1
|
Hu D, Zhang Z, Wang Y, Li S, Zhang J, Wu Z, Sun M, Jiang J, Liu D, Ji X, Wang S, Wang Y, Luo X, Huang W, Xia L. Transcription factor ELF4 in physiology and diseases: Molecular roles and clinical implications. Genes Dis 2025; 12:101394. [PMID: 40083328 PMCID: PMC11904542 DOI: 10.1016/j.gendis.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 03/16/2025] Open
Abstract
Transcription factor E74 like ETS transcription factor 4 (ELF4), a member of the ETS family, is highly expressed in normal human hematopoietic tissue, ovary, placenta, colon, and certain pathological cell lines. During normal physiological processes, ELF4 regulates differentiation in osteogenic, adipocyte, and neuronal types. It also exerts a critical impact on the development of the immune system. However, its function is dysregulated through posttranslational modifications, gene fusions, and complex signaling crosstalk under pathological conditions. Furthermore, serving as a double-edged sword in cancer, ELF4 exhibits both tumor-suppressing and tumor-promoting effects. Specifically, ELF4 plays a critical role in cancer metastasis, proliferation, and modulation of the tumor microenvironment. This review provides an in-depth overview of the molecular structure and post-translational modifications of ELF4. It also summarizes the hallmarks of ELF4 in physiology and diseases, with a particular focus on its significance in oncology. Notably, this review underscores the potential of ELF4 as a prognostic biomarker, highlighting its clinical relevance. Finally, it discusses unresolved questions and future research directions of ELF4. An in-depth understanding of ELF4 biology could facilitate its clinical translation and offer promising targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| |
Collapse
|
2
|
Ozturk K, Panwala R, Sheen J, Ford K, Jayne N, Portell A, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Interface-guided phenotyping of coding variants in the transcription factor RUNX1. Cell Rep 2024; 43:114436. [PMID: 38968069 PMCID: PMC11345852 DOI: 10.1016/j.celrep.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.
Collapse
Affiliation(s)
- Kivilcim Ozturk
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeanna Sheen
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nathan Jayne
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephan Hutter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Du HQ, Zhao XD. Current understanding of ELF4 deficiency: a novel inborn error of immunity. World J Pediatr 2024; 20:444-450. [PMID: 38733460 DOI: 10.1007/s12519-024-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/12/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND ELF4 deficiency has been recently recognized as a novel disorder within the spectrum of inborn errors of immunity (IEIs), specifically categorized as a "disease of immune dysregulation." Cases of this condition, reported by our team and others, are very limited worldwide. As such, our current knowledge of this new disease remains preliminary. This review aims to provide a brief overview of the clinical manifestations, pathogenesis, and treatment strategies for this novel IEI. DATA SOURCES A comprehensive review was conducted after an extensive literature search in the PubMed/Medline database and websites concerning transcriptional factor ELF4 and reports concerning patients with ELF4 deficiency. Our search strategy was "ELF4 OR ETS-related transcription factor Elf-4 OR EL4-like factor 4 OR myeloid Elf-1-like factor" as of the time of manuscript submission. RESULTS The current signature manifestations of ELF4 deficiency disorder are recurrent and prolonged oral ulcer, abdominal pain, and diarrhea in pediatric males. In some cases, immunodeficiency and autoimmunity can also be prominent. Targeted Sanger sequencing or whole exome sequencing can be used to detect variation in ELF4 gene. Western blotting for ELF4 expression of the patient's cells can confirm the pathogenic effect of the variant. To fully confirm the pathogenicity of the variant, further functional test is strongly advised. Glucocorticoid and biologics are the mainstream management of ELF4 deficiency disorder. CONCLUSIONS Pediatric males presenting with recurring ulcerations in digestive tract epithelium with or without recurrent fever should be suspected of DEX. When atypical presentations are prominent, variations in ELF4 gene should be carefully evaluated functionally due to the complex nature of ELF4 function. Experience of treating DEX includes use of glucocorticoid and biologics and more precise treatment needs more patients to identify and further mechanistic study.
Collapse
Affiliation(s)
- Hong-Qiang Du
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Zhongshan Er Road 136Yuzhong District, Chongqing, China
| | - Xiao-Dong Zhao
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Zhongshan Er Road 136Yuzhong District, Chongqing, China.
| |
Collapse
|
4
|
Xu A, Sun M, Li Z, Chu Y, Fang K, Zhang Y, Lian J, Zhang L, Chen T, Xu M. ELF4 contributes to esophageal squamous cell carcinoma growth and metastasis by augmenting cancer stemness via FUT9. Acta Biochim Biophys Sin (Shanghai) 2024; 56:129-139. [PMID: 37674363 PMCID: PMC10875363 DOI: 10.3724/abbs.2023225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) commonly has aggressive properties and a poor prognosis. Investigating the molecular mechanisms underlying the progression of ESCC is crucial for developing effective therapeutic strategies. Here, by performing transcriptome sequencing in ESCC and adjacent normal tissues, we find that E74-like transcription factor 4 (ELF4) is the main upregulated transcription factor in ESCC. The results of the immunohistochemistry show that ELF4 is overexpressed in ESCC tissues and is significantly correlated with cancer staging and prognosis. Furthermore, we demonstrate that ELF4 could promote cancer cell proliferation, migration, invasion, and stemness by in vivo assays. Through RNA-seq and ChIP assays, we find that the stemness-related gene fucosyltransferase 9 ( FUT9) is transcriptionally activated by ELF4. Meanwhile, ELF4 is verified to affect ESCC cancer stemness by regulating FUT9 expression. Overall, we first discover that the transcription factor ELF4 is overexpressed in ESCC and can promote ESCC progression by transcriptionally upregulating the stemness-related gene FUT9.
Collapse
Affiliation(s)
- Aiping Xu
- Endoscopy CenterZhongshan HospitalSchool of MedicineFudan UniversityShanghai200032China
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
- Department of Gastroenterology and HepatologyJing’an District Centre HospitalFudan UniversityShanghai20032China
| | - Mingchuang Sun
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Zhaoxing Li
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Yuan Chu
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Kang Fang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Yunwei Zhang
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Jingjing Lian
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Li Zhang
- Department of PathologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Tao Chen
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| | - Meidong Xu
- Endoscopy CenterDepartment of GastroenterologyShanghai East HospitalSchool of MedicineTongji UniversityShanghai200120China
| |
Collapse
|
5
|
Olyha SJ, O'Connor SK, Kribis M, Bucklin ML, Uthaya Kumar DB, Tyler PM, Alam F, Jones KM, Sheikha H, Konnikova L, Lakhani SA, Montgomery RR, Catanzaro J, Du H, DiGiacomo DV, Rothermel H, Moran CJ, Fiedler K, Warner N, Hoppenreijs EPAH, van der Made CI, Hoischen A, Olbrich P, Neth O, Rodríguez-Martínez A, Lucena Soto JM, van Rossum AMC, Dalm VASH, Muise AM, Lucas CL. "Deficiency in ELF4, X-Linked": a Monogenic Disease Entity Resembling Behçet's Syndrome and Inflammatory Bowel Disease. J Clin Immunol 2024; 44:44. [PMID: 38231408 PMCID: PMC10929603 DOI: 10.1007/s10875-023-01610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/27/2023] [Indexed: 01/18/2024]
Abstract
Defining monogenic drivers of autoinflammatory syndromes elucidates mechanisms of disease in patients with these inborn errors of immunity and can facilitate targeted therapeutic interventions. Here, we describe a cohort of patients with a Behçet's- and inflammatory bowel disease (IBD)-like disorder termed "deficiency in ELF4, X-linked" (DEX) affecting males with loss-of-function variants in the ELF4 transcription factor gene located on the X chromosome. An international cohort of fourteen DEX patients was assessed to identify unifying clinical manifestations and diagnostic criteria as well as collate findings informing therapeutic responses. DEX patients exhibit a heterogeneous clinical phenotype including weight loss, oral and gastrointestinal aphthous ulcers, fevers, skin inflammation, gastrointestinal symptoms, arthritis, arthralgia, and myalgia, with findings of increased inflammatory markers, anemia, neutrophilic leukocytosis, thrombocytosis, intermittently low natural killer and class-switched memory B cells, and increased inflammatory cytokines in the serum. Patients have been predominantly treated with anti-inflammatory agents, with the majority of DEX patients treated with biologics targeting TNFα.
Collapse
Affiliation(s)
- Sam J Olyha
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Shannon K O'Connor
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marat Kribis
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Molly L Bucklin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Paul M Tyler
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Faiad Alam
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kate M Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Hassan Sheikha
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Division of Neonatal and Perinatal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ruth R Montgomery
- Section of Rheumatology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jason Catanzaro
- Division of Pediatric Allergy and Clinical Immunology, National Jewish Health, Denver, CO, USA
| | - Hongqiang Du
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Daniel V DiGiacomo
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Holly Rothermel
- Division of Pediatric Rheumatology, MassGeneral for Children, Boston, MA, USA
| | - Christopher J Moran
- Division of Pediatric Gastroenterology, MassGeneral for Children, Boston, MA, USA
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Neil Warner
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Esther P A H Hoppenreijs
- Department of Pediatric Rheumatology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caspar I van der Made
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Olbrich
- Inborn Errors of Immunity Group, Biomedicine Institute of Sevilla (IBiS), CSIC, Seville, Spain
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
- Departamento de Farmacología, Pediatría y Radiología, Universidad de Sevilla, Seville, Spain
| | - Olaf Neth
- Inborn Errors of Immunity Group, Biomedicine Institute of Sevilla (IBiS), CSIC, Seville, Spain
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Alejandro Rodríguez-Martínez
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - Annemarie M C van Rossum
- Erasmus MC University Medical Center-Sophia Children's Hospital, Department of Pediatrics, Division of Infectious Diseases and Immunology, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Virgil A S H Dalm
- Department of Immunology, Laboratory of Medical Immunology, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Institute of Medical Science and Biochemistry, University of Toronto, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Program in Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Roy A, Chauhan S, Bhattacharya S, Jakhmola V, Tyagi K, Sachdeva A, Wasai A, Mandal S. Runt-related transcription factors in human carcinogenesis: a friend or foe? J Cancer Res Clin Oncol 2023; 149:9409-9423. [PMID: 37081242 DOI: 10.1007/s00432-023-04769-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Cancer is one of the deadliest pathologies with more than 19 million new cases and 10 million cancer-related deaths across the globe. Despite development of advanced therapeutic interventions, cancer remains as a fatal pathology due to lack of early prognostic biomarkers, therapy resistance and requires identification of novel drug targets. METHODS Runt-related transcription factors (Runx) family controls several cellular and physiological functions including osteogenesis. Recent literatures from PubMed was mined and the review was written in comprehensive manner RESULTS: Recent literature suggests that aberrant expression of Runx contributes to tumorigenesis of many organs. Conversely, cell- and tissue-specific tumor suppressor roles of Runx are also reported. In this review, we have provided the structural/functional properties of Runx isoforms and its regulation in context of human cancer. Moreover, in an urgent need to discover novel therapeutic interventions against cancer, we comprehensively discussed the reported oncogenic and tumor suppressive roles of Runx isoforms in several tumor types and discussed the discrepancies that may have risen on Runx as a driver of malignant transformation. CONCLUSION Runx may be a novel therapeutic target against a battery of deadly human cancers.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| | - Shivi Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abha Sachdeva
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abdul Wasai
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| |
Collapse
|
7
|
Ozturk K, Panwala R, Sheen J, Ford K, Payne N, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Interface-guided phenotyping of coding variants in the transcription factor RUNX1 with SEUSS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551876. [PMID: 37577681 PMCID: PMC10418284 DOI: 10.1101/2023.08.03.551876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Understanding the consequences of single amino acid substitutions in cancer driver genes remains an unmet need. Perturb-seq provides a tool to investigate the effects of individual mutations on cellular programs. Here we deploy SEUSS, a Perturb-seq like approach, to generate and assay mutations at physical interfaces of the RUNX1 Runt domain. We measured the impact of 115 mutations on RNA profiles in single myelogenous leukemia cells and used the profiles to categorize mutations into three functionally distinct groups: wild-type (WT)-like, loss-of-function (LOF)-like and hypomorphic. Notably, the largest concentration of functional mutations (non-WT-like) clustered at the DNA binding site and contained many of the more frequently observed mutations in human cancers. Hypomorphic variants shared characteristics with loss of function variants but had gene expression profiles indicative of response to neural growth factor and cytokine recruitment of neutrophils. Additionally, DNA accessibility changes upon perturbations were enriched for RUNX1 binding motifs, particularly near differentially expressed genes. Overall, our work demonstrates the potential of targeting protein interaction interfaces to better define the landscape of prospective phenotypes reachable by amino acid substitutions.
Collapse
|
8
|
Kanellou P, Georgakopoulos-Soares I, Zaravinos A. Deregulated Gene Expression Profiles and Regulatory Networks in Adult and Pediatric RUNX1/RUNX1T1-Positive AML Patients. Cancers (Basel) 2023; 15:1795. [PMID: 36980682 PMCID: PMC10046396 DOI: 10.3390/cancers15061795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous and complex disease concerning molecular aberrations and prognosis. RUNX1/RUNX1T1 is a fusion oncogene that results from the chromosomal translocation t(8;21) and plays a crucial role in AML. However, its impact on the transcriptomic profile of different age groups of AML patients is not completely understood. Here, we investigated the deregulated gene expression (DEG) profiles in adult and pediatric RUNX1/RUNX1T1-positive AML patients, and compared their functions and regulatory networks. We retrospectively analyzed gene expression data from two independent Gene Expression Omnibus (GEO) datasets (GSE37642 and GSE75461) and computed their differentially expressed genes and upstream regulators, using limma, GEO2Enrichr, and X2K. For validation purposes, we used the TCGA-LAML (adult) and TARGET-AML (pediatric) patient cohorts. We also analyzed the protein-protein interaction (PPI) networks, as well as those composed of transcription factors (TF), intermediate proteins, and kinases foreseen to regulate the top deregulated genes in each group. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analyses were further performed for the DEGs in each dataset. We found that the top upregulated genes in (both adult and pediatric) RUNX1/RUNX1T1-positive AML patients are enriched in extracellular matrix organization, the cell projection membrane, filopodium membrane, and supramolecular fiber. Our data corroborate that RUNX1/RUNX1T1 reprograms a large transcriptional network to establish and maintain leukemia via intricate PPI interactions and kinase-driven phosphorylation events.
Collapse
Affiliation(s)
- Peggy Kanellou
- Department of Hematology, Venizeleio General Hospital of Heraklion, 71409 Heraklion, Greece
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
9
|
Giannopoulou AI, Kanakoglou DS, Papavassiliou AG, Piperi C. Insights into the multi-faceted role of Pioneer transcription factors in glioma formation and progression with targeting options. Biochim Biophys Acta Rev Cancer 2022; 1877:188801. [PMID: 36113627 DOI: 10.1016/j.bbcan.2022.188801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
Pioneer transcription factors (TFs) present an important subtype of transcription factors which are vital for cell programming during embryonic development and cellular memory during mitotic growth, as well as cell fate reprogramming. Pioneer TFs can engage specific target binding sites on nucleosomal DNA to attract chromatin remodeling complexes, cofactors, and other transcription factors, ultimately controlling gene expression by shaping locally the epigenome. The priority of binding that they exhibit in contrast to other transcription factors and their involvement in crucial events regarding cell fate, has implicated their aberrant function in the pathogenesis of several disorders including carcinogenesis. Emerging experimental data indicate that certain Pioneer TFs are highly implicated in gliomas development, in neoplastic cell proliferation, angiogenic processes, resistance to therapy, and patient survival. Herein, we describe the main structural characteristics and functional mechanisms of pioneer TFs, focusing on their central role in the pathogenesis and progression of gliomas. We further highlight the current treatment options ranging from natural agents (oleanolic acid) to a variety of chemical compounds (APR-246, COTI-2) and discuss potential delivery systems, including nanoparticles, viral vectors, and intracellular protein delivery techniques.
Collapse
Affiliation(s)
- Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Dimitrios S Kanakoglou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece,.
| |
Collapse
|
10
|
Wang W, Meng Y, Chen Y, Yu Y, Wang H, Yang S, Sun W. A comprehensive analysis of LMO2 pathogenic regulatory profile during T-lineage development and leukemic transformation. Oncogene 2022; 41:4079-4090. [PMID: 35851847 DOI: 10.1038/s41388-022-02414-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
LMO2 is a well-known leukemic proto-oncogene, its ectopic expression in T-lineage specifically initiates malignant transformation of immature T cells and ultimately causes the onset of acute T-lymphocytic leukemia (T-ALL) in both mouse models and human patients. In this study, we systematically explored the LMO2 performance on the profiles of transcriptome, DNA-binding and protein interactions during T-lineage development in the pre-leukemic stage. Our data indicated that large-scale transcriptional dysregulation caused by LMO2 primarily occurred in DN3 thymocytes, characterized by enriched upregulation of the target genes of typical LMO2 complex, RUNX, ETS and STATs, and ectopic LMO2 primarily targeted to RUNX motifs along with intensive interaction with RUNX1 and H3K4 methyltransferase component ASH2L in this stage. However, binding of LMO2 on specific motifs was largely reduced in the following DP and SP stages, along with gradually disappeared LMO2-RUNX1 and LMO2-ASH2L interactions and less alteration of certain transcriptional factor profiles. Moreover, LMO2 showed relatively less influence on cellular behavior of DN3 thymocyte whereas displayed more prominent effects in DP and SP stages, including promoting Notch signaling and cell cycles. These findings provide a high-resolution landscape of the pathogenic role of LMO2 during T-lineage development in molecular level, and may benefit further clinical investigations for LMO2-associated T-lineage malignancies.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yingying Meng
- School of Medicine, Nankai University, Tianjin, China
| | - Yaxin Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Yanhong Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Hang Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- School of Medicine, Nankai University, Tianjin, China
| | - Wei Sun
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
12
|
Transcriptional Regulation of Natural Killer Cell Development and Functions. Cancers (Basel) 2020; 12:cancers12061591. [PMID: 32560225 PMCID: PMC7352776 DOI: 10.3390/cancers12061591] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) cells are the major lymphocyte subset of the innate immune system. Their ability to mediate anti-tumor cytotoxicity and produce cytokines is well-established. However, the molecular mechanisms associated with the development of human or murine NK cells are not fully understood. Knowledge is being gained about the environmental cues, the receptors that sense the cues, signaling pathways, and the transcriptional programs responsible for the development of NK cells. Specifically, a complex network of transcription factors (TFs) following microenvironmental stimuli coordinate the development and maturation of NK cells. Multiple TFs are involved in the development of NK cells in a stage-specific manner. In this review, we summarize the recent advances in the understandings of TFs involved in the regulation of NK cell development, maturation, and effector function, in the aspects of their mechanisms, potential targets, and functions.
Collapse
|
13
|
Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. Proc Natl Acad Sci U S A 2018; 116:890-899. [PMID: 30593567 DOI: 10.1073/pnas.1809327116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO-containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene, THPO, is identified as a potential predictor of relapse. In a mouse model of human t(8;21) leukemia, E2-2 suppression accelerates leukemogenesis. Taken together, these results reveal that, in contrast to HEB and E2A, which facilitate AML1-ETO-mediated leukemogenesis, E2-2 compromises the function of AETFC and negatively regulates leukemogenesis. The three E proteins thus define a heterogeneity of AETFC, which improves our understanding of the precise mechanism of leukemogenesis and assists development of diagnostic/therapeutic strategies.
Collapse
|
14
|
Neveu B, Caron M, Lagacé K, Richer C, Sinnett D. Genome wide mapping of ETV6 binding sites in pre-B leukemic cells. Sci Rep 2018; 8:15526. [PMID: 30341373 PMCID: PMC6195514 DOI: 10.1038/s41598-018-33947-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Genetic alterations in the transcriptional repressor ETV6 are associated with hematological malignancies. Notably, the t(12;21) translocation leading to an ETV6-AML1 fusion gene is the most common genetic alteration found in childhood acute lymphoblastic leukemia. Moreover, most of these patients also lack ETV6 expression, suggesting a tumor suppressor function. To gain insights on ETV6 DNA-binding specificity and genome wide transcriptional regulation capacities, we performed chromatin immunoprecipitation experiments coupled to deep sequencing in a t(12;21)-positive pre-B leukemic cell line. This strategy led to the identification of ETV6-bound regions that were further associated to gene expression. ETV6 binding is mostly cell type-specific as only few regions are shared with other blood cell subtypes. Peaks localization and motif enrichment analyses revealed that this unique binding profile could be associated with the ETV6-AML1 fusion protein specific to the t(12;21) background. This study underscores the complexity of ETV6 binding and uncovers ETV6 transcriptional network in pre-B leukemia cells bearing the recurrent t(12;21) translocation.
Collapse
Affiliation(s)
- Benjamin Neveu
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Qc, Canada
| | - Maxime Caron
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada
| | - Karine Lagacé
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Qc, Canada
| | - Chantal Richer
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada
| | - Daniel Sinnett
- Sainte-Justine UHC Research Center, Montreal, Qc, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, Qc, Canada.
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Qc, Canada.
| |
Collapse
|
15
|
Suico MA, Shuto T, Kai H. Roles and regulations of the ETS transcription factor ELF4/MEF. J Mol Cell Biol 2018; 9:168-177. [PMID: 27932483 PMCID: PMC5907832 DOI: 10.1093/jmcb/mjw051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Most E26 transformation-specific (ETS) transcription factors are involved in the pathogenesis and progression of cancer. This is in part due to the roles of ETS transcription factors in basic biological processes such as growth, proliferation, and differentiation, and also because of their regulatory functions that have physiological relevance in tumorigenesis, immunity, and basal cellular homoeostasis. A member of the E74-like factor (ELF) subfamily of the ETS transcription factor family—myeloid elf-1-like factor (MEF), designated as ELF4—has been shown to be critically involved in immune response and signalling, osteogenesis, adipogenesis, cancer, and stem cell quiescence. ELF4 carries out these functions as a transcriptional activator or through interactions with its partner proteins. Mutations in ELF4 cause aberrant interactions and induce downstream processes that may lead to diseased cells. Knowing how ELF4 impinges on certain cellular processes and how it is regulated in the cells can lead to a better understanding of the physiological and pathological consequences of modulated ELF4 activity.
Collapse
Affiliation(s)
- Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| |
Collapse
|
16
|
Guan FHX, Bailey CG, Metierre C, O'Young P, Gao D, Khoo TL, Holst J, Rasko JEJ. The antiproliferative ELF2 isoform, ELF2B, induces apoptosis in vitro and perturbs early lymphocytic development in vivo. J Hematol Oncol 2017; 10:75. [PMID: 28351373 PMCID: PMC5371273 DOI: 10.1186/s13045-017-0446-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/20/2017] [Indexed: 01/08/2023] Open
Abstract
Background ELF2 (E74-like factor 2) also known as NERF (new Ets-related factor), a member of the Ets family of transcription factors, regulates genes important in B and T cell development, cell cycle progression, and angiogenesis. Conserved ELF2 isoforms, ELF2A, and ELF2B, arising from alternative promoter usage can exert opposing effects on target gene expression. ELF2A activates, whilst ELF2B represses, gene expression, and the balance of expression between these isoforms may be important in maintaining normal cellular function. Methods We compared the function of ELF2 isoforms ELF2A and ELF2B with other ELF subfamily proteins ELF1 and ELF4 in primary and cancer cell lines using proliferation, colony-forming, cell cycle, and apoptosis assays. We further examined the role of ELF2 isoforms in haemopoietic development using a Rag1-/-murine bone marrow reconstitution model. Results ELF2B overexpression significantly reduced cell proliferation and clonogenic capacity, minimally disrupted cell cycle kinetics, and induced apoptosis. In contrast, ELF2A overexpression only marginally reduced clonogenic capacity with little effect on proliferation, cell cycle progression, or apoptosis. Deletion of the N-terminal 19 amino acids unique to ELF2B abrogated the antiproliferative and proapoptotic functions of ELF2B thereby confirming its crucial role. Mice expressing Elf2a or Elf2b in haemopoietic cells variously displayed perturbations in the pre-B cell stage and multiple stages of T cell development. Mature B cells, T cells, and myeloid cells in steady state were unaffected, suggesting that the main role of ELF2 is restricted to the early development of B and T cells and that compensatory mechanisms exist. No differences in B and T cell development were observed between ELF2 isoforms. Conclusions We conclude that ELF2 isoforms are important regulators of cellular proliferation, cell cycle progression, and apoptosis. In respect to this, ELF2B acts in a dominant negative fashion compared to ELF2A and as a putative tumour suppressor gene. Given that these cellular processes are critical during haemopoiesis, we propose that the regulatory interplay between ELF2 isoforms contributes substantially to early B and T cell development. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0446-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fiona H X Guan
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Charles G Bailey
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Cynthia Metierre
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Patrick O'Young
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dadi Gao
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Teh Liane Khoo
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jeff Holst
- Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia.,Origins of Cancer Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia
| | - John E J Rasko
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW, 2050, Australia. .,Sydney Medical School, University of Sydney, Camperdown, NSW, 2006, Australia. .,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
17
|
Adamaki M, Vlahopoulos S, Lambrou GI, Papavassiliou AG, Moschovi M. Aberrant AML1 gene expression in the diagnosis of childhood leukemias not characterized by AML1-involved cytogenetic abnormalities. Tumour Biol 2017; 39:1010428317694308. [PMID: 28349830 DOI: 10.1177/1010428317694308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The AML1 ( acute myeloid leukemia 1) gene, a necessary prerequisite of embryonic hematopoiesis and a critical regulator of normal hematopoietic development, is one of the most frequently mutated genes in human leukemia, involving over 50 chromosome translocations and over 20 partner genes. In the few existing studies investigating AML1 gene expression in childhood leukemias, aberrant upregulation seems to specifically associate with AML1 translocations and amplifications. The aim of this study was to determine whether overexpression also extends to other leukemic subtypes than the ones karyotypically involving AML1. We use quantitative real-time polymerase chain reaction methodology to investigate gene expression in 100 children with acute leukemias and compare them to those of healthy controls. We show that in childhood acute lymphoblastic leukemia, AML1 gene overexpression is associated with a variety of leukemic subtypes, both immunophenotypically and cytogenetically. Statistically significantly higher transcripts of the gene were detected in the acute lymphoblastic leukemia group as compared to the acute myeloid leukemia group, where AML1 overexpression appeared to associate with cytogenetic abnormalities additional to those that engage the AML1 gene, or that are reported as showing a "normal" karyotype. Collectively, our study shows that AML1 gene overexpression characterizes a broader range of leukemic subtypes than previously thought, including various maturation stages of B-cell acute lymphoblastic leukemia and cytogenetic types additional to those involving the AML1 gene.
Collapse
Affiliation(s)
- Maria Adamaki
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Spiros Vlahopoulos
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - George I Lambrou
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| | - Athanasios G Papavassiliou
- 2 Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Moschovi
- 1 Pediatric Hematology/Oncology Unit, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens and "Aghia Sofia" Children's Hospital, Athens, Greece
| |
Collapse
|
18
|
Amano R, Takada K, Tanaka Y, Nakamura Y, Kawai G, Kozu T, Sakamoto T. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein. Biochemistry 2016; 55:6221-6229. [PMID: 27766833 DOI: 10.1021/acs.biochem.6b00748] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.
Collapse
Affiliation(s)
- Ryo Amano
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Kenta Takada
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yoichiro Tanaka
- Facility for RI Research and Education, Instrumental Analysis Center, Yokohama National University , 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yoshikazu Nakamura
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo , Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Ribomic Inc. , 3-16-13 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Tomoko Kozu
- Research Institute for Clinical Oncology , Saitama Cancer Center, Ina, Saitama 362-0806, Japan
| | - Taiichi Sakamoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
19
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
20
|
Genome-wide studies identify a novel interplay between AML1 and AML1/ETO in t(8;21) acute myeloid leukemia. Blood 2015; 127:233-42. [PMID: 26546158 DOI: 10.1182/blood-2015-03-626671] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
The AML1/ETO fusion protein is essential to the development of t(8;21) acute myeloid leukemia (AML) and is well recognized for its dominant-negative effect on the coexisting wild-type protein AML1. However, the genome-wide interplay between AML1/ETO and wild-type AML1 remains elusive in the leukemogenesis of t(8;21) AML. Through chromatin immunoprecipitation sequencing and computational analysis, followed by a series of experimental validations, we report here that wild-type AML1 is able to orchestrate the expression of AML1/ETO targets regardless of being activated or repressed; this is achieved via forming a complex with AML1/ETO and via recruiting the cofactor AP-1 on chromatin. On chromatin occupancy, AML1/ETO and wild-type AML1 largely overlap and preferentially bind to adjacent and distinct short and long AML1 motifs on the colocalized regions, respectively. On physical interaction, AML1/ETO can form a complex with wild-type AML1 on chromatin, and the runt homology domain of both proteins are responsible for their interactions. More importantly, the relative binding signals of AML1 and AML1/ETO on chromatin determine which genes are repressed or activated by AML1/ETO. Further analysis of coregulators indicates that AML1/ETO transactivates gene expression through recruiting AP-1 to the AML1/ETO-AML1 complex. These findings enrich our knowledge of understanding the significance of the interplay between the wild-type protein and the oncogenic fusion protein in the development of leukemia.
Collapse
|
21
|
Korla PK, Cheng J, Huang CH, Tsai JJP, Liu YH, Kurubanjerdjit N, Hsieh WT, Chen HY, Ng KL. FARE-CAFE: a database of functional and regulatory elements of cancer-associated fusion events. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav086. [PMID: 26384373 PMCID: PMC4684693 DOI: 10.1093/database/bav086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023]
Abstract
Chromosomal translocation (CT) is of enormous clinical interest because this disorder is associated with various major solid tumors and leukemia. A tumor-specific fusion gene event may occur when a translocation joins two separate genes. Currently, various CT databases provide information about fusion genes and their genomic elements. However, no database of the roles of fusion genes, in terms of essential functional and regulatory elements in oncogenesis, is available. FARE-CAFE is a unique combination of CTs, fusion proteins, protein domains, domain–domain interactions, protein–protein interactions, transcription factors and microRNAs, with subsequent experimental information, which cannot be found in any other CT database. Genomic DNA information including, for example, manually collected exact locations of the first and second break points, sequences and karyotypes of fusion genes are included. FARE-CAFE will substantially facilitate the cancer biologist’s mission of elucidating the pathogenesis of various types of cancer. This database will ultimately help to develop ‘novel’ therapeutic approaches. Database URL:http://ppi.bioinfo.asia.edu.tw/FARE-CAFE
Collapse
Affiliation(s)
- Praveen Kumar Korla
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chien-Hung Huang
- Department of Computer Science and Information Engineering, National Formosa University, Yunlin 632, Taiwan
| | - Jeffrey J P Tsai
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| | - Yu-Hsuan Liu
- Department of Computer Science and Information Engineering, National Formosa University, Yunlin 632, Taiwan
| | | | - Wen-Tsong Hsieh
- Department of Pharmacology, China Medical University, Taichung 40402, Taiwan
| | - Huey-Yi Chen
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, and
| | - Ka-Lok Ng
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
22
|
Differentiation therapy for the treatment of t(8;21) acute myeloid leukemia using histone deacetylase inhibitors. Blood 2014; 123:1341-52. [PMID: 24415537 DOI: 10.1182/blood-2013-03-488114] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifying enzymes such as histone deacetylases (HDACs), p300, and PRMT1 are recruited by AML1/ETO, the pathogenic protein for t(8;21) acute myeloid leukemia (AML), providing a strong molecular rationale for targeting these enzymes to treat this disease. Although early phase clinical assessment indicated that treatment with HDAC inhibitors (HDACis) may be effective in t(8;21) AML patients, rigorous preclinical studies to identify the molecular and biological events that may determine therapeutic responses have not been performed. Using an AML mouse model driven by expression of AML1/ETO9a (A/E9a), we demonstrated that treatment of mice bearing t(8;21) AML with the HDACi panobinostat caused a robust antileukemic response that did not require functional p53 nor activation of conventional apoptotic pathways. Panobinostat triggered terminal myeloid differentiation via proteasomal degradation of A/E9a. Importantly, conditional A/E9a deletion phenocopied the effects of panobinostat and other HDACis, indicating that destabilization of A/E9a is critical for the antileukemic activity of these agents.
Collapse
|
23
|
Lee PH, Puppi M, Schluns KS, Yu-Lee LY, Dong C, Lacorazza HD. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. THE JOURNAL OF IMMUNOLOGY 2013; 192:178-88. [PMID: 24259505 DOI: 10.4049/jimmunol.1301372] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The differentiation of CD4(+) T cells into different Th lineages is driven by cytokine milieu in the priming site and the underlying transcriptional circuitry. Even though many positive regulators have been identified, it is not clear how this process is inhibited at transcriptional level. In this study, we report that the E-twenty six (ETS) transcription factor E74-like factor 4 (ELF4) suppresses the differentiation of Th17 cells both in vitro and in vivo. Culture of naive Elf4(-/-) CD4(+) T cells in the presence of IL-6 and TGF-β (or IL-6, IL-23, and IL-1β) resulted in increased numbers of IL-17A-positive cells compared with wild-type controls. In contrast, the differentiation to Th1, Th2, or regulatory T cells was largely unaffected by loss of ELF4. The increased expression of genes involved in Th17 differentiation observed in Elf4(-/-) CD4(+) T cells suggested that ELF4 controls their programming into the Th17 lineage rather than only IL-17A gene expression. Despite normal proliferation of naive CD4(+) T cells, loss of ELF4 lowered the requirement of IL-6 and TGF-β signaling for IL-17A induction in each cell division. ELF4 did not inhibit Th17 differentiation by promoting IL-2 production as proposed for another ETS transcription factor, ETS1. Elf4(-/-) mice showed increased numbers of Th17 cells in the lamina propria at steady state, in lymph nodes after immunization, and, most importantly, in the CNS following experimental autoimmune encephalomyelitis induction, contributing to the increased disease severity. Collectively, our findings suggest that ELF4 restrains Th17 differentiation in dividing CD4(+) T cells by regulating commitment to the Th17 differentiation program.
Collapse
Affiliation(s)
- Ping-Hsien Lee
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
| | | | | | | | | | | |
Collapse
|
24
|
ELF4 is critical for induction of type I interferon and the host antiviral response. Nat Immunol 2013; 14:1237-46. [PMID: 24185615 DOI: 10.1038/ni.2756] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/01/2013] [Indexed: 12/25/2022]
Abstract
Induction of type I interferon is a central event of innate immunity, essential for host defense. Here we report that the transcription factor ELF4 is induced by type I interferon and upregulates interferon expression in a feed-forward loop. ELF4 deficiency leads to reduced interferon production, resulting in enhanced susceptibility to West Nile virus encephalitis in mice. After viral infection, ELF4 is recruited by STING, interacts with and is activated by the MAVS-TBK1 complex, and translocates into the nucleus to bind interferon promoters. Cooperative binding with ELF4 increases the binding affinity of interferon regulatory factors IRF3 and IRF7, which is mediated by EICE elements. Thus, in addition to identifying a regulator of innate immune signaling, we uncovered a role for EICE elements in interferon transactivation.
Collapse
|
25
|
Sun XJ, Wang Z, Wang L, Jiang Y, Kost N, Soong TD, Chen WY, Tang Z, Nakadai T, Elemento O, Fischle W, Melnick A, Patel DJ, Nimer SD, Roeder RG. A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature 2013; 500:93-7. [PMID: 23812588 PMCID: PMC3732535 DOI: 10.1038/nature12287] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/13/2013] [Indexed: 12/03/2022]
Abstract
Transcription factors are frequently altered in leukaemia through chromosomal translocation, mutation or aberrant expression1. AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukaemia (AML), is a transcription factor implicated in both gene repression and activation2. AML1-ETO oligomerization, mediated by the NHR2 domain, is critical for leukaemogenesis3–6, making it important to identify coregulatory factors that “read” the NHR2 oligomerization and contribute to leukaemogenesis4. We now show that, in leukaemic cells, AML1-ETO resides in and functions through a stable protein complex (AETFC) that contains several haematopoietic transcription (co)factors. These AETFC components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, colocalize genome-wide, cooperatively regulate gene expression, and contribute to leukaemogenesis. Within the AETFC complex, AML1-ETO oligomerization is required for a specific interaction between the oligomerized NHR2 domain and a novel NHR2-binding (N2B) motif in E proteins. Crystallographic analysis of the NHR2-N2B complex reveals a unique interaction pattern in which an N2B peptide makes direct contact with side chains of two NHR2 domains as a dimer, providing a novel model of how dimeric/oligomeric transcription factors create a new protein-binding interface through dimerization/oligomerization. Intriguingly, disruption of this interaction by point mutations abrogates AML1-ETO–induced haematopoietic stem/progenitor cell self-renewal and leukaemogenesis. These results reveal new mechanisms of action of AML1-ETO and a potential therapeutic target in t(8;21)+ AML.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
The rate of spontaneous mutations in human myeloid cells. Mutat Res 2013; 749:49-57. [PMID: 23748046 DOI: 10.1016/j.mrfmmm.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/09/2023]
Abstract
The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4×10(-7) (range ∼3.6-23×10(-7)) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis.
Collapse
|
27
|
Ando K, Tsushima H, Matsuo E, Horio K, Tominaga-Sato S, Imanishi D, Imaizumi Y, Iwanaga M, Itonaga H, Yoshida S, Hata T, Moriuchi R, Kiyoi H, Nimer S, Mano H, Naoe T, Tomonaga M, Miyazaki Y. Mutations in the nucleolar phosphoprotein, nucleophosmin, promote the expression of the oncogenic transcription factor MEF/ELF4 in leukemia cells and potentiates transformation. J Biol Chem 2013; 288:9457-67. [PMID: 23393136 DOI: 10.1074/jbc.m112.415703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myeloid ELF1-like factor (MEF/ELF4), a member of the ETS transcription factors, can function as an oncogene in murine cancer models and is overexpressed in various human cancers. Here, we report a mechanism by which MEF/ELF4 may be activated by a common leukemia-associated mutation in the nucleophosmin gene. By using a tandem affinity purification assay, we found that MEF/ELF4 interacts with multifactorial protein nucleophosmin (NPM1). Coimmunoprecipitation and GST pull-down experiments demonstrated that MEF/ELF4 directly forms a complex with NPM1 and also identified the region of NPM1 that is responsible for this interaction. Functional analyses showed that wild-type NPM1 inhibited the DNA binding and transcriptional activity of MEF/ELF4 on the HDM2 promoter, whereas NPM1 mutant protein (Mt-NPM1) enhanced these activities of MEF/ELF4. Induction of Mt-NPM1 into MEF/ELF4-overexpressing NIH3T3 cells facilitated malignant transformation. In addition, clinical leukemia samples with NPM1 mutations had higher human MDM2 (HDM2) mRNA expression. Our data suggest that enhanced HDM2 expression induced by mutant NPM1 may have a role in MEF/ELF4-dependent leukemogenesis.
Collapse
Affiliation(s)
- Koji Ando
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
ERG and FLI1 binding sites demarcate targets for aberrant epigenetic regulation by AML1-ETO in acute myeloid leukemia. Blood 2012; 120:4038-48. [PMID: 22983443 DOI: 10.1182/blood-2012-05-429050] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ERG and FLI1 are closely related members of the ETS family of transcription factors and have been identified as essential factors for the function and maintenance of normal hematopoietic stem cells. Here genome-wide analysis revealed that both ERG and FLI1 occupy similar genomic regions as AML1-ETO in t(8;21) AMLs and identified ERG/FLI1 as proteins that facilitate binding of oncofusion protein complexes. In addition, we demonstrate that ERG and FLI1 bind the RUNX1 promoter and that shRNA-mediated silencing of ERG leads to reduced expression of RUNX1 and AML1-ETO, consistent with a role of ERG in transcriptional activation of these proteins. Finally, we identify H3 acetylation as the epigenetic mark preferentially associated with ETS factor binding. This intimate connection between ERG/FLI1 binding and H3 acetylation implies that one of the molecular strategies of oncofusion proteins, such as AML1-ETO and PML-RAR-α, involves the targeting of histone deacetylase activities to ERG/FLI1 bound hematopoietic regulatory sites. Together, these results highlight the dual importance of ETS factors in t(8;21) leukemogenesis, both as transcriptional regulators of the oncofusion protein itself as well as proteins that facilitate AML1-ETO binding.
Collapse
|
29
|
Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC, Ng S, Lin L, Crowder R, Snider J, Ballman K, Weber J, Chen K, Koboldt DC, Kandoth C, Schierding WS, McMichael JF, Miller CA, Lu C, Harris CC, McLellan MD, Wendl MC, DeSchryver K, Allred DC, Esserman L, Unzeitig G, Margenthaler J, Babiera GV, Marcom PK, Guenther JM, Leitch M, Hunt K, Olson J, Tao Y, Maher CA, Fulton LL, Fulton RS, Harrison M, Oberkfell B, Du F, Demeter R, Vickery TL, Elhammali A, Piwnica-Worms H, McDonald S, Watson M, Dooling DJ, Ota D, Chang LW, Bose R, Ley TJ, Piwnica-Worms D, Stuart JM, Wilson RK, Mardis ER. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 2012; 486:353-60. [PMID: 22722193 PMCID: PMC3383766 DOI: 10.1038/nature11143] [Citation(s) in RCA: 798] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 04/12/2012] [Indexed: 11/24/2022]
Abstract
To correlate the variable clinical features of estrogen receptor positive (ER+) breast cancer with somatic alterations, we studied pre-treatment tumour biopsies accrued from patients in a study of neoadjuvant aromatase inhibitor (AI) therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to hematopoietic disorders. Mutant MAP3K1 was associated with Luminal A status, low grade histology and low proliferation rates whereas mutant TP53 associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon AI treatment. Pathway analysis demonstrated mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in ER+ breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumor biology but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.
Collapse
Affiliation(s)
- Matthew J Ellis
- Department of Internal Medicine, Division of Oncology, Washington University, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Maiques-Diaz A, Chou FS, Wunderlich M, Gómez-López G, Jacinto FV, Rodriguez-Perales S, Larrayoz MJ, Calasanz MJ, Mulloy JC, Cigudosa JC, Alvarez S. Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs. Leukemia 2012; 26:1329-37. [DOI: 10.1038/leu.2011.376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 2011; 80:437-71. [PMID: 21548782 DOI: 10.1146/annurev.biochem.79.081507.103945] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ETS proteins are a group of evolutionarily related, DNA-binding transcriptional factors. These proteins direct gene expression in diverse normal and disease states by binding to specific promoters and enhancers and facilitating assembly of other components of the transcriptional machinery. The highly conserved DNA-binding ETS domain defines the family and is responsible for specific recognition of a common sequence motif, 5'-GGA(A/T)-3'. Attaining specificity for biological regulation in such a family is thus a conundrum. We present the current knowledge of routes to functional diversity and DNA binding specificity, including divergent properties of the conserved ETS and PNT domains, the involvement of flanking structured and unstructured regions appended to these dynamic domains, posttranslational modifications, and protein partnerships with other DNA-binding proteins and coregulators. The review emphasizes recent advances from biochemical and biophysical approaches, as well as insights from genomic studies that detect ETS-factor occupancy in living cells.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
32
|
Taura M, Suico MA, Fukuda R, Koga T, Shuto T, Sato T, Morino-Koga S, Okada S, Kai H. MEF/ELF4 transactivation by E2F1 is inhibited by p53. Nucleic Acids Res 2011; 39:76-88. [PMID: 20805247 PMCID: PMC3017608 DOI: 10.1093/nar/gkq762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 07/04/2010] [Accepted: 08/10/2010] [Indexed: 11/29/2022] Open
Abstract
Myeloid elf-1-like factor (MEF) or Elf4 is an E-twenty-six (ETS)-related transcription factor with strong transcriptional activity that influences cellular senescence by affecting tumor suppressor p53. MEF downregulates p53 expression and inhibits p53-mediated cellular senescence by transcriptionally activating MDM2. However, whether p53 reciprocally opposes MEF remains unexplored. Here, we show that MEF is modulated by p53 in human cells and mice tissues. MEF expression and promoter activity were suppressed by p53. While we found that MEF promoter does not contain p53 response elements, intriguingly, it contains E2F consensus sites. Subsequently, we determined that E2F1 specifically binds to MEF promoter and transactivates MEF. Nevertheless, E2F1 DNA binding and transactivation of MEF promoter was inhibited by p53 through the association between p53 and E2F1. Furthermore, we showed that activation of p53 in doxorubicin-induced senescent cells increased E2F1 and p53 interaction, diminished E2F1 recruitment to MEF promoter and reduced MEF expression. These observations suggest that p53 downregulates MEF by associating with and inhibiting the binding activity of E2F1, a novel transcriptional activator of MEF. Together with previous findings, our present results indicate that a negative regulatory mechanism exists between p53 and MEF.
Collapse
Affiliation(s)
- Manabu Taura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Ryosuke Fukuda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Tomoaki Koga
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Takashi Sato
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Saori Morino-Koga
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Seiji Okada
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Global COE ‘Cell Fate Regulation Research and Education Unit’, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973 and Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| |
Collapse
|
33
|
Abstract
Natural killer (NK) cells play an important role in host defense against tumors and viruses and other infectious diseases. NK cell development is regulated by mechanisms that are both shared with and separate from other hematopoietic cell lineages. Functionally, NK cells use activating and inhibitory receptors to recognize both healthy and altered cells such as transformed or infected cells. Upon activation, NK cells produce cytokines and cytotoxic granules using mechanisms similar to other hematopoietic cell lineages especially cytotoxic T cells. Here we review the transcription factors that control NK cell development and function. Although many of these transcription factors are shared with other hematopoietic cell lineages, they control unexpected and unique aspects of NK cell biology. We review the mechanisms and target genes by which these transcriptional regulators control NK cell development and functional activity.
Collapse
Affiliation(s)
- David G T Hesslein
- Department of Microbiology and Immunology, The Cancer Research Institute, University of California, San Francisco, USA
| | | |
Collapse
|
34
|
Sashida G, Bazzoli E, Menendez S, Liu Y, Nimer SD. The oncogenic role of the ETS transcription factors MEF and ERG. Cell Cycle 2010; 9:3457-9. [PMID: 20814243 DOI: 10.4161/cc.9.17.13000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several ETS transcription factors, including MEF/ELF4 and ERG, can function as oncogenes and are overexpressed in human cancer. MEF cooperates in tumorigenesis in retroviral insertional mutagenesis-based mouse models of cancer and MEF is overexpressed in human lymphoma and ovarian cancer tissues via unknown mechanisms. ERG (Ets related gene) overexpression or increased activity has been found in various human cancers, including sarcomas, acute myeloid leukemia and prostate cancer, where the ERG gene is rearranged due to chromosomal translocations. We have been examining how MEF functions as an oncogene and recently showed that MEF can cooperate with H-Ras(G12V) and can inhibit both p53 and p16 expression thereby promoting transformation. In fact, in cells lacking p53, the absence of Mef abrogates H-Ras(G12V)-induced transformation of mouse embryonic fibroblasts, at least in part due to increased p16 expression. We discuss the known mechanisms by which the ETS transcription factors MEF and ERG contribute to the malignant transformation of cells.
Collapse
Affiliation(s)
- Goro Sashida
- Molecular Pharmacology and Chemistry Program of the Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, NY, USA
| | | | | | | | | |
Collapse
|
35
|
Huang H, Yu M, Akie TE, Moran TB, Woo AJ, Tu N, Waldon Z, Lin YY, Steen H, Cantor AB. Differentiation-dependent interactions between RUNX-1 and FLI-1 during megakaryocyte development. Mol Cell Biol 2009; 29:4103-15. [PMID: 19470763 PMCID: PMC2715817 DOI: 10.1128/mcb.00090-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/21/2009] [Accepted: 05/16/2009] [Indexed: 01/13/2023] Open
Abstract
The transcription factor RUNX-1 plays a key role in megakaryocyte differentiation and is mutated in cases of myelodysplastic syndrome and leukemia. In this study, we purified RUNX-1-containing multiprotein complexes from phorbol ester-induced L8057 murine megakaryoblastic cells and identified the ets transcription factor FLI-1 as a novel in vivo-associated factor. The interaction occurs via direct protein-protein interactions and results in synergistic transcriptional activation of the c-mpl promoter. Interestingly, the interaction fails to occur in uninduced cells. Gel filtration chromatography confirms the differentiation-dependent binding and shows that it correlates with the assembly of a complex also containing the key megakaryocyte transcription factors GATA-1 and Friend of GATA-1 (FOG-1). Phosphorylation analysis of FLI-1 with uninduced versus induced L8057 cells suggests the loss of phosphorylation at serine 10 in the induced state. Substitution of Ser10 with the phosphorylation mimic aspartic acid selectively impairs RUNX-1 binding, abrogates transcriptional synergy with RUNX-1, and dominantly inhibits primary fetal liver megakaryocyte differentiation in vitro. Conversely, substitution with alanine, which blocks phosphorylation, augments differentiation of primary megakaryocytes. We propose that dephosphorylation of FLI-1 is a key event in the transcriptional regulation of megakaryocyte maturation. These findings have implications for other cell types where interactions between runx and ets family proteins occur.
Collapse
Affiliation(s)
- Hui Huang
- Children's Hospital Boston, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Runx1 binds DNA in cooperation with CBFbeta to activate or repress transcription, dependent upon cellular context and interaction with a variety of co-activators and co-repressors. Runx1 is required for emergence of adult hematopoietic stem cells (HSC) during embryonic development and for lymphoid, myeloid, and megakaryocyte lineage maturation from HSC in adult marrow. Runx1 levels vary during the cell cycle, and Runx1 regulates G1 to S cell cycle progression. Both Cdk and ERK phosphorylate Runx1 to influence its interaction with co-repressors, and the Wnt effector LEF-1/TCF also modulates Runx1 activities. These links likely allow cytokines and signals from adjacent cells to influence HSC proliferation versus quiescence and the rate of progenitor expansion, in response to developmental or environmental demands. J. Cell. Physiol. 219: 520-524, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
37
|
ELF4/MEF activates MDM2 expression and blocks oncogene-induced p16 activation to promote transformation. Mol Cell Biol 2009; 29:3687-99. [PMID: 19380490 DOI: 10.1128/mcb.01551-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several ETS transcription factors, including ELF4/MEF, can function as oncogenes in murine cancer models and are overexpressed in human cancer. We found that Elf4/Mef activates Mdm2 expression; thus, lack of or knockdown of Elf4/Mef reduces Mdm2 levels in mouse embryonic fibroblasts (mef's), leading to enhanced p53 protein accumulation and p53-dependent senescence. Even though p53 is absent in Elf4(-/-) p53(-/-) mef's, neither oncogenic H-Ras(V12) nor c-myc can induce transformation of these cells. This appears to relate to the INK4a/ARF locus; both p19(ARF) and p16 are increased in Elf4(-/-) p53(-/-) mef's, and expression of Bmi-1 or knockdown of p16 in this context restores H-Ras(V12)-induced transformation. Thus, ELF4/MEF promotes tumorigenesis by inhibiting both the p53 and p16/Rb pathways.
Collapse
|
38
|
Engel ME, Hiebert SW. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia. Cancer Treat Res 2009; 145:127-47. [PMID: 20306249 DOI: 10.1007/978-0-387-69259-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The existence of non-random mutations in critical regulators of cell growth and differentiation is a recurring theme in cancer pathogenesis and provides the basis for our modern, molecular approach to the study and treatment of malignant diseases. Nowhere is this more true than in the study of leukemogenesis, where research has converged upon a critical group of genes involved in hematopoietic stem and progenitor cell self-renewal and fate specification. Prominent among these is the heterodimeric transcriptional regulator, RUNX1/CBFbeta. RUNX1 is a site-specific DNA-binding protein whose consensus response element is found in the promoters of many hematopoietically relevant genes. CBFbeta interacts with RUNX1, stabilizing its interaction with DNA to promote the actions of RUNX1/CBFbeta in transcriptional control. Both the RUNX1 and the CBFbeta genes participate in proleukemic chromosomal alterations. Together they contribute to approximately one-third of acute myelogenous leukemia (AML) and one-quarter of acute lymphoblastic leukemia (ALL) cases, making RUNX1 and CBFbeta the most frequently affected genes known in the pathogenesis of acute leukemia. Investigating the mechanisms by which RUNX1, CBFbeta, and their proleukemic fusion proteins influence leukemogenesis has contributed greatly to our understanding of both normal and malignant hematopoiesis. Here we present an overview of the structural features of RUNX1/CBFbeta and their derivatives, their roles in transcriptional control, and their contributions to normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Michael E Engel
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Nashville, TN, USA.
| | | |
Collapse
|
39
|
Serrano E, Carnicer MJ, Lasa A, Orantes V, Pena J, Brunet S, Aventín A, Sierra J, Nomdedéu JF. Epigenetic-based treatments emphasize the biologic differences of core-binding factor acute myeloid leukemias. Leuk Res 2008; 32:944-53. [DOI: 10.1016/j.leukres.2007.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 11/14/2007] [Accepted: 11/24/2007] [Indexed: 10/22/2022]
|
40
|
Zhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S, Zhang J, Dunne R, Xiao A, Erdjument-Bromage H, Allis CD, Tempst P, Nimer SD. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev 2008; 22:640-53. [PMID: 18316480 DOI: 10.1101/gad.1632608] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RUNX1/AML1 is required for the development of definitive hematopoiesis, and its activity is altered by mutations, deletions, and chromosome translocations in human acute leukemia. RUNX1 function can be regulated by post-translational modifications and protein-protein interactions. We show that RUNX1 is arginine-methylated in vivo by the arginine methyltransferase PRMT1, and that PRMT1 serves as a transcriptional coactivator for RUNX1 function. Using mass spectrometry, and a methyl-arginine-specific antibody, we identified two arginine residues (R206 and R210) within the region of RUNX1 that interact with the corepressor SIN3A and are methylated by PRMT1. PRMT1- dependent methylation of RUNX1 at these arginine residues abrogates its association with SIN3A, whereas shRNA against PRMT1 (or use of a methyltransferase inhibitor) enhances this association. We find arginine-methylated RUNX1 on the promoters of two bona fide RUNX1 target genes, CD41 and PU.1 and show that shRNA against PRMT1 or RUNX1 down-regulates their expression. These arginine methylation sites and the dynamic regulation of corepressor binding are lost in the leukemia-associated RUNX1-ETO fusion protein, which likely contributes to its dominant inhibitory activity.
Collapse
Affiliation(s)
- Xinyang Zhao
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jude CD, Gaudet J, Speck N, Ernst P. Leukemia and hematopoietic stem cells: balancing proliferation and quiescence. Cell Cycle 2008; 7:586-91. [PMID: 18239455 PMCID: PMC2892629 DOI: 10.4161/cc.7.5.5549] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromosomal translocations that disrupt transcriptional regulators are frequently involved in the etiology of leukemia. To gain an understanding of the normal and pathologic roles of these transcriptional regulators, both gain- and loss-of-function mutations have been examined in the context of steady-state hematopoiesis. These studies have identified a remarkable number of genes whose loss-of-function phenotype includes a perturbation of hematopoietic stem cell (HSC) proliferation. As more of these models are generated and analyzed using commonly available tools, the regulatory pathways that control HSC quiescence and proliferation are becoming clearer. An emerging theme is that leukemia-associated transcriptional regulators coordinate the balance of proliferation and quiescence within the HSC pool by modulating the number and frequency of cells transiting the cell cycle. Uncoupling proliferation from differentiation by the aberrant generation of chimeric oncogenes that retain some, but not all of the attributes of the original transcription factor is likely to be an important step during leukemogenesis.
Collapse
Affiliation(s)
- Craig D. Jude
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
| | - Justin Gaudet
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
| | - Nancy Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| | - Patricia Ernst
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755
| |
Collapse
|
42
|
Abstract
Almost half of adult acute myelogenous leukemia (AML) is normal cytogenetically, and this subgroup shows a remarkable heterogeneity of genetic mutations at the molecular level and an intermediate response to therapy. The finding of recurrent cytogenetic abnormalities has influenced, in a primary way, the understanding and treatment of leukemias. Yet "normal karyotype AML" lacks such obvious abnormalities, but has a variety of prognostically important genetic abnormalities. Thus, the presence of a FLT3-ITD (internal tandem duplication), MLL-PTD (partial tandem duplication), or the increased expression of ERG or EVI1 mRNAs confer a poor prognosis, and an increased risk of relapse. In contrast, the presence of cytoplasmic nucleophosmin or C/EBPA mutations is associated with lower relapse rates and improved survival. Although resistance to treatment is associated with specific mutations, the degree to which the leukemia resembles a stem cell in its functional properties may provide greater protection from the effects of treatment. Although usually all of the circulating leukemia cells are cleared following treatment, a small residual population of leukemic cells in the bone marrow persists, making this disease hard to eradicate. Increased understanding of the biological consequences of at least some of these mutations in "normal karyotype AML" is leading to more targeted approaches to develop more effective treatments for this disease.
Collapse
Affiliation(s)
- Stephen D Nimer
- Division of Hematologic Oncology, Memorial Sloan Kettering Cancer Center, NY 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
43
|
Hines R, Boyapati A, Zhang DE. Cell type dependent regulation of multidrug resistance-1 gene expression by AML1-ETO. Blood Cells Mol Dis 2007; 39:297-306. [PMID: 17590361 PMCID: PMC2048671 DOI: 10.1016/j.bcmd.2007.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Accepted: 05/21/2007] [Indexed: 11/28/2022]
Abstract
The AML1-ETO fusion protein is generated from the 8;21 chromosome translocation that is commonly identified in acute myeloid leukemia. AML1-ETO is a DNA binding transcription factor and has been demonstrated to play a critical role in promoting leukemogenesis. Therefore, it is important to define the molecular mechanism of AML1-ETO in the regulation of gene expression. Here, we report that the effect of AML1-ETO on the promoter of multidrug resistance-1 (MDR1) gene, a known AML1-ETO target, is highly cell type specific. Besides observing repression of the MDR1 promoter in C33A and CV-1 cells as reported previously, AML1-ETO strongly activated the promoter in K562 and B210 cells. More importantly, this activation required both the AML1 and ETO portions of the fusion protein, but did not depend on the AML1 binding site in MDR1 promoter. Furthermore, results from promoter deletion analysis and chromatin immunoprecipitation assays suggested that this activation effect was likely through the influence of the general transcription machinery rather than promoter-specific factors. Based on these data, we propose that AML1-ETO may have opposing effects on gene expression depending on the various conditions of the cellular environment.
Collapse
Affiliation(s)
- Robert Hines
- Department of Molecular and Experimental Medicine, MEM-L51, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
44
|
Lundstedt AC, McCarthy S, Gustafsson MC, Godaly G, Jodal U, Karpman D, Leijonhufvud I, Lindén C, Martinell J, Ragnarsdottir B, Samuelsson M, Truedsson L, Andersson B, Svanborg C. A genetic basis of susceptibility to acute pyelonephritis. PLoS One 2007; 2:e825. [PMID: 17786197 PMCID: PMC1950574 DOI: 10.1371/journal.pone.0000825] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/23/2007] [Indexed: 11/19/2022] Open
Abstract
Background For unknown reasons, urinary tract infections (UTIs) are clustered in certain individuals. Here we propose a novel, genetically determined cause of susceptibility to acute pyelonephritis, which is the most severe form of UTI. The IL-8 receptor, CXCR1, was identified as a candidate gene when mIL-8Rh mutant mice developed acute pyelonephritis (APN) with severe tissue damage. Methods and Findings We have obtained CXCR1 sequences from two, highly selected APN prone patient groups, and detected three unique mutations and two known polymorphisms with a genotype frequency of 23% and 25% compared to 7% in controls (p<0.001 and p<0.0001, respectively). When reflux was excluded, 54% of the patients had CXCR1 sequence variants. The UTI prone children expressed less CXCR1 protein than the pediatric controls (p<0.0001) and two sequence variants were shown to impair transcription. Conclusions The results identify a genetic innate immune deficiency, with a strong link to APN and renal scarring.
Collapse
Affiliation(s)
- Ann-Charlotte Lundstedt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Shane McCarthy
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias C.U. Gustafsson
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ulf Jodal
- Department of Pediatrics, the Queen Silvia Children's Hospital, Gothenburg University, Gothenburg, Sweden
| | - Diana Karpman
- Department of Pediatrics, Lund University, Lund, Sweden
| | - Irene Leijonhufvud
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Carin Lindén
- Department of Infectious Diseases, Gothenburg University, Gothenburg, Sweden
| | - Jeanette Martinell
- Department of Pediatrics, the Queen Silvia Children's Hospital, Gothenburg University, Gothenburg, Sweden
| | - Bryndis Ragnarsdottir
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Martin Samuelsson
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lennart Truedsson
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Kim YJ, Kim BG, Lee SJ, Lee HK, Lee SH, Ryoo HM, Cho JY. The suppressive effect of myeloid Elf-1-like factor (MEF) in osteogenic differentiation. J Cell Physiol 2007; 211:253-60. [PMID: 17167770 DOI: 10.1002/jcp.20933] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myeloid Elf-1 like factor (MEF) is a member of the Ets transcription factor family. Ets family proteins control the expression of genes that are critical for biological processes such as proliferation, differentiation, and cell death. Some of Ets factors are also known to regulate bone development. In this study, we investigated the role of MEF in osteoblast differentiation. MEF expression was highest early in the differentiation of MC3T3-E1 osteoblasts and was reduced by treatment with BMP-2. The expression of MEF suppressed the alkaline phosphatase activity and expression induced by BMP-2 stimulation and mediated by Runx2. The expression of MEF also reduces osteocalcin mRNA levels, and mineralization in MC3T3-E1 cells. We found that the MEF-mediated suppression of osteogenic differentiation was critically related to Runx2 regulation. The MEF and Runx2 proteins physically interact to form a complex, and this interaction interferes with Runx2 binding to the cis-acting element OSE2 derived from the osteocalcin promoter. Co-transfection of MEF inhibited the 6xOSE2-luciferase reporter activity induced by Runx2. In addition, MEF stimulated the transcription of a negative mediator Msx2, and a transcriptional repressor, Mab21L1, and suppressed the transcription of a positive mediator, Dlx5 in osteoblast differentiation. MEF overexpression stimulated C2C12 cell proliferation. Together, our findings suggest that MEF promotes cell proliferation and functions as a negative regulator of osteogenic differentiation by directly interacting with Runx2 and suppressing its transcriptional activity.
Collapse
Affiliation(s)
- Youn-Jeong Kim
- Department of Biochemistry and BK 21 Program, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Li X, Xu YB, Wang Q, Lu Y, Zheng Y, Wang YC, Lübbert M, Zhao KW, Chen GQ. Leukemogenic AML1-ETO fusion protein upregulates expression of connexin 43: the role in AML 1-ETO-induced growth arrest in leukemic cells. J Cell Physiol 2006; 208:594-601. [PMID: 16741927 DOI: 10.1002/jcp.20695] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AML1-ETO, a fusion protein generated by the chromosomal translocation t(8;21), is frequently associated with acute myeloid leukemia (AML). In addition to blocking differentiation, AML1-ETO is also shown to induce growth arrest in AML cells, which is unfavorable for leukemogenesis harboring the t(8;21) translocation. However, its precise mechanism is still unclear. Here we provide the first demonstration that the conditional expression of AML1-ETO by the ecdysone-inducible system dramatically increases the expression of connexin 43 (CX43), together with growth arrest at G1 phase in leukemic U937 cells. We also show that the CX43 induction inhibits the proliferation of U937 cells at G1 phase, while the suppression of CX43 expression by small interfering RNA (siRNA) effectively overcomes the growth-inhibitory effect of AML1 -ETO in leukemic cells. Furthermore, either AML1-ETO or CX43 induction elevates cell-cycle negative regulator P27(kip1) protein by inhibiting its degradation, which is antagonized by siRNA against CX43. Taken together, our data indicate that CX43 plays a role in AML1-ETO-induced growth arrest possibly through the accumulation of P27(kip1) protein. The potential mutation or/and epigenetic alterations of CX43 and its related gene(s) deserve to be explored in AML1-ETO-positive AML patients.
Collapse
MESH Headings
- Base Sequence
- Cell Cycle
- Cell Line, Tumor
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Connexin 43/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA Primers
- Humans
- Leukemia, Myeloid, Acute
- Molecular Sequence Data
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- RNA, Small Interfering
- RUNX1 Translocation Partner 1 Protein
- Recombinant Fusion Proteins/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Translocation, Genetic
- U937 Cells
Collapse
Affiliation(s)
- Xi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Robin C, Ottersbach K, Durand C, Peeters M, Vanes L, Tybulewicz V, Dzierzak E. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev Cell 2006; 11:171-80. [PMID: 16890157 DOI: 10.1016/j.devcel.2006.07.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 06/09/2006] [Accepted: 07/10/2006] [Indexed: 11/21/2022]
Abstract
Cytokines are important in adult hematopoiesis, yet their function in embryonic hematopoiesis has been largely unexplored. During development, hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, yolk sac (YS), and placenta and require the Runx1 transcription factor for their normal generation. Since IL-3 is a Runx1 target and this cytokine acts on adult hematopoietic cells, we examined whether IL-3 affects HSCs in the mouse embryo. Using Runx1 haploinsufficient mice, we show that IL-3 amplifies HSCs from E11 AGM, YS, and placenta. Moreover, we show that IL-3 mutant embryos are deficient in HSCs and that IL-3 reveals the presence of HSCs in the AGM and YS prior to the stage at which HSCs are normally detected. Thus, our studies support an unexpected role for IL-3 during development and strongly suggest that IL-3 functions as a proliferation and/or survival factor for the earliest HSCs in the embryo.
Collapse
Affiliation(s)
- Catherine Robin
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Hedvat CV, Mao S, Zhu XH, Yao J, Nguyen H, Koff A, Nimer SD. The ETS protein MEF is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Mol Cell Biol 2006; 26:3114-23. [PMID: 16581786 PMCID: PMC1446966 DOI: 10.1128/mcb.26.8.3114-3123.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MEF is an ETS-related transcription factor with strong transcriptional activating activity that affects hematopoietic stem cell behavior and is required for normal NK cell and NK T-cell development. The MEF (also known as ELF4) gene is repressed by several leukemia-associated fusion transcription factor proteins (PML-retinoic acid receptor alpha and AML1-ETO), but it is also activated by retroviral insertion in several cancer models. We have previously shown that cyclin A-dependent phosphorylation of MEF largely restricts its activity to the G(1) phase of the cell cycle; we now show that MEF is a short-lived protein whose expression level also peaks during late G(1) phase. Mutagenesis studies show that the rapid turnover of MEF in S phase is dependent on the specific phosphorylation of threonine 643 and serine 648 at the C terminus of MEF by cdk2 and on the Skp1/Cul1/F-box (SCF) E3 ubiquitin ligase complex SCF(Skp2), which targets MEF for ubiquitination and proteolysis. Overexpression of MEF drives cells through the G(1)/S transition, thereby promoting cell proliferation. The tight regulation of MEF levels during the cell cycle contributes to its effects on regulating cell cycle entry and cell proliferation.
Collapse
Affiliation(s)
- Yan Liu
- Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 575, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lin S, Perl AKT, Shannon JM. Erm/thyroid transcription factor 1 interactions modulate surfactant protein C transcription. J Biol Chem 2006; 281:16716-26. [PMID: 16613858 DOI: 10.1074/jbc.m602221200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Expression of surfactant protein C (SP-C), which is restricted to alveolar type II epithelial cells of the adult lung, is critically dependent on thyroid transcription factor 1 (TTF-1). In the present study we have demonstrated that Erm, a member of the Ets family of transcription factors, is expressed in the distal lung epithelium during development and is also restricted to alveolar type II cells in the adult. Erm was up-regulated by fibroblast growth factors (FGFs) in culture, and blocking FGF signaling inhibited Erm expression both in vivo and in vitro. The SP-C minimal promoter was found to contain two potential Ets binding sites, and electrophoretic mobility shift assays showed that two 20-bp wild-type oligonucleotides containing the 5'-GGA(A/T)-3' Ets consensus binding motif were shifted by nuclear extracts from MLE15 cells. Co-transfection assays showed that Erm by itself had little effect on SP-C promoter activity but that Erm significantly enhanced TTF-1-mediated SP-C transcription. Mutation of one of the Ets binding sites reduced SP-C transcription to background levels, whereas mutation of the other site resulted in increased SP-C transcription. Protein-protein interactions between Erm and TTF-1 were demonstrated by mammalian two-hybrid assays and by co-immunoprecipitation assays. Mapping studies showed that the Ets domain of Erm and the combined N terminus and homeodomain of TTF-1 were critical for this interaction. Treatment of primary cultures of adult alveolar type II cells with siRNA targeting Erm diminished expression of both Erm and SP-C but had no effect on beta-actin or GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Taken together, these results demonstrate that Erm is involved in SP-C regulation, which results from an interaction with TTF-1.
Collapse
Affiliation(s)
- Sui Lin
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | |
Collapse
|
50
|
Chen AI, de Nooij JC, Jessell TM. Graded activity of transcription factor Runx3 specifies the laminar termination pattern of sensory axons in the developing spinal cord. Neuron 2006; 49:395-408. [PMID: 16446143 DOI: 10.1016/j.neuron.2005.12.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 12/23/2005] [Accepted: 12/23/2005] [Indexed: 01/19/2023]
Abstract
Different functional classes of dorsal root ganglion sensory neurons project their axons to distinct target zones within the developing spinal cord. To explore the mechanisms that link sensory neuron subtype identity and axonal projection pattern, we analyzed the roles of Runx and ETS transcription factors in the laminar targeting of sensory afferents. Gain- and loss-of-function studies in chick embryos reveal that the status of Runx3 expression is a major determinant of the dorso-ventral position of termination of proprioceptive and cutaneous sensory axons. In addition, the level of expression and/or activity of Runx3 in individual proprioceptive sensory neurons appears to specify whether their axons terminate in intermediate or ventral regions. Our findings suggest that the selectivity of Runx3 expression, and its level of activity, control sensory afferent targeting in the developing spinal cord.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/physiology
- Cell Count/methods
- Chick Embryo
- Core Binding Factor Alpha 2 Subunit/metabolism
- Core Binding Factor Alpha 3 Subunit/metabolism
- Dose-Response Relationship, Drug
- Electroporation/methods
- Fluorescent Antibody Technique/methods
- Functional Laterality
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Genes, myc/physiology
- Green Fluorescent Proteins/metabolism
- Homeodomain Proteins/metabolism
- Models, Biological
- Molecular Biology/methods
- Nerve Fibers/metabolism
- Nerve Regeneration/physiology
- Neurons, Afferent/classification
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- RNA, Double-Stranded/pharmacology
- Receptor, trkA/metabolism
- Spinal Cord/cytology
- Spinal Cord/embryology
Collapse
Affiliation(s)
- Albert I Chen
- Howard Hughes Medical Institute, Department of Biochemistry & Molecular Biophysics, Center for Neurobiology & Behavior, Columbia University, 701 West 168th Street, New York, New York 10032, USA
| | | | | |
Collapse
|