1
|
Yang Y, Song S, Wang H, Ma Z, Gao Q. The antioxidative effect of STAT3 involved in cellular vulnerability to isoflurane. BMC Neurosci 2024; 25:75. [PMID: 39633283 PMCID: PMC11619428 DOI: 10.1186/s12868-024-00911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The vulnerable period to neurotoxicity of isoflurane overlaps with a developmental stage characterized by programmed neuronal death. STAT3 has been identified as a crucial molecule involved in survival pathways during this period. We aimed to investigate the role of STAT3 in cellular vulnerability to isoflurane. METHODS C57/BL6 mice on postnatal day 7 or 21, primary neurons derived from mice embryos at gestational days 14-16 and cultured for 5 or 14 days, as well as human neuroglioma U251 cells were treated with isoflurane. A plasmid containing human wild-type STAT3, STAT3 anti-sense oligonucleotide, STAT3 specific inhibitor STA21, proteasome inhibitor MG-132 and calcineurin inhibitor FK506 were utilized to evaluate the influence of STAT3 levels on isoflurane-induced cytotoxicity. The levels of Western blot results, mRNA, intracellular ROS, apoptotic rate, and calcineurin activity were analyzed using unpaired Student's t-test or one-way ANOVA followed by Bonferroni post hoc test, as appropriate. RESULTS Elevated levels of STAT3, reduced activity of calcineurin, as well as a diminished response to isoflurane-induced calcineurin activation and neuroapoptosis were observed in more mature brain or neurons. Isoflurane accelerated the degradation of ubiquitin-conjugated proteins but did not facilitate ubiquitin conjugation to proteins. STAT3 was of particular importance in the all ubiquitin-conjugated proteins degraded by isoflurane. Knockdown or inhibition of STAT3 nuclear translocation exacerbated isoflurane-induced oxidative injury and apoptosis, while STAT3 overexpression mitigated these effects. Finally, this study demonstrated that FK506 pretreatment mitigated the apoptosis, ROS accumulation, and the impairment of neurite growth in primary neurons after exposed to isoflurane. CONCLUSIONS These findings indicate that specific regulation of STAT3 was closely related with the cellular vulnerability to isoflurane via an antioxidative pathway.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Hongwei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, 210093, China.
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China.
| | - Qian Gao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China.
| |
Collapse
|
2
|
Gerke J, Frauendorf H, Schneider D, Wintergoller M, Hofmeister T, Poehlein A, Zebec Z, Takano E, Scrutton NS, Braus GH. Production of the Fragrance Geraniol in Peroxisomes of a Product-Tolerant Baker's Yeast. Front Bioeng Biotechnol 2020; 8:582052. [PMID: 33102464 PMCID: PMC7546902 DOI: 10.3389/fbioe.2020.582052] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Monoterpenoids, such as the plant metabolite geraniol, are of high industrial relevance since they are important fragrance materials for perfumes, cosmetics, and household products. Chemical synthesis or extraction from plant material for industry purposes are complex, environmentally harmful or expensive and depend on seasonal variations. Heterologous microbial production offers a cost-efficient and sustainable alternative but suffers from low metabolic flux of the precursors and toxicity of the monoterpenoid to the cells. In this study, we evaluated two approaches to counteract both issues by compartmentalizing the biosynthetic enzymes for geraniol to the peroxisomes of Saccharomyces cerevisiae as production sites and by improving the geraniol tolerance of the yeast cells. The combination of both approaches led to an 80% increase in the geraniol titers. In the future, the inclusion of product tolerance and peroxisomal compartmentalization into the general chassis engineering toolbox for monoterpenoids or other host-damaging, industrially relevant metabolites may lead to an efficient, low-cost, and eco-friendly microbial production for industrial purposes.
Collapse
Affiliation(s)
- Jennifer Gerke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Holm Frauendorf
- Institute of Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Maxim Wintergoller
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ziga Zebec
- Molecular Enzymology, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Eriko Takano
- Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Molecular Enzymology, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.,Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Abstract
Isoflurane, a commonly used volatile anesthetic, causes widespread neuronal apoptosis in the developing brain of rodents. Signal transducer and activator of transcription-3 (STAT3) signaling is crucial for cell survival during the neural network establishment period. The aim of this study was to determine whether isoflurane would target STAT3 to deliver its neurotoxicity. Mice at postnatal day 7 and primary cortical neurons cultured for 5 days were treated with isoflurane. Our data showed that isoflurane exposure downregulated the STAT3 survival pathway in the brain of mice and in primary neurons, whereas the mRNA levels of STAT3 remained unchanged after isoflurane exposure. We found that inhibiting the activity of calcineurin, which specifically promotes STAT3 degradation, alleviated isoflurane-induced neural apoptosis. Further studies showed that isoflurane increased calcineurin activity and that the inositol 1,4,5-trisphosphate-sensitive Ca(2+) channel was involved in these isoflurane-induced molecular cascades. These findings suggest that isoflurane-induced neurotoxicity may stem from STAT3 degradation, partially through the activation of calcineurin.
Collapse
|
4
|
A Synthetic Interaction between CDC20 and RAD4 in Saccharomyces cerevisiae upon UV Irradiation. Mol Biol Int 2014; 2014:519290. [PMID: 24707403 PMCID: PMC3953430 DOI: 10.1155/2014/519290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/12/2014] [Accepted: 01/13/2014] [Indexed: 12/25/2022] Open
Abstract
Regulation of DNA repair can be achieved through ubiquitin-mediated degradation of transiently induced proteins. In Saccharomyces cerevisiae, Rad4 is involved in damage recognition during nucleotide excision repair (NER) and, in conjunction with Rad23, recruits other proteins to the site of damage. We identified a synthetic interaction upon UV exposure between Rad4 and Cdc20, a protein that modulates the activity of the anaphase promoting complex (APC/C), a multisubunit E3 ubiquitin ligase complex. The moderately UV sensitive Δrad4 strain became highly sensitive when cdc20-1 was present, and was rescued by overexpression of CDC20. The double mutant is also deficient in elicting RNR3-lacZ transcription upon exposure to UV irradiation or 4-NQO compared with the Δrad4 single mutant. We demonstrate that the Δrad4/cdc20-1 double mutant is defective in double strand break repair by way of a plasmid end-joining assay, indicating that Rad4 acts to ensure that damaged DNA is repaired via a Cdc20-mediated mechanism. This study is the first to present evidence that Cdc20 may play a role in the degradation of proteins involved in nucleotide excision repair.
Collapse
|
5
|
Palmer LK, Baptiste BA, Fester JC, Perkins JC, Keil RL. RRD1, a component of the TORC1 signalling pathway, affects anaesthetic response in Saccharomyces cerevisiae. Yeast 2010; 26:655-61. [PMID: 19774547 DOI: 10.1002/yea.1712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms of action of volatile anaesthetics remain unknown despite clinical use for over 150 years. While many effects of these agents have been characterized, clear insight into how these effects relate to the physiological state of anaesthesia has not been established. Volatile anaesthetics arrest cell division in Saccharomyces cerevisiae in a manner that parallels the anaesthetic actions of these drugs in mammals. To gain additional insight into the cellular activities of these drugs, we isolated genes that, when present on multi-copy plasmids, render S. cerevisiae resistant to the volatile anaesthetic isoflurane. One of these genes, RRD1, encodes a subunit of the Tap42p-Sit4p-Rrd1p phosphatase complex that functions in the target of rapamycin complex 1 (TORC1) signalling pathway. In addition, we show that mutations in two other genes encoding components of the TORC1 pathway, GLN3 and URE2, also affect yeast anaesthetic response. These findings suggest that TORC1-mediated signalling is involved in cellular response to volatile anaesthetics in S. cerevisiae.
Collapse
Affiliation(s)
- Laura K Palmer
- Division of Mathematics and Natural Sciences, Pennsylvania State University Altoona, College, PA 16601, USA.
| | | | | | | | | |
Collapse
|
6
|
Qiu L, Pashkova N, Walker JR, Winistorfer S, Allali-Hassani A, Akutsu M, Piper R, Dhe-Paganon S. Structure and function of the PLAA/Ufd3-p97/Cdc48 complex. J Biol Chem 2009; 285:365-72. [PMID: 19887378 PMCID: PMC2804184 DOI: 10.1074/jbc.m109.044685] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PLAA (ortholog of yeast Doa1/Ufd3, also know as human PLAP or phospholipase A2-activating protein) has been implicated in a variety of disparate biological processes that involve the ubiquitin system. It is linked to the maintenance of ubiquitin levels, but the mechanism by which it accomplishes this is unclear. The C-terminal PUL (PLAP, Ufd3p, and Lub1p) domain of PLAA binds p97, an AAA ATPase, which among other functions helps transfer ubiquitinated proteins to the proteasome for degradation. In yeast, loss of Doa1 is suppressed by altering p97/Cdc48 function indicating that physical interaction between PLAA and p97 is functionally important. Although the overall regions of interaction between these proteins are known, the structural basis has been unavailable. We solved the high resolution crystal structure of the p97-PLAA complex showing that the PUL domain forms a 6-mer Armadillo-containing domain. Its N-terminal extension folds back onto the inner curvature forming a deep ridge that is positively charged with residues that are phylogenetically conserved. The C terminus of p97 binds in this ridge, where the side chain of p97-Tyr805, implicated in phosphorylation-dependent regulation, is buried. Expressed in doa1Δ null cells, point mutants of the yeast ortholog Doa1 that disrupt this interaction display slightly reduced ubiquitin levels, but unlike doa1Δ null cells, showed only some of the growth phenotypes. These data suggest that the p97-PLAA interaction is important for a subset of PLAA-dependent biological processes and provides a framework to better understand the role of these complex molecules in the ubiquitin system.
Collapse
Affiliation(s)
- Liyan Qiu
- Structural Genomics Consortium, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1L7,Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ruotolo R, Marchini G, Ottonello S. Membrane transporters and protein traffic networks differentially affecting metal tolerance: a genomic phenotyping study in yeast. Genome Biol 2008; 9:R67. [PMID: 18394190 PMCID: PMC2643938 DOI: 10.1186/gb-2008-9-4-r67] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 02/26/2008] [Accepted: 04/07/2008] [Indexed: 01/01/2023] Open
Abstract
Genomic phenotyping was used to assess the role of all non-essential S. cerevisiae proteins in modulating cell viability after exposure to cadmium, nickel and other metals. Background The cellular mechanisms that underlie metal toxicity and detoxification are rather variegated and incompletely understood. Genomic phenotyping was used to assess the roles played by all nonessential Saccharomyces cerevisiae proteins in modulating cell viability after exposure to cadmium, nickel, and other metals. Results A number of novel genes and pathways that affect multimetal as well as metal-specific tolerance were discovered. Although the vacuole emerged as a major hot spot for metal detoxification, we also identified a number of pathways that play a more general, less direct role in promoting cell survival under stress conditions (for example, mRNA decay, nucleocytoplasmic transport, and iron acquisition) as well as proteins that are more proximally related to metal damage prevention or repair. Most prominent among the latter are various nutrient transporters previously not associated with metal toxicity. A strikingly differential effect was observed for a large set of deletions, the majority of which centered on the ESCRT (endosomal sorting complexes required for transport) and retromer complexes, which - by affecting transporter downregulation and intracellular protein traffic - cause cadmium sensitivity but nickel resistance. Conclusion The data show that a previously underestimated variety of pathways are involved in cadmium and nickel tolerance in eukaryotic cells. As revealed by comparison with five additional metals, there is a good correlation between the chemical properties and the cellular toxicity signatures of various metals. However, many conserved pathways centered on membrane transporters and protein traffic affect cell viability with a surprisingly high degree of metal specificity.
Collapse
Affiliation(s)
- Roberta Ruotolo
- Department of Biochemistry and Molecular Biology, Viale G.P. Usberti 23/A, University of Parma, I-43100 Parma, Italy
| | | | | |
Collapse
|
8
|
Palmer LK, Rannels SL, Kimball SR, Jefferson LS, Keil RL. Inhibition of mammalian translation initiation by volatile anesthetics. Am J Physiol Endocrinol Metab 2006; 290:E1267-75. [PMID: 16434554 DOI: 10.1152/ajpendo.00463.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volatile anesthetics are essential for modern medical practice, but sites and mechanisms of action for any of their numerous cellular effects remain largely unknown. Previous studies with yeast showed that volatile anesthetics induce nutrient-dependent inhibition of growth through mechanisms involving inhibition of mRNA translation. Studies herein show that the volatile anesthetic halothane inhibits protein synthesis in perfused rat liver at doses ranging from 2 to 6%. A marked disaggregation of polysomes occurs, indicating that inhibition of translation initiation plays a key role. Dose- and time-dependent alterations that decrease the function of a variety of translation initiation processes are observed. At 6% halothane, a rapid and persistent increase in phosphorylation of the alpha-subunit of eukaryotic translation initiation factor (eIF)2 occurs. This is accompanied by inhibition of activity of the guanine nucleotide exchange factor eIF2B that is responsible for GDP-GTP exchange on eIF2. At lower doses, neither eIF2alpha phosphorylation nor eIF2B activity is altered. After extended exposure to 6% halothane, alterations in two separate responses regulated by the target of rapamycin pathway occur: 1) redistribution of eIF4E from its translation-stimulatory association with eIF4G to its translation-inactive complex with eIF4E-binding protein-1; and 2) decreased phosphorylation of ribosomal protein S6 (rpS6) with a corresponding decrease in active forms of a kinase that phosphorylates rpS6 (p70(S6K1)). Changes in the association of eIF4E and eIF4G are observed only after extended exposure to low anesthetic doses. Thus dose- and time-dependent alterations in multiple processes permit liver cells to adapt translation to variable degrees and duration of stress imposed by anesthetic exposure.
Collapse
Affiliation(s)
- Laura K Palmer
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
9
|
Araki T, Uesono Y, Oguchi T, Toh-E A. LAS24/KOG1, a component of the TOR complex 1 (TORC1), is needed for resistance to local anesthetic tetracaine and normal distribution of actin cytoskeleton in yeast. Genes Genet Syst 2006; 80:325-43. [PMID: 16394584 DOI: 10.1266/ggs.80.325] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is known that some local anesthetics inhibit the growth of budding yeast cells. To investigate the pathway of local anesthetics' action, we isolated and characterized mutants that were hyper-sensitive to tetracaine, and at the same time, temperature-sensitive for growth. They were collectively called las (local anesthetic sensitive) mutants. One of the LAS genes, LAS24, was found to be identical to KOG1, which had been independently discovered as a member of the TOR complex 1 (TORC1). Las24p/Kog1p is a widely conserved TOR binding protein containing the NRC domain, HEAT repeats and WD-40 repeats, but its function remains unknown. Like the tor mutants, the las24 mutants were found to have a defect in cell wall integrity and to show sensitivity to rapamycin. Furthermore, Las24p is required not only in TORC1-mediated (rapamycin-sensitive) pathways such as translation initiation control and phosphorylation of Npr1p and Gln3p, but also for the normal distribution of the actin cytoskeleton, which has been regarded as a TORC2-mediated event. Intriguingly, the temperature-sensitivity of the las24 mutant was suppressed by either activation of Tap42/PPase or by down-regulation of the RAS/cAMP pathway. Suppressors of the temperature-sensitivity of the las24-1 mutant were found not to be effective for suppression of the tetracaine-sensitivity of the same mutant. These observations along with the facts that tetracaine and high temperature differentially affected the las24-1 mutant suggest that Las24p/Kog1p is not a target of tetracaine and that the tetracaine-sensitive step may be one of downstream branches of the TORC1 pathway. Consistent with the broad cellular functions exerted by the TOR pathway, we found that Las24p was associated with membranes and was localized at vacuoles, the plasma membrane and small vesicles.
Collapse
Affiliation(s)
- Tomoyuki Araki
- Department of Biological Science, Graduate School of Science, University of Tokyo, Hongo, Japan
| | | | | | | |
Collapse
|
10
|
Kwapisz M, Cholbinski P, Hopper AK, Rousset JP, Zoladek T. Rsp5 ubiquitin ligase modulates translation accuracy in yeast Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2005; 11:1710-8. [PMID: 16177134 PMCID: PMC1370857 DOI: 10.1261/rna.2131605] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rsp5p is an essential yeast ubiquitin protein ligase that ubiquitinates multiple proteins involved in various processes. Recent studies indicate that ubiquitination also affects translation. Here, we show that the strain with the rsp5-13 mutation exhibits altered sensitivity to antibiotics and a slower rate of translation. Using a sensitive dual-gene reporter system, we demonstrate that stop codon readthrough efficiency is decreased in the rsp5-13 mutant, while both +1 and -1 frameshifting were unaffected. The effect of the rsp5-13 mutation on readthrough could be reversed by increased expression of ubiquitin and partially suppressed by overproduction of the elongation factor eEF1A. As assessed by fluorescence in situ hybridization, the rsp5-13 mutant cells accumulate tRNA nuclear pools, perhaps depleting tRNA from the cytoplasm. Nuclear accumulation of tRNA is observed only when rsp5-13 cells are grown in media with high amino acid content. This defect, also reversed by overproduction of the elongation factor eEF1A, may be the primary reason for altered translational decoding accuracy.
Collapse
Affiliation(s)
- Marta Kwapisz
- Department of Genetics, Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | | | | | | | | |
Collapse
|
11
|
Palmer LK, Shoemaker JL, Baptiste BA, Wolfe D, Keil RL. Inhibition of translation initiation by volatile anesthetics involves nutrient-sensitive GCN-independent and -dependent processes in yeast. Mol Biol Cell 2005; 16:3727-39. [PMID: 15930127 PMCID: PMC1182311 DOI: 10.1091/mbc.e05-02-0127] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/11/2022] Open
Abstract
Volatile anesthetics including isoflurane affect all cells examined, but their mechanisms of action remain unknown. To investigate the cellular basis of anesthetic action, we are studying Saccharomyces cerevisiae mutants altered in their response to anesthetics. The zzz3-1 mutation renders yeast isoflurane resistant and is an allele of GCN3. Gcn3p functions in the evolutionarily conserved general amino acid control (GCN) pathway that regulates protein synthesis and gene expression in response to nutrient availability through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). Hyperphosphorylation of eIF2alpha inhibits translation initiation during amino acid starvation. Isoflurane rapidly (in <15 min) inhibits yeast cell division and amino acid uptake. Unexpectedly, phosphorylation of eIF2alpha decreased dramatically upon initial exposure although hyperphosphorylation occurred later. Translation initiation was inhibited by isoflurane even when eIF2alpha phosphorylation decreased and this inhibition was GCN-independent. Maintenance of inhibition required GCN-dependent hyperphosphorylation of eIF2alpha. Thus, two nutrient-sensitive stages displaying unique features promote isoflurane-induced inhibition of translation initiation. The rapid phase is GCN-independent and apparently has not been recognized previously. The maintenance phase is GCN-dependent and requires inhibition of general translation imparted by enhanced eIF2alpha phosphorylation. Surprisingly, as shown here, the transcription activator Gcn4p does not affect anesthetic response.
Collapse
Affiliation(s)
- Laura K Palmer
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033-2390, USA
| | | | | | | | | |
Collapse
|
12
|
Liu M, Brusilow WSA, Needleman R. Activity of the yeast Tat2p tryptophan permease is sensitive to the anti-tumor agent 4-phenylbutyrate. Curr Genet 2004; 46:256-68. [PMID: 15490173 DOI: 10.1007/s00294-004-0531-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Phenylbutyrate (PB) induces differentiation and is being intensively studied as a treatment for brain, prostate, breast, and hematopoietic cancer. While many different primary targets for PB have been proposed, the mechanism by which it causes cellular differentiation remains unknown. To identify the primary cellular target, we investigated its effects on Saccharomyces cerevisiae and showed that it inhibits tryptophan transport. We show here that PB and sorbic acid induce an ubiquitin-dependent turnover of the tryptophan permease Tat2p. However, the inhibition of transport is not a consequence of the loss of Tat2p, since it also occurs when turnover is prevented by deleting the Tat2p ubiquitination sites. When we tested the effects of PB and other growth inhibitory agents on the growth of amino acid auxotrophs, we found that several auxotrophs are hypersensitive to a number of chemically unrelated agents, including PB and some, but not all, weak acids; and this sensitivity is due to the inhibition of amino acid transport. For the inhibitory weak acids, inhibition is not confined to aromatic amino acid auxotrophs, nor is it a general weak acid stress response, since the degree of inhibition is independent of weak acid hydrophobicity and p Ka. Our results show that diverse agents affect the activity of the Tat2p permease rather than its stability and suggest the hypothesis that the anti-neoplastic action of PB is due to a decrease in the activity of surface receptors or other membrane proteins needed to maintain the transformed state.
Collapse
Affiliation(s)
- Ming Liu
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 E. Canfield Ave, Detroit, MI 48201, USA
| | | | | |
Collapse
|
13
|
Ogiso Y, Sugiura R, Kamo T, Yanagiya S, Lu Y, Okazaki K, Shuntoh H, Kuno T. Lub1 participates in ubiquitin homeostasis and stress response via maintenance of cellular ubiquitin contents in fission yeast. Mol Cell Biol 2004; 24:2324-31. [PMID: 14993272 PMCID: PMC355854 DOI: 10.1128/mcb.24.6.2324-2331.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin-dependent proteolysis plays a pivotal role in stress responses. To investigate the mechanisms of these cellular processes, we have been studying Schizosaccharomyces pombe mutants that have altered sensitivities to various stress conditions. Here, we showed that Lub1, a homologue of Ufd3p/Zzz4p/Doa1p in budding yeast, is involved in the regulation of ubiquitin contents. Disruption of the lub1+ gene resulted in monoubiquitin as well as multiubiquitin depletion without change in mRNA level and in hypersensitivity to various stress conditions. Consistently, overexpression of genes encoding ubiquitin suppressed the defects associated with lub1 mutation, indicating that the phenotypes of the lub1 mutants under stress conditions were due to cellular ubiquitin shortage at the posttranscriptional level. In addition, the lub1-deleted cells showed aberrant functions in ubiquitin/proteasome-dependent proteolysis, with accelerated degradation of ubiquitin. Also Cdc48, a stress-induced chaperon-like essential ATPase, was found to interact with Lub1, and this association might contribute to the stabilization of Lub1. Our results indicated that Lub1 is responsible for ubiquitin homeostasis at the protein level through a negative regulation of ubiquitin degradation.
Collapse
Affiliation(s)
- Yasunari Ogiso
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Harkness TAA, Davies GF, Ramaswamy V, Arnason TG. The ubiquitin-dependent targeting pathway in Saccharomyces cerevisiae plays a critical role in multiple chromatin assembly regulatory steps. Genetics 2002; 162:615-32. [PMID: 12399376 PMCID: PMC1462303 DOI: 10.1093/genetics/162.2.615] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a screen designed to isolate Saccharomyces cerevisiae strains defective for in vitro chromatin assembly, two temperature-sensitive (ts) mutants were obtained: rmc1 and rmc3 (remodeling of chromatin). Cloning of RMC1 and RMC3 revealed a broad role for the ubiquitin-dependent targeting cascade as the ubiquitin-protein ligases (E3s), the anaphase promoting complex (APC; RMC1 encodes APC5) and Rsp5p, respectively, were identified. Genetic studies linked the rmc1/apc5 chromatin assembly defect to APC function: rmc1/apc5 genetically interacted with apc9Delta, apc10Delta, and cdc26Delta mutants. Furthermore, phenotypes associated with the rmc1/apc5 allele were consistent with defects in chromatin metabolism and in APC function: (i) UV sensitivity, (ii) plasmid loss, (iii) accumulation of G2/M cells, and (iv) suppression of the ts defect by growth on glucose-free media and by expression of ubiquitin. On the other hand, the multifunctional E3, Rsp5p, was shown to be required for both in vitro and in vivo chromatin assembly, as well as for the proper transcriptional and translational control of at least histone H3. The finding that the distinctly different E3 enzymes, APC and Rsp5p, both play roles in regulating chromatin assembly highlight the depth of the regulatory networks at play. The significance of these findings will be discussed.
Collapse
Affiliation(s)
- Troy A A Harkness
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | |
Collapse
|
15
|
Kamińska J, Gajewska B, Hopper AK, Zoładek T. Rsp5p, a new link between the actin cytoskeleton and endocytosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2002; 22:6946-8. [PMID: 12242276 PMCID: PMC139796 DOI: 10.1128/mcb.22.20.6946-6958.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Revised: 04/30/2002] [Accepted: 07/11/2002] [Indexed: 11/20/2022] Open
Abstract
Rsp5p is an ubiquitin-protein ligase of Saccharomyces cerevisiae that has been implicated in numerous processes including transcription, mitochondrial inheritance, and endocytosis. Rsp5p functions at multiple steps of endocytosis, including ubiquitination of substrates and other undefined steps. We propose that one of the roles of Rsp5p in endocytosis involves maintenance and remodeling of the actin cytoskeleton. We report the following. (i) There are genetic interactions between rsp5 and several mutant genes encoding actin cytoskeletal proteins. rsp5 arp2, rsp5 end3, and rsp5 sla2 double mutants all show synthetic growth defects. Overexpressed wild-type RSP5 or mutant rsp5 genes with lesions of some WW domains suppress growth defects of arp2 and end3 cells. The defects in endocytosis, actin cytoskeleton, and morphology of arp2 are also suppressed. (ii) Rsp5p and Sla2p colocalize in abnormal F-actin-containing clumps in arp2 and pan1 mutants. Immunoprecipitation experiments confirmed that Rsp5p and Act1p colocalize in pan1 mutants. (iii) Rsp5p and Sla2p coimmunoprecipitate and partially colocalize to punctate structures in wild-type cells. These studies provide the first evidence for an interaction of an actin cytoskeleton protein with Rsp5p. (iv) rsp5-w1 mutants are resistant to latrunculin A, a drug that sequesters actin monomers and depolymerizes actin filaments, consistent with the fact that Rsp5p is involved in actin cytoskeleton dynamics.
Collapse
Affiliation(s)
- Joanna Kamińska
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | |
Collapse
|
16
|
Hanway D, Chin JK, Xia G, Oshiro G, Winzeler EA, Romesberg FE. Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc Natl Acad Sci U S A 2002; 99:10605-10. [PMID: 12149442 PMCID: PMC124988 DOI: 10.1073/pnas.152264899] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A competitive growth assay has been used to identify yeast genes involved in the repair of UV- or MMS-induced DNA damage. A collection of 2,827 yeast strains was analyzed in which each strain has a single ORF replaced with a cassette containing two unique sequence tags, allowing for its detection by hybridization to a high-density oligonucleotide array. The hybridization data identify a high percentage of the deletion strains present in the collection that were previously characterized as being sensitive to the DNA-damaging agents. The assay, and subsequent analysis, has been used to identify six genes not formerly known to be involved in the damage response, whose deletion renders the yeast sensitive to UV or MMS treatment. The recently identified genes include three uncharacterized ORFs, as well as genes that encode protein products implicated in ubiquitination, gene silencing, and transport across the mitochondrial membrane. Epistatsis analysis of four of the genes was performed to determine the DNA damage repair pathways in which the protein products function.
Collapse
Affiliation(s)
- Denise Hanway
- Department of Chemistry and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- H A Nash
- Laboratory of Molecular Biology, National Institute of Mental Health, Building 36/Room 1B08, 9000 Rockville Pike, Bethesda, MD 20892-4034, USA
| |
Collapse
|
18
|
Abstract
Volatile anesthetics affect all cells and tissues tested, but their mechanisms and sites of action remain unknown. To gain insight into the cellular activities of anesthetics, we have isolated genes that, when overexpressed, render Saccharomyces cerevisiae resistant to the volatile anesthetic isoflurane. One of these genes, WAK3/TAT1, encodes a permease that transports amino acids including leucine and tryptophan, for which our wild-type strain is auxotrophic. This suggests that availability of amino acids may play a key role in anesthetic response. Multiple lines of evidence support this proposal: (i) Deletion or overexpression of permeases that transport leucine and/or tryptophan alters anesthetic response; (ii) prototrophic strains are anesthetic resistant; (iii) altered concentrations of leucine and tryptophan in the medium affect anesthetic response; and (iv) uptake of leucine and tryptophan is inhibited during anesthetic exposure. Not all amino acids are critical for this response since we find that overexpression of the lysine permease does not affect anesthetic sensitivity. These findings are consistent with models in which anesthetics have a physiologically important effect on availability of specific amino acids by altering function of their permeases. In addition, we show that there is a relationship between nutrient availability and ubiquitin metabolism in this response.
Collapse
Affiliation(s)
- Laura K Palmer
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
19
|
Shcherbik N, Kumar S, Haines DS. Substrate proteolysis is inhibited by dominant-negative Nedd4 and Rsp5 mutants harboring alterations in WW domain 1. J Cell Sci 2002; 115:1041-8. [PMID: 11870222 DOI: 10.1242/jcs.115.5.1041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian Nedd4 and its budding yeast orthologue Rsp5 are members of a large family of HECT-domain-containing ubiquitin ligases. Besides possessing a Ca2+/lipid-binding domain, both ligases have multiple protein-interacting modules termed WW domains. The C-terminal WW domains mediate interactions with substrates, but the function of the first WW domain remains unclear. We found that expression of a WW domain 1 Nedd4 mutant inhibits the growth of budding yeast by affecting the rsp5-ole1pathway. The WW domain 1 mutant-induced phenotype is suppressed by ole1 cDNA overexpression or oleic acid supplementation of growth media and ole1 RNA levels are reduced in cells expressing this Nedd4 mutant. Also, the WW domain 1 Nedd4 mutant associates via WW domains 2 and 3 with Spt23, a Rsp5 target and ole1 transactivator. The dominant-negative activity of this mutant is associated with promoting accumulation of unprocessed Spt23 and inhibiting generation of processed and presumably active protein. Also, Spt23 processing is inhibited by a Nedd4 mutant that lacks ubiquitin ligase activity and Spt23-binding-competent Rsp5 mutants harboring WW domain 1 or ligase domain mutations. Interestingly, in mammalian cells, wild-type Nedd4 promotes proteasome-mediated degradation of the precursor form of Spt23. WW domain 1 and ligase domain Nedd4 mutants block its degradation. These results indicate that WW domain 1 of these ligases interacts with cofactors that are required for ubiquitin/proteasome-dependent proteolysis of bound substrates.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
20
|
Forsberg H, Hammar M, Andréasson C, Molinér A, Ljungdahl PO. Suppressors of ssy1 and ptr3 null mutations define novel amino acid sensor-independent genes in Saccharomyces cerevisiae. Genetics 2001; 158:973-88. [PMID: 11454748 PMCID: PMC1461718 DOI: 10.1093/genetics/158.3.973] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ssy1p and Ptr3p are components of the yeast plasma membrane SPS amino acid sensor. In response to extracellular amino acids this sensor initiates metabolic signals that ultimately regulate the functional expression of several amino acid-metabolizing enzymes and amino acid permeases (AAPs). As a result of diminished leucine uptake capabilities, ssy1Delta leu2 and ptr3Delta leu2 mutant strains are unable to grow on synthetic complete medium (SC). Genes affecting the functional expression of AAPs were identified by selecting spontaneous suppressing mutations in amino acid sensor-independent (ASI) genes that restore growth on SC. The suppressors define 11 recessive (asi) complementation groups and 5 dominant (ASI) linkage groups. Strains with mutations in genes assigned to these 16 groups fall into two phenotypic classes. Mutations in the class I genes (ASI1, ASI2, ASI3, TUP1, SSN6, ASI13) derepress the transcription of AAP genes. ASI1, ASI2, and ASI3 encode novel membrane proteins, and Asi1p and Asi3p are homologous proteins that have conserved ubiquitin ligase-like RING domains at their extreme C termini. Several of the class II genes (DOA4, UBA1, BRO1, BUL1, RSP5, VPS20, VPS36) encode proteins implicated in controlling aspects of post-Golgi endosomal-vacuolar protein sorting. The results from genetic and phenotypic analysis indicate that SPS sensor-initiated signals function positively to facilitate amino acid uptake and that two independent ubiquitin-mediated processes negatively modulate amino acid uptake.
Collapse
Affiliation(s)
- H Forsberg
- Ludwig Institute for Cancer Research, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Hoppe T, Matuschewski K, Rape M, Schlenker S, Ulrich HD, Jentsch S. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 2000; 102:577-86. [PMID: 11007476 DOI: 10.1016/s0092-8674(00)00080-5] [Citation(s) in RCA: 467] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Processing of integral membrane proteins in order to liberate active proteins is of exquisite cellular importance. Examples are the processing events that govern sterol regulation, Notch signaling, the unfolded protein response, and APP fragmentation linked to Alzheimer's disease. In these cases, the proteins are thought to be processed by regulated intramembrane proteolysis, involving site-specific, membrane-localized proteases. Here we show that two homologous yeast transcription factors SPT23 and MGA2 are made as dormant ER/nuclear membrane-localized precursors and become activated by a completely different mechanism that involves ubiquitin/proteasome-dependent processing. SPT23 and MGA2 are relatives of mammalian NF-kappaB and control unsaturated fatty acid levels. Intriguingly, proteasome-dependent processing of SPT23 is regulated by fatty acid pools, suggesting that the precursor itself or interacting partners are sensors of membrane composition or fluidity.
Collapse
MESH Headings
- Adenosine Triphosphatases
- Cell Cycle Proteins/physiology
- Cysteine Endopeptidases/metabolism
- Endoplasmic Reticulum/chemistry
- Endoplasmic Reticulum/metabolism
- Endosomal Sorting Complexes Required for Transport
- Fatty Acid Desaturases/genetics
- Fatty Acids, Unsaturated/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Expression Regulation, Fungal
- Genes, Dominant/genetics
- Intracellular Membranes/chemistry
- Intracellular Membranes/metabolism
- Membrane Proteins
- Microsomes/chemistry
- Microsomes/metabolism
- Models, Biological
- Multienzyme Complexes/metabolism
- Mutation/genetics
- NF-kappa B/metabolism
- Nuclear Pore Complex Proteins
- Nuclear Proteins/physiology
- Nucleocytoplasmic Transport Proteins
- Promoter Regions, Genetic/genetics
- Proteasome Endopeptidase Complex
- Protein Precursors/metabolism
- Protein Processing, Post-Translational
- Proteins/physiology
- RNA, Fungal/analysis
- RNA, Fungal/genetics
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Stearoyl-CoA Desaturase
- Trans-Activators
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitin-Protein Ligase Complexes
- Ubiquitins/metabolism
- Valosin Containing Protein
Collapse
Affiliation(s)
- T Hoppe
- Department of Molecular Cell Biology, Max Planck Institute for Biochemistry, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|