1
|
Zeng L, Sun M, Fasullo M. Checkpoint and recombination pathways independently suppress rates of spontaneous homology-directed chromosomal translocations in budding yeast. Front Genet 2025; 16:1479307. [PMID: 40255487 PMCID: PMC12006765 DOI: 10.3389/fgene.2025.1479307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Homologous recombination between short repeated sequences, such as Alu sequences, can generate pathogenic chromosomal rearrangements. We used budding yeast to measure homologous recombination between short repeated his3 sequences located on non-homologous chromosomes to identify pathways that suppress spontaneous and radiation-associated translocations. Previous published data demonstrated that genes that participate in RAD9-mediated G2 arrest, the S phase checkpoint, and recombinational repair of double-strand breaks (DSBs) suppressed ectopic recombination between small repeats. We determined whether these pathways are independent in suppressing recombination by measuring frequencies of spontaneous recombination in single and double mutants. In the wild-type diploid, the rate of spontaneous recombination was (3 ± 1.2) × 10-8. This rate was increased 10-30-fold in the rad51, rad55, rad57, mre11, rad50, and xrs2 mutants, seven-fold in the rad9 checkpoint mutant, and 23-fold in the mec1-21 S phase checkpoint mutant. Double mutants defective in both RAD9 and in either RAD51, RAD55, or RAD57 increased spontaneous recombination rates by ∼40 fold, while double mutants defective in both the MEC1 (ATR/ATM ortholog) and RAD51 genes increased rates ∼100 fold. Compared to frequencies of radiation-associated translocations in wild type, radiation-associated frequencies increased in mre11, rad50, xrs2, rad51, rad55 and rad9 rad51 diploid mutants; an increase in radiation-associated frequencies was detected in the rad9 rad51 diploid after exposure to 100 rads X rays. These data indicate that the S phase and G2 checkpoint pathways are independent from the recombinational repair pathway in suppressing homology-directed translocations in yeast.
Collapse
Affiliation(s)
- Li Zeng
- New York State Department of Public Health, Albany, NY, United States
- Ordway Research Institute, Albany, NY, United States
| | - Mingzeng Sun
- Ordway Research Institute, Albany, NY, United States
- School of Public of Health, University at Albany, Albany, NY, United States
| | | |
Collapse
|
2
|
Yáñez-Vilches A, Romero AM, Barrientos-Moreno M, Cruz E, González-Prieto R, Sharma S, Vertegaal ACO, Prado F. Physical interactions between specifically regulated subpopulations of the MCM and RNR complexes prevent genetic instability. PLoS Genet 2024; 20:e1011148. [PMID: 38776358 PMCID: PMC11149843 DOI: 10.1371/journal.pgen.1011148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/04/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.
Collapse
Affiliation(s)
- Aurora Yáñez-Vilches
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Antonia M. Romero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Marta Barrientos-Moreno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Esther Cruz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| | - Román González-Prieto
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Félix Prado
- Centro Andaluz de Biología Molecular y Medicina Regenerativa–CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
3
|
Vanderwaeren L, Dok R, Voordeckers K, Vandemaele L, Verstrepen KJ, Nuyts S. An Integrated Approach Reveals DNA Damage and Proteotoxic Stress as Main Effects of Proton Radiation in S. cerevisiae. Int J Mol Sci 2022; 23:ijms23105493. [PMID: 35628303 PMCID: PMC9145671 DOI: 10.3390/ijms23105493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Proton radiotherapy (PRT) has the potential to reduce the normal tissue toxicity associated with conventional photon-based radiotherapy (X-ray therapy, XRT) because the active dose can be more directly targeted to a tumor. Although this dosimetric advantage of PRT is well known, the molecular mechanisms affected by PRT remain largely elusive. Here, we combined the molecular toolbox of the eukaryotic model Saccharomyces cerevisiae with a systems biology approach to investigate the physiological effects of PRT compared to XRT. Our data show that the DNA damage response and protein stress response are the major molecular mechanisms activated after both PRT and XRT. However, RNA-Seq revealed that PRT treatment evoked a stronger activation of genes involved in the response to proteotoxic stress, highlighting the molecular differences between PRT and XRT. Moreover, inhibition of the proteasome resulted in decreased survival in combination with PRT compared to XRT, not only further confirming that protons induced a stronger proteotoxic stress response, but also hinting at the potential of using proteasome inhibitors in combination with proton radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (L.V.); (R.D.); (L.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium;
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (L.V.); (R.D.); (L.V.)
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium;
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Laura Vandemaele
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (L.V.); (R.D.); (L.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium;
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium;
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Correspondence: (K.J.V.); (S.N.); Tel.: +32-(0)16-75-1393 (K.J.V.); +32-1634-7600 (S.N.); Fax: +32-1634-7623 (S.N.)
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (L.V.); (R.D.); (L.V.)
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence: (K.J.V.); (S.N.); Tel.: +32-(0)16-75-1393 (K.J.V.); +32-1634-7600 (S.N.); Fax: +32-1634-7623 (S.N.)
| |
Collapse
|
4
|
Sanford EJ, Comstock WJ, Faça VM, Vega SC, Gnügge R, Symington LS, Smolka MB. Phosphoproteomics reveals a distinctive Mec1/ATR signaling response upon DNA end hyper-resection. EMBO J 2021; 40:e104566. [PMID: 33764556 DOI: 10.15252/embj.2020104566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
The Mec1/ATR kinase is crucial for genome maintenance in response to a range of genotoxic insults, but it remains unclear how it promotes context-dependent signaling and DNA repair. Using phosphoproteomic analyses, we uncovered a distinctive Mec1/ATR signaling response triggered by extensive nucleolytic processing (resection) of DNA ends. Budding yeast cells lacking Rad9, a checkpoint adaptor and an inhibitor of resection, exhibit a selective increase in Mec1-dependent phosphorylation of proteins associated with single-strand DNA (ssDNA) transactions, including the ssDNA-binding protein Rfa2, the translocase/ubiquitin ligase Uls1, and the Sgs1-Top3-Rmi1 (STR) complex that regulates homologous recombination (HR). Extensive Mec1-dependent phosphorylation of the STR complex, mostly on the Sgs1 helicase subunit, promotes an interaction between STR and the DNA repair scaffolding protein Dpb11. Fusion of Sgs1 to phosphopeptide-binding domains of Dpb11 strongly impairs HR-mediated repair, supporting a model whereby Mec1 signaling regulates STR upon hyper-resection to influence recombination outcomes. Overall, the identification of a distinct Mec1 signaling response triggered by hyper-resection highlights the multi-faceted action of this kinase in the coordination of checkpoint signaling and HR-mediated DNA repair.
Collapse
Affiliation(s)
- Ethan J Sanford
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - William J Comstock
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Vitor M Faça
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.,Department of Biochemistry and Immunology and Cell-Based Therapy Center, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Stephanie C Vega
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Robert Gnügge
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Rad9/53BP1 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1 helicases. Nat Commun 2020; 11:3181. [PMID: 32576832 PMCID: PMC7311424 DOI: 10.1038/s41467-020-16997-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
The DNA damage checkpoint (DDC) is often robustly activated during the homologous recombination (HR) repair of DNA double strand breaks (DSBs). DDC activation controls several HR repair factors by phosphorylation, preventing premature segregation of entangled chromosomes formed during HR repair. The DDC mediator 53BP1/Rad9 limits the nucleolytic processing (resection) of a DSB, controlling the formation of the 3′ single-stranded DNA (ssDNA) filament needed for recombination, from yeast to human. Here we show that Rad9 promotes stable annealing between the recombinogenic filament and the donor template in yeast, limiting strand rejection by the Sgs1 and Mph1 helicases. This regulation allows repair by long tract gene conversion, crossover recombination and break-induced replication (BIR), only after DDC activation. These findings shed light on how cells couple DDC with the choice and effectiveness of HR sub-pathways, with implications for genome instability and cancer. In budding yeast, the 53BP1 ortholog Rad9 limits the resection nucleolytic processing of DNA double strand breaks. Here the authors reveal that Rad9 promotes long tract gene conversions, BIR and CO, during the HR repair of a DSB via modulation of Sgs1 and Mph1 helicases.
Collapse
|
6
|
Distinct associations of the Saccharomyces cerevisiae Rad9 protein link Mac1-regulated transcription to DNA repair. Curr Genet 2019; 66:531-548. [PMID: 31784768 DOI: 10.1007/s00294-019-01047-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022]
Abstract
While it is known that ScRad9 DNA damage checkpoint protein is recruited to damaged DNA by recognizing specific histone modifications, here we report a different way of Rad9 recruitment on chromatin under non DNA damaging conditions. We found Rad9 to bind directly with the copper-modulated transcriptional activator Mac1, suppressing both its DNA binding and transactivation functions. Rad9 was recruited to active Mac1-target promoters (CTR1, FRE1) and along CTR1 coding region following the association pattern of RNA polymerase (Pol) II. Hir1 histone chaperone also interacted directly with Rad9 and was partly required for its localization throughout CTR1 gene. Moreover, Mac1-dependent transcriptional initiation was necessary and sufficient for Rad9 recruitment to the heterologous ACT1 coding region. In addition to Rad9, Rad53 kinase also localized to CTR1 coding region in a Rad9-dependent manner. Our data provide an example of a yeast DNA-binding transcriptional activator that interacts directly with a DNA damage checkpoint protein in vivo and is functionally restrained by this protein, suggesting a new role for Rad9 in connecting factors of the transcription machinery with the DNA repair pathway under unchallenged conditions.
Collapse
|
7
|
Fasullo MT, Sun M. Both RAD5-dependent and independent pathways are involved in DNA damage-associated sister chromatid exchange in budding yeast. AIMS GENETICS 2017; 4:84-102. [PMID: 28596989 PMCID: PMC5460634 DOI: 10.3934/genet.2017.2.84] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sister chromatids are preferred substrates for recombinational repair after cells are exposed to DNA damage. While some agents directly cause double-strand breaks (DSBs), others form DNA base adducts which stall or impede the DNA replication fork. We asked which types of DNA damage can stimulate SCE in budding yeast mutants defective in template switch mechanisms and whether PCNA polyubiquitination functions are required for DNA damage-associated SCE after exposure to potent recombinagens. We measured spontaneous and DNA damage-associated unequal sister chromatid exchange (uSCE) in yeast strains containing two fragments of his3 after exposure to MMS, 4-NQO, UV, X rays, and HO endonuclease-induced DSBs. We determined whether other genes in the pathway for template switching, including UBC13, MMS2, SGS1, and SRS2 were required for DNA damage-associated SCE. RAD5 was required for DNA damage-associated SCE after exposure to UV, MMS, and 4-NQO, but not for spontaneous, X-ray-associated, or HO endonuclease-induced SCE. While UBC13, MMS2, and SGS1 were required for MMS and 4NQO-associated SCE, they were not required for UV-associated SCE. DNA damage-associated recombination between his3 recombination substrates on non-homologous recombination was enhanced in rad5 mutants. These results demonstrate that DNA damaging agents that cause DSBs stimulate SCE by RAD5-independent mechanisms, while several potent agents that generate bulky DNA adducts stimulate SCE by multiple RAD5-dependent mechanisms. We suggest that DSB-associated recombination that occurs in G2 is RAD5-independent.
Collapse
Affiliation(s)
- Michael T Fasullo
- College of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| | - Mingzeng Sun
- College of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
8
|
Freedland J, Cera C, Fasullo M. CYP1A1 I462V polymorphism is associated with reduced genotoxicity in yeast despite positive association with increased cancer risk. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 815:35-43. [PMID: 28283091 DOI: 10.1016/j.mrgentox.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
CYP1A1 functions in detoxifying xenobiotics but occasionally converts compounds into potent genotoxins. CYP1A1 activates polyaromatic hydrocarbons, such as benzo[a]pyrene 7,8 dihydrodiol (BaP-DHD), rendering them genotoxic. Particular alleles of CYP1A1, such as CYP1A1 I462V have been correlated with a higher incidence of breast and lung cancer, but it is unknown whether these variants express enzymes in vivo that are more potent in generating genotoxins. We individually expressed CYP1A1 (CYP1A1.1), CYP1A1 T461N (CYP1A1.4) and I462V (CYP1A1.2) alleles in wild-type and DNA repair deficient mutant strains of Saccharomyces cerevisiae (budding yeast) and asked which yeast strains exhibited the highest levels of carcinogen-associated genotoxicity after exposure to BaP-DHD, aflatoxin B1 (AFB1), and heterocyclic aromatic amines (HAAs). We measured carcinogen-associated recombination, Rad51 foci, and carcinogen-associated toxicity in a DNA repair mutant deficient in both nucleotide excision repair and recombinational repair. CYP1A1 activity was confirmed by measuring ethoxyresorufin-O-deethylation (EROD) activities. Our data indicate that CYP1A1 I462V allele confers the least carcinogen-associated genotoxicity, compared to CYP1A1; however, results vary depending on the chemical carcinogen and the genotoxic endpoint. We speculate that the cancer-associated risk of CYP1A1 I462V may be caused by exposure to other xenobiotics.
Collapse
Affiliation(s)
- Julian Freedland
- College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY 12205, United States
| | - Cinzia Cera
- Center for Medical Sciences,150 New Scotland Road, Albany, NY 12208, United States
| | - Michael Fasullo
- College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY 12205, United States; Center for Medical Sciences,150 New Scotland Road, Albany, NY 12208, United States.
| |
Collapse
|
9
|
Fasullo M, Smith A, Egner P, Cera C. Activation of aflatoxin B1 by expression of human CYP1A2 polymorphisms in Saccharomyces cerevisiae. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 761:18-26. [PMID: 24472830 DOI: 10.1016/j.mrgentox.2014.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 12/15/2022]
Abstract
Human susceptibility to environmental carcinogens is highly variable and depends on multiple genetic factors, including polymorphisms in cytochrome P450 genes. Although epidemiological studies have identified individual polymorphisms in cytochrome P450 genes that may alter cancer risk, there is often conflicting data about whether such polymorphisms alter the genotoxicity of environmental carcinogens. This is particularly true of the CYP1A2 polymorphisms that confer differential activation of multiple human carcinogens. To determine whether a single cytochrome P450 polymorphism confers higher levels of carcinogen-associated genotoxicity, we chose an organism that lack enzymes to metabolically activate aflatoxins and expressed individual human P450 genes in budding yeast. We measured the frequencies of recombination, Rad51 foci formation, 7-methoxyresorufin O-demethylase activities, and the concentrations of carcinogen-associated DNA adducts in DNA repair proficient yeast expressing P450 polymorphisms after exposure to aflatoxin B1 (AFB1).We measured growth of rad4 rad51 cells expressing CYP1A2 polymorphisms while exposed to AFB1. We observed that there was significantly less AFB1-associated genotoxicity in yeast expressing CYP1A2 I386F, while yeast expressing CYP1A2 C406Y exhibited intermediate levels of genotoxicity compared to yeast expressing CYP1A2 D348N or wild type. We conclude that differences in carcinogen genotoxicity can be observed in yeast expressing different CYP1A2 alleles. This is the first report that carcinogen-associated P450 polymorphisms can be studied in yeast.
Collapse
Affiliation(s)
- Michael Fasullo
- Ordway Research Institute, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12209, USA; Department of Biomedical Sciences, School of Public Health, Center for Medical Sciences, 150 New Scotland Avenue, Albany NY, USA.
| | - Autumn Smith
- Ordway Research Institute, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12209, USA
| | - Patricia Egner
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cinzia Cera
- Ordway Research Institute, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12209, USA
| |
Collapse
|
10
|
Nielsen I, Bentsen IB, Andersen AH, Gasser SM, Bjergbaek L. A Rad53 independent function of Rad9 becomes crucial for genome maintenance in the absence of the Recq helicase Sgs1. PLoS One 2013; 8:e81015. [PMID: 24278365 PMCID: PMC3835667 DOI: 10.1371/journal.pone.0081015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
The conserved family of RecQ DNA helicases consists of caretaker tumour suppressors, that defend genome integrity by acting on several pathways of DNA repair that maintain genome stability. In budding yeast, Sgs1 is the sole RecQ helicase and it has been implicated in checkpoint responses, replisome stability and dissolution of double Holliday junctions during homologous recombination. In this study we investigate a possible genetic interaction between SGS1 and RAD9 in the cellular response to methyl methane sulphonate (MMS) induced damage and compare this with the genetic interaction between SGS1 and RAD24. The Rad9 protein, an adaptor for effector kinase activation, plays well-characterized roles in the DNA damage checkpoint response, whereas Rad24 is characterized as a sensor protein also in the DNA damage checkpoint response. Here we unveil novel insights into the cellular response to MMS-induced damage. Specifically, we show a strong synergistic functionality between SGS1 and RAD9 for recovery from MMS induced damage and for suppression of gross chromosomal rearrangements, which is not the case for SGS1 and RAD24. Intriguingly, it is a Rad53 independent function of Rad9, which becomes crucial for genome maintenance in the absence of Sgs1. Despite this, our dissection of the MMS checkpoint response reveals parallel, but unequal pathways for Rad53 activation and highlights significant differences between MMS- and hydroxyurea (HU)-induced checkpoint responses with relation to the requirement of the Sgs1 interacting partner Topoisomerase III (Top3). Thus, whereas earlier studies have documented a Top3-independent role of Sgs1 for an HU-induced checkpoint response, we show here that upon MMS treatment, Sgs1 and Top3 together define a minor but parallel pathway to that of Rad9.
Collapse
Affiliation(s)
- Ida Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Iben Bach Bentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anni H. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Lotte Bjergbaek
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
11
|
Pannunzio NR, Manthey GM, Liddell LC, Fu BXH, Roberts CM, Bailis AM. Rad59 regulates association of Rad52 with DNA double-strand breaks. Microbiologyopen 2012; 1:285-97. [PMID: 23170228 PMCID: PMC3496973 DOI: 10.1002/mbo3.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/06/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
Homologous recombination among repetitive sequences is an important mode of DNA repair in eukaryotes following acute radiation exposure. We have developed an assay in Saccharomyces cerevisiae that models how multiple DNA double-strand breaks form chromosomal translocations by a nonconservative homologous recombination mechanism, single-strand annealing, and identified the Rad52 paralog, Rad59, as an important factor. We show through genetic and molecular analyses that Rad59 possesses distinct Rad52-dependent and -independent functions, and that Rad59 plays a critical role in the localization of Rad52 to double-strand breaks. Our analysis further suggests that Rad52 and Rad59 act in multiple, sequential processes that determine genome structure following acute exposure to DNA damaging agents.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope Duarte, California, 91010, USA ; The Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope Duarte, California, 91010, USA
| | | | | | | | | | | |
Collapse
|
12
|
The DNA damage checkpoint allows recombination between divergent DNA sequences in budding yeast. DNA Repair (Amst) 2011; 10:1086-94. [PMID: 21978436 DOI: 10.1016/j.dnarep.2011.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/23/2011] [Accepted: 07/25/2011] [Indexed: 11/22/2022]
Abstract
In the early steps of homologous recombination, single-stranded DNA (ssDNA) from a broken chromosome invades homologous sequence located in a sister or homolog donor. In genomes that contain numerous repetitive DNA elements or gene paralogs, recombination can potentially occur between non-allelic/divergent (homeologous) sequences that share sequence identity. Such recombination events can lead to lethal chromosomal deletions or rearrangements. However, homeologous recombination events can be suppressed through rejection mechanisms that involve recognition of DNA mismatches in heteroduplex DNA by mismatch repair factors, followed by active unwinding of the heteroduplex DNA by helicases. Because factors required for heteroduplex rejection are hypothesized to be targets and/or effectors of the DNA damage response (DDR), a cell cycle control mechanism that ensures timely and efficient repair, we tested whether the DDR, and more specifically, the RAD9 gene, had a role in regulating rejection. We performed these studies using a DNA repair assay that measures repair by single-strand annealing (SSA) of a double-strand break (DSB) using homeologous DNA templates. We found that repair of homeologous DNA sequences, but not identical sequences, induced a RAD9-dependent cell cycle delay in the G2 stage of the cell cycle. Repair through a divergent DNA template occurred more frequently in RAD9 compared to rad9Δ strains. However, repair in rad9Δ mutants could be restored to wild-type levels if a G2 delay was induced by nocodazole. These results suggest that cell cycle arrest induced by the Rad9-dependent DDR allows repair between divergent DNA sequences despite the potential for creating deleterious genome rearrangements, and illustrates the importance of additional cellular mechanisms that act to suppress recombination between divergent DNA sequences.
Collapse
|
13
|
Jossé L, Li X, Coker RD, Gourlay CW, Evans IH. Transcriptomic and phenotypic analysis of the effects of T-2 toxin on Saccharomyces cerevisiae: evidence of mitochondrial involvement. FEMS Yeast Res 2011; 11:133-50. [PMID: 21114626 DOI: 10.1111/j.1567-1364.2010.00699.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
At 5 μg mL(-1) , T-2 toxin significantly upregulated the transcription of 281 genes and downregulated 86. Strongly upregulated genes included those involved in redox activity, mitochondrial functions, the response to oxidative stress, and cytoplasmic rRNA transcription and processing. Highly repressed genes have roles in mitochondrial biogenesis, and the expression and stability of cytoplasmic rRNAs. T-2 toxin inhibition of growth was greater in a medium requiring respiration, and was antagonized by antioxidants. T-2 toxin treatment induced reactive oxygen species, caused nucleolytic damage to DNA, probably mitochondrial, and externalization of phosphatidylserine. Deletion mutations causing respiratory deficiency substantially increased toxin tolerance, and deletion of some TOR (target of rapamycin) pathway genes altered T-2 toxin sensitivity. Deletion of FMS1, which plays an indirect role in cytoplasmic protein synthesis, markedly increased toxin tolerance. Overall, the findings suggest that T-2 toxin targets mitochondria, generating oxy-radicals and repressing mitochondrial biogenesis genes, thus inducing oxidative stress and redox enzyme genes, and triggering changes associated with apoptosis. The large transcriptional changes in genes needed for rRNA transcription and expression and the effects of deletion of FMS1 are also consistent with T-2 toxin damage to the cytoplasmic translational mechanism, although it is unclear how this relates to the mitochondrial effects.
Collapse
Affiliation(s)
- Lyne Jossé
- School of Biosciences, Ingram Building, University of Kent, Canterbury, Kent, UK
| | | | | | | | | |
Collapse
|
14
|
Pannunzio NR, Manthey GM, Bailis AM. RAD59 and RAD1 cooperate in translocation formation by single-strand annealing in Saccharomyces cerevisiae. Curr Genet 2009; 56:87-100. [PMID: 20012294 PMCID: PMC2808509 DOI: 10.1007/s00294-009-0282-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
Studies in the budding yeast, Saccharomyces cerevisiae, have demonstrated that a substantial fraction of double-strand break repair following acute radiation exposure involves homologous recombination between repetitive genomic elements. We have previously described an assay in S. cerevisiae that allows us to model how repair of multiple breaks leads to the formation of chromosomal translocations by single-strand annealing (SSA) and found that Rad59, a paralog of the single-stranded DNA annealing protein Rad52, is critically important in this process. We have constructed several rad59 missense alleles to study its function more closely. Characterization of these mutants revealed proportional defects in both translocation formation and spontaneous direct-repeat recombination, which is also thought to occur by SSA. Combining the rad59 missense alleles with a null allele of RAD1, which encodes a subunit of a nuclease required for the removal of non-homologous tails from annealed intermediates, substantially suppressed the low frequency of translocations observed in rad1-null single mutants. These data suggest that at least one role of Rad59 in translocation formation by SSA is supporting the machinery required for cleavage of non-homologous tails.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
15
|
Fasullo M, Tsaponina O, Sun M, Chabes A. Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants. Nucleic Acids Res 2009; 38:1195-203. [PMID: 19965764 PMCID: PMC2831302 DOI: 10.1093/nar/gkp1064] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MEC1, the essential yeast homolog of the human ATR/ATM genes, controls the S-phase checkpoint and prevents replication fork collapse at slow zones of DNA replication. The viability of hypomorphic mec1-21 is reduced in the rad52 mutant, defective in homologous recombination, suggesting that replication generates recombinogenic lesions. We previously observed a 6-, 10- and 30-fold higher rate of spontaneous sister chromatid exchange (SCE), heteroallelic recombination and translocations, respectively, in mec1-21 mutants compared to wild-type. Here we report that the hyper-recombination phenotype correlates with lower deoxyribonucleoside triphosphate (dNTP) levels, compared to wild-type. By introducing a dun1 mutation, thus eliminating inducible expression of ribonucleotide reductase in mec1-21, rates of spontaneous SCE increased 15-fold above wild-type. All the hyper-recombination phenotypes were reduced by SML1 deletions, which increase dNTP levels. Measurements of dNTP pools indicated that, compared to wild-type, there was a significant decrease in dNTP levels in mec1-21, dun1 and mec1-21 dun1, while the dNTP levels of mec1-21 sml1, mec1-21 dun1 sml1 and sml1 mutants were approximately 2-fold higher. Interestingly, higher dNTP levels in mec1-21 dun1 sml1 correlate with approximately 2-fold higher rate of spontaneous mutagenesis, compared to mec1-21 dun1. We suggest that higher dNTP levels in specific checkpoint mutants suppress the formation of recombinogenic lesions.
Collapse
Affiliation(s)
- Michael Fasullo
- Ordway Research Institute, 150 New Scotland Avenue, Albany, NY 12209, USA.
| | | | | | | |
Collapse
|
16
|
Manthey GM, Naik N, Bailis AM. Msh2 blocks an alternative mechanism for non-homologous tail removal during single-strand annealing in Saccharomyces cerevisiae. PLoS One 2009; 4:e7488. [PMID: 19834615 PMCID: PMC2759526 DOI: 10.1371/journal.pone.0007488] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/25/2009] [Indexed: 11/19/2022] Open
Abstract
Chromosomal translocations are frequently observed in cells exposed to agents that cause DNA double-strand breaks (DSBs), such as ionizing radiation and chemotherapeutic drugs, and are often associated with tumors in mammals. Recently, translocation formation in the budding yeast, Saccharomyces cerevisiae, has been found to occur at high frequencies following the creation of multiple DSBs adjacent to repetitive sequences on non-homologous chromosomes. The genetic control of translocation formation and the chromosome complements of the clones that contain translocations suggest that translocation formation occurs by single-strand annealing (SSA). Among the factors important for translocation formation by SSA is the central mismatch repair (MMR) and homologous recombination (HR) factor, Msh2. Here we describe the effects of several msh2 missense mutations on translocation formation that suggest that Msh2 has separable functions in stabilizing annealed single strands, and removing non-homologous sequences from their ends. Additionally, interactions between the msh2 alleles and a null allele of RAD1, which encodes a subunit of a nuclease critical for the removal of non-homologous tails suggest that Msh2 blocks an alternative mechanism for removing these sequences. These results suggest that Msh2 plays multiple roles in the formation of chromosomal translocations following acute levels of DNA damage.
Collapse
Affiliation(s)
- Glenn M. Manthey
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Nilan Naik
- Scripps College Post-Baccalaureate Premedical Program, Claremont, California, United States of America
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lee SE, Myung K. Faithful after break-up: suppression of chromosomal translocations. Cell Mol Life Sci 2009; 66:3149-60. [PMID: 19547915 PMCID: PMC3501963 DOI: 10.1007/s00018-009-0068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/31/2009] [Accepted: 06/08/2009] [Indexed: 10/20/2022]
Abstract
Chromosome integrity in response to chemically or radiation-induced chromosome breaks and the perturbation of ongoing replication forks relies on multiple DNA repair mechanisms. However, repair of these lesions may lead to unwanted chromosome rearrangement if not properly executed or regulated. As these types of chromosomal alterations threaten the cell's and the organism's very own survival, multiple systems are developed to avoid or at least limit break-induced chromosomal rearrangements. In this review, we highlight cellular strategies for repressing DNA break-induced chromosomal translocations in multiple model systems including yeast, mouse, and human. These pathways select proper homologous templates or broken DNA ends for the faithful repair of DNA breaks to avoid undesirable chromosomal translocations.
Collapse
Affiliation(s)
- Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245 USA
| | - Kyungjae Myung
- Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
18
|
Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication. Mol Cell Biol 2009; 29:5441-54. [PMID: 19651902 DOI: 10.1128/mcb.00256-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Double-strand breaks (DSBs) are harmful DNA lesions that can generate chromosomal rearrangements or chromosome losses if not properly repaired. Despite their association with a number of genetic diseases and cancer, the mechanisms by which DSBs cause rearrangements remain unknown. Using a newly developed experimental assay for the analysis of translocations occurring between two chromosomes in Saccharomyces cerevisiae, we found that a single DSB located on one chromosome uses a short homologous sequence found in a third chromosome as a bridge to complete DSB repair, leading to chromosomal translocations. Such translocations are dramatically reduced when the short homologous sequence on the third chromosome is deleted. Translocations rely on homologous recombination (HR) proteins, such as Rad51, Rad52, and Rad59, as well as on the break-induced replication-specific protein Pol32 and on Srs2, but not on Ku70. Our results indicate that a single chromosomal DSB efficiently searches for short homologous sequences throughout the genome for its repair, leading to triparental translocations between heterologous chromosomes. Given the abundance of repetitive DNA in eukaryotic genomes, the results of this study open the possibility that HR rather than nonhomologous end joining may be a major source of chromosomal translocations.
Collapse
|
19
|
Conde F, Refolio E, Cordón-Preciado V, Cortés-Ledesma F, Aragón L, Aguilera A, San-Segundo PA. The Dot1 histone methyltransferase and the Rad9 checkpoint adaptor contribute to cohesin-dependent double-strand break repair by sister chromatid recombination in Saccharomyces cerevisiae. Genetics 2009; 182:437-46. [PMID: 19332880 PMCID: PMC2691753 DOI: 10.1534/genetics.109.101899] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 03/26/2009] [Indexed: 12/20/2022] Open
Abstract
Genomic integrity is threatened by multiple sources of DNA damage. DNA double-strand breaks (DSBs) are among the most dangerous types of DNA lesions and can be generated by endogenous or exogenous agents, but they can arise also during DNA replication. Sister chromatid recombination (SCR) is a key mechanism for the repair of DSBs generated during replication and it is fundamental for maintaining genomic stability. Proper repair relies on several factors, among which histone modifications play important roles in the response to DSBs. Here, we study the role of the histone H3K79 methyltransferase Dot1 in the repair by SCR of replication-dependent HO-induced DSBs, as a way to assess its function in homologous recombination. We show that Dot1, the Rad9 DNA damage checkpoint adaptor, and phosphorylation of histone H2A (gammaH2A) are required for efficient SCR. Moreover, we show that Dot1 and Rad9 promote DSB-induced loading of cohesin onto chromatin. We propose that recruitment of Rad9 to DSB sites mediated by gammaH2A and H3K79 methylation contributes to DSB repair via SCR by regulating cohesin binding to damage sites. Therefore, our results contribute to an understanding of how different chromatin modifications impinge on DNA repair mechanisms, which are fundamental for maintaining genomic stability.
Collapse
|
20
|
Fasullo M, Sun M. UV but not X rays stimulate homologous recombination between sister chromatids and homologs in a Saccharomyces cerevisiae mec1 (ATR) hypomorphic mutant. Mutat Res 2008; 648:73-81. [PMID: 18929581 PMCID: PMC2685076 DOI: 10.1016/j.mrfmmm.2008.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 02/02/2023]
Abstract
MEC1, the essential yeast ATM/ATR homolog, prevents replication fork collapse and is required for the cellular response to DNA damage. We had previously observed higher rates of spontaneous SCE, heteroallelic recombination and translocations in mec1-21 mutants, which still retain some G2 checkpoint function, compared to mec1 null mutants, which are completely defective in checkpoint function, and wild type. However, the types of DNA lesions that are more recombinogenic in mec1-21, compared to wild type, are unknown. Here, we measured DNA damage-associated SCE, homolog (heteroallelic) recombination, and homology-directed translocations in mec1-21, and characterized types of DNA damage-associated chromosomal rearrangements that occur in mec1-21. Although frequencies of UV-associated recombination were higher in mec1-21, the mutant was defective in double-strand break-associated SCE and heteroallelic recombination. Over-expression of Rad53 in mec1-21 reduced UV-associated recombination but did not suppress the defect in X-ray-associated recombination. Both X ray and UV exposure increased translocation frequencies in mec1-21, but the majority of the UV-associated products were non-reciprocal translocations. We suggest that although recombinational repair of double-stand breaks is less efficient in mec1 mutants, recombinants may be generated by other mechanisms, such as break-induced replication.
Collapse
|
21
|
Mutagenic and recombinagenic responses to defective DNA polymerase delta are facilitated by the Rev1 protein in pol3-t mutants of Saccharomyces cerevisiae. Genetics 2008; 179:1795-806. [PMID: 18711219 DOI: 10.1534/genetics.108.089821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defective DNA replication can result in substantial increases in the level of genome instability. In the yeast Saccharomyces cerevisiae, the pol3-t allele confers a defect in the catalytic subunit of replicative DNA polymerase delta that results in increased rates of mutagenesis, recombination, and chromosome loss, perhaps by increasing the rate of replicative polymerase failure. The translesion polymerases Pol eta, Pol zeta, and Rev1 are part of a suite of factors in yeast that can act at sites of replicative polymerase failure. While mutants defective in the translesion polymerases alone displayed few defects, loss of Rev1 was found to suppress the increased rates of spontaneous mutation, recombination, and chromosome loss observed in pol3-t mutants. These results suggest that Rev1 may be involved in facilitating mutagenic and recombinagenic responses to the failure of Pol delta. Genome stability, therefore, may reflect a dynamic relationship between primary and auxiliary DNA polymerases.
Collapse
|
22
|
Pannunzio NR, Manthey GM, Bailis AM. RAD59 is required for efficient repair of simultaneous double-strand breaks resulting in translocations in Saccharomyces cerevisiae. DNA Repair (Amst) 2008; 7:788-800. [PMID: 18373960 PMCID: PMC2422859 DOI: 10.1016/j.dnarep.2008.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 01/25/2008] [Accepted: 02/08/2008] [Indexed: 01/08/2023]
Abstract
Exposure to ionizing radiation results in a variety of genome rearrangements that have been linked to tumor formation. Many of these rearrangements are thought to arise from the repair of double-strand breaks (DSBs) by several mechanisms, including homologous recombination (HR) between repetitive sequences dispersed throughout the genome. Doses of radiation sufficient to create DSBs in or near multiple repetitive elements simultaneously could initiate single-strand annealing (SSA), a highly efficient, though mutagenic, mode of DSB repair. We have investigated the genetic control of the formation of translocations that occur spontaneously and those that form after the generation of DSBs adjacent to homologous sequences on two, non-homologous chromosomes in Saccharomyces cerevisiae. We found that mutations in a variety of DNA repair genes have distinct effects on break-stimulated translocation. Furthermore, the genetic requirements for repair using 300bp and 60bp recombination substrates were different, suggesting that the SSA apparatus may be altered in response to changing substrate lengths. Notably, RAD59 was found to play a particularly significant role in recombination between the short substrates that was partially independent of that of RAD52. The high frequency of these events suggests that SSA may be an important mechanism of genome rearrangement following acute radiation exposure.
Collapse
Affiliation(s)
- Nicholas R. Pannunzio
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-0269
- City of Hope Graduate School of Biological Sciences
| | - Glenn M. Manthey
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-0269
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-0269
| |
Collapse
|
23
|
UV sensitive mutations in histone H3 in Saccharomyces cerevisiae that alter specific K79 methylation states genetically act through distinct DNA repair pathways. Curr Genet 2008; 53:259-74. [PMID: 18327589 DOI: 10.1007/s00294-008-0182-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 12/30/2022]
Abstract
Chromatin serves as a regulator of various nuclear processes, with post-translational modifications of histone proteins serving as modulators to influence chromatin function. We have previously shown that histone H3 K79 methylation is important for repair of UV-induced DNA damage in Saccharomyces cerevisiae, acting through multiple repair pathways. To evaluate the potential role of distinct K79 methylation states in DNA repair, we identified four mutations in histone H3 that confer sensitivity to UV, each of which also has a distinct effect on specific K79 methylation states. Epistasis analyses indicate that each mutation exerts its phenotypic effects through distinct subsets of the various DNA damage response pathways, suggesting the existence of discrete roles for histone H3 in DNA damage checkpoint and repair pathways. Furthermore, we find that the distribution of K79 methylation states is altered by mutation of the acetylatable N terminal lysines in histone H4. The combined results suggest that K79 methylation states may be modulated in response to UV damage via a trans-histone regulatory pathway, and that distinct methylation states may provide a means of coordinating specific DNA repair and damage checkpoint pathways.
Collapse
|
24
|
Toh GWL, O'Shaughnessy AM, Jimeno S, Dobbie IM, Grenon M, Maffini S, O'Rorke A, Lowndes NF. Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation. DNA Repair (Amst) 2006; 5:693-703. [PMID: 16650810 DOI: 10.1016/j.dnarep.2006.03.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 12/22/2022]
Abstract
In budding yeast, the Rad9 protein is an important player in the maintenance of genomic integrity and has a well-characterised role in DNA damage checkpoint activation. Recently, roles for different post-translational histone modifications in the DNA damage response, including H2A serine 129 phosphorylation and H3 lysine 79 methylation, have also been demonstrated. Here, we show that Rad9 recruitment to foci and bulk chromatin occurs specifically after ionising radiation treatment in G2 cells. This stable recruitment correlates with late stages of double strand break (DSB) repair and, surprisingly, it is the hypophosphorylated form of Rad9 that is retained on chromatin rather than the hyperphosphorylated, checkpoint-associated, form. Stable Rad9 accumulation in foci requires the Mec1 kinase and two independently regulated histone modifications, H2A phosphorylation and Dot1-dependent H3 methylation. In addition, Rad9 is selectively recruited to a subset of Rad52 repair foci. These results, together with the observation that rad9Delta cells are defective in repair of IR breaks in G2, strongly indicate a novel post checkpoint activation role for Rad9 in promoting efficient repair of DNA DSBs by homologous recombination.
Collapse
Affiliation(s)
- Geraldine W-L Toh
- Genome Stability Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, University Road, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fasullo M, Dong Z, Sun M, Zeng L. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. DNA Repair (Amst) 2005; 4:1240-51. [PMID: 16039914 DOI: 10.1016/j.dnarep.2005.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/07/2005] [Accepted: 06/15/2005] [Indexed: 11/23/2022]
Abstract
Saccharomyces cerevisiae RAD53 (CHK2) and CHK1 control two parallel branches of the RAD9-mediated pathway for DNA damage-induced G(2) arrest. Previous studies indicate that RAD9 is required for X-ray-associated sister chromatid exchange (SCE), suppresses homology-directed translocations, and is involved in pathways for double-strand break repair (DSB) repair that are different than those controlled by PDS1. We measured DNA damage-associated SCE in strains containing two tandem fragments of his3, his3-Delta5' and his3-Delta3'::HOcs, and rates of spontaneous translocations in diploids containing GAL1::his3-Delta5' and trp1::his3-Delta3'::HOcs. DNA damage-associated SCE was measured after log phase cells were exposed to methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4-NQO), UV, X rays and HO-induced DSBs. We observed that rad53 mutants were defective in MMS-, 4-NQO, X-ray-associated and HO-induced SCE but not in UV-associated SCE. Similar to rad9 pds1 double mutants, rad53 pds1 double mutants exhibited more X-ray sensitivity than the single mutants. rad53 sml1 diploid mutants exhibited a 10-fold higher rate of spontaneous translocations compared to the sml1 diploid mutants. chk1 mutants were not deficient in DNA damage-associated SCE after exposure to DNA damaging agents or after DSBs were generated at trp1::his3-Delta5'his3-Delta3'::HOcs. These data indicate that RAD53, not CHK1, is required for DSB-initiated SCE, and DNA damage-associated SCE after exposure to X-ray-mimetic and UV-mimetic chemicals.
Collapse
Affiliation(s)
- Michael Fasullo
- Ordway Research Institute, 150 New Scotland Avenue, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
26
|
Lewis LK, Karthikeyan G, Cassiano J, Resnick MA. Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair. Nucleic Acids Res 2005; 33:4928-39. [PMID: 16141196 PMCID: PMC1197131 DOI: 10.1093/nar/gki806] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/15/2005] [Indexed: 11/23/2022] Open
Abstract
Assembly of new chromatin during S phase requires the histone chaperone complexes CAF-1 (Cac2p, Msi1p and Rlf2p) and RCAF (Asf1p plus acetylated histones H3 and H4). Cells lacking CAF-1 and RCAF are hypersensitive to DNA-damaging agents, such as methyl methanesulfonate and camptothecin, suggesting a possible defect in double-strand break (DSB) repair. Assays developed to quantitate repair of defined, cohesive-ended break structures revealed that DSB-induced plasmid:chromosome recombination was reduced approximately 10-fold in RCAF/CAF-1 double mutants. Recombination defects were similar with both chromosomal and plasmid targets in vivo, suggesting that inhibitory chromatin structures were not involved. Consistent with these observations, ionizing radiation-induced loss of heterozygosity was abolished in the mutants. Nonhomologous end-joining (NHEJ) repair proficiency and accuracy were intermediate between wild-type levels and those of NHEJ-deficient yku70 and rad50 mutants. The defects in NHEJ, but not homologous recombination, could be rescued by deletion of HMR-a1, a component of the a1/alpha2 transcriptional repressor complex. The findings are consistent with the observation that silent mating loci are partially derepressed. These results demonstrate that defective assembly of nucleosomes during new DNA synthesis compromises each of the known pathways of DSB repair and that the effects can be indirect consequences of changes in silenced chromatin structure.
Collapse
Affiliation(s)
- L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | | | | | | |
Collapse
|
27
|
Tosato V, Waghmare SK, Bruschi CV. Non-reciprocal chromosomal bridge-induced translocation (BIT) by targeted DNA integration in yeast. Chromosoma 2005; 114:15-27. [PMID: 15843952 DOI: 10.1007/s00412-005-0332-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/07/2005] [Accepted: 01/25/2005] [Indexed: 12/25/2022]
Abstract
Several experimental in vivo systems exist that generate reciprocal translocations between engineered chromosomal loci of yeast or Drosophila, but not without previous genome modifications. Here we report the successful induction of chromosome translocations in unmodified yeast cells via targeted DNA integration of the KAN(R) selectable marker flanked by sequences homologous to two chromosomal loci randomly chosen on the genome. Using this bridge-induced translocation system, 2% of the integrants showed targeted translocations between chromosomes V-VIII and VIII-XV in two wild-type Saccharomyces cerevisiae strains. All the translocation events studied were found to be non-reciprocal and the fate of their chromosomal fragments that were not included in the translocated chromosome was followed. The recovery of discrete-sized fragments suggested multiple pathway repair of their free DNA ends. We propose that centromere-distal chromosome fragments may be processed by a break-induced replication mechanism ensuing in partial trisomy. The experimental feasibility of inducing chromosomal translocations between any two desired genetic loci in a eukaryotic model system will be instrumental in elucidating the molecular mechanism underlying genome rearrangements generated by DNA integration and the gross chromosomal rearrangements characteristic of many types of cancer.
Collapse
Affiliation(s)
- Valentina Tosato
- ICGEB Microbiology Laboratory, AREA Science Park, Padriciano 99, 34012 Trieste, Italy
| | | | | |
Collapse
|
28
|
Abstract
There is a striking link between increasing age and the incidence of cancer in humans. One of the hallmarks of cancer, genomic instability, has been observed in all types of organisms. In the yeast Saccharomyces cerevisiae, it was recently discovered that during the replicative lifespan, aging cells switch to a state of high genomic instability that persists until they die. In considering these and other recent results, we suggest that accumulation of oxidatively damaged protein in aging cells results in the loss of function of gene products critical for maintaining genome integrity. Determining the identity of these proteins and how they become damaged represents a new challenge for understanding the relationship between age and genetic instability.
Collapse
Affiliation(s)
- Michael A McMurray
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Mailstop A3-025, 1100 Fairview Avenue North, P.O. Box 19024, Seattle, Washington 98109, USA
| | | |
Collapse
|
29
|
DeMase D, Zeng L, Cera C, Fasullo M. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways. DNA Repair (Amst) 2005; 4:59-69. [PMID: 15533838 DOI: 10.1016/j.dnarep.2004.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to DNA damage, the Saccharomyces cerevisiae securin Pds1 blocks anaphase promotion by inhibiting ESP1-dependent degradation of cohesins. PDS1 is positioned downstream of the MEC1- and RAD9-mediated DNA damage-induced signal transduction pathways. Because cohesins participate in postreplicative repair and the pds1 mutant is radiation sensitive, we identified DNA repair pathways that are PDS1-dependent. We compared the radiation sensitivities and recombination phenotypes of pds1, rad9, rad51 single and double mutants, and found that whereas pds1 rad9 double mutants were synergistically more radiation sensitive than single mutants, pds1 rad51 mutants were not. To determine the role of PDS1 in recombinational repair pathways, we measured spontaneous and DNA damage-associated sister chromatid exchanges (SCEs) after exposure to X rays, UV and methyl methanesulfonate (MMS) and after the initiation of an HO endonuclease-generated double-strand break (DSB). The rates of spontaneous SCE and frequencies of DNA damage-associated SCE were similar in wild type and pds1 strains, but the latter exhibited reduced viability after exposure to DNA damaging agents. To determine whether pds1 mutants were defective in other pathways for DSB repair, we measured both single-strand annealing (SSA) and non-homologous end joining (NHEJ) in pds1 mutants. We found that the pds1 mutant was defective in SSA but efficient at ligating cohesive ends present on a linear plasmid. We therefore suggest that checkpoint genes control different pathways for DSB repair, and PDS1 and RAD9 have different roles in recombinational repair.
Collapse
Affiliation(s)
- David DeMase
- The Albany Medical College, Ordway Research Institute, 150 New Scotland Avenue, Albany, NY 12209, USA
| | | | | | | |
Collapse
|
30
|
Nag DK, Suri M, Stenson EK. Both CAG repeats and inverted DNA repeats stimulate spontaneous unequal sister-chromatid exchange in Saccharomyces cerevisiae. Nucleic Acids Res 2004; 32:5677-84. [PMID: 15494455 PMCID: PMC524308 DOI: 10.1093/nar/gkh901] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genomic regions containing trinucleotide repeats (TNRs) are highly unstable, as the repeated sequences exhibit a high rate of mutational change, in which they undergo either a contraction or an expansion of repeat numbers. Although expansion of TNRs is associated with several human genetic diseases, the expansion mechanism is poorly understood. Extensive studies in model organisms have indicated that instability of TNRs occurs by several mechanisms, including replication slippage, DNA repair and recombination. In all models, the formation of secondary structures by disease-associated TNRs is a critical step in the mutation process. In this report, we demonstrate that TNRs and inverted repeats (IRs) both of which have the potential to form secondary structures in vivo, increase spontaneous unequal sister-chromatid exchange (SCE) in vegetatively growing yeast cells. Our results also show that TNR-mediated SCE events are independent of RAD50, MRE11 and RAD51, whereas IR-stimulated SCEs are dependent on the RAD52 epistasis-group genes. We propose that many TNR expansion mutations occur by SCE.
Collapse
Affiliation(s)
- Dilip K Nag
- Molecular Genetics Program, Center for Medical Sciences, Wadsworth Center, 150 New Scotland Avenue, Albany, NY 12208, USA.
| | | | | |
Collapse
|
31
|
Keller-Seitz MU, Certa U, Sengstag C, Würgler FE, Sun M, Fasullo M. Transcriptional response of yeast to aflatoxin B1: recombinational repair involving RAD51 and RAD1. Mol Biol Cell 2004; 15:4321-36. [PMID: 15215318 PMCID: PMC515362 DOI: 10.1091/mbc.e04-05-0375] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The potent carcinogen aflatoxin B(1) is a weak mutagen but a strong recombinagen in Saccharomyces cerevisiae. Aflatoxin B(1) exposure greatly increases frequencies of both heteroallelic recombination and chromosomal translocations. We analyzed the gene expression pattern of diploid cells exposed to aflatoxin B(1) using high-density oligonucleotide arrays comprising specific probes for all 6218 open reading frames. Among 183 responsive genes, 46 are involved in either DNA repair or in control of cell growth and division. Inducible growth control genes include those in the TOR signaling pathway and SPO12, whereas PKC1 is downregulated. Eleven of the 15 inducible DNA repair genes, including RAD51, participate in recombination. Survival and translocation frequencies are reduced in the rad51 diploid after aflatoxin B(1) exposure. In mec1 checkpoint mutants, aflatoxin B(1) exposure does not induce RAD51 expression or increase translocation frequencies; however, when RAD51 is constitutively overexpressed in the mec1 mutant, aflatoxin B(1) exposure increased translocation frequencies. Thus the transcriptional profile after aflatoxin B(1) exposure may elucidate the genotoxic properties of aflatoxin B(1).
Collapse
Affiliation(s)
- Monika U Keller-Seitz
- Institute of Toxicology, Swiss Federal Institute of Technology ETH, CH-8603 Schwerzenbach, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Yeast cells have an asymmetric, stem-cell-like division. As the mother cell ages it becomes 100 times more genetically unstable, but it is only the daughter cells that exhibit loss of heterozygosity; the latter effect is not connected to SIR2-dependent aging, but seems to be accompanied by a loss of the DNA damage checkpoint.
Collapse
Affiliation(s)
- James E Haber
- Rosenstiel Center MS029, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| |
Collapse
|
33
|
McMurray MA, Gottschling DE. Genetic instability in aging yeast: a metastable hyperrecombinational state. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:339-47. [PMID: 16117666 DOI: 10.1101/sqb.2004.69.339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- M A McMurray
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
34
|
Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2003; 36:617-56. [PMID: 12429704 DOI: 10.1146/annurev.genet.36.060402.113540] [Citation(s) in RCA: 633] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
Collapse
Affiliation(s)
- Kara A Nyberg
- Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | |
Collapse
|
35
|
Weinert T, Little E, Shanks L, Admire A, Gardner R, Putnam C, Michelson R, Nyberg K, Sundareshan P. Details and concerns regarding the G2/M DNA damage checkpoint in budding yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:433-41. [PMID: 12760059 DOI: 10.1101/sqb.2000.65.433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T Weinert
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dong Z, Fasullo M. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res 2003; 31:2576-85. [PMID: 12736307 PMCID: PMC156034 DOI: 10.1093/nar/gkg352] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sister chromatid exchange (SCE) can occur by several recombination mechanisms, including those directly initiated by double-strand breaks (DSBs), such as gap repair and break-induced replication (BIR), and those initiated when DNA polymerases stall, such as template switching. To elucidate SCE recombination mechanisms, we determined whether spontaneous and DNA damage-associated SCE requires specific genes within the RAD52 and RAD3 epistasis groups in Saccharomyces cerevisiae strains containing two his3 fragments, his3-Delta5' and his3-Delta3'::HOcs. SCE frequencies were measured after cells were exposed to UV, X-rays, 4-nitroquinoline 1-oxide (4-NQO) and methyl methanesulfonate (MMS), or when an HO endonuclease-induced DSB was introduced at his3-Delta3'::HOcs. Our data indicate that genes involved in gap repair, such as RAD55, RAD57 and RAD54, are required for DNA damage-associated SCE but not for spontaneous SCE. RAD50 and RAD59, genes required for BIR, are required for X-ray-associated SCE but not for SCE stimulated by HO-induced DSBs. In comparison with wild type, rates of spontaneous SCE are 10-fold lower in rad51 rad1 but not in either rad51 rad50 or rad51 rad59 double mutants. We propose that gap repair mechanisms are important in DNA damage-associated recombination, whereas alternative pathways, including a template switch pathway, play a role in spontaneous SCE.
Collapse
Affiliation(s)
- Zheng Dong
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| | | |
Collapse
|
37
|
Thrower DA, Stemple J, Yeh E, Bloom K. Nuclear oscillations and nuclear filament formation accompany single-strand annealing repair of a dicentric chromosome in Saccharomyces cerevisiae. J Cell Sci 2003; 116:561-9. [PMID: 12508116 DOI: 10.1242/jcs.00251] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dicentric chromosomes undergo breakage during mitosis as a result of the attachment of two centromeres on one sister chromatid to opposite spindle poles. Studies utilizing a conditional dicentric chromosome III in Saccharomyces cerevisiae have shown that dicentric chromosome repair occurs primarily by deletion of one centromere via a RAD52-dependent recombination pathway. We report that dicentric chromosome resolution requires RAD1, a gene involved in the single-strand annealing DNA repair pathway. We additionally show that single-strand annealing repair of a dicentric chromosome can occur in the absence of RAD52. RAD52-independent repair requires the adaptation-defective cdc5-ad allele of the yeast polo kinase and the DNA damage checkpoint gene RAD9. Dicentric chromosome breakage in cdc5-ad rad52 mutant cells is associated with a prolonged mitotic arrest, during which nuclei undergo microtubule-dependent oscillations, accompanied by dynamic changes in nuclear morphology. We further demonstrate that the frequency of spontaneous direct repeat recombination is suppressed in yeast cells treated with benomyl, a drug that perturbs microtubules. Our findings indicate that microtubule-dependent processes facilitate recombination.
Collapse
Affiliation(s)
- Douglas A Thrower
- Department of Biology, CB3280 University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | | | | | |
Collapse
|
38
|
Tennyson RB, Ebran N, Herrera AE, Lindsley JE. A novel selection system for chromosome translocations in Saccharomyces cerevisiae. Genetics 2002; 160:1363-73. [PMID: 11973293 PMCID: PMC1462053 DOI: 10.1093/genetics/160.4.1363] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chromosomal translocations are common genetic abnormalities found in both leukemias and solid tumors. While much has been learned about the effects of specific translocations on cell proliferation, much less is known about what causes these chromosome rearrangements. This article describes the development and use of a system that genetically selects for rare translocation events using the yeast Saccharomyces cerevisiae. A translocation YAC was created that contains the breakpoint cluster region from the human MLL gene, a gene frequently involved in translocations in leukemia patients, flanked by positive and negative selection markers. A translocation between the YAC and a yeast chromosome, whose breakpoint falls within the MLL DNA, physically separates the markers and forms the basis for the selection. When RAD52 is deleted, essentially all of the selected and screened cells contain simple translocations. The detectable translocation rates are the same in haploids and diploids, although the mechanisms involved and true translocation rates may be distinct. A unique double-strand break induced within the MLL sequences increases the number of detectable translocation events 100- to 1000-fold. This novel system provides a tractable assay for answering basic mechanistic questions about the development of chromosomal translocations.
Collapse
Affiliation(s)
- Rachel B Tennyson
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84132-3201, USA
| | | | | | | |
Collapse
|
39
|
Osman F, Tsaneva IR, Whitby MC, Doe CL. UV irradiation causes the loss of viable mitotic recombinants in Schizosaccharomyces pombe cells lacking the G(2)/M DNA damage checkpoint. Genetics 2002; 160:891-908. [PMID: 11901109 PMCID: PMC1462011 DOI: 10.1093/genetics/160.3.891] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Elevated mitotic recombination and cell cycle delays are two of the cellular responses to UV-induced DNA damage. Cell cycle delays in response to DNA damage are mediated via checkpoint proteins. Two distinct DNA damage checkpoints have been characterized in Schizosaccharomyces pombe: an intra-S-phase checkpoint slows replication and a G(2)/M checkpoint stops cells passing from G(2) into mitosis. In this study we have sought to determine whether UV damage-induced mitotic intrachromosomal recombination relies on damage-induced cell cycle delays. The spontaneous and UV-induced recombination phenotypes were determined for checkpoint mutants lacking the intra-S and/or the G(2)/M checkpoint. Spontaneous mitotic recombinants are thought to arise due to endogenous DNA damage and/or intrinsic stalling of replication forks. Cells lacking only the intra-S checkpoint exhibited no UV-induced increase in the frequency of recombinants above spontaneous levels. Mutants lacking the G(2)/M checkpoint exhibited a novel phenotype; following UV irradiation the recombinant frequency fell below the frequency of spontaneous recombinants. This implies that, as well as UV-induced recombinants, spontaneous recombinants are also lost in G(2)/M mutants after UV irradiation. Therefore, as well as lack of time for DNA repair, loss of spontaneous and damage-induced recombinants also contributes to cell death in UV-irradiated G(2)/M checkpoint mutants.
Collapse
Affiliation(s)
- Fekret Osman
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | |
Collapse
|
40
|
Garfinkel DJ, Bailis AM. Nucleotide Excision Repair, Genome Stability, and Human Disease: New Insight from Model Systems. J Biomed Biotechnol 2002; 2:55-60. [PMID: 12488584 PMCID: PMC153785 DOI: 10.1155/s1110724302201023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Nucleotide excision repair (NER) is one of several DNA repair pathways that are universal throughout phylogeny. NER has a broad substrate specificity and is capable of removing several classes of lesions to the DNA, including those that accumulate upon exposure to UV radiation. The loss of this activity in NER-defective mutants gives rise to characteristic sensitivities to UV that, in humans, is manifested as a greatly elevated sensitivity to exposure to the sun. Xeroderma pigmentosum (XP), Cockaynes syndrome (CS), and trichothiodystrophy (TTD) are three, rare, recessively inherited human diseases that are linked to these defects. Interestingly, some of the symptoms in afflicted individuals appear to be due to defects in transcription, the result of the dual functionality of several components of the NER apparatus as parts of transcription factor IIH (TFIIH). Studies with several model systems have revealed that the genetic and biochemical features of NER are extraordinarily conserved in eukaryotes. One system that has been studied very closely is the budding yeast Saccharomyces cerevisiae. While many yeast NER mutants display the expected increases in UV sensitivity and defective transcription, other interesting phenotypes have also been observed. Elevated mutation and recombination rates, as well as increased frequencies of genome rearrangement by retrotransposon movement and recombination between short genomic sequences have been documented. The potential relevance of these novel phenotypes to disease in humans is discussed.
Collapse
Affiliation(s)
- David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
41
|
Klein HL. Spontaneous chromosome loss in Saccharomyces cerevisiae is suppressed by DNA damage checkpoint functions. Genetics 2001; 159:1501-9. [PMID: 11779792 PMCID: PMC1461919 DOI: 10.1093/genetics/159.4.1501] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genomic instability is one of the hallmarks of cancer cells and is often the causative factor in revealing recessive gene mutations that progress cells along the pathway to unregulated growth. Genomic instability can take many forms, including aneuploidy and changes in chromosome structure. Chromosome loss, loss and reduplication, and deletions are the majority events that result in loss of heterozygosity (LOH). Defective DNA replication, repair, and recombination can significantly increase the frequency of spontaneous genomic instability. Recently, DNA damage checkpoint functions that operate during the S-phase checkpoint have been shown to suppress spontaneous chromosome rearrangements in haploid yeast strains. To further study the role of DNA damage checkpoint functions in genomic stability, we have determined chromosome loss in DNA damage checkpoint-deficient yeast strains. We have found that the DNA damage checkpoints are essential for preserving the normal chromosome number and act synergistically with homologous recombination functions to ensure that chromosomes are segregated correctly to daughter cells. Failure of either of these processes increases LOH events. However, loss of the G2/M checkpoint does not result in an increase in chromosome loss, suggesting that it is the various S-phase DNA damage checkpoints that suppress chromosome loss. The mec1 checkpoint function mutant, defective in the yeast ATR homolog, results in increased recombination through a process that is distinct from that operative in wild-type cells.
Collapse
Affiliation(s)
- H L Klein
- Department of Biochemistry and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
42
|
Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, Snipe JR, Resnick MA. Genes required for ionizing radiation resistance in yeast. Nat Genet 2001; 29:426-34. [PMID: 11726929 DOI: 10.1038/ng778] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ability of Saccharomyces cerevisiae to tolerate ionizing radiation damage requires many DNA-repair and checkpoint genes, most having human orthologs. A genome-wide screen of diploid mutants homozygous with respect to deletions of 3,670 nonessential genes revealed 107 new loci that influence gamma-ray sensitivity. Many affect replication, recombination and checkpoint functions. Nearly 90% were sensitive to other agents, and most new genes could be assigned to the following functional groups: chromatin remodeling, chromosome segregation, nuclear pore formation, transcription, Golgi/vacuolar activities, ubiquitin-mediated protein degradation, cytokinesis, mitochondrial activity and cell wall maintenance. Over 50% share homology with human genes, including 17 implicated in cancer, indicating that a large set of newly identified human genes may have related roles in the toleration of radiation damage.
Collapse
Affiliation(s)
- C B Bennett
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fasullo M, Giallanza P, Dong Z, Cera C, Bennett T. Saccharomyces cerevisiae rad51 mutants are defective in DNA damage-associated sister chromatid exchanges but exhibit increased rates of homology-directed translocations. Genetics 2001; 158:959-72. [PMID: 11454747 PMCID: PMC1461715 DOI: 10.1093/genetics/158.3.959] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saccharomyces cerevisiae Rad51 is structurally similar to Escherichia coli RecA. We investigated the role of S. cerevisiae RAD51 in DNA damage-associated unequal sister chromatid exchanges (SCEs), translocations, and inversions. The frequency of these rearrangements was measured by monitoring mitotic recombination between two his3 fragments, his3-Delta5' and his3-Delta3'::HOcs, when positioned on different chromosomes or in tandem and oriented in direct or inverted orientation. Recombination was measured after cells were exposed to chemical agents and radiation and after HO endonuclease digestion at his3-Delta3'::HOcs. Wild-type and rad51 mutant strains showed no difference in the rate of spontaneous SCEs; however, the rate of spontaneous inversions was decreased threefold in the rad51 mutant. The rad51 null mutant was defective in DNA damage-associated SCE when cells were exposed to either radiation or chemical DNA-damaging agents or when HO endonuclease-induced double-strand breaks (DSBs) were directly targeted at his3-Delta3'::HOcs. The defect in DNA damage-associated SCEs in rad51 mutants correlated with an eightfold higher spontaneous level of directed translocations in diploid strains and with a higher level of radiation-associated translocations. We suggest that S. cerevisiae RAD51 facilitates genomic stability by reducing nonreciprocal translocations generated by RAD51-independent break-induced replication (BIR) mechanisms.
Collapse
Affiliation(s)
- M Fasullo
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | | | |
Collapse
|
44
|
Galgoczy DJ, Toczyski DP. Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol Cell Biol 2001; 21:1710-8. [PMID: 11238908 PMCID: PMC86717 DOI: 10.1128/mcb.21.5.1710-1718.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the fact that eukaryotic cells enlist checkpoints to block cell cycle progression when their DNA is damaged, cells still undergo frequent genetic rearrangements, both spontaneously and in response to genotoxic agents. We and others have previously characterized a phenomenon (adaptation) in which yeast cells that are arrested at a DNA damage checkpoint eventually override this arrest and reenter the cell cycle, despite the fact that they have not repaired the DNA damage that elicited the arrest. Here, we use mutants that are defective in checkpoint adaptation to show that adaptation is important for achieving the highest possible viability after exposure to DNA-damaging agents, but it also acts as an entrée into some forms of genomic instability. Specifically, the spontaneous and X-ray-induced frequencies of chromosome loss, translocations, and a repair process called break-induced replication occur at significantly reduced rates in adaptation-defective mutants. This indicates that these events occur after a cell has first arrested at the checkpoint and then adapted to that arrest. Because malignant progression frequently involves loss of genes that function in DNA repair, adaptation may promote tumorigenesis by allowing genomic instability to occur in the absence of repair.
Collapse
Affiliation(s)
- D J Galgoczy
- Mt. Zion Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94115, USA
| | | |
Collapse
|
45
|
Abstract
Mitotic recombination is an important mechanism of DNA repair in eukaryotic cells. Given the redundancy of the eukaryotic genomes and the presence of repeated DNA sequences, recombination may also be an important source of genomic instability. Here we review the data, mainly from the budding yeast S. cerevisiae, that may help to understand the spontaneous origin of mitotic recombination and the different elements that may control its occurrence. We cover those observations suggesting a putative role of replication defects and DNA damage, including double-strand breaks, as sources of mitotic homologous recombination. An important part of the review is devoted to the experimental evidence suggesting that transcription and chromatin structure are important factors modulating the incidence of mitotic recombination. This is of great relevance in order to identify the causes and risk factors of genomic instability in eukaryotes.
Collapse
Affiliation(s)
- A Aguilera
- Departamento de Genética, Facultad de Biologia, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | |
Collapse
|
46
|
Abstract
Double-strand chromosome breaks can arise in a number of ways, by ionizing radiation, by spontaneous chromosome breaks during DNA replication, or by the programmed action of endonucleases, such as in meiosis. Broken chromosomes can be repaired either by one of several homologous recombination mechanisms, or by a number of nonhomologous repair processes. Many of these pathways compete actively for the repair of a double-strand break. Which of these repair pathways is used appears to be regulated developmentally, genetically and during the cell cycle.
Collapse
Affiliation(s)
- J E Haber
- Rosentiel Basic Medical Sciences Research Center, MS 029 Brandeis University, Waltham, MA 02454-9110, USA.
| |
Collapse
|
47
|
Abstract
The study of double-strand chromosome break repair by homologous and nonhomologous recombination is a growth industry. In the past year, there have been important advances both in understanding the connection between recombination and DNA replication and in linking recombination with origins of human cancer. At the same time, a combination of biochemical, genetic, molecular biological, and cytological approaches have provided a clearer vision of the specific functions of a variety of recombination proteins.
Collapse
Affiliation(s)
- J E Haber
- MS029 Rosentiel Center, Brandeis University, Waltham, MA 02454-9110, USA
| |
Collapse
|
48
|
Bashkirov VI, King JS, Bashkirova EV, Schmuckli-Maurer J, Heyer WD. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol 2000; 20:4393-404. [PMID: 10825202 PMCID: PMC85806 DOI: 10.1128/mcb.20.12.4393-4404.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.
Collapse
Affiliation(s)
- V I Bashkirov
- Institute of General Microbiology, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Bressan DA, Baxter BK, Petrini JH. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:7681-7. [PMID: 10523656 PMCID: PMC84807 DOI: 10.1128/mcb.19.11.7681] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae mre11Delta mutants are profoundly deficient in double-strand break (DSB) repair, indicating that the Mre11-Rad50-Xrs2 protein complex plays a central role in the cellular response to DNA DSBs. In this study, we examined the role of the complex in homologous recombination, the primary mode of DSB repair in yeast. We measured survival in synchronous cultures following irradiation and scored sister chromatid and interhomologue recombination genetically. mre11Delta strains were profoundly sensitive to ionizing radiation (IR) throughout the cell cycle. Mutant strains exhibited decreased frequencies of IR-induced sister chromatid and interhomologue recombination, indicating a general deficiency in homologous recombination-based DSB repair. Since a nuclease-deficient mre11 mutant was not impaired in these assays, it appears that the role of the S. cerevisiae Mre11-Rad50-Xrs2 protein complex in facilitating homologous recombination is independent of its nuclease activities.
Collapse
Affiliation(s)
- D A Bressan
- Laboratory of Genetics, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
50
|
Grushcow JM, Holzen TM, Park KJ, Weinert T, Lichten M, Bishop DK. Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 1999; 153:607-20. [PMID: 10511543 PMCID: PMC1460798 DOI: 10.1093/genetics/153.2.607] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Checkpoint gene function prevents meiotic progression when recombination is blocked by mutations in the recA homologue DMC1. Bypass of dmc1 arrest by mutation of the DNA damage checkpoint genes MEC1, RAD17, or RAD24 results in a dramatic loss of spore viability, suggesting that these genes play an important role in monitoring the progression of recombination. We show here that the role of mitotic checkpoint genes in meiosis is not limited to maintaining arrest in abnormal meioses; mec1-1, rad24, and rad17 single mutants have additional meiotic defects. All three mutants display Zip1 polycomplexes in two- to threefold more nuclei than observed in wild-type controls, suggesting that synapsis may be aberrant. Additionally, all three mutants exhibit elevated levels of ectopic recombination in a novel physical assay. rad17 mutants also alter the fraction of recombination events that are accompanied by an exchange of flanking markers. Crossovers are associated with up to 90% of recombination events for one pair of alleles in rad17, as compared with 65% in wild type. Meiotic progression is not required to allow ectopic recombination in rad17 mutants, as it still occurs at elevated levels in ndt80 mutants that arrest in prophase regardless of checkpoint signaling. These observations support the suggestion that MEC1, RAD17, and RAD24, in addition to their proposed monitoring function, act to promote normal meiotic recombination.
Collapse
Affiliation(s)
- J M Grushcow
- Department of Radiation, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|