of ER components but also interact with plant-specific PATHOGEN-ASSOCIATED MOLECULAR PATTERN (PAMP)-INDUCED COILED COIL (PICC) protein to increase the accumulation of POWDERY MILDEW-RESISTANT 4 callose synthase. Here, we report that UBAC2s also interacted with COPPER (Cu) TRANSPORTER 1 (COPT1) and plasma membrane-targeted members of the Cu transporter family. The ubac2 mutants were significantly reduced in both the accumulation of COPT proteins and Cu content, and also displayed increased sensitivity to a Cu chelator. Therefore, UBAC2s positively regulate the accumulation of COPT transporters, thereby increasing Cu uptake by plant cells. Unlike with POWDERY MILDEW RESISTANCE 4, however, the positive role of UBAC2s in the accumulation of COPT1 is not dependent on PICC or the UBA domain of UBAC2s. When COPT1 was overexpressed under the CaMV 35S promoter, the increased accumulation of COPT1 was strongly UBAC2-dependent, particularly when a signal peptide was added to the N-terminus of COPT1. Further analysis using inhibitors of protein synthesis and degradation strongly suggested that UBAC2s stabilize newly synthesized COPT proteins against degradation by the proteasome system. These results indicate that plant UBAC2s are multifunctional proteins that regulate the degradation and accumulation of specific ER-synthesized proteins.
Collapse
Affiliation(s)
- Xifeng Li
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Zhe Wang
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Yunting Fu
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
| | - Xi Cheng
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Yan Zhang
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
- College of Ecology, Lishui University, Lishui, Zhejiang 323000,
China
| | - Baofang Fan
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| | - Cheng Zhu
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
| | - Zhixiang Chen
- College of Life Science, China Jiliang University, Hangzhou,
Zhejiang 310018, China
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue
University, West Lafayette, Indiana 47907-2054, USA
| |
Collapse
|
5
|
Gaba A, Wang H, Fortune T, Qu X. Smart-ORF: a single-molecule method for accessing ribosome dynamics in both upstream and main open reading frames. Nucleic Acids Res 2021; 49:e26. [PMID: 33330921 PMCID: PMC7969011 DOI: 10.1093/nar/gkaa1185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 11/15/2022] Open
Abstract
Upstream open reading frame (uORF) translation disrupts scanning 43S flux on mRNA and modulates main open reading frame (mORF) translation efficiency. Current tools, however, have limited access to ribosome dynamics in both upstream and main ORFs of an mRNA. Here, we develop a new two-color in vitro fluorescence assay, Smart-ORF, that monitors individual uORF and mORF translation events in real-time with single-molecule resolution. We demonstrate the utility of Smart-ORF by applying it to uORF-encoded arginine attenuator peptide (AAP)-mediated translational regulation. The method enabled quantification of uORF and mORF initiation efficiencies, 80S dwell time, polysome formation, and the correlation between uORF and mORF translation dynamics. Smart-ORF revealed that AAP-mediated 80S stalling in the uORF stimulates the uORF initiation efficiency and promotes clustering of slower uORF-translating ribosomes. This technology provides a new tool that can reveal previously uncharacterized dynamics of uORF-containing mRNA translation.
Collapse
Affiliation(s)
- Anthony Gaba
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongyun Wang
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Trinisia Fortune
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaohui Qu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
6
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
7
|
Collart MA, Weiss B. Ribosome pausing, a dangerous necessity for co-translational events. Nucleic Acids Res 2020; 48:1043-1055. [PMID: 31598688 PMCID: PMC7026645 DOI: 10.1093/nar/gkz763] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
In recent years translation elongation has emerged as an important contributor to the regulation of gene expression. There are multiple quality control checkpoints along the way of producing mature proteins and targeting them to the right cellular compartment, or associating them correctly with their partners. Ribosomes pause to allow co-translational protein folding, protein targeting or protein interactions, and the pausing is dictated by a combination of the mRNA sequence and structure, the tRNA availability and the nascent peptide. However, ribosome pausing can also lead to ribosome collisions and co-translational degradation of both mRNA and nascent chain. Understanding how the translating ribosome tunes the different maturation steps that nascent proteins must undergo, what the timing of these maturation events is, and how degradation can be avoided when pausing is needed, is now possible by the emergence of methods to follow ribosome dynamics in vivo. This review summarizes some of the recent studies that have advanced our knowledge about co-translational events using the power of ribosome profiling, and some of the questions that have emerged from these studies.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics, Geneva, 1 rue Michel Servet, 1211 Genève 4, Switzerland
| | - Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics, Geneva, 1 rue Michel Servet, 1211 Genève 4, Switzerland
| |
Collapse
|
8
|
Ivanov IP, Shin BS, Loughran G, Tzani I, Young-Baird SK, Cao C, Atkins JF, Dever TE. Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Mol Cell 2018; 70:254-264.e6. [PMID: 29677493 PMCID: PMC5916843 DOI: 10.1016/j.molcel.2018.03.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 12/31/2022]
Abstract
Translation initiation is typically restricted to AUG codons, and scanning eukaryotic ribosomes inefficiently recognize near-cognate codons. We show that queuing of scanning ribosomes behind a paused elongating ribosome promotes initiation at upstream weak start sites. Ribosomal profiling reveals polyamine-dependent pausing of elongating ribosomes on a conserved Pro-Pro-Trp (PPW) motif in an inhibitory non-AUG-initiated upstream conserved coding region (uCC) of the antizyme inhibitor 1 (AZIN1) mRNA, encoding a regulator of cellular polyamine synthesis. Mutation of the PPW motif impairs initiation at the uCC's upstream near-cognate AUU start site and derepresses AZIN1 synthesis, whereas substitution of alternate elongation pause sequences restores uCC translation. Impairing ribosome loading reduces uCC translation and paradoxically derepresses AZIN1 synthesis. Finally, we identify the translation factor eIF5A as a sensor and effector for polyamine control of uCC translation. We propose that stalling of elongating ribosomes triggers queuing of scanning ribosomes and promotes initiation by positioning a ribosome near the start codon.
Collapse
Affiliation(s)
- Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; School of Biochemistry and Cell Biology, University College Cork, Cork T12 YT57, Ireland.
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YT57, Ireland
| | - Ioanna Tzani
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YT57, Ireland
| | - Sara K Young-Baird
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chune Cao
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YT57, Ireland
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Wu C, Dasgupta A, Shen L, Bell-Pedersen D, Sachs MS. The cell free protein synthesis system from the model filamentous fungus Neurospora crassa. Methods 2018; 137:11-19. [PMID: 29294368 PMCID: PMC6047757 DOI: 10.1016/j.ymeth.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) can be used in many applications to produce polypeptides and to analyze mechanisms of mRNA translation. Here we describe how to make and use a CPFS system from the model filamentous fungus Neurospora crassa. The extensive genetic resources available in this system provide capacities to exploit robust CFPS for understanding translational control. Included are procedures for the growth and harvesting of cells, the preparation of cell-free extracts that serve as the source of the translational machinery in the CFPS and the preparation of synthetic mRNA to program the CFPS. Methods to accomplish cell-free translation and analyze protein synthesis, and to map positions of ribosomes on mRNAs by toeprinting, are described.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Ananya Dasgupta
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | - Lunda Shen
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| |
Collapse
|
10
|
Yamashita Y, Takamatsu S, Glasbrenner M, Becker T, Naito S, Beckmann R. Sucrose sensing through nascent peptide-meditated ribosome stalling at the stop codon of Arabidopsis bZIP11 uORF2. FEBS Lett 2017; 591:1266-1277. [PMID: 28369795 DOI: 10.1002/1873-3468.12634] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 11/10/2022]
Abstract
Arabidopsis bZIP11 is a transcription factor that modulates amino acid metabolism under high-sucrose conditions. Expression of bZIP11 is downregulated in a sucrose-dependent manner during translation. Previous in vivo studies have identified the second upstream open reading frame (uORF2) as an essential regulatory element for the sucrose-dependent translational repression of bZIP11. However, it remains unclear how uORF2 represses bZIP11 expression under high-sucrose conditions. Through biochemical experiments using cell-free translation systems, we report on sucrose-mediated ribosome stalling at the stop codon of uORF2. The C-terminal 10 amino acids (29-SFSVxFLxxLYYV-41) of uORF2 are important for ribosome stalling. Our results demonstrate that uORF2 encodes a regulatory nascent peptide that functions to sense intracellular sucrose abundance. This is the first biochemical identification of the intracellular sucrose sensor.
Collapse
Affiliation(s)
- Yui Yamashita
- Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Germany
| | - Seidai Takamatsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Michael Glasbrenner
- Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Germany
| | - Thomas Becker
- Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Germany
| | - Satoshi Naito
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Roland Beckmann
- Gene Center, Department of Biochemistry and Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
11
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
12
|
Van Kan JAL, Stassen JHM, Mosbach A, Van Der Lee TAJ, Faino L, Farmer AD, Papasotiriou DG, Zhou S, Seidl MF, Cottam E, Edel D, Hahn M, Schwartz DC, Dietrich RA, Widdison S, Scalliet G. A gapless genome sequence of the fungus Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2017; 18:75-89. [PMID: 26913498 PMCID: PMC6638203 DOI: 10.1111/mpp.12384] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 05/03/2023]
Abstract
Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, a gapless, near-finished genome sequence for B. cinerea strain B05.10 is reported. The assembly comprised 18 chromosomes and was confirmed by an optical map and a genetic map based on approximately 75 000 single nucleotide polymorphism (SNP) markers. All chromosomes contained fully assembled centromeric regions, and 10 chromosomes had telomeres on both ends. The genetic map consisted of 4153 cM and a comparison of the genetic distances with the physical distances identified 40 recombination hotspots. The linkage map also identified two mutations, located in the previously described genes Bos1 and BcsdhB, that conferred resistance to the fungicides boscalid and iprodione. The genome was predicted to encode 11 701 proteins. RNAseq data from >20 different samples were used to validate and improve gene models. Manual curation of chromosome 1 revealed interesting features, such as the occurrence of a dicistronic transcript and fully overlapping genes in opposite orientations, as well as many spliced antisense transcripts. Manual curation also revealed that the untranslated regions (UTRs) of genes can be complex and long, with many UTRs exceeding lengths of 1 kb and possessing multiple introns. Community annotation is in progress.
Collapse
MESH Headings
- Base Pairing/genetics
- Base Sequence
- Botrytis/cytology
- Botrytis/drug effects
- Botrytis/genetics
- Chromosome Mapping
- Chromosomes, Fungal/genetics
- Drug Resistance, Fungal/drug effects
- Drug Resistance, Fungal/genetics
- Evolution, Molecular
- Fungicides, Industrial/pharmacology
- Genes, Fungal
- Genetic Linkage
- Genetic Loci
- Genome, Fungal
- Meiosis/drug effects
- Molecular Sequence Annotation
- Open Reading Frames/genetics
- Optogenetics
- Polymorphism, Single Nucleotide/genetics
- Proteome/metabolism
- Proteomics
- Recombination, Genetic/drug effects
- Recombination, Genetic/genetics
- Reproducibility of Results
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Jan A. L. Van Kan
- Laboratory of PhytopathologyWageningen University6708 PB, Wageningenthe Netherlands
| | - Joost H. M. Stassen
- Laboratory of PhytopathologyWageningen University6708 PB, Wageningenthe Netherlands
- Present address:
University of Sheffield, Department of Animal and Plant Sciences, S10 2TN SheffieldUK
| | - Andreas Mosbach
- Syngenta Crop Protection Münchwilen AG, Crop Protection ResearchCH‐4332SteinSwitzerland
| | | | - Luigi Faino
- Laboratory of PhytopathologyWageningen University6708 PB, Wageningenthe Netherlands
| | - Andrew D. Farmer
- National Center for Genome ResourcesSanta FeNM87505, USA
- Syngenta Biotechnology Inc., Research Triangle ParkNC27709, USA
| | | | - Shiguo Zhou
- Department of Chemistry, Laboratory of Genetics and Laboratory for Molecular and Computational Genomics, UW Biotechnology CenterUniversity of WisconsinMadisonWI53706USA
| | - Michael F. Seidl
- Laboratory of PhytopathologyWageningen University6708 PB, Wageningenthe Netherlands
| | - Eleanor Cottam
- General Bioinformatics, Jealotts Hill International Research CentreBracknellBerkshireRG42 6EYUK
| | - Dominique Edel
- Syngenta Crop Protection Münchwilen AG, Crop Protection ResearchCH‐4332SteinSwitzerland
| | - Matthias Hahn
- Faculty of BiologyTechnical University Kaiserslautern67653 KaiserslauternGermany
| | - David C. Schwartz
- Department of Chemistry, Laboratory of Genetics and Laboratory for Molecular and Computational Genomics, UW Biotechnology CenterUniversity of WisconsinMadisonWI53706USA
| | | | - Stephanie Widdison
- General Bioinformatics, Jealotts Hill International Research CentreBracknellBerkshireRG42 6EYUK
| | - Gabriel Scalliet
- Syngenta Crop Protection Münchwilen AG, Crop Protection ResearchCH‐4332SteinSwitzerland
| |
Collapse
|
13
|
Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2. Proc Natl Acad Sci U S A 2016; 113:9605-10. [PMID: 27506798 DOI: 10.1073/pnas.1525268113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The circadian clock has a profound effect on gene regulation, controlling rhythmic transcript accumulation for up to half of expressed genes in eukaryotes. Evidence also exists for clock control of mRNA translation, but the extent and mechanisms for this regulation are not known. In Neurospora crassa, the circadian clock generates daily rhythms in the activation of conserved mitogen-activated protein kinase (MAPK) pathways when cells are grown in constant conditions, including rhythmic activation of the well-characterized p38 osmosensing (OS) MAPK pathway. Rhythmic phosphorylation of the MAPK OS-2 (P-OS-2) leads to temporal control of downstream targets of OS-2. We show that osmotic stress in N. crassa induced the phosphorylation of a eukaryotic elongation factor-2 (eEF-2) kinase, radiation sensitivity complementing kinase-2 (RCK-2), and that RCK-2 is necessary for high-level phosphorylation of eEF-2, a key regulator of translation elongation. The levels of phosphorylated RCK-2 and phosphorylated eEF-2 cycle in abundance in wild-type cells but not in cells deleted for OS-2 or the core clock component FREQUENCY (FRQ). Translation extracts from cells grown in constant conditions show decreased translational activity in the late subjective morning, coincident with the peak in eEF-2 phosphorylation, and rhythmic translation of glutathione S-transferase (GST-3) from constitutive mRNA levels in vivo is dependent on circadian regulation of eEF-2 activity. In contrast, rhythms in phosphorylated eEF-2 levels are not necessary for rhythms in accumulation of the clock protein FRQ, indicating that clock control of eEF-2 activity promotes rhythmic translation of specific mRNAs.
Collapse
|
14
|
Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell 2015; 59:744-54. [PMID: 26321254 DOI: 10.1016/j.molcel.2015.07.018] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/08/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022]
Abstract
Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and has been proposed to regulate translation efficiency, accuracy, and protein folding based on the assumption that codon usage affects translation dynamics. The roles of codon usage in translation, however, are not clear and have been challenged by recent ribosome profiling studies. Here we used a Neurospora cell-free translation system to directly monitor the velocity of mRNA translation. We demonstrated that the preferred codons enhance the rate of translation elongation, whereas non-optimal codons slow elongation. Codon usage also controls ribosome traffic on mRNA. These conclusions were supported by ribosome profiling results in vitro and in vivo with template mRNAs designed to increase the signal-to-noise ratio. Finally, we demonstrate that codon usage regulates protein function by affecting co-translational protein folding. These results resolve a long-standing fundamental question and suggest the existence of a codon usage code for protein folding.
Collapse
|
15
|
Abstract
Each peptide bond of a protein is generated at the peptidyl transferase center (PTC) of the ribosome and then moves through the exit tunnel, which accommodates ever-changing segments of ≈ 40 amino acids of newly translated polypeptide. A class of proteins, called ribosome arrest peptides, contains specific sequences of amino acids (arrest sequences) that interact with distinct components of the PTC-exit tunnel region of the ribosome and arrest their own translation continuation, often in a manner regulated by environmental cues. Thus, the ribosome that has translated an arrest sequence is inactivated for peptidyl transfer, translocation, or termination. The stalled ribosome then changes the configuration or localization of mRNA, resulting in specific biological outputs, including regulation of the target gene expression and downstream events of mRNA/polypeptide maturation or localization. Living organisms thus seem to have integrated potentially harmful arrest sequences into elaborate regulatory mechanisms to express genetic information in productive directions.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto 603-8555, Japan.
| | | |
Collapse
|
16
|
Wei J, Zhang Y, Ivanov IP, Sachs MS. The stringency of start codon selection in the filamentous fungus Neurospora crassa. J Biol Chem 2013; 288:9549-62. [PMID: 23396971 DOI: 10.1074/jbc.m112.447177] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In eukaryotic cells initiation may occur from near-cognate codons that differ from AUG by a single nucleotide. The stringency of start codon selection impacts the efficiency of initiation at near-cognate codons and the efficiency of initiation at AUG codons in different contexts. We used a codon-optimized firefly luciferase reporter initiated with AUG or each of the nine near-cognate codons in preferred context to examine the stringency of start codon selection in the model filamentous fungus Neurospora crassa. In vivo results indicated that the hierarchy of initiation at start codons in N. crassa (AUG ≫ CUG > GUG > ACG > AUA ≈ UUG > AUU > AUC) is similar to that in human cells. Similar results were obtained by translating mRNAs in a homologous N. crassa in vitro translation system or in rabbit reticulocyte lysate. We next examined the efficiency of initiation at AUG, CUG, and UUG codons in different contexts in vitro. The preferred context was more important for efficient initiation from near-cognate codons than from AUG. These studies demonstrated that near-cognate codons are used for initiation in N. crassa. Such events could provide additional coding capacity or have regulatory functions. Analyses of the 5'-leader regions in the N. crassa transcriptome revealed examples of highly conserved near-cognate codons in preferred contexts that could extend the N termini of the predicted polypeptides.
Collapse
Affiliation(s)
- Jiajie Wei
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
17
|
The arginine attenuator peptide interferes with the ribosome peptidyl transferase center. Mol Cell Biol 2012; 32:2396-406. [PMID: 22508989 DOI: 10.1128/mcb.00136-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal arginine attenuator peptide (AAP) is encoded by a regulatory upstream open reading frame (uORF). The AAP acts as a nascent peptide within the ribosome tunnel to stall translation in response to arginine (Arg). The effect of AAP and Arg on ribosome peptidyl transferase center (PTC) function was analyzed in Neurospora crassa and wheat germ translation extracts using the transfer of nascent AAP to puromycin as an assay. In the presence of a high concentration of Arg, the wild-type AAP inhibited PTC function, but a mutated AAP that lacked stalling activity did not. While AAP of wild-type length was most efficient at stalling ribosomes, based on primer extension inhibition (toeprint) assays and reporter synthesis assays, a window of inhibitory function spanning four residues was observed at the AAP's C terminus. The data indicate that inhibition of PTC function by the AAP in response to Arg is the basis for the AAP's function of stalling ribosomes at the uORF termination codon. Arg could interfere with PTC function by inhibiting peptidyltransferase activity and/or by restricting PTC A-site accessibility. The mode of PTC inhibition appears unusual because neither specific amino acids nor a specific nascent peptide chain length was required for AAP to inhibit PTC function.
Collapse
|
18
|
Wu C, Wei J, Lin PJ, Tu L, Deutsch C, Johnson AE, Sachs MS. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel. J Mol Biol 2012; 416:518-33. [PMID: 22244852 DOI: 10.1016/j.jmb.2011.12.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/13/2011] [Accepted: 12/30/2011] [Indexed: 11/26/2022]
Abstract
The fungal arginine attenuator peptide (AAP) is a regulatory peptide that controls ribosome function. As a nascent peptide within the ribosome exit tunnel, it acts to stall ribosomes in response to arginine (Arg). We used three approaches to probe the molecular basis for stalling. First, PEGylation assays revealed that the AAP did not undergo overall compaction in the tunnel in response to Arg. Second, site-specific photocross-linking showed that Arg altered the conformation of the wild-type AAP, but not of nonfunctional mutants, with respect to the tunnel. Third, using time-resolved spectral measurements with a fluorescent probe placed in the nascent AAP, we detected sequence-specific changes in the disposition of the AAP near the peptidyltransferase center in response to Arg. These data provide evidence that an Arg-induced change in AAP conformation and/or environment in the ribosome tunnel is important for stalling.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr Opin Struct Biol 2011; 21:274-82. [PMID: 21316217 DOI: 10.1016/j.sbi.2011.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/16/2010] [Accepted: 01/19/2011] [Indexed: 12/14/2022]
Abstract
As the nascent polypeptide chain is being synthesized, it passes through a tunnel within the large ribosomal subunit and emerges at the solvent side where protein folding occurs. Despite the universality and conservation of dimensions of the ribosomal tunnel, a functional role for the ribosomal tunnel is only beginning to emerge: Rather than a passive conduit for the nascent chain, accumulating evidence indicates that the tunnel plays a more active role. In this article, we discuss recent structural insights into the role of the tunnel environment, and its implications for protein folding, co-translational targeting and translation regulation.
Collapse
|
20
|
Smith RW, Anderson RC, Smith JW, Brook M, Richardson WA, Gray NK. DAZAP1, an RNA-binding protein required for development and spermatogenesis, can regulate mRNA translation. RNA (NEW YORK, N.Y.) 2011; 17:1282-95. [PMID: 21576381 PMCID: PMC3138565 DOI: 10.1261/rna.2717711] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
DAZ-associated protein 1 (DAZAP1) is an RNA-binding protein required for normal growth, development, and fertility in mice. However, its molecular functions have not been elucidated. Here we find that Xenopus laevis and human DAZAP1, which are each expressed as short and long forms, act as mRNA-specific activators of translation in a manner that is sensitive to the number of binding sites present within the 3' UTR. Domain mapping suggests that this conserved function is mainly associated with C-terminal regions of DAZAP1. Interestingly, we find that the expression of xDAZAP1 and its polysome association are developmentally controlled, the latter suggesting that the translational activator function of DAZAP1 is regulated. However, ERK phosphorylation of DAZAP1, which can alter protein interactions with its C terminus, does not play a role in regulating its ability to participate in translational complexes. Since relatively few mRNA-specific activators have been identified, we explored the mechanism by which DAZAP1 activates translation. By utilizing reporter mRNAs with internal ribosome entry sites, we establish that DAZAP1 stimulates translation initiation. Importantly, this activity is not dependent on the recognition of the 5' cap by initiation factors, showing that it functions downstream from this frequently regulated event, but is modulated by changes in the adenylation status of mRNAs. This suggests a function in the formation of "end-to-end" complexes, which are important for efficient initiation, which we show to be independent of a direct interaction with the bridging protein eIF4G.
Collapse
Affiliation(s)
- Richard W.P. Smith
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Ross C. Anderson
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Joel W.S. Smith
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Matthew Brook
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - William A. Richardson
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Nicola K. Gray
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| |
Collapse
|
21
|
Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Ribosomal tunnel and translation regulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1501-16. [DOI: 10.1134/s0006297910130018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Bhushan S, Meyer H, Starosta AL, Becker T, Mielke T, Berninghausen O, Sattler M, Wilson DN, Beckmann R. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol Cell 2010; 40:138-46. [PMID: 20932481 DOI: 10.1016/j.molcel.2010.09.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 05/28/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Specific regulatory nascent chains establish direct interactions with the ribosomal tunnel, leading to translational stalling. Despite a wealth of biochemical data, structural insight into the mechanism of translational stalling in eukaryotes is still lacking. Here we use cryo-electron microscopy to visualize eukaryotic ribosomes stalled during the translation of two diverse regulatory peptides: the fungal arginine attenuator peptide (AAP) and the human cytomegalovirus (hCMV) gp48 upstream open reading frame 2 (uORF2). The C terminus of the AAP appears to be compacted adjacent to the peptidyl transferase center (PTC). Both nascent chains interact with ribosomal proteins L4 and L17 at tunnel constriction in a distinct fashion. Significant changes at the PTC were observed: the eukaryotic-specific loop of ribosomal protein L10e establishes direct contact with the CCA end of the peptidyl-tRNA (P-tRNA), which may be critical for silencing of the PTC during translational stalling. Our findings provide direct structural insight into two distinct eukaryotic stalling processes.
Collapse
Affiliation(s)
- Shashi Bhushan
- Gene Center and Department of Biochemistry and Center for integrated Protein Science Munich, University of Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Spevak CC, Ivanov IP, Sachs MS. Sequence requirements for ribosome stalling by the arginine attenuator peptide. J Biol Chem 2010; 285:40933-42. [PMID: 20884617 DOI: 10.1074/jbc.m110.164152] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5' regions of eukaryotic mRNAs often contain upstream open reading frames (uORFs). The Neurospora crassa arg-2 uORF encodes the 24-residue arginine attenuator peptide (AAP). This regulatory uORF-encoded peptide, which is evolutionarily conserved in fungal transcripts specifying an arginine biosynthetic enzyme, functions as a nascent peptide within the ribosomal tunnel and negatively regulates gene expression. The nascent AAP causes ribosomes to stall at the uORF stop codon in response to arginine, thus, blocking ribosomes from reaching the ARG-2 initiation codon. Here scanning mutagenesis with alanine and proline was performed to systematically determine which AAP residues were important for conferring regulation. Changing many of the most highly conserved residues (Asp-12, Tyr-13, Lys-14, and Trp-19) abolished regulatory function. The minimal functional domain of the AAP was determined by positioning AAP sequences internally within a large polypeptide. Pulse-chase analyses revealed that residues 9-20 of the AAP composed the minimal domain that was sufficient to confer regulatory function. An extensive analysis of predicted fungal AAPs revealed that the minimal functional domain of the N. crassa AAP corresponded closely to the region that was most highly conserved among the fungi. We also observed that the tripeptide RGD could function similarly to arginine in triggering AAP-mediated ribosome stalling. These studies provide a better understanding of the elements required for a nascent peptide and a small regulatory molecule to control translational processes.
Collapse
Affiliation(s)
- Christina C Spevak
- Department of Neurobiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
24
|
Zuercher J, Neidhardt J, Magyar I, Labs S, Moore AT, Tanner FC, Waseem N, Schorderet DF, Munier FL, Bhattacharya S, Berger W, Kloeckener-Gruissem B. Alterations of the 5'untranslated region of SLC16A12 lead to age-related cataract. Invest Ophthalmol Vis Sci 2010; 51:3354-61. [PMID: 20181839 PMCID: PMC2904002 DOI: 10.1167/iovs.10-5193] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/04/2010] [Accepted: 02/09/2010] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. Knowledge of genetic factors predisposing to age-related cataract is very limited. The aim of this study was to identify DNA sequences that either lead to or predispose for this disease. METHODS. The candidate gene SLC16A12, which encodes a solute carrier of the monocarboxylate transporter family, was sequenced in 484 patients with cataract (134 with juvenile cataract, 350 with age-related cataract) and 190 control subjects. Expression studies included luciferase reporter assay and RT-PCR experiments. RESULTS. One patient with age-related cataract showed a novel heterozygous mutation (c.-17A>G) in the 5'untranslated region (5'UTR). This mutation is in cis with the minor G-allele of the single nucleotide polymorphism (SNP) rs3740030 (c.-42T/G), also within the 5'UTR. Using a luciferase reporter assay system, a construct with the patient's haplotype caused a significant upregulation of luciferase activity. In comparison, the SNP G-allele alone promoted less activity, but that amount was still significantly higher than the amount of the common T-allele. Analysis of SLC16A12 transcripts in surrogate tissue demonstrated striking allele-specific differences causing 5'UTR heterogeneity with respect to sequence and quantity. These differences in gene expression were mirrored in an allele-specific predisposition to age-related cataract, as determined in a Swiss population (odds ratio approximately 2.2; confidence intervals, 1.23-4.3). CONCLUSIONS. The monocarboxylate transporter SLC16A12 may contribute to age-related cataract. Sequences within the 5'UTR modulate translational efficiency with pathogenic consequences.
Collapse
Affiliation(s)
- Jurian Zuercher
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - John Neidhardt
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Istvan Magyar
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Stephan Labs
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anthony T. Moore
- Moorfields Eye Hospital London, London, United Kingdom
- UCL-Institute of Ophthalmology, London, United Kingdom
| | - Felix C. Tanner
- the Department of Cardiology, Cardiovascular Center, University of Zurich, Zurich, Switzerland
| | | | - Daniel F. Schorderet
- IRO-Institute for Research in Ophthalmology, EPFL-École polytechnique fédérale of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Francis L. Munier
- Jules Gonin Eye Hospital, Faculté de Biologie et Médecine de L'Université de Lausanne, Switzerland; and
| | | | - Wolfgang Berger
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Barbara Kloeckener-Gruissem
- From the Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- the Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Roy B, Vaughn JN, Kim BH, Zhou F, Gilchrist MA, Von Arnim AG. The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. RNA (NEW YORK, N.Y.) 2010; 16:748-61. [PMID: 20179149 PMCID: PMC2844622 DOI: 10.1261/rna.2056010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Upstream open reading frames (uORFs) are protein coding elements in the 5' leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl-tRNA. The conserved h subunit of Arabidopsis eukaryotic initiation factor 3 (eIF3) mitigates the inhibitory effects of certain uORFs. Here, we define more precisely how this occurs, by combining gene expression data from mutated 5' leaders of Arabidopsis AtbZip11 (At4g34590) and yeast GCN4 with a computational model of translation initiation in wild-type and eif3h mutant plants. Of the four phylogenetically conserved uORFs in AtbZip11, three are inhibitory to translation, while one is anti-inhibitory. The mutation in eIF3h has no major effect on uORF start codon recognition. Instead, eIF3h supports efficient reinitiation after uORF translation. Modeling suggested that the permanent loss of reinitiation competence during uORF translation occurs at a faster rate in the mutant than in the wild type. Thus, eIF3h ensures that a fraction of uORF-translating ribosomes retain their competence to resume scanning. Experiments using the yeast GCN4 leader provided no evidence that eIF3h fosters tRNA reaquisition. Together, these results attribute a specific molecular function in translation initiation to an individual eIF3 subunit in a multicellular eukaryote.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
26
|
Saul H, Elharrar E, Gaash R, Eliaz D, Valenci M, Akua T, Avramov M, Frankel N, Berezin I, Gottlieb D, Elazar M, David-Assael O, Tcherkas V, Mizrachi K, Shaul O. The upstream open reading frame of the Arabidopsis AtMHX gene has a strong impact on transcript accumulation through the nonsense-mediated mRNA decay pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:1031-42. [PMID: 19754518 DOI: 10.1111/j.1365-313x.2009.04021.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Approximately 20% of plant genes possess upstream open-reading frames (uORFs). The effect of uORFs on gene expression has mainly been studied at the translational level. Very little is known about the impact of plant uORFs on transcript content through the nonsense-mediated mRNA decay (NMD) pathway, which degrades transcripts bearing premature termination codons (PTCs). Here we examine the impact of the uORF of the Arabidopsis AtMHX gene on transcript accumulation. The suggestion that this uORF exposes transcripts containing it to NMD is supported by (i) the increase in transcript levels upon eliminating the uORF from constructs containing it, (ii) experiments with a modified uORF-peptide, which excluded peptide-specific degradation mechanisms, (iii) the increase in levels of the native AtMHX transcript upon treatment with cycloheximide, which inhibits translation and blocks NMD, and (iv) the sensitivity of transcripts containing the uORF of AtMHX to the presence of introns. We also showed that introns can increase NMD efficiency not only in transcripts having relatively short 3' untranslated regions (UTRs), but also in uORF-containing transcripts. AtMHX transcript levels were almost unaltered in mutants of the NMD factors UPF3 and UPF1. Possible reasons, including the existence of a NMD-compensatory mechanism, are discussed. Interestingly, the levels of UPF3 transcript were higher in upf1 mutants, suggesting a compensatory mechanism that links weak function of the NMD machinery to increased expression of UPF3. Our findings highlight that uORFs, which are abundant in plants, can not only inhibit translation but also strongly affect transcript accumulation.
Collapse
Affiliation(s)
- Helen Saul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 2009; 63:385-409. [PMID: 19514854 DOI: 10.1146/annurev.micro.62.081307.162835] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upstream open reading frames (uORFs) are frequently present in the 5'-leader regions of fungal mRNAs. They can affect translation by controlling the ability of ribosomes that scan from the mRNA 5' end to reach the downstream genic reading frame. The translation of uORFs can also affect mRNA stability. For several genes, including Saccharomyces cerevisiae GCN4, S. cerevisiae CPA1, and Neurospora crassa arg-2, regulation by uORFs controls expression in response to specific physiological signals. The roles of many uORFs that are identified by genome-level approaches, as have been initiated for Saccharomyces, Aspergillus, and Cryptococcus species, remain to be determined. Some uORFs may have regulatory roles, while others may exist to insulate the genic reading frame from the negative impacts of upstream translation start sites in the mRNA 5' leader.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
28
|
Youngman EM, McDonald ME, Green R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol 2008; 62:353-73. [PMID: 18544041 DOI: 10.1146/annurev.micro.61.080706.093323] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide release, the reaction that hydrolyzes a completed protein from the peptidyl-tRNA upon completion of translation, is catalyzed in the active site of the large subunit of the ribosome and requires a class I release factor protein. The ribosome and release factor protein cooperate to accomplish two tasks: recognition of the stop codon and catalysis of peptidyl-tRNA hydrolysis. Although many fundamental questions remain, substantial progress has been made in the past several years. This review summarizes those advances and presents current models for the mechanisms of stop codon specificity and catalysis of peptide release. Finally, we discuss how these views fit into a larger emerging theme in the translation field: the importance of induced fit and conformational changes for progression through the translation cycle.
Collapse
Affiliation(s)
- Elaine M Youngman
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
29
|
Abstract
The ribosome has the intrinsic capacity to monitor the sequence and structure of the nascent peptide. This fundamental property of the ribosome is often exploited in regulation of gene expression, in particular, for activation of expression of genes conferring resistance to ribosome-targeting antibiotics. Induction of expression of these genes is controlled by the programmed stalling of the ribosome at a regulatory open reading frame located upstream of the resistance cistron. Formation of the stalled translation complex depends on the presence of an antibiotic in the ribosome exit tunnel and the sequence of the nascent peptide. In this review, we summarize our current understanding of the molecular mechanisms of drug- and nascent peptide-dependent ribosome stalling.
Collapse
Affiliation(s)
- Haripriya Ramu
- Center for Pharmaceutical Biotechnology, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | | | |
Collapse
|
30
|
Wu C, Amrani N, Jacobson A, Sachs MS. The use of fungal in vitro systems for studying translational regulation. Methods Enzymol 2007; 429:203-25. [PMID: 17913625 DOI: 10.1016/s0076-6879(07)29010-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The use of cell-free systems enables biochemical determination of factors and mechanisms contributing to translational processes. The preparation and use of cell-free translation systems from the fungi Saccharomyces cerevisiae and Neurospora crassa are described. Examples provided illustrate the use of these systems, in conjunction with luciferase assays, [(35)S]Met incorporation, and primer-extension inhibition (toeprint) analyses, to assess the translational effects of upstream open reading frames and premature termination codons.
Collapse
Affiliation(s)
- Cheng Wu
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, Oregon, USA
| | | | | | | |
Collapse
|
31
|
Spevak CC, Park EH, Geballe AP, Pelletier J, Sachs MS. her-2 upstream open reading frame effects on the use of downstream initiation codons. Biochem Biophys Res Commun 2006; 350:834-41. [PMID: 17045969 PMCID: PMC1668710 DOI: 10.1016/j.bbrc.2006.09.128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 09/11/2006] [Indexed: 11/30/2022]
Abstract
The her-2 (neu, erbB-2) oncogene encodes a 185-kDa transmembrane receptor tyrosine kinase. HER2 overexpression occurs in numerous primary human tumors and contributes to 25-30% of breast and ovarian carcinomas. Synthesis of HER2 is controlled in part by an upstream open reading frame (uORF) present in the transcript. We used synthetic capped and polyadenylated mRNAs containing sequences derived from the 5' region of the her-2 transcript fused to a firefly luciferase (LUC) reporter to examine this uORF's effect on translation in cell-free systems derived from reticulocytes, wheat germ and Neurospora crassa, and in RNA-transfected HeLa cells. The uORF reduced translation of the downstream cistron in all systems. [(35)S]Met labeling of in vitro translation products obtained indicated that the uORF also affected downstream start-site selection. Primer extension inhibition (toeprint) assays of ribosomes loaded at initiation codons in reticulocyte lysates indicated that the uORF affected the interaction of ribosomes with the primary her-2 AUG codon.
Collapse
Affiliation(s)
- Christina C. Spevak
- Department of Environmental & Biomolecular Systems,
Oregon Health and Science University, Beaverton, OR 97006
| | - Eun-Hee Park
- Department of Biochemistry and McGill Cancer Center, McGill
University, Montreal, Quebec H3G 1Y6
| | - Adam P. Geballe
- Divisions of Human Biology and Clinical Research, C2-023, Fred
Hutchinson Cancer Research Center, Seattle, Washington 98109; Departments of
Medicine and Microbiology University of Washington, Seattle, WA 98115
| | - Jerry Pelletier
- Department of Biochemistry and McGill Cancer Center, McGill
University, Montreal, Quebec H3G 1Y6
- McGill Cancer Center, McGill University, Montreal, Quebec H3G
1Y6
| | - Matthew S. Sachs
- Department of Environmental & Biomolecular Systems,
Oregon Health and Science University, Beaverton, OR 97006
- Department of Molecular Microbiology and Immunology, Oregon
Health & Science University, Portland, Oregon 97201
- Address correspondence to: Matthew S. Sachs, Department of
Environmental and Biomolecular Systems, Oregon Health & Science
University, 20000 NW Walker Road, Beaverton OR, 97006-8921, Tel. 503-748-1487;
Fax 214 648-6899; E-mail
| |
Collapse
|
32
|
Hood HM, Spevak CC, Sachs MS. Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame. Fungal Genet Biol 2006; 44:93-104. [PMID: 16979358 DOI: 10.1016/j.fgb.2006.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/28/2022]
Abstract
The Neurospora crassa arg-2 and the Saccharomyces cerevisiae ortholog CPA1 encode the arginine-specific carbamoyl-phosphate synthetase (CPS-A) small subunit. Arginine decreases synthesis of this subunit through the action of a 5' upstream open reading frame in the mRNA that encodes a cis-regulatory element, the arginine attenuator peptide (AAP), which stalls ribosomes in response to arginine. We performed a comparative analysis of the genomic structure and predicted peptide sequence of the AAP and CPS-A small subunit across many fungi. Differences at the genomic level included variation in intron number and position within the AAP and CPS-A coding regions and differences in known regulatory motifs. Although differences exist in AAP sequence, there were three absolutely conserved amino acid residues in the predicted peptide, including an aspartic acid crucial for arginine-dependent regulation of arg-2 and CPA1. A diverged Basidiomycete AAP was shown to retain function as an Arg-specific negative regulator of translation.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Environmental and Biomolecular Systems, Oregon Health & Science University, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
33
|
Woolhead CA, Johnson AE, Bernstein HD. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Mol Cell 2006; 22:587-98. [PMID: 16762832 DOI: 10.1016/j.molcel.2006.05.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/16/2006] [Accepted: 05/16/2006] [Indexed: 11/27/2022]
Abstract
When the export of E. coli SecM is blocked, a 17 amino acid motif near the C terminus of the protein induces a translation arrest from within the ribosome tunnel. Here we used a recently described application of fluorescence resonance energy transfer (FRET) to gain insight into the mechanism of translation arrest. We found that the SecM C terminus adopted a compact conformation upon synthesis of the arrest motif. This conformational change did not occur spontaneously, but rather was induced by the ribosome. Translation arrest required both compaction of the SecM C terminus and the presence of key residues in the arrest motif. Further analysis showed that the arrested peptidyl-tRNA was resistant to puromycin treatment and revealed additional changes in the ribosome-nascent SecM complex. Based on these observations, we propose that translation arrest results from a series of reciprocal interactions between the ribosome and the C terminus of the nascent SecM polypeptide.
Collapse
Affiliation(s)
- Cheryl A Woolhead
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
34
|
Gaba A, Jacobson A, Sachs MS. Ribosome occupancy of the yeast CPA1 upstream open reading frame termination codon modulates nonsense-mediated mRNA decay. Mol Cell 2005; 20:449-60. [PMID: 16285926 DOI: 10.1016/j.molcel.2005.09.019] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 08/10/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Saccharomyces cerevisiae CPA1 mRNA contains an upstream open reading frame (uORF) encoding the arginine attenuator peptide (AAP). Negative translational regulation of CPA1 occurs when the nascent AAP responds to arginine (Arg) by stalling ribosomes at the uORF termination codon. CPA1 expression is also controlled by nonsense-mediated mRNA decay (NMD). Using wild-type and decay-defective strains expressing CPA1-LUC, we determined how this uORF contributes to NMD control. Arg addition to media rapidly destabilized the CPA1 transcript in wild-type but not upf1delta cells. The wild-type uORF exerted translational control and induced NMD of CPA1-LUC; the mutated D13N uORF, which eliminates stalling and regulation, did not. Thus, regulation by NMD was not governed simply by ribosomes encountering the uORF terminator but appeared dependent on the AAP's ribosome-stalling ability. Improving the D13N uORF initiation context also promoted NMD. Hence, NMD appears to be triggered by increased ribosomal occupancy of the uORF termination codon.
Collapse
Affiliation(s)
- Anthony Gaba
- Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
35
|
Onouchi H, Nagami Y, Haraguchi Y, Nakamoto M, Nishimura Y, Sakurai R, Nagao N, Kawasaki D, Kadokura Y, Naito S. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev 2005; 19:1799-810. [PMID: 16027170 PMCID: PMC1182342 DOI: 10.1101/gad.1317105] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Expression of the Arabidopsis CGS1 gene that codes for cystathionine gamma-synthase is feedback regulated at the step of mRNA stability in response to S-adenosyl-L-methionine (AdoMet). A short stretch of amino acid sequence, called the MTO1 region, encoded by the first exon of CGS1 itself is involved in this regulation. Here, we demonstrate, using a cell-free system, that AdoMet induces temporal translation elongation arrest at the Ser-94 codon located immediately downstream of the MTO1 region, by analyzing a translation intermediate and performing primer extension inhibition (toeprint) analysis. This translation arrest precedes the formation of a degradation intermediate of CGS1 mRNA, which has its 5' end points near the 5' edge of the stalled ribosome. The position of ribosome stalling also suggests that the MTO1 region in nascent peptide resides in the ribosomal exit tunnel when translation elongation is temporarily arrested. In addition to the MTO1 region amino acid sequence, downstream Trp-93 is also important for the AdoMet-induced translation arrest. This is the first example of nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in eukaryotes. Furthermore, our data suggest that the ribosome stalls at the step of translocation rather than at the step of peptidyl transfer.
Collapse
Affiliation(s)
- Hitoshi Onouchi
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fang P, Spevak CC, Wu C, Sachs MS. A nascent polypeptide domain that can regulate translation elongation. Proc Natl Acad Sci U S A 2004; 101:4059-64. [PMID: 15020769 PMCID: PMC384695 DOI: 10.1073/pnas.0400554101] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolutionarily conserved fungal arginine attenuator peptide (AAP), as a nascent peptide, stalls the translating ribosome in response to the presence of a high concentration of the amino acid arginine. Here we examine whether the AAP maintains regulatory function in fungal, plant, and animal cell-free translation systems when placed as a domain near the N terminus or internally within a large polypeptide. Pulse-chase analyses of the radiolabeled polypeptides synthesized in these systems indicated that wild-type AAP functions at either position to stall polypeptide synthesis in response to arginine. Toeprint analyses performed to map the positions of stalled ribosomes on transcripts introduced into the fungal system revealed that ribosome stalling required translation of the AAP coding sequence. The positions of the stalled ribosomes were consistent with the sizes of the radiolabeled polypeptide intermediates. These findings demonstrate that an internal polypeptide domain in a nascent chain can regulate eukaryotic translational elongation in response to a small molecule. Apparently the peptide-sensing features are conserved in fungal, plant, and animal ribosomes. These data provide precedents for translational strategies that would allow domains within nascent polypeptide chains to modulate gene expression.
Collapse
Affiliation(s)
- Peng Fang
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, OR 97006-8921, USA
| | | | | | | |
Collapse
|
37
|
Chiba Y, Sakurai R, Yoshino M, Ominato K, Ishikawa M, Onouchi H, Naito S. S-adenosyl-L-methionine is an effector in the posttranscriptional autoregulation of the cystathionine gamma-synthase gene in Arabidopsis. Proc Natl Acad Sci U S A 2003; 100:10225-30. [PMID: 12934018 PMCID: PMC193543 DOI: 10.1073/pnas.1831512100] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cystathionine gamma-synthase, the first committed enzyme of methionine biosynthesis in higher plants, is encoded by the CGS1 gene in Arabidopsis thaliana. We have shown previously that the stability of the CGS1 mRNA is negatively regulated in response to methionine application [Chiba, Y., Ishikawa, M., Kijima, F., Tyson, R. H., Kim, J., Yamamoto, A., Nambara, E., Leustek, T., Wallsgrove, R. M. & Naito, S. (1999) Science 286, 1371-1374]. To determine whether methionine itself is the effector of the CGS1 exon 1-mediated posttranscriptional regulation, we carried out transfection experiments. The results suggested that, rather than methionine, S-adenosyl-L-methionine (AdoMet), or one of its metabolites, acts as the effector of this regulation. To further identify the actual effector, we exploited the wheat germ in vitro translation system. The effects of various metabolites and analogs of AdoMet were tested by using RNA carrying a CGS1 exon 1-reporter fusion. These tests identified AdoMet as the effector of this regulation. S-adenosyl-L-ethionine, an analog of AdoMet, also had effector activity. A. thaliana mto1 mutants, which are deficient in this regulation, showed a much reduced response to AdoMet in vitro, with a leaky allele showing a less reduced response. RNA translated in vitro in the presence of AdoMet contained a 5'-truncated RNA species, similar to the one that we previously suggested was an in vivo degradation intermediate of CGS1 mRNA. Together, the results show that the basic reactions of CGS1 exon 1-mediated posttranscriptional regulation occur in the wheat germ in vitro translation system, and that AdoMet acts as the effector.
Collapse
Affiliation(s)
- Yukako Chiba
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Jin X, Turcott E, Englehardt S, Mize GJ, Morris DR. The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties. J Biol Chem 2003; 278:25716-21. [PMID: 12730202 DOI: 10.1074/jbc.m300316200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Few details are known of the mechanisms through which multiple upstream open reading frames (uORFs) interact to regulate translation in higher eukaryotes. The predominant transcript of oncogene mdm2 in normal human cells (L-mdm2) contains two upstream open reading frames in its 5' leader. Elimination of these two uORFs raises the translational efficiency of the transcript by over 10-fold in HeLa cells. The 5'-most uORF (uORF1) alone suppresses downstream translational activity by over 5-fold, whereas uORF2 contributes <2-fold to the inhibition by the intact leader. The different activities of the two uORFs do not depend on the nucleotide sequence surrounding the uORFs in the 5' leader, the order of the two uORFs in the 5' leader, or the occurrence of secondary structure or rare codons within the uORFs. Specific features of the amino acid sequence encoded by uORF1 contribute to its stronger suppressive activity, suggesting that it belongs to the class of "sequence-specific" uORFs. The weaker inhibitory activity inherent in uORF2 is potentiated by a sub-optimal nucleotide context surrounding its initiator AUG. The occurrence of two uORFs with differing activities in both the human gene and the mouse orthologue suggests that this pair of elements may play a fundamental role in regulating expression of the mdm2 gene.
Collapse
Affiliation(s)
- Xiaoping Jin
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | | | |
Collapse
|
39
|
Meijer HA, Thomas AAM. Control of eukaryotic protein synthesis by upstream open reading frames in the 5'-untranslated region of an mRNA. Biochem J 2002; 367:1-11. [PMID: 12117416 PMCID: PMC1222879 DOI: 10.1042/bj20011706] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2001] [Revised: 06/25/2002] [Accepted: 07/15/2002] [Indexed: 11/17/2022]
Abstract
Control of gene expression is achieved at various levels. Translational control becomes crucial in the absence of transcription, such as occurs in early developmental stages. One of the initiating events in translation is that the 40 S subunit of the ribosome binds the mRNA at the 5'-cap structure and scans the 5'-untranslated region (5'-UTR) for AUG initiation codons. AUG codons upstream of the main open reading frame can induce formation of a translation-competent ribosome that may translate and (i) terminate and re-initiate, (ii) terminate and leave the mRNA, resulting in down-regulation of translation of the main open reading frame, or (iii) synthesize an N-terminally extended protein. In the present review we discuss how upstream AUGs can control the expression of the main open reading frame, and a comparison is made with other elements in the 5'-UTR that control mRNA translation, such as hairpins and internal ribosome entry sites. Recent data indicate the flexibility of controlling translation initiation, and how the mode of ribosome entry on the mRNA as well as the elements in the 5'-UTR can accurately regulate the amount of protein synthesized from a specific mRNA.
Collapse
Affiliation(s)
- Hedda A Meijer
- Department of Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
40
|
Abstract
Neurospora crassa has 10 mapped supersuppressor (ssu) genes. In vivo studies indicate that they suppress amber (UAG) premature termination mutations but the spectrum of their functions remains to be elucidated. We examined seven ssu strains (ssu-1, -2, -3, -4, -5, -9, and -10) using cell-free translation extracts. We tested suppression by requiring it to produce firefly luciferase from a reading frame containing premature UAA, UGA, or UAG terminators. All mutants except ssu-3 suppressed UAG codons. Maximal UAG suppression ranged from 15% to 30% relative to controls containing sense codons at the corresponding position. Production from constructs containing UAA or UGA was 1-2%, similar to levels observed with all nonsense codons in wild-type and ssu-3 extracts. UAG suppression was also seen using [35S]Met to radiolabel polypeptides. Suppression enabled ribosomes to continue translation elongation as determined using the toeprint assay. tRNA from supersuppressors showed suppressor activity when added to wild-type extracts. Thus, these supersuppressors produce amber suppressor tRNA.
Collapse
Affiliation(s)
- Peng Fang
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
41
|
Kondo K, Shimada K, Sashihara J, Tanaka-Taya K, Yamanishi K. Identification of human herpesvirus 6 latency-associated transcripts. J Virol 2002; 76:4145-51. [PMID: 11907257 PMCID: PMC136062 DOI: 10.1128/jvi.76.8.4145-4151.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four kinds of latency-associated transcripts of human herpesvirus 6 were identified which were detected only in latently infected cells. Although they were oriented in the same direction as the immediate-early 1 and 2 (IE1/IE2) genes and shared their protein-coding region with IE1/IE2, their transcription start sites and exon(s) were latency associated.
Collapse
Affiliation(s)
- Kazuhiro Kondo
- Department of Microbiology, Osaka University Medical School, Suita-City, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
42
|
Gaba A, Wang Z, Krishnamoorthy T, Hinnebusch AG, Sachs MS. Physical evidence for distinct mechanisms of translational control by upstream open reading frames. EMBO J 2001; 20:6453-63. [PMID: 11707416 PMCID: PMC125715 DOI: 10.1093/emboj/20.22.6453] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Saccharomyces cerevisiae GCN4 mRNA 5'-leader contains four upstream open reading frames (uORFs) and the CPA1 leader contains a single uORF. To determine how these uORFs control translation, we examined mRNAs containing these leaders in cell-free translation extracts to determine where ribosomes were loaded first and where they were loaded during steady-state translation. Ribosomes predominantly loaded first at GCN4 uORF1. Following its translation, but not the translation of uORF4, they efficiently reinitiated protein synthesis at Gcn4p. Adding purified eIF2 increased reinitiation at uORFs 3 or 4 and reduced reinitiation at Gcn4p. This indicates that eIF2 affects the site of reinitiation following translation of GCN4 uORF1 in vitro. In contrast, for mRNA containing the CPA1 uORF, ribosomes reached the downstream start codon by scanning past the uORF. Addition of arginine caused ribosomes that had synthesized the uORF polypeptide to stall at its termination codon, reducing loading at the downstream start codon, apparently by blocking scanning ribosomes, and not by affecting reinitiation. The GCN4 and CPA1 uORFs thus control translation in fundamentally different ways.
Collapse
Affiliation(s)
- Anthony Gaba
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Zhong Wang
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Thanuja Krishnamoorthy
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Alan G. Hinnebusch
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| | - Matthew S. Sachs
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, 20 000 NW Walker Road, Beaverton, OR 97006-8921, National Institute of Child Health and Human Development, Laboratory of Eukaryotic Gene Regulation, Bethesda, MD 20892-2716 and Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201-3098, USA Present address: Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720-3204, USA Present address: Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA Corresponding author e-mail:
| |
Collapse
|
43
|
Law GL, Raney A, Heusner C, Morris DR. Polyamine regulation of ribosome pausing at the upstream open reading frame of S-adenosylmethionine decarboxylase. J Biol Chem 2001; 276:38036-43. [PMID: 11489903 DOI: 10.1074/jbc.m105944200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of S-adenosylmethionine decarboxylase (AdoMetDC), a key regulated enzyme in the pathway of polyamine biosynthesis, is feedback-controlled at the level of translation by spermidine and spermine. The peptide product of an upstream open reading frame (uORF) in the mRNA is solely responsible for polyamine regulation of AdoMetDC translation. Using a primer extension inhibition assay and in vitro protein synthesis reactions, we found ribosomes paused at or close to the termination codon of the uORF. This pause was greatly diminished with the altered uORFs' sequences that abolish uORF regulation in vivo. The half-life of the ribosome pause was related to the concentration of polyamines present but was unaffected by magnesium concentration. Furthermore, inhibition of translation initiation at a reporter gene placed downstream of the AdoMetDC uORF directly correlated with the stability of the ribosome pause at the uORF. These observations are consistent with a model in which regulation of ribosome pausing at the uORF by polyamines controls ribosome access to the downstream AdoMetDC reading frame.
Collapse
Affiliation(s)
- G L Law
- Department of Biochemistry, University of Washington, Seattle, 98195-7350, USA
| | | | | | | |
Collapse
|
44
|
Molecular transformation, gene cloning, and gene expression systems for filamentous fungi. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1874-5334(01)80010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Deffaud C, Darlix JL. Rous sarcoma virus translation revisited: characterization of an internal ribosome entry segment in the 5' leader of the genomic RNA. J Virol 2000; 74:11581-8. [PMID: 11090156 PMCID: PMC112439 DOI: 10.1128/jvi.74.24.11581-11588.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 5' leader of Rous sarcoma virus (RSV) genomic RNA and of retroviruses in general is long and contains stable secondary structures that are critical in the early and late steps of virus replication such as RNA dimerization and packaging and in the process of reverse transcription. The initiation of RSV Gag translation has been reported to be 5' cap dependent and controlled by three short open reading frames located in the 380-nucleotide leader upstream of the Gag start codon. Translation of RSV Gag would thus differ from that prevailing in other retroviruses such as murine leukemia virus, reticuloendotheliosis virus type A, and simian immunodeficiency virus, in which an internal ribosome entry segment (IRES) in the 5' end of the genomic RNA directs efficient Gag expression despite stable 5' secondary structures. This prompted us to investigate whether RSV Gag translation might be controlled by an IRES-dependent mechanism. The results show that the 5' leaders of RSV and v-Src RNA exhibit IRES properties, since these viral elements can promote efficient translation of monocistronic RNAs in conditions inhibiting 5' cap-dependent translation. When inserted between two cistrons in a canonical bicistronic construct, both the RSV and v-Src leaders promote expression of the 3' cistron. A genetic analysis of the RSV leader allowed the identification of two nonoverlapping 5' and 3' leader domains with IRES activity. In addition, the v-Src leader was found to contain unique 3' sequences promoting an efficient reinitiation of translation. Taken together, these data lead us to propose a new model for RSV translation.
Collapse
Affiliation(s)
- C Deffaud
- LaboRétro, Unité de Virologie Humaine, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | |
Collapse
|
46
|
Affiliation(s)
- D R Morris
- Departments of Biochemistry, University of Washington, Seattle, USA.
| | | |
Collapse
|
47
|
Hemmings-Mieszczak M, Hohn T, Preiss T. Termination and peptide release at the upstream open reading frame are required for downstream translation on synthetic shunt-competent mRNA leaders. Mol Cell Biol 2000; 20:6212-23. [PMID: 10938098 PMCID: PMC86096 DOI: 10.1128/mcb.20.17.6212-6223.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown recently that a stable hairpin preceded by a short upstream open reading frame (uORF) promotes nonlinear ribosome migration or ribosome shunt on a synthetic mRNA leader (M. Hemmings-Mieszczak and T. Hohn, RNA 5:1149-1157, 1999). We have now used the model mRNA leader to study further the mechanism of shunting in vivo and in vitro. We show that a full cycle of translation of the uORF, including initiation, elongation, and termination, is a precondition for the ribosome shunt across the stem structure to initiate translation downstream. Specifically, AUG recognition and the proper release of the nascent peptide are necessary and sufficient for shunting. Furthermore, the stop codon context must not impede downstream reinitiation. Translation of the main ORF was inhibited by replacement of the uORF by coding sequences repressing reinitiation but stimulated by the presence of the virus-specific translational transactivator of reinitiation (cauliflower mosaic virus pVI). Our results indicate reinitiation as the mechanism of translation initiation on the synthetic shunt-competent mRNA leader and suggest that uORF-dependent shunting is more prevalent than previously anticipated. Within the above constraints, uORF-dependent shunting is quite tolerant of uORF and stem sequences and operates in systems as diverse as plants and fungi.
Collapse
|
48
|
Fang P, Wang Z, Sachs MS. Evolutionarily Conserved Features of the Arginine Attenuator Peptide Provide the Necessary Requirements for Its Function in Translational Regulation. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61434-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
Pooggin MM, Hohn T, Fütterer J. Role of a short open reading frame in ribosome shunt on the cauliflower mosaic virus RNA leader. J Biol Chem 2000; 275:17288-96. [PMID: 10747993 DOI: 10.1074/jbc.m001143200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pregenomic 35 S RNA of cauliflower mosaic virus (CaMV) belongs to the growing number of mRNAs known to have a complex leader sequence. The 612-nucleotide leader contains several short open reading frames (sORFs) and forms an extended hairpin structure. Downstream translation of 35 S RNA is nevertheless possible due to the ribosome shunt mechanism, by which ribosomes are directly transferred from a take-off site near the capped 5' end of the leader to a landing site near its 3' end. There they resume scanning and reach the first long open reading frame. We investigated in detail how the multiple sORFs influence ribosome migration either via shunting or linear scanning along the CaMV leader. The sORFs together constituted a major barrier for the linear ribosome migration, whereas the most 5'-proximal sORF, sORF A, in combination with sORFs B and C, played a positive role in translation downstream of the leader by diverting scanning ribosomes to the shunt route. A simplified, shunt-competent leader was constructed with the most part of the hairpin including all the sORFs except sORF A replaced by a scanning-inhibiting structure. In this leader as well as in the wild type leader, proper translation and termination of sORF A was required for efficient shunt and also for the level of shunt enhancement by a CaMV-encoded translation transactivator. sORF A could be replaced by heterologous sORFs, but a one-codon (start/stop) sORF was not functional. The results implicate that in CaMV, shunt-mediated translation requires reinitiation. The efficiency of the shunt process is influenced by translational properties of the sORF.
Collapse
Affiliation(s)
- M M Pooggin
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland, the Centre for Bioengineering, Russian Academy of Sciences, 117312 Moscow, Russia
| | | | | |
Collapse
|
50
|
Wang Z, Gaba A, Sachs MS. A highly conserved mechanism of regulated ribosome stalling mediated by fungal arginine attenuator peptides that appears independent of the charging status of arginyl-tRNAs. J Biol Chem 1999; 274:37565-74. [PMID: 10608810 DOI: 10.1074/jbc.274.53.37565] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arg attenuator peptide (AAP) is an evolutionarily conserved peptide involved in Arg-specific negative translational control. It is encoded as an upstream open reading frame (uORF) in fungal mRNAs specifying the small subunit of Arg-specific carbamoyl phosphate synthetase. We examined the functions of the Saccharomyces cerevisiae CPA1 and Neurospora crassa arg-2 AAPs using translation extracts from S. cerevisiae, N. crassa, and wheat germ. Synthetic RNA containing AAP and firefly luciferase (LUC) sequences were used to program translation; analyses of LUC activity indicated that the AAPs conferred Arg-specific negative regulation in each system. The AAPs functioned either as uORFs or fused in-frame at the N terminus of LUC. Mutant AAPs lacking function in vivo did not function in vitro. Therefore, trans-acting factors conferring AAP-mediated regulation are in both fungal and plant systems. Analyses of ribosome stalling in the fungal extracts by primer extension inhibition (toeprint) assays showed that these AAPs acted similarly to stall ribosomes in the region immediately distal to the AAP coding region in response to Arg. The regulatory effect increased as the Arg concentration increased; all of the arginyl-tRNAs examined appeared maximally charged at low Arg concentrations. Therefore, AAP-mediated Arg-specific regulation appeared independent of the charging status of arginyl-tRNA.
Collapse
Affiliation(s)
- Z Wang
- Department of Biochemistry, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | |
Collapse
|