1
|
Sun C, Ruzycki PA, Chen S. Rho enhancers play unexpectedly minor roles in Rhodopsin transcription and rod cell integrity. Sci Rep 2023; 13:12899. [PMID: 37558693 PMCID: PMC10412641 DOI: 10.1038/s41598-023-39979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Enhancers function with a basal promoter to control the transcription of target genes. Enhancer regulatory activity is often studied using reporter-based transgene assays. However, unmatched results have been reported when selected enhancers are silenced in situ. In this study, using genomic deletion analysis in mice, we investigated the roles of two previously identified enhancers and the promoter of the Rho gene that codes for the visual pigment rhodopsin. The Rho gene is robustly expressed by rod photoreceptors of the retina, and essential for the subcellular structure and visual function of rod photoreceptors. Mutations in RHO cause severe vision loss in humans. We found that each Rho regulatory region can independently mediate local epigenomic changes, but only the promoter is absolutely required for establishing active Rho chromatin configuration and transcription and maintaining the cell integrity and function of rod photoreceptors. To our surprise, two Rho enhancers that enable strong promoter activation in reporter assays are largely dispensable for Rho expression in vivo. Only small and age-dependent impact is detectable when both enhancers are deleted. Our results demonstrate context-dependent roles of enhancers and highlight the importance of studying functions of cis-regulatory regions in the native genomic context.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Genetics, Washington University, 660 South Euclid Avenue, MSC 8096-0006-11, Saint Louis, MO, 63110, USA.
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University, 660 South Euclid Avenue, MSC 8096-0006-06, Saint Louis, MO, 63110, USA.
| |
Collapse
|
2
|
Replication Stress, Genomic Instability, and Replication Timing: A Complex Relationship. Int J Mol Sci 2021; 22:ijms22094764. [PMID: 33946274 PMCID: PMC8125245 DOI: 10.3390/ijms22094764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
The replication-timing program constitutes a key element of the organization and coordination of numerous nuclear processes in eukaryotes. This program is established at a crucial moment in the cell cycle and occurs simultaneously with the organization of the genome, thus indicating the vital significance of this process. With recent technological achievements of high-throughput approaches, a very strong link has been confirmed between replication timing, transcriptional activity, the epigenetic and mutational landscape, and the 3D organization of the genome. There is also a clear relationship between replication stress, replication timing, and genomic instability, but the extent to which they are mutually linked to each other is unclear. Recent evidence has shown that replication timing is affected in cancer cells, although the cause and consequence of this effect remain unknown. However, in-depth studies remain to be performed to characterize the molecular mechanisms of replication-timing regulation and clearly identify different cis- and trans-acting factors. The results of these studies will potentially facilitate the discovery of new therapeutic pathways, particularly for personalized medicine, or new biomarkers. This review focuses on the complex relationship between replication timing, replication stress, and genomic instability.
Collapse
|
3
|
Miesfeld JB, Ghiasvand NM, Marsh-Armstrong B, Marsh-Armstrong N, Miller EB, Zhang P, Manna SK, Zawadzki RJ, Brown NL, Glaser T. The Atoh7 remote enhancer provides transcriptional robustness during retinal ganglion cell development. Proc Natl Acad Sci U S A 2020; 117:21690-21700. [PMID: 32817515 PMCID: PMC7474671 DOI: 10.1073/pnas.2006888117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. ATOH7 transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the ATOH7 human SE causes nonsyndromic congenital retinal nonattachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness. We used genome editing to model NCRNA in mice. Deletion of the murine SE reduces Atoh7 messenger RNA (mRNA) fivefold but does not recapitulate optic nerve loss; however, SEdel/knockout (KO) trans heterozygotes have thin optic nerves. By analyzing Atoh7 mRNA and protein levels, RGC development and survival, and chromatin landscape effects, we show that the SE ensures robust Atoh7 transcriptional output. Combining SE deletion and KO and wild-type alleles in a genotypic series, we determined the amount of Atoh7 needed to produce a normal complement of adult RGCs, and the secondary consequences of graded reductions in Atoh7 dosage. Together, these data reveal the workings of an evolutionary fail-safe, a duplicate enhancer mechanism that is hard-wired in the machinery of vertebrate retinal ganglion cell genesis.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Noor M Ghiasvand
- Department of Biology, Grand Valley State University, Allendale, MI 49401
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Brennan Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Nicholas Marsh-Armstrong
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Eric B Miller
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Pengfei Zhang
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Suman K Manna
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Robert J Zawadzki
- Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA 95817
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, CA 95616;
| |
Collapse
|
4
|
Marchal C, Sima J, Gilbert DM. Control of DNA replication timing in the 3D genome. Nat Rev Mol Cell Biol 2019; 20:721-737. [PMID: 31477886 PMCID: PMC11567694 DOI: 10.1038/s41580-019-0162-y] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/27/2022]
Abstract
The 3D organization of mammalian chromatin was described more than 30 years ago by visualizing sites of DNA synthesis at different times during the S phase of the cell cycle. These early cytogenetic studies revealed structurally stable chromosome domains organized into subnuclear compartments. Active-gene-rich domains in the nuclear interior replicate early, whereas more condensed chromatin domains that are largely at the nuclear and nucleolar periphery replicate later. During the past decade, this spatiotemporal DNA replication programme has been mapped along the genome and found to correlate with epigenetic marks, transcriptional activity and features of 3D genome architecture such as chromosome compartments and topologically associated domains. But the causal relationship between these features and DNA replication timing and the regulatory mechanisms involved have remained an enigma. The recent identification of cis-acting elements regulating the replication time and 3D architecture of individual replication domains and of long non-coding RNAs that coordinate whole chromosome replication provide insights into such mechanisms.
Collapse
Affiliation(s)
- Claire Marchal
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
5
|
Cheung MH, Amin A, Wu R, Qin Y, Zou L, Yu Z, Liang C. Human NOC3 is essential for DNA replication licensing in human cells. Cell Cycle 2019; 18:605-620. [PMID: 30741601 DOI: 10.1080/15384101.2019.1578522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Noc3p (Nucleolar Complex-associated protein) is an essential protein in budding yeast DNA replication licensing. Noc3p mediates the loading of Cdc6p and MCM proteins onto replication origins during the M-to-G1 transition by interacting with ORC (Origin Recognition Complex) and MCM (Minichromosome Maintenance) proteins. FAD24 (Factor for Adipocyte Differentiation, clone number 24), the human homolog of Noc3p (hNOC3), was previously reported to play roles in the regulation of DNA replication and proliferation in human cells. However, the role of hNOC3 in replication licensing was unclear. Here we report that hNOC3 physically interacts with multiple human pre-replicative complex (pre-RC) proteins and associates with known replication origins throughout the cell cycle. Moreover, knockdown of hNOC3 in HeLa cells abrogates the chromatin association of other pre-RC proteins including hCDC6 and hMCM, leading to DNA replication defects and eventual apoptosis in an abortive S-phase. In comparison, specific inhibition of the ribosome biogenesis pathway by preventing pre-rRNA synthesis, does not lead to any cell cycle or DNA replication defect or apoptosis in the same timeframe as the hNOC3 knockdown experiments. Our findings strongly suggest that hNOC3 plays an essential role in pre-RC formation and the initiation of DNA replication independent of its potential role in ribosome biogenesis in human cells.
Collapse
Affiliation(s)
- Man-Hei Cheung
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,c Shenzhen-PKU-HKUST Medical Center , Biomedical Research Institute , Shenzhen , China
| | - Aftab Amin
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,d School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China
| | - Rentian Wu
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Yan Qin
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Lan Zou
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,e Intelgen Limited , Hong Kong-Guangzhou-Foshan , China
| | - Zhiling Yu
- d School of Chinese Medicine , Hong Kong Baptist University , Hong Kong , China
| | - Chun Liang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,c Shenzhen-PKU-HKUST Medical Center , Biomedical Research Institute , Shenzhen , China.,e Intelgen Limited , Hong Kong-Guangzhou-Foshan , China
| |
Collapse
|
6
|
Sima J, Chakraborty A, Dileep V, Michalski M, Klein KN, Holcomb NP, Turner JL, Paulsen MT, Rivera-Mulia JC, Trevilla-Garcia C, Bartlett DA, Zhao PA, Washburn BK, Nora EP, Kraft K, Mundlos S, Bruneau BG, Ljungman M, Fraser P, Ay F, Gilbert DM. Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell 2019; 176:816-830.e18. [PMID: 30595451 PMCID: PMC6546437 DOI: 10.1016/j.cell.2018.11.036] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.
Collapse
Affiliation(s)
- Jiao Sima
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Marco Michalski
- Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Nicolas P Holcomb
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jesse L Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Michelle T Paulsen
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | - Daniel A Bartlett
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Peiyao A Zhao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Brian K Washburn
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Elphège P Nora
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA
| | - Katerina Kraft
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitäts Medizin Berlin, 13353 Berlin, Germany
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease and Roddenberry Center for Stem Cell Biology and Medicine, San Francisco, CA 94158, USA; Department of Pediatrics, Cardiovascular Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mats Ljungman
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter Fraser
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Nuclear Dynamics Program, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; UC San Diego, School of Medicine, La Jolla, CA 92037, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
7
|
Hosseini A, Minucci S. Alterations of Histone Modifications in Cancer. EPIGENETICS IN HUMAN DISEASE 2018:141-217. [DOI: 10.1016/b978-0-12-812215-0.00006-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Almouzni G, Cedar H. Maintenance of Epigenetic Information. Cold Spring Harb Perspect Biol 2016; 8:8/5/a019372. [PMID: 27141050 DOI: 10.1101/cshperspect.a019372] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genome is subject to a diverse array of epigenetic modifications from DNA methylation to histone posttranslational changes. Many of these marks are somatically stable through cell division. This article focuses on our knowledge of the mechanisms governing the inheritance of epigenetic marks, particularly, repressive ones, when the DNA and chromatin template are duplicated in S phase. This involves the action of histone chaperones, nucleosome-remodeling enzymes, histone and DNA methylation binding proteins, and chromatin-modifying enzymes. Last, the timing of DNA replication is discussed, including the question of whether this constitutes an epigenetic mark that facilitates the propagation of epigenetic marks.
Collapse
Affiliation(s)
- Geneviève Almouzni
- Department of Nuclear Dynamics and Genome Plasticity, Institut Curie, Section de recherche, 75231 Paris Cedex 05, France
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Ein Kerem, Jerusalem, Israel 91120
| |
Collapse
|
9
|
Kim YZ. Altered histone modifications in gliomas. Brain Tumor Res Treat 2014; 2:7-21. [PMID: 24926467 PMCID: PMC4049557 DOI: 10.14791/btrt.2014.2.1.7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/16/2014] [Accepted: 03/21/2014] [Indexed: 12/24/2022] Open
Abstract
Gliomas are the most frequently occurring primary brain tumors in adults. Although they exist in different malignant stages, including histologically benign forms and highly aggressive states, most gliomas are clinically challenging for neuro-oncologists because of their infiltrative growth patterns and inherent relapse tendency with increased malignancy. Once this disease reaches the glioblastoma multiforme stage, the prognosis of patients is dismal: median survival time is 15 months. Extensive genetic analyses of glial tumors have revealed a variety of deregulated genetic pathways involved in DNA repair, apoptosis, cell migration/adhesion, and cell cycle. Recently, it has become evident that epigenetic alterations may also be an important factor for glioma genesis. Of epigenetic marks, histone modification is a key mark that regulates gene expression and thus modulates a wide range of cellular processes. In this review, I discuss the neuro-oncological significance of altered histone modifications and modifiers in glioma patients while briefly overviewing the biological roles of histone modifications.
Collapse
Affiliation(s)
- Young Zoon Kim
- Division of Neuro-Oncology, Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| |
Collapse
|
10
|
Fritz A, Sinha S, Marella N, Berezney R. Alterations in replication timing of cancer-related genes in malignant human breast cancer cells. J Cell Biochem 2013; 114:1074-83. [PMID: 23161755 DOI: 10.1002/jcb.24447] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/01/2012] [Indexed: 01/13/2023]
Abstract
The replication timing of nine genes commonly involved in cancer was investigated in the MCF10 cell lines for human breast cancer progression. Six of these nine genes are part of a constellation of tumor suppressor genes that play a major role in familial human breast cancer (TP53, ATM, PTEN, CHK2, BRCA1, and BRCA2). Three other genes are involved in a large number of human cancers including breast as either tumor suppressors (RB1 and RAD51) or as an oncogene (cMYC). Five of these nine genes (TP53, RAD51, ATM, PTEN, and cMYC) show significant differences (P < 0.05) in replication timing between MCF10A normal human breast cells and the corresponding malignant MCF10CA1a cells. These differences are specific to the malignant state of the MCF10CA1a cells since there were no significant differences in the replication timing of these genes between normal MCF10A cells and the non-malignant cancer MCF10AT1 cells. Microarray analysis further demonstrated that three of these five genes (TP53, RAD51, and cMYC) showed significant changes in gene expression (≥2-fold) between normal and malignant cells. Our findings demonstrate an alteration in the replication timing of a small subset of cancer-related genes in malignant breast cancer cells. These alterations partially correlate with the major transcriptional changes characteristic of the malignant state in these cells.
Collapse
Affiliation(s)
- Andrew Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
11
|
Panigrahi I, Agarwal S. Genetic determinants of phenotype in beta-thalassemia. Hematology 2013; 13:247-52. [DOI: 10.1179/102453308x316031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Inusha Panigrahi
- Department of PediatricsPostgraduate Institute of Medical Education and Research, Chandigarh-12, India
| | - Sarita Agarwal
- Department of Medical GeneticsSanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-14, India
| |
Collapse
|
12
|
Donley N, Thayer MJ. DNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instability. Semin Cancer Biol 2013; 23:80-9. [PMID: 23327985 DOI: 10.1016/j.semcancer.2013.01.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Normal cellular division requires that the genome be faithfully replicated to ensure that unaltered genomic information is passed from one generation to the next. DNA replication initiates from thousands of origins scattered throughout the genome every cell cycle; however, not all origins initiate replication at the same time. A vast amount of work over the years indicates that different origins along each eukaryotic chromosome are activated in early, middle or late S phase. This temporal control of DNA replication is referred to as the replication-timing program. The replication-timing program represents a very stable epigenetic feature of chromosomes. Recent evidence has indicated that the replication-timing program can influence the spatial distribution of mutagenic events such that certain regions of the genome experience increased spontaneous mutagenesis compared to surrounding regions. This influence has helped shape the genomes of humans and other multicellular organisms and can affect the distribution of mutations in somatic cells. It is also becoming clear that the replication-timing program is deregulated in many disease states, including cancer. Aberrant DNA replication timing is associated with changes in gene expression, changes in epigenetic modifications and an increased frequency of structural rearrangements. Furthermore, certain replication timing changes can directly lead to overt genomic instability and may explain unique mutational signatures that are present in cells that have undergone the recently described processes of "chromothripsis" and "kataegis". In this review, we will discuss how the normal replication timing program, as well as how alterations to this program, can contribute to the evolution of the genomic landscape in normal and cancerous cells.
Collapse
Affiliation(s)
- Nathan Donley
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Knight Cancer Institute, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
13
|
Abstract
Although distinct chromatin types have been long known to replicate at different timepoints of S phase, fine replication control has only recently become considered as an epigenetic phenomenon. It is now clear that in course of differentiation significant changes in genome replication timing occur, and these changes are intimately linked with the changes in transcriptional activity and nuclear architecture. Temporally coordinate replication is organized spatially into discrete units having specific chromosomal organization and function. Even though the functional aspects of such tight control of replication timing remain to be explored, one can confidently consider the replication program as yet another fundamental feature characteristic of the given differentiation state. The present review touches upon the molecular mechanisms of spatial and temporal control of replication timing, involving individual replication origins as well as large chromatin domains.
Collapse
|
14
|
Razin SV, Ulianov SV, Ioudinkova ES, Gushchanskaya ES, Gavrilov AA, Iarovaia OV. Domains of α- and β-globin genes in the context of the structural-functional organization of the eukaryotic genome. BIOCHEMISTRY (MOSCOW) 2012; 77:1409-1423. [DOI: 10.1134/s0006297912130019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
15
|
Petrakis TG, Vougas K, Gorgoulis VG. Cdc6: a multi-functional molecular switch with critical role in carcinogenesis. Transcription 2012; 3:124-9. [PMID: 22771947 DOI: 10.4161/trns.20301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Research in the last decade revealed an additional role for the Replication Licensing Factor Cdc6 in transcriptional regulation. This novel function has been linked to human cancer development. Here, we summarize all the findings arguing over a role of Cdc6 as a transcriptional repressor and shed light toward new research directions for this field.
Collapse
Affiliation(s)
- Thodoris G Petrakis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, University of Athens, Athens, Greece
| | | | | |
Collapse
|
16
|
Pope BD, Chandra T, Buckley Q, Hoare M, Ryba T, Wiseman FK, Kuta A, Wilson MD, Odom DT, Gilbert DM. Replication-timing boundaries facilitate cell-type and species-specific regulation of a rearranged human chromosome in mouse. Hum Mol Genet 2012; 21:4162-70. [PMID: 22736031 PMCID: PMC3441118 DOI: 10.1093/hmg/dds232] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/07/2012] [Accepted: 06/11/2012] [Indexed: 01/04/2023] Open
Abstract
In multicellular organisms, developmental changes to replication timing occur in 400-800 kb domains across half the genome. While examples of epigenetic control of replication timing have been described, a role for DNA sequence in mammalian replication-timing regulation has not been substantiated. To assess the role of DNA sequences in directing developmental changes to replication timing, we profiled replication timing in mice carrying a genetically rearranged Human Chromosome 21 (Hsa21). In two distinct mouse cell types, Hsa21 sequences maintained human-specific replication timing, except at points of Hsa21 rearrangement. Changes in replication timing at rearrangements extended up to 900 kb and consistently reconciled with the wild-type replication pattern at developmental boundaries of replication-timing domains. Our results are consistent with DNA sequence-driven regulation of Hsa21 replication timing during development and provide evidence that mammalian chromosomes consist of multiple independent units of replication-timing regulation.
Collapse
Affiliation(s)
- Benjamin D. Pope
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Tamir Chandra
- Cancer Research UK, Cambridge Research Institute, Cambridge CB2 0RE, UK
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK and
| | - Quinton Buckley
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Matthew Hoare
- Cancer Research UK, Cambridge Research Institute, Cambridge CB2 0RE, UK
| | - Tyrone Ryba
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Frances K. Wiseman
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Anna Kuta
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Michael D. Wilson
- Cancer Research UK, Cambridge Research Institute, Cambridge CB2 0RE, UK
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK and
| | - Duncan T. Odom
- Cancer Research UK, Cambridge Research Institute, Cambridge CB2 0RE, UK
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK and
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
17
|
Watanabe S, Ohbayashi R, Shiwa Y, Noda A, Kanesaki Y, Chibazakura T, Yoshikawa H. Light-dependent and asynchronous replication of cyanobacterial multi-copy chromosomes. Mol Microbiol 2012; 83:856-65. [PMID: 22403820 DOI: 10.1111/j.1365-2958.2012.07971.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While bacteria such as Escherichia coli and Bacillus subtilis harbour a single circular chromosome, some freshwater cyanobacteria have multiple chromosomes p er cell. The detailed mechanism(s) of cyanobacterialreplication remains unclear. To elucidate the replication origin (ori ), form and synchrony of the multi-copy genome in freshwater cyanobacteria Synechococcus elongatus PCC 7942 we constructed strain S. 7942TK that can incorporate 5-bromo-2'- deoxyuridine (BrdU) into genomic DNA and analysed its de novo DNA synthesis. The uptake of BrdU was blocked under dark and resumed after transfer of the culture to light conditions. Mapping analysis of nascent DNA fragments using a next-generation sequencer indicated that replication starts bidirectionally from a single ori, which locates in the upstream region of the dnaN gene. Quantitative analysis of BrdU-labelled DNA and whole-genome sequence analysis indicated that the peak timing of replication precedes that of cell division and that replication is initiated asynchronously not only among cell populations but also among the multi-copy chromosomes. Our findings suggest that replication initiation is regulated less stringently in S. 7942 than in E. coli and B. subtilis.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience and 2Genome Research Center, Tokyo University of Agriculture, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Ohsaki E, Ueda K. Kaposi's Sarcoma-Associated Herpesvirus Genome Replication, Partitioning, and Maintenance in Latency. Front Microbiol 2012; 3:7. [PMID: 22291692 PMCID: PMC3264903 DOI: 10.3389/fmicb.2012.00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/05/2012] [Indexed: 02/03/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is thought to be an oncogenic member of the γ-herpesvirus subfamily. The virus usually establishes latency upon infection as a default infection pattern. The viral genome replicates according to the host cell cycle by recruiting the host cellular replication machinery. Among the latently expressing viral factors, LANA plays pivotal roles in viral genome replication, partitioning, and maintenance. LANA binds with two LANA-binding sites (LBS1/2) within a terminal repeat (TR) sequence and is indispensable for viral genome replication in latency. The nuclear matrix region seems to be important as a replication site, since LANA as well as cellular replication factors accumulate there and recruit the viral replication origin in latency (ori-P) by its binding activity to LBS. KSHV ori-P consists of LBS followed by a 32-bp GC-rich segment (32GC). Although it has been reported that LANA recruits cellular pre-replication complexes (pre-RC) such as origin recognition complexes (ORCs) to the ori-P through its interaction with ORCs, this mechanism does not account completely for the requirement of the 32GC. On the other hand, there are few reports about the partitioning and maintenance of the viral genome. LANA interacts with many kinds of chromosomal proteins, including Brd2/RING3, core histones, such as H2A/H2B and histone H1, and so on. The detailed molecular mechanisms by which LANA enables KSHV genome partitioning and maintenance still remain obscure. By integrating the findings reported thus far on KSHV genome replication, partitioning, and maintenance in latency, we will summarize what we know now, discuss what questions remain to be answered, and determine what needs to be done next to understand the mechanisms underlying viral replication, partitioning, and maintenance strategy.
Collapse
Affiliation(s)
- Eriko Ohsaki
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine Suita, Osaka, Japan
| | | |
Collapse
|
19
|
Bronze-da-Rocha E, Lin CM, Shimura T, Aladjem MI. Interactions of MCP1 with components of the replication machinery in mammalian cells. Int J Biol Sci 2011; 7:193-208. [PMID: 21383955 PMCID: PMC3048848 DOI: 10.7150/ijbs.7.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/12/2011] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication starts with the assembly of a pre-replication complex (pre-RC) at replication origins. We have previously demonstrated that Metaphase Chromosome Protein 1 (MCP1) is involved in the early events of DNA replication. Here we show that MCP1 associates with proteins that are required for the establishment of the pre-replication complex. Reciprocal immunoprecipitation analysis showed that MCP1 interacted with Cdc6, ORC2, ORC4, MCM2, MCM3 and MCM7, with Cdc45 and PCNA. Immunofluorescence studies demonstrated the co-localization of MCP1 with some of those proteins. Moreover, biochemical studies utilizing chromatin-immunoprecipitation (ChIP) revealed that MCP1 preferentially binds replication initiation sites in human cells. Interestingly, although members of the pre-RC are known to interact with some hallmarks of heterochromatin, our co-immunoprecipitation and immunofluorescence analyses showed that MCP1 did not interact and did not co-localize with heterochromatic proteins including HP1β and MetH3K9. These observations suggest that MCP1 is associated with replication factors required for the initiation of DNA replication and binds to the initiation sites in loci that replicate early in S-phase. In addition, immunological assays revealed the association of MCP1 forms with histone H1 variants and mass spectrometry analysis confirmed that MCP1 peptides share common sequences with H1.2 and H1.5 subtypes.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, Portugal.
| | | | | | | |
Collapse
|
20
|
Black JC, Allen A, Van Rechem C, Forbes E, Longworth M, Tschöp K, Rinehart C, Quiton J, Walsh R, Smallwood A, Dyson NJ, Whetstine JR. Conserved antagonism between JMJD2A/KDM4A and HP1γ during cell cycle progression. Mol Cell 2011; 40:736-48. [PMID: 21145482 DOI: 10.1016/j.molcel.2010.11.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 06/08/2010] [Accepted: 09/10/2010] [Indexed: 11/24/2022]
Abstract
The KDM4/JMJD2 family of histone demethylases is amplified in human cancers. However, little is known about their physiologic or tumorigenic roles. We have identified a conserved and unappreciated role for the JMJD2A/KDM4A H3K9/36 tridemethylase in cell cycle progression. We demonstrate that JMJD2A protein levels are regulated in a cell cycle-dependent manner and that JMJD2A overexpression increased chromatin accessibility, S phase progression, and altered replication timing of specific genomic loci. These phenotypes depended on JMJD2A enzymatic activity. Strikingly, depletion of the only C. elegans homolog, JMJD-2, slowed DNA replication and increased ATR/p53-dependent apoptosis. Importantly, overexpression of HP1γ antagonized JMJD2A-dependent progression through S phase, and depletion of HPL-2 rescued the DNA replication-related phenotypes in jmjd-2(-/-) animals. Our findings describe a highly conserved model whereby JMJD2A regulates DNA replication by antagonizing HP1γ and controlling chromatin accessibility.
Collapse
Affiliation(s)
- Joshua C Black
- Massachusetts General Hospital Cancer Center and Department of Medicine, Harvard Medical School, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The nucleus is organized and compartmentalized into a highly ordered structure that contains DNA, RNA, chromosomal and histone proteins. The dynamics associated with these various components are responsible for making sure that the DNA is properly duplicated, genes are properly transcribed, and the genome is stabilized. It is no surprise that alterations in these various components are directly associated with pathologies like cancer. This Point of View focuses on the role the chromatin modification landscape, especially histone 3 lysine 9 methylation (H3K9me), and heterochromatin proteins (HP1) play in regulating DNA-templated processes, with a particular focus on their role at non-genic regions and effects on chromatin structure. These observations will be further extended to the role that alterations in chromatin landscape will contribute to diseases. This Point of View emphasizes that alterations in histone modification landscapes are not only relevant to transcription but have broad range implications in chromatin structure, nuclear architecture, cell cycle, genome stability and disease progression.
Collapse
Affiliation(s)
- Joshua C Black
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | | |
Collapse
|
22
|
Abstract
It is now widely recognized that epigenetic events are important mechanisms underlying cancer development and progression. Epigenetic information in chromatin includes covalent modifications (such as acetylation, methylation, phosphorylation, and ubiquitination) of core nucleosomal proteins (histones). A recent progress in the field of histone modifications and chromatin research has tremendously enhanced our understanding of the mechanisms underlying the control of key physiological and pathological processes. Histone modifications and other epigenetic mechanisms appear to work together in establishing and maintaining gene activity states, thus regulating a wide range of cellular processes. Different histone modifications themselves act in a coordinated and orderly fashion to regulate cellular processes such as gene transcription, DNA replication, and DNA repair. Interest in histone modifications has further grown over the last decade with the discovery and characterization of a large number of histone-modifying molecules and protein complexes. Alterations in the function of histone-modifying complexes are believed to disrupt the pattern and levels of histone marks and consequently deregulate the control of chromatin-based processes, ultimately leading to oncogenic transformation and the development of cancer. Consistent with this notion, aberrant patterns of histone modifications have been associated with a large number of human malignancies. In this chapter, we discuss recent advances in our understanding of the mechanisms controlling the establishment and maintenance of histone marks and how disruptions of these chromatin-based mechanisms contribute to tumorigenesis. We also suggest how these advances may facilitate the development of novel strategies to prevent, diagnose, and treat human malignancies.
Collapse
Affiliation(s)
- Carla Sawan
- Epigenetics Group, International Agency for Research on Cancer ,69008 Lyon, France
| | | |
Collapse
|
23
|
Karmakar S, Mahajan MC, Schulz V, Boyapaty G, Weissman SM. A multiprotein complex necessary for both transcription and DNA replication at the β-globin locus. EMBO J 2010; 29:3260-71. [PMID: 20808282 DOI: 10.1038/emboj.2010.204] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/29/2010] [Indexed: 12/17/2022] Open
Abstract
DNA replication, repair, transcription and chromatin structure are intricately associated nuclear processes, but the molecular links between these events are often obscure. In this study, we have surveyed the protein complexes that bind at β-globin locus control region, and purified and characterized the function of one such multiprotein complex from human erythroleukemic K562 cells. We further validated the existence of this complex in human CD34+ cell-derived normal erythroid cells. This complex contains ILF2/ILF3 transcription factors, p300 acetyltransferase and proteins associated with DNA replication, transcription and repair. RNAi knockdown of ILF2, a DNA-binding component of this complex, abrogates the recruitment of the complex to its cognate DNA sequence and inhibits transcription, histone acetylation and usage of the origin of DNA replication at the β-globin locus. These results imply a direct link between mammalian DNA replication, transcription and histone acetylation mediated by a single multiprotein complex.
Collapse
Affiliation(s)
- Subhradip Karmakar
- Department of Genetics, The Anlyan Center, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
24
|
Gene density profile reveals the marking of late replicated domains in the Drosophila melanogaster genome. Chromosoma 2010; 119:589-600. [PMID: 20602235 DOI: 10.1007/s00412-010-0280-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Regulation of replication timing has been a focus of many studies. It has been shown that numerous chromosomal regions switch their replication timing on cell differentiation in Drosophila and mice. However, it is not clear which features of these regions are essential for such regulation. In this study, we examined the organization of late underreplicated regions (URs) of the Drosophila melanogaster genome. When compared with their flanks, these regions showed decreased gene density. A detailed view revealed that these regions originate from unusual combination of short genes and long intergenic spacers. Furthermore, gene expression study showed that this pattern is mostly contributed by short testis-specific genes abundant in the URs. Based on these observations, we developed a genome scanning algorithm and identified 110 regions possessing similar gene density and transcriptional profiles. According to the published data, replication of these regions has been significantly shifted towards late S-phase in two Drosophila cell lines and in polytene chromosomes. Our results suggest that genomic organization of the underreplicated areas of Drosophila polytene chromosomes may be associated with the regulation of their replication timing.
Collapse
|
25
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
26
|
Abstract
Studies of replication timing provide a handle into previously impenetrable higher-order levels of chromosome organization and their plasticity during development. Although mechanisms regulating replication timing are not clear, novel genome-wide studies provide a thorough survey of the extent to which replication timing is regulated during most of the early cell fate transitions in mammals, revealing coordinated changes of a defined set of 400-800 kb chromosomal segments that involve at least half the genome. Furthermore, changes in replication time are linked to changes in sub-nuclear organization and domain-wide transcriptional potential, and tissue-specific replication timing profiles are conserved from mouse to human, suggesting that the program has developmental significance. Hence, these studies have provided a solid foundation for linking megabase level chromosome structure to function, and suggest a central role for replication in domain-level genome organization.
Collapse
|
27
|
de Morgan A, Brodsky L, Ronin Y, Nevo E, Korol A, Kashi Y. Genome-wide analysis of DNA turnover and gene expression in stationary-phase Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2010; 156:1758-1771. [PMID: 20167621 DOI: 10.1099/mic.0.035519-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exponential-phase yeast cells readily enter stationary phase when transferred to fresh, carbon-deficient medium, and can remain fully viable for up to several months. It is known that stationary-phase prokaryotic cells may still synthesize substantial amounts of DNA. Although the basis of this phenomenon remains unclear, this DNA synthesis may be the result of DNA maintenance and repair, recombination, and stress-induced transposition of mobile elements, which may occur in the absence of DNA replication. To the best of our knowledge, the existence of DNA turnover in stationary-phase unicellular eukaryotes remains largely unstudied. By performing cDNA-spotted (i.e. ORF) microarray analysis of stationary cultures of a haploid Saccharomyces cerevisiae strain, we demonstrated on a genomic scale the localization of a DNA-turnover marker [5-bromo-2'-deoxyuridine (BrdU); an analogue of thymidine], indicative of DNA synthesis in discrete, multiple sites across the genome. Exponential-phase cells on the other hand, exhibited a uniform, total genomic DNA synthesis pattern, possibly the result of DNA replication. Interestingly, BrdU-labelled sites exhibited a significant overlap with highly expressed features. We also found that the distribution among chromosomes of BrdU-labelled and expressed features deviates from random distribution; this was also observed for the overlapping set. Ty1 retrotransposon genes were also found to be labelled with BrdU, evidence for transposition during stationary phase; however, they were not significantly expressed. We discuss the relevance and possible connection of these results to DNA repair, mutation and related phenomena in higher eukaryotes.
Collapse
Affiliation(s)
- A de Morgan
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - L Brodsky
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Y Ronin
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - E Nevo
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - A Korol
- Institute of Evolution, Department of Evolutionary Biology and Ecology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Y Kashi
- Department of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa 30200, Israel
| |
Collapse
|
28
|
Santos J, Filipe Pereira C, Di-Gregorio A, Spruce T, Alder O, Rodriguez T, Azuara V, Merkenschlager M, Fisher AG. Differences in the epigenetic and reprogramming properties of pluripotent and extra-embryonic stem cells implicate chromatin remodelling as an important early event in the developing mouse embryo. Epigenetics Chromatin 2010; 3:1. [PMID: 20157423 PMCID: PMC2821315 DOI: 10.1186/1756-8935-3-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/12/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During early mouse development, two extra-embryonic lineages form alongside the future embryo: the trophectoderm (TE) and the primitive endoderm (PrE). Epigenetic changes known to take place during these early stages include changes in DNA methylation and modified histones, as well as dynamic changes in gene expression. RESULTS In order to understand the role and extent of chromatin-based changes for lineage commitment within the embryo, we examined the epigenetic profiles of mouse embryonic stem (ES), trophectoderm stem (TS) and extra-embryonic endoderm (XEN) stem cell lines that were derived from the inner cell mass (ICM), TE and PrE, respectively. As an initial indicator of the chromatin state, we assessed the replication timing of a cohort of genes in each cell type, based on data that expressed genes and acetylated chromatin domains, generally, replicate early in S-phase, whereas some silent genes, hypoacetylated or condensed chromatin tend to replicate later. We found that many lineage-specific genes replicate early in ES, TS and XEN cells, which was consistent with a broadly 'accessible' chromatin that was reported previously for multiple ES cell lines. Close inspection of these profiles revealed differences between ES, TS and XEN cells that were consistent with their differing lineage affiliations and developmental potential. A comparative analysis of modified histones at the promoters of individual genes showed that in TS and ES cells many lineage-specific regulator genes are co-marked with modifications associated with active (H4ac, H3K4me2, H3K9ac) and repressive (H3K27me3) chromatin. However, in XEN cells several of these genes were marked solely by repressive modifications (such as H3K27me3, H4K20me3). Consistent with TS and XEN having a restricted developmental potential, we show that these cells selectively reprogramme somatic cells to induce the de novo expression of genes associated with extraembryonic differentiation. CONCLUSIONS These data provide evidence that the diversification of defined embryonic and extra-embryonic lineages is accompanied by chromatin remodelling at specific loci. Stem cell lines from the ICM, TE and PrE can each dominantly reprogramme somatic cells but reset gene expression differently, reflecting their separate lineage identities and increasingly restricted developmental potentials.
Collapse
Affiliation(s)
- Joana Santos
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - C Filipe Pereira
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Aida Di-Gregorio
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Thomas Spruce
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Olivia Alder
- Epigenetics and Development Group, Institute of Reproductive and Developmental Biology, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Tristan Rodriguez
- Molecular Embryology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Véronique Azuara
- Epigenetics and Development Group, Institute of Reproductive and Developmental Biology, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
29
|
Abstract
Eukaryotic cells follow a temporal program to duplicate their genomes. Chromosomes are divided into domains with a specific DNA replication timing (RT), not dictated by DNA sequence alone, which is conserved from one cell cycle to the next. Timing of replication correlates with gene density, transcriptional activity, chromatin structure and nuclear position, making it an intriguing epigenetic mark. The differentiation from embryonic stem cells to specialized cell types is accompanied by global changes in the RT program. This review covers our current understanding of the mechanisms that determine RT in mammalian cells, its possible biological significance and how unscheduled alterations of the RT program may predispose to human disease.
Collapse
Affiliation(s)
- Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|
30
|
Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schübeler D. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev 2009; 23:589-601. [PMID: 19270159 DOI: 10.1101/gad.511809] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Duplication of eukaryotic genomes during S phase is coordinated in space and time. In order to identify zones of initiation and cell-type- as well as gender-specific plasticity of DNA replication, we profiled replication timing, histone acetylation, and transcription throughout the Drosophila genome. We observed two waves of replication initiation with many distinct zones firing in early-S phase and multiple, less defined peaks at the end of S phase, suggesting that initiation becomes more promiscuous in late-S phase. A comparison of different cell types revealed widespread plasticity of replication timing on autosomes. Most occur in large regions, but only half coincide with local differences in transcription. In contrast to confined autosomal differences, a global shift in replication timing occurs throughout the single male X chromosome. Unlike in females, the dosage-compensated X chromosome replicates almost exclusively early. This difference occurs at sites that are not transcriptionally hyperactivated, but show increased acetylation of Lys 16 of histone H4 (H4K16ac). This suggests a transcription-independent, yet chromosome-wide process related to chromatin. Importantly, H4K16ac is also enriched at initiation zones as well as early replicating regions on autosomes during S phase. Together, our study reveals novel organizational principles of DNA replication of the Drosophila genome and suggests that H4K16ac is more closely correlated with replication timing than is transcription.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Although early replication has long been associated with accessible chromatin, replication timing is not included in most discussions of epigenetic marks. This is partly due to a lack of understanding of the mechanisms behind this association but the issue has also been confounded by studies concluding that there are very few changes in replication timing during development. Recently, the first genome-wide study of replication timing during the course of differentiation revealed extensive changes that were strongly associated with changes in transcriptional activity and subnuclear organization. Domains of temporally coordinate replication delineate discrete units of chromosome structure and function that are characteristic of particular differentiation states. Hence, although we are still a long way from understanding the functional significance of replication timing, it is clear that replication timing is a distinct epigenetic signature of cell differentiation state.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
32
|
Grasser F, Neusser M, Fiegler H, Thormeyer T, Cremer M, Carter NP, Cremer T, Müller S. Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei. J Cell Sci 2008; 121:1876-86. [PMID: 18477608 DOI: 10.1242/jcs.026989] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Using published high-resolution data on S-phase replication timing, we determined the three-dimensional (3D) nuclear arrangement of 33 very-early-replicating and 31 very-late-replicating loci. We analyzed diploid human, non-human primate and rearranged tumor cells by 3D fluorescence in situ hybridization with the aim of investigating the impact of chromosomal structural changes on the nuclear organization of these loci. Overall, their topology was found to be largely conserved between cell types, species and in tumor cells. Early-replicating loci were localized in the nuclear interior, whereas late-replicating loci showed a broader distribution with a higher preference for the periphery than for late-BrdU-incorporation foci. However, differences in the spatial arrangement of early and late loci of chromosome 2, as compared with those from chromosome 5, 7 and 17, argue against replication timing as a major driving force for the 3D radial genome organization in human lymphoblastoid cell nuclei. Instead, genomic properties, and local gene density in particular, were identified as the decisive parameters. Further detailed comparisons of chromosome 7 loci in primate and tumor cells suggest that the inversions analyzed influence nuclear topology to a greater extent than the translocations, thus pointing to geometrical constraints in the 3D conformation of a chromosome territory.
Collapse
Affiliation(s)
- Florian Grasser
- Department of Biology II, Human Genetics, Ludwig-Maximilians University Munich, Planegg-Martinsreid, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bernard P, Schmidt CK, Vaur S, Dheur S, Drogat J, Genier S, Ekwall K, Uhlmann F, Javerzat JP. Cell-cycle regulation of cohesin stability along fission yeast chromosomes. EMBO J 2008; 27:111-21. [PMID: 18079700 PMCID: PMC2206136 DOI: 10.1038/sj.emboj.7601955] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 11/16/2007] [Indexed: 02/08/2023] Open
Abstract
Sister chromatid cohesion is mediated by cohesin, but the process of cohesion establishment during S-phase is still enigmatic. In mammalian cells, cohesin binding to chromatin is dynamic in G1, but becomes stabilized during S-phase. Whether the regulation of cohesin stability is integral to the process of cohesion establishment is unknown. Here, we provide evidence that fission yeast cohesin also displays dynamic behavior. Cohesin association with G1 chromosomes requires continued activity of the cohesin loader Mis4/Ssl3, suggesting that repeated loading cycles maintain cohesin binding. Cohesin instability in G1 depends on wpl1, the fission yeast ortholog of mammalian Wapl, suggestive of a conserved mechanism that controls cohesin stability on chromosomes. wpl1 is nonessential, indicating that a change in wpl1-dependent cohesin dynamics is dispensable for cohesion establishment. Instead, we find that cohesin stability increases at the time of S-phase in a reaction that can be uncoupled from DNA replication. Hence, cohesin stabilization might be a pre-requisite for cohesion establishment rather than its consequence.
Collapse
Affiliation(s)
- Pascal Bernard
- Université Bordeaux 2, CNRS Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | | | - Sabine Vaur
- Université Bordeaux 2, CNRS Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Sonia Dheur
- Université Bordeaux 2, CNRS Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Julie Drogat
- Université Bordeaux 2, CNRS Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Sylvie Genier
- Université Bordeaux 2, CNRS Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | - Karl Ekwall
- Department of Biosciences and Medical Nutrition, School of Life Sciences, Karolinska Institutet, University College Sodertorn, Huddinge, Sweden
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK, London Research Institute, London, UK
| | - Jean-Paul Javerzat
- Université Bordeaux 2, CNRS Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| |
Collapse
|
34
|
Murr R, Vaissière T, Sawan C, Shukla V, Herceg Z. Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 2007; 26:5358-72. [PMID: 17694078 DOI: 10.1038/sj.onc.1210605] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chromatin modifications at core histones including acetylation, methylation, phosphorylation and ubiquitination play an important role in diverse biological processes. Acetylation of specific lysine residues within the N terminus tails of core histones is arguably the most studied histone modification; however, its precise roles in different cellular processes and how it is disrupted in human diseases remain poorly understood. In the last decade, a number of histone acetyltransferases (HATs) enzymes responsible for histone acetylation, has been identified and functional studies have begun to unravel their biological functions. The activity of many HATs is dependent on HAT complexes, the multiprotein assemblies that contain one HAT catalytic subunit, adapter proteins, several other molecules of unknown function and a large protein called TRansformation/tRanscription domain-Associated Protein (TRRAP). As a common component of many HAT complexes, TRRAP appears to be responsible for the recruitment of these complexes to chromatin during transcription, replication and DNA repair. Recent studies have shed new light on the role of TRRAP in HAT complexes as well as mechanisms by which it mediates diverse cellular processes. Thus, TRRAP appears to be responsible for a concerted and context-dependent recruitment of HATs and coordination of distinct chromatin-based processes, suggesting that its deregulation may contribute to diseases. In this review, we summarize recent developments in our understanding of the function of TRRAP and TRRAP-containing HAT complexes in normal cellular processes and speculate on the mechanism underlying abnormal events that may lead to human diseases such as cancer.
Collapse
Affiliation(s)
- R Murr
- International Agency for Research on Cancer (IARC), Lyon, France
| | | | | | | | | |
Collapse
|
35
|
Aladjem MI. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 2007; 8:588-600. [PMID: 17621316 DOI: 10.1038/nrg2143] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replication in eukaryotes initiates from discrete genomic regions according to a strict, often tissue-specific temporal programme. However, the locations of initiation events within initiation regions vary, show sequence disparity and are affected by interactions with distal elements. Increasing evidence suggests that specification of replication sites and the timing of replication are dynamic processes that are regulated by tissue-specific and developmental cues, and are responsive to epigenetic modifications. Dynamic specification of replication patterns might serve to prevent or resolve possible spatial and/or temporal conflicts between replication, transcription and chromatin assembly, and facilitate subtle or extensive changes of gene expression during differentiation and development.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
36
|
Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, Niehrs C. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007; 445:671-5. [PMID: 17268471 DOI: 10.1038/nature05515] [Citation(s) in RCA: 565] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 12/04/2006] [Indexed: 12/21/2022]
Abstract
DNA methylation is an epigenetic modification that is essential for gene silencing and genome stability in many organisms. Although methyltransferases that promote DNA methylation are well characterized, the molecular mechanism underlying active DNA demethylation is poorly understood and controversial. Here we show that Gadd45a (growth arrest and DNA-damage-inducible protein 45 alpha), a nuclear protein involved in maintenance of genomic stability, DNA repair and suppression of cell growth, has a key role in active DNA demethylation. Gadd45a overexpression activates methylation-silenced reporter plasmids and promotes global DNA demethylation. Gadd45a knockdown silences gene expression and leads to DNA hypermethylation. During active demethylation of oct4 in Xenopus laevis oocytes, Gadd45a is specifically recruited to the site of demethylation. Active demethylation occurs by DNA repair and Gadd45a interacts with and requires the DNA repair endonuclease XPG. We conclude that Gadd45a relieves epigenetic gene silencing by promoting DNA repair, which erases methylation marks.
Collapse
Affiliation(s)
- Guillermo Barreto
- Division of Molecular Embryology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The origin recognition complex (ORC), a heteromeric six-subunit protein, is a central component for eukaryotic DNA replication. The ORC binds to DNA at replication origin sites in an ATP-dependent manner and serves as a scaffold for the assembly of other key initiation factors. Sequence rules for ORC-DNA binding appear to vary widely. In budding yeast the ORC recognizes specific ori elements, however, in higher eukaryotes origin site selection does not appear to depend on the specific DNA sequence. In metazoans, during cell cycle progression, one or more of the ORC subunits can be modified in such a way that ORC activity is inhibited until mitosis is complete and a nuclear membrane is assembled. In addition to its well-documented role in the initiation of DNA replication, the ORC is also involved in other cell functions. Some of these activities directly link cell cycle progression with DNA replication, while other functions seem distinct from replication. The function of ORCs in the establishment of transcriptionally repressed regions is described for many species and may be a conserved feature common for both unicellular eukaryotes and metazoans. ORC subunits were found at centrosomes, at the cell membranes, at the cytokinesis furrows of dividing cells, as well as at the kinetochore. The exact mechanism of these localizations remains to be determined, however, latest results support the idea that ORC proteins participate in multiple aspects of the chromosome inheritance cycle. In this review, we discuss the participation of ORC proteins in various cell functions, in addition to the canonical role of ORC in initiating DNA replication.
Collapse
Affiliation(s)
- Igor N Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
38
|
Gerhardt J, Jafar S, Spindler MP, Ott E, Schepers A. Identification of new human origins of DNA replication by an origin-trapping assay. Mol Cell Biol 2006; 26:7731-46. [PMID: 16954389 PMCID: PMC1636883 DOI: 10.1128/mcb.01392-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Metazoan genomes contain thousands of replication origins, but only a limited number have been characterized so far. We developed a two-step origin-trapping assay in which human chromatin fragments associated with origin recognition complex (ORC) in vivo were first enriched by chromatin immunoprecipitation. In a second step, these fragments were screened for transient replication competence in a plasmid-based assay utilizing the Epstein-Barr virus latent origin oriP. oriP contains two elements, an origin (dyad symmetry element [DS]) and the family of repeats, that when associated with the viral protein EBNA1 facilitate extrachromosomal stability. Insertion of the ORC-binding human DNA fragments in oriP plasmids in place of DS enabled us to screen functionally for their abilities to restore replication. Using the origin-trapping assay, we isolated and characterized five previously unknown human origins. The assay was validated with nascent strand abundance assays that confirm these origins as active initiation sites in their native chromosomal contexts. Furthermore, ORC and MCM2-7 components localized at these origins during G(1) phase of the cell cycle but were not detected during mitosis. This finding extends the current understanding of origin-ORC dynamics by suggesting that replication origins must be reestablished during the early stages of each cell division cycle and that ORC itself participates in this process.
Collapse
Affiliation(s)
- Jeannine Gerhardt
- Department of Gene Vectors, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
39
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
40
|
Hayashida T, Oda M, Ohsawa K, Yamaguchi A, Hosozawa T, Locksley RM, Giacca M, Masai H, Miyatake S. Replication initiation from a novel origin identified in the Th2 cytokine cluster locus requires a distant conserved noncoding sequence. THE JOURNAL OF IMMUNOLOGY 2006; 176:5446-54. [PMID: 16622012 DOI: 10.4049/jimmunol.176.9.5446] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lineage commitment of Th cells is associated with the establishment of specific transcriptional programs of cytokines. However, how Th cell differentiation affects the program of DNA replication has not been addressed. To gain insight into interplays between differentiation-induced transcription regulation and initiation of DNA replication, we took advantage of an in vitro differentiation system of naive T cells, in which one can manipulate their differentiation into Th1 or Th2 cells. We searched for replication origins in the murine IL-4/IL-13 locus and compared their profiles in the two Th cell lineages which were derived in vitro from the same precursor T cells. We identified a replication origin (ori(IL-13)) downstream from exon 4 of IL-13 and showed that this origin functions in both Th2 and Th1 cells. A distant regulatory element called CNS-1 (conserved noncoding sequence 1) in the IL-4/IL-13 intergenic region coincides with a Th2-specific DNase I-hypersensitive site and is required for efficient, coordinated expression of Th2 cytokines. Replication initiation from ori(IL-13) is significantly reduced in Th1 and Th2 cells derived from CNS-1-deficient mice. However, the replication timing of this locus is consistently early during S phase in both Th1 and Th2 cells under either the wild-type or CNS-1 deletion background. Thus, the conserved noncoding element in the intergenic region regulates replication initiation from a distant replication origin in a manner independent from its effect on lineage-specific transcription but not the replication timing of the segment surrounding this origin.
Collapse
Affiliation(s)
- Toshiro Hayashida
- Cytokine Project, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, 113-8613 Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CCA, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RIS, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MRJ, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ESI, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, et alGregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE, Howe KL, Woodfine K, Spencer CCA, Jones MC, Gillson C, Searle S, Zhou Y, Kokocinski F, McDonald L, Evans R, Phillips K, Atkinson A, Cooper R, Jones C, Hall RE, Andrews TD, Lloyd C, Ainscough R, Almeida JP, Ambrose KD, Anderson F, Andrew RW, Ashwell RIS, Aubin K, Babbage AK, Bagguley CL, Bailey J, Beasley H, Bethel G, Bird CP, Bray-Allen S, Brown JY, Brown AJ, Buckley D, Burton J, Bye J, Carder C, Chapman JC, Clark SY, Clarke G, Clee C, Cobley V, Collier RE, Corby N, Coville GJ, Davies J, Deadman R, Dunn M, Earthrowl M, Ellington AG, Errington H, Frankish A, Frankland J, French L, Garner P, Garnett J, Gay L, Ghori MRJ, Gibson R, Gilby LM, Gillett W, Glithero RJ, Grafham DV, Griffiths C, Griffiths-Jones S, Grocock R, Hammond S, Harrison ESI, Hart E, Haugen E, Heath PD, Holmes S, Holt K, Howden PJ, Hunt AR, Hunt SE, Hunter G, Isherwood J, James R, Johnson C, Johnson D, Joy A, Kay M, Kershaw JK, Kibukawa M, Kimberley AM, King A, Knights AJ, Lad H, Laird G, Lawlor S, Leongamornlert DA, Lloyd DM, Loveland J, Lovell J, Lush MJ, Lyne R, Martin S, Mashreghi-Mohammadi M, Matthews L, Matthews NSW, McLaren S, Milne S, Mistry S, Moore MJF, Nickerson T, O'Dell CN, Oliver K, Palmeiri A, Palmer SA, Parker A, Patel D, Pearce AV, Peck AI, Pelan S, Phelps K, Phillimore BJ, Plumb R, Rajan J, Raymond C, Rouse G, Saenphimmachak C, Sehra HK, Sheridan E, Shownkeen R, Sims S, Skuce CD, Smith M, Steward C, Subramanian S, Sycamore N, Tracey A, Tromans A, Van Helmond Z, Wall M, Wallis JM, White S, Whitehead SL, Wilkinson JE, Willey DL, Williams H, Wilming L, Wray PW, Wu Z, Coulson A, Vaudin M, Sulston JE, Durbin R, Hubbard T, Wooster R, Dunham I, Carter NP, McVean G, Ross MT, Harrow J, Olson MV, Beck S, Rogers J, Bentley DR, Banerjee R, Bryant SP, Burford DC, Burrill WDH, Clegg SM, Dhami P, Dovey O, Faulkner LM, Gribble SM, Langford CF, Pandian RD, Porter KM, Prigmore E. The DNA sequence and biological annotation of human chromosome 1. Nature 2006; 441:315-21. [PMID: 16710414 DOI: 10.1038/nature04727] [Show More Authors] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 03/13/2006] [Indexed: 11/08/2022]
Abstract
The reference sequence for each human chromosome provides the framework for understanding genome function, variation and evolution. Here we report the finished sequence and biological annotation of human chromosome 1. Chromosome 1 is gene-dense, with 3,141 genes and 991 pseudogenes, and many coding sequences overlap. Rearrangements and mutations of chromosome 1 are prevalent in cancer and many other diseases. Patterns of sequence variation reveal signals of recent selection in specific genes that may contribute to human fitness, and also in regions where no function is evident. Fine-scale recombination occurs in hotspots of varying intensity along the sequence, and is enriched near genes. These and other studies of human biology and disease encoded within chromosome 1 are made possible with the highly accurate annotated sequence, as part of the completed set of chromosome sequences that comprise the reference human genome.
Collapse
Affiliation(s)
- S G Gregory
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zink D. The temporal program of DNA replication: new insights into old questions. Chromosoma 2006; 115:273-87. [PMID: 16552593 DOI: 10.1007/s00412-006-0062-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/10/2006] [Accepted: 02/23/2006] [Indexed: 01/26/2023]
Abstract
During the last decades it has been shown that the replication timing program in metazoans is related to chromosome structure, the nuclear positioning and AT/GC content of chromosomal loci, their patterns of histone modifications, and their transcriptional regulation. Here, the current state of knowledge concerning these relationships is reviewed. An integrated view on structure-function relationships in the nucleus is provided and the determination and functional role of the replication timing program is discussed in this context. A corresponding comprehensive model is developed and a key aspect of this model is the suggestion that mammalian chromosomes are organized into stable units equivalent to replicon clusters. It is proposed that the nuclear positions of these units would depend on their histone modifications and determine the replication timing of the whole unit. It is furthermore predicted that replication timing is only indirectly linked to transcriptional regulation and contributes to the maintenance of gene expression patterns. These clear predictions, and the fact that the tools are at hand now to further test them, open an avenue towards solving the long standing problem on how replication timing is determined in metazoan cells.
Collapse
Affiliation(s)
- Daniele Zink
- Department Biologie II, Ludwig-Maximilians-Universität München, Biozentrum, Planegg-Martinsried, Germany.
| |
Collapse
|
43
|
Schwaiger M, Schübeler D. A question of timing: emerging links between transcription and replication. Curr Opin Genet Dev 2006; 16:177-83. [PMID: 16503127 DOI: 10.1016/j.gde.2006.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Accepted: 02/13/2006] [Indexed: 11/28/2022]
Abstract
The coordination of transcription and timing of DNA replication during the S phase of the cell cycle has recently been studied chromosome-wide in high resolution. This revealed that in the complex genome of higher eukaryotes actively transcribed genes are more likely to replicate early in S phase. Dynamic changes in chromatin structure and nuclear organization appear to provide the underlying mechanism to link transcription and replication. A possible evolutionary benefit for this connection might result from differential replication fidelity during S phase, and comparisons of the human and chimpanzee genomes are compatible with this hypothesis.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Friedrich-Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
44
|
Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P. Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 2006; 6:669-77. [PMID: 16094312 DOI: 10.1038/nrg1673] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As the relationship between nuclear structure and function begins to unfold, a picture is emerging of a dynamic landscape that is centred on the two main processes that execute the regulated use and propagation of the genome. Rather than being subservient enzymatic activities, the replication and transcriptional machineries provide potent forces that organize the genome in three-dimensional nuclear space. Their activities provide opportunities for epigenetic changes that are required for differentiation and development. In addition, they impose physical constraints on the genome that might help to shape its evolution.
Collapse
Affiliation(s)
- Lyubomira Chakalova
- Laboratory of Chromatin and Gene Expression, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|
45
|
Abstract
Profiling chromatin in a particular cell type provides a valuable 'signature' for cell identity and developmental stage. One approach has been to assay and use the timing of DNA replication across a panel of loci as an indicator of chromatin structure. This epigenetic profiling used on pluripotent embryonic stem (ES) cells has reliably distinguished them from cells that have a more restricted lineage potential. Thus, such an approach may become increasingly useful for understanding the molecular basis of pluripotency and lineage induction, especially in the context of stem-cell therapy. Here I describe in detail the DNA replication timing method, whereby unsynchronized cell populations are pulse-labeled with 5-bromo-2'-deoxyuridine (BrdU), fractionated according to cell-cycle stage and the abundance of candidate sequences within newly replicated DNA is determined by PCR. This robust protocol has been used consistently by several laboratories and might offer some advantages over conventional transcription-based profiling for characterizing cell populations. The procedure requires 3-4 d to complete.
Collapse
Affiliation(s)
- Véronique Azuara
- Epigenetics & Development, Stem Cell Initiative, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| |
Collapse
|
46
|
Koina E, Piper A. An inactive X specific replication origin associated with a matrix attachment region in the human X linked HPRT gene. J Cell Biochem 2005; 95:391-402. [PMID: 15779006 DOI: 10.1002/jcb.20425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Early in female mammalian embryogenesis, one of the two X chromosomes is inactivated to compensate the gene dosage between males and females. One of the features of X chromosome inactivation (XCI) is the late replication of the inactivated X chromosome. This study reports the identification, by competitive PCR of nascent DNA, of a replication origin in intron 2 of the human X-linked HPRT gene, that is functional only on the inactive X. Features frequently associated with replication origins, including a peak of enhanced DNA flexibility, a perfect match to the yeast ACS sequence, a 14/15 match to the Drosophila topoisomerase II consensus, and a 20/21 match to an initiation region consensus sequence, were identified close to the replication origin. The origin is located approximately 2 kb upstream of a matrix attachment region (MAR) and also contains two A:T-rich elements, thought to facilitate DNA unwinding.
Collapse
Affiliation(s)
- Edda Koina
- Molecular Genetics Unit, Department of Cell and Molecular Biology, University of Technology, Sydney, NSW 2065, Australia.
| | | |
Collapse
|
47
|
Abstract
A large fraction of genes in the mammalian genome is repressed in every cell throughout development. Here, we propose that this long-term silencing is carried out by distinct molecular mechanisms that operate in a global manner and, once established, can be maintained autonomously through DNA replication. Both individually and in combination these mechanisms bring about repression, mainly by lowering gene accessibility through closed chromatin structures.
Collapse
Affiliation(s)
- Laura Lande-Diner
- Department of Cellular Biochemistry and Human Genetics, Hebrew University Medical School, Ein Kerem, Jerusalem, Israel
| | | |
Collapse
|
48
|
Buzina A, Aladjem MI, Kolman JL, Wahl GM, Ellis J. Initiation of DNA replication at the human beta-globin 3' enhancer. Nucleic Acids Res 2005; 33:4412-24. [PMID: 16085752 PMCID: PMC1183104 DOI: 10.1093/nar/gki747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin of DNA replication in the human β-globin gene contains an initiation region (IR) and two flanking auxiliary elements. Two replicator modules are located within the upstream auxiliary sequence and the IR core, but the functional sequences in the downstream auxiliary element are unknown. Here, we use a combination of benzoylated-naphthoylated DEAE (BND) cellulose purification and nascent strand abundance assays to show that replication initiation occurs at the β-globin 3′ enhancer on human chromosome 11 in the Hu11 hybrid murine erythroleukemia (MEL) cell line. To examine replicator function, 3′ enhancer fragments were inserted into an ectopic site in MEL cells via an optimized FRT/EGFP-FLP integration system. These experiments demonstrate that the 1.6 kb downstream auxiliary element is a third replicator module called bGRep-E in erythroid cells. The minimal 260 bp 3′ enhancer is required but not sufficient to initiate efficient replication, suggesting cooperation with adjacent sequences. The minimal 3′ enhancer also cooperates with elements in an expressing HS3β/γ-globin construct to initiate replication. These data indicate that the β-globin replicator has multiple initiation sites in three closely spaced replicator modules. We conclude that a mammalian enhancer can cooperate with adjacent sequences to create an efficient replicator module.
Collapse
Affiliation(s)
- Alla Buzina
- Developmental Biology Program, Hospital for Sick ChildrenToronto, Ontario, Canada
| | | | - John L. Kolman
- Gene Expression Laboratory, The Salk InstituteSan Diego, CA
| | | | - James Ellis
- Developmental Biology Program, Hospital for Sick ChildrenToronto, Ontario, Canada
- Department of Molecular and Medical Genetics, University of TorontoToronto, Ontario, Canada
- To whom correspondence should be addressed. Tel: 416 813 7295; Fax: 416 813 8883;
| |
Collapse
|
49
|
Razin SV, Iarovaia OV. Spatial Organization of DNA in the Nucleus May Determine Positions of Recombination Hot Spots. Mol Biol 2005. [DOI: 10.1007/s11008-005-0070-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Diaz-Perez S, Ouyang Y, Perez V, Cisneros R, Regelson M, Marahrens Y. The element(s) at the nontranscribed Xist locus of the active X chromosome controls chromosomal replication timing in the mouse. Genetics 2005; 171:663-72. [PMID: 15972460 PMCID: PMC1456779 DOI: 10.1534/genetics.105.043026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In female mammalian cells, the inactive X chromosome is replicated late in S phase while the active X chromosome is replicated earlier. The replication times of the X chromosomes reflect a general trend in which late replication is associated with gene repression and earlier replication with transcriptional competence. The X-linked Xist gene is expressed exclusively from the inactive X chromosome where it is involved in the initiation and maintenance of X-inactivation. In contrast, no biological activity has been assigned to the Xist locus of the active X chromosome where the Xist gene is transcriptionally silenced. Here, we provide evidence that the element(s) at the nontranscribed Xist locus of the active X chromosome controls chromosomal replication timing in cis.
Collapse
Affiliation(s)
- Silvia Diaz-Perez
- Department of Human Genetics, University of California, Los Angeles, 90095, USA
| | | | | | | | | | | |
Collapse
|