1
|
Deveryshetty J, Chadda R, Mattice JR, Karunakaran S, Rau MJ, Basore K, Pokhrel N, Englander N, Fitzpatrick JAJ, Bothner B, Antony E. Yeast Rad52 is a homodecamer and possesses BRCA2-like bipartite Rad51 binding modes. Nat Commun 2023; 14:6215. [PMID: 37798272 PMCID: PMC10556141 DOI: 10.1038/s41467-023-41993-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Homologous recombination (HR) is an essential double-stranded DNA break repair pathway. In HR, Rad52 facilitates the formation of Rad51 nucleoprotein filaments on RPA-coated ssDNA. Here, we decipher how Rad52 functions using single-particle cryo-electron microscopy and biophysical approaches. We report that Rad52 is a homodecameric ring and each subunit possesses an ordered N-terminal and disordered C-terminal half. An intrinsic structural asymmetry is observed where a few of the C-terminal halves interact with the ordered ring. We describe two conserved charged patches in the C-terminal half that harbor Rad51 and RPA interacting motifs. Interactions between these patches regulate ssDNA binding. Surprisingly, Rad51 interacts with Rad52 at two different bindings sites: one within the positive patch in the disordered C-terminus and the other in the ordered ring. We propose that these features drive Rad51 nucleation onto a single position on the DNA to promote formation of uniform pre-synaptic Rad51 filaments in HR.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jenna R Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Simrithaa Karunakaran
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Michael J Rau
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Katherine Basore
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Aera Therapeutics, Boston, MA, USA
| | - Noah Englander
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - James A J Fitzpatrick
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Deveryshetty J, Chadda R, Mattice J, Karunakaran S, Rau MJ, Basore K, Pokhrel N, Englander N, Fitzpatrick JA, Bothner B, Antony E. Homodecameric Rad52 promotes single-position Rad51 nucleation in homologous recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527205. [PMID: 36778491 PMCID: PMC9915710 DOI: 10.1101/2023.02.05.527205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homologous recombination (HR) is a pathway for the accurate repair of double-stranded DNA breaks. These breaks are resected to yield single-stranded DNA (ssDNA) that are coated by Replication Protein A (RPA). Saccharomyces cerevisiae Rad52 is a mediator protein that promotes HR by facilitating formation of Rad51 nucleoprotein filaments on RPA-coated ssDNA. Canonically, Rad52 has been described to function by displacing RPA to promote Rad51 binding. However, in vitro, Rad51 readily forms a filament by displacing RPA in the absence of Rad52. Yet, in vivo, Rad52 is essential for HR. Here, we resolve how Rad52 functions as a mediator using single-particle cryo-electron microscopy and biophysical approaches. We show that Rad52 functions as a homodecamer and catalyzes single-position nucleation of Rad51. The N-terminal half of Rad52 is a well-ordered ring, while the C-terminal half is disordered. An intrinsic asymmetry within Rad52 is observed, where one or a few of the C-terminal halves interact with the ordered N-terminal ring. Within the C-terminal half, we identify two conserved charged patches that harbor the Rad51 and RPA interacting motifs. Interactions between these two charged patches regulate a ssDNA binding. These features drive Rad51 binding to a single position on the Rad52 decameric ring. We propose a Rad52 catalyzed single-position nucleation model for the formation of pre-synaptic Rad51 filaments in HR.
Collapse
Affiliation(s)
- Jaigeeth Deveryshetty
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Jenna Mattice
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT
| | - Simrithaa Karunakaran
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Michael J. Rau
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Katherine Basore
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Nilisha Pokhrel
- Department of Biological Sciences, Marquette University, Milwaukee, WI (Present address: Aera Therapeutics, Boston, MA, USA)
| | - Noah Englander
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - James A.J. Fitzpatrick
- Center for Cellular Imaging, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT
| | - Edwin Antony
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Ritter GS, Nikolin VP, Popova NA, Proskurina AS, Kisaretova PE, Taranov OS, Dubatolova TD, E V Dolgova EV, Potter EA, Kirikovich SS, Efremov YR, Bayborodin SI, Romanenko MV, Meschaninova MI, Venyaminova AG, Kolchanov NA, Bogachev SS. [Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:643-652. [PMID: 33659850 PMCID: PMC7716560 DOI: 10.18699/vj20.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy. 100 % of animals survive on the 70th day of observation when irradiated 1 hour or 4 days after 7 mg RNA preparation injection, 60 % animals survive when irradiated on day 8 or 12. Time parameters of repair of double-stranded breaks induced by gamma rays were estimated. It was found that the injection of the RNA preparation at the time of maximum number of double-stranded breaks, 1 hour after irradiation, reduces the efficacy of radioprotective action compared with the injection 1 hour before irradiation and 4 hours after irradiation. A comparison of the radioprotective effect of the standard radioprotector B-190 and the RNA preparation was made in one experiment. It has been established that the total RNA preparation is more efficacious than B-190. Survival on the 40th day after irradiation was 78 % for the group of mice treated with the RNA preparation and 67 % for those treated with B-190. In the course of analytical studies of the total yeast RNA preparation, it was found that the preparation is a mixture of single-stranded and double-stranded RNA. It was shown that only double-stranded RNA has radioprotective properties. Injection of 160 μg double-stranded RNA protects 100 % of the experimental animals from an absolutely lethal dose of gamma radiation, 9.4 Gy. It was established that the radioprotective effect of double-stranded RNA does not depend on sequence, but depends on its double-stranded form and the presence of "open" ends of the molecule. It is supposed that the radioprotective effect of double-stranded RNA is associated with the participation of RNA molecules in the correct repair of radiation-damaged chromatin in blood stem cells. The hematopoietic pluripotent cells that have survived migrate to the periphery, reach the spleen and actively proliferate. The newly formed cell population restores the hematopoietic and immune systems, which determines the survival of lethally irradiated animals.
Collapse
Affiliation(s)
- G S Ritter
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V P Nikolin
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Popova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - A S Proskurina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P E Kisaretova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O S Taranov
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Russia
| | - T D Dubatolova
- Institute of Molecular and Cellular Biology of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V E V Dolgova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Potter
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S S Kirikovich
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Y R Efremov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - S I Bayborodin
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | | | - M I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Kolchanov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S S Bogachev
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Ritter GS, Nikolin VP, Popova NA, Proskurina AS, Kisaretova PE, Taranov OS, Dubatolova TD, Dolgova EV, Potter EA, Kirikovich SS, Efremov YR, Bayborodin SI, Romanenko MV, Meschaninova MI, Venyaminova AG, Kolchanov NA, Shurdov MA, Bogachev SS. Characterization of biological peculiarities of the radioprotective activity of double-stranded RNA isolated from Saccharomyces сerevisiae. Int J Radiat Biol 2020; 96:1173-1191. [PMID: 32658564 DOI: 10.1080/09553002.2020.1793020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
THE PURPOSE OF THE ARTICLE Protection from ionizing radiation is the most important component in the curing malignant neoplasms, servicing atomic reactors, and resolving the situations associated with uncontrolled radioactive pollutions. In this regard, discovering new effective radioprotectors as well as novel principles of protecting living organisms from high-dose radiation is the most important factor, determining the new approaches in medical and technical usage of radiation. MATERIALS AND METHODS Experimental animals were irradiated on the γ-emitter (Cs137) with a dose of 9.4 Gy. Radioprotective properties of several agents (total RNA, single-stranded RNA, double-stranded RNA and B-190) were estimated by the survival/death rates of experimental animals within 30-90 d. Pathomorphological examination of internal organs end electron microscope assay was done on days 9-12 after irradiation. Cloning and other molecular procedures were performed accordingly to commonly accepted protocols. For assessment of the internalization of labeled nucleic acid, bone marrow cells were incubated with double-stranded RNA labeled with 6-FAM fluorescent dye. Cells with internalized double-stranded RNA were assayed using Axio Imager M1 microscope. In the other experiment, bone marrow cells after incubation with double-stranded RNA were stained with Cy5-labeled anti-CD34 antibodies and assayed using Axioskop 2 microscope. RESULTS In this study, several biological features of the radioprotective action of double-stranded RNA are characterized. It was shown that 160 µg of the double-stranded RNA per mouse protect experimental animals from the absolutely lethal dose of γ-radiation of 9.4 Gy. In different experiments, 80-100% of irradiated animals survive and live until their natural death. Radioprotective properties of double-stranded RNA were found to be independent on its sequence, but strictly dependent on its double-stranded form. Moreover, double-stranded RNA must have 'open' ends of the molecule to exert its radioprotective activity. CONCLUSIONS Experiments indicate that radioprotective effect of double-stranded RNA is tightly bound to its internalization into hematopoietic stem cells, which further repopulate the spleen parenchyma of irradiated mice. Actively proliferating progenitors form the splenic colonies, which further serve as the basis for restoration of hematopoiesis and immune function and determine the survival of animals received the lethal dose of radiation.
Collapse
Affiliation(s)
- Genrikh S Ritter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Valeriy P Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nelly A Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Polina E Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg S Taranov
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - Tatiana D Dubatolova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana S Kirikovich
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Sergey I Bayborodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | | | - Maria I Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Aliya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
5
|
Santa Maria SR, Marina DB, Massaro Tieze S, Liddell LC, Bhattacharya S. BioSentinel: Long-Term Saccharomyces cerevisiae Preservation for a Deep Space Biosensor Mission. ASTROBIOLOGY 2020; 23:617-630. [PMID: 31905002 DOI: 10.1089/ast.2019.2073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The biological risks of the deep space environment must be elucidated to enable a new era of human exploration and scientific discovery beyond low earth orbit (LEO). There is a paucity of deep space biological missions that will inform us of the deleterious biological effects of prolonged exposure to the deep space environment. To safely undertake long-term missions to Mars and space habitation beyond LEO, we must first prove and optimize autonomous biosensors to query the deep space radiation environment. Such biosensors must contain organisms that can survive for extended periods with minimal life support technology and must function reliably with intermittent communication with Earth. NASA's BioSentinel mission, a nanosatellite containing the budding yeast Saccharomyces cerevisiae, is such a biosensor and one of the first biological missions beyond LEO in nearly half a century. It will help fill critical gaps in knowledge about the effects of uniquely composed, chronic, low-flux deep space radiation on biological systems and in particular will provide valuable insight into the DNA damage response to highly ionizing particles. Due to yeast's robustness and desiccation tolerance, it can survive for periods analogous to that of a human Mars mission. In this study, we discuss our optimization of conditions for long-term reagent storage and yeast survival under desiccation in preparation for the BioSentinel mission. We show that long-term yeast cell viability is maximized when cells are air-dried in trehalose solution and stored in a low-relative humidity and low-temperature environment and that dried yeast is sensitive to low doses of deep space-relevant ionizing radiation under these conditions. Our findings will inform the design and development of improved future long-term biological missions into deep space.
Collapse
Affiliation(s)
- Sergio R Santa Maria
- COSMIAC Research Center, University of New Mexico, Albuquerque, New Mexico
- Space Biosciences Research, NASA Ames Research Center, Moffett Field, California
| | - Diana B Marina
- Space Biosciences Research, NASA Ames Research Center, Moffett Field, California
- Amyris, Inc., Emeryville, California (present address)
| | - Sofia Massaro Tieze
- Space Biosciences Research, NASA Ames Research Center, Moffett Field, California
- Blue Marble Space Institute of Science, Seattle, Washington
| | - Lauren C Liddell
- Space Biosciences Research, NASA Ames Research Center, Moffett Field, California
- Logyx LLC, Mountain View, California
| | | |
Collapse
|
6
|
Ghanem NZ, Malla SRL, Araki N, Lewis LK. Quantitative assessment of changes in cell growth, size and morphology during telomere-initiated cellular senescence in Saccharomyces cerevisiae. Exp Cell Res 2019; 381:18-28. [PMID: 31075257 DOI: 10.1016/j.yexcr.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Telomerase-deficient cells of the budding yeast S. cerevisiae experience progressive telomere shortening and undergo senescence in a manner similar to that seen in cultured human fibroblasts. The cells exhibit a DNA damage checkpoint-like stress response, undergo changes in size and morphology, and eventually stop dividing. In this study, a new assay is described that allowed quantitation of senescence in telomerase-deficient est2 cells with applied statistics. Use of the new technique revealed that senescence was strongly accelerated in est2 mutants that had homologous recombination genes RAD51, RAD52 or RAD54 co-inactivated, but was only modestly affected when RAD55, RAD57 or RAD59 were knocked out. Additionally, a new approach for calculating population doublings indicated that loss of growth capacity occurred after approximately 64 generations in est2 cells but only 42 generations in est2 rad52 cells. Phase contrast microscopy experiments demonstrated that senescing est2 cells became enlarged in a time-dependent manner, ultimately exhibiting a 60% increase in cell size. Progressive alterations in physical properties were also observed, including striking changes in light scattering characteristics and cellular sedimentation rates. The results described herein will facilitate future studies of genetic and environmental factors that affect telomere shortening-associated cell senescence rates using the yeast model system.
Collapse
Affiliation(s)
- Neda Z Ghanem
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Shubha R L Malla
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Naoko Araki
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| |
Collapse
|
7
|
Bellido A, Hermosa B, Ciudad T, Larriba G. Role of homologous recombination genesRAD51,RAD52, andRAD59in the repair of lesions caused by γ-radiation to cycling and G2/M-arrested cells ofCandida albicans. Cell Microbiol 2018; 20:e12950. [DOI: 10.1111/cmi.12950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/01/2018] [Accepted: 08/26/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Alberto Bellido
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Belén Hermosa
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Toni Ciudad
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| | - Germán Larriba
- Departamento de Microbiología, Facultad de Ciencias; Universidad de Extremadura; Badajoz Spain
| |
Collapse
|
8
|
Role of Homologous Recombination Genes in Repair of Alkylation Base Damage by Candida albicans. Genes (Basel) 2018; 9:genes9090447. [PMID: 30205450 PMCID: PMC6162806 DOI: 10.3390/genes9090447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
Candida albicans mutants deficient in homologous recombination (HR) are extremely sensitive to the alkylating agent methyl-methane-sulfonate (MMS). Here, we have investigated the role of HR genes in the protection and repair of C. albicans chromosomes by taking advantage of the heat-labile property (55 °C) of MMS-induced base damage. Acute MMS treatments of cycling cells caused chromosome fragmentation in vitro (55 °C) due to the generation of heat-dependent breaks (HDBs), but not in vivo (30 °C). Following removal of MMS wild type, cells regained the chromosome ladder regardless of whether they were transferred to yeast extract/peptone/dextrose (YPD) or to phosphate buffer saline (PBS); however, repair of HDB/chromosome restitution was faster in YPD, suggesting that it was accelerated by metabolic energy and further fueled by the subsequent overgrowth of survivors. Compared to wild type CAI4, chromosome restitution in YPD was not altered in a Carad59 isogenic derivative, whereas it was significantly delayed in Carad51 and Carad52 counterparts. However, when post-MMS incubation took place in PBS, chromosome restitution in wild type and HR mutants occurred with similar kinetics, suggesting that the exquisite sensitivity of Carad51 and Carad52 mutants to MMS is due to defective fork restart. Overall, our results demonstrate that repair of HDBs by resting cells of C. albicans is rather independent of CaRad51, CaRad52, and CaRad59, suggesting that it occurs mainly by base excision repair (BER).
Collapse
|
9
|
Muñoz-Galván S, García-Rubio M, Ortega P, Ruiz JF, Jimeno S, Pardo B, Gómez-González B, Aguilera A. A new role for Rrm3 in repair of replication-born DNA breakage by sister chromatid recombination. PLoS Genet 2017; 13:e1006781. [PMID: 28475600 PMCID: PMC5438189 DOI: 10.1371/journal.pgen.1006781] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/19/2017] [Accepted: 04/26/2017] [Indexed: 11/19/2022] Open
Abstract
Replication forks stall at different DNA obstacles such as those originated by transcription. Fork stalling can lead to DNA double-strand breaks (DSBs) that will be preferentially repaired by homologous recombination when the sister chromatid is available. The Rrm3 helicase is a replisome component that promotes replication upon fork stalling, accumulates at highly transcribed regions and prevents not only transcription-induced replication fork stalling but also transcription-associated hyper-recombination. This led us to explore the possible role of Rrm3 in the repair of DSBs when originating at the passage of the replication fork. Using a mini-HO system that induces mainly single-stranded DNA breaks, we show that rrm3Δ cells are defective in DSB repair. The defect is clearly seen in sister chromatid recombination, the major repair pathway of replication-born DSBs. Our results indicate that Rrm3 recruitment to replication-born DSBs is crucial for viability, uncovering a new role for Rrm3 in the repair of broken replication forks. DNA replication needs to be precise to ensure cell survival and to avoid genetic instability. Different DNA obstacles, such as those originated by transcription, frequently hamper replication fork progression leading to fork stalling or even fork breakage. This requires the homologous recombination machinery to repair the damage. Here, we uncovered a role for yeast Rrm3, a replisome component known to promote replication upon fork stalling, in the repair of replication-born double strand breaks. In particular, rrm3Δ cells show a defect in the recombination with the sister chromatid, the preferred template for the maintenance of genome integrity. Our results support the possibility that the known accumulation of Rrm3 at sites of active transcription reflects an active role of Rrm3 in the repair of broken forks.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - María García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Jose F. Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Sonia Jimeno
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Benjamin Pardo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (AA); (BGG)
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- * E-mail: (AA); (BGG)
| |
Collapse
|
10
|
Silva S, Altmannova V, Luke-Glaser S, Henriksen P, Gallina I, Yang X, Choudhary C, Luke B, Krejci L, Lisby M. Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes Dev 2016; 30:700-17. [PMID: 26966248 PMCID: PMC4803055 DOI: 10.1101/gad.276204.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022]
Abstract
Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.
Collapse
Affiliation(s)
- Sonia Silva
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | - Peter Henriksen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Irene Gallina
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xuejiao Yang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Brian Luke
- Institute of Molecular Biology gGmbH (IMB), 55128 Mainz, Germany
| | - Lumir Krejci
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic; Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
11
|
Saw1 localizes to repair sites but is not required for recruitment of Rad10 to repair intermediates bearing short non-homologous 3' flaps during single-strand annealing in S. cerevisiae. Mol Cell Biochem 2015; 412:131-9. [PMID: 26699908 DOI: 10.1007/s11010-015-2616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
Abstract
SAW1 is required for efficient removal by the Rad1-Rad10 nuclease of 3' non-homologous DNA ends (flaps) formed as intermediates during two modes of double-strand break (DSB) repair in S. cerevisiae, single-strand annealing (SSA) and synthesis-dependent strand annealing. Saw1 was shown in vitro to bind flaps with high affinity, but displayed diminished affinity when flaps were short (<30 deoxynucleotides [nt]), consistent with it not being required for short flap cleavage. Accordingly, this study, using in vivo fluorescence microscopy showed that SAW1 was not required for recruitment of Rad10-YFP to DNA DSBs during their repair by SSA when the flaps were ~10 nt. In contrast, recruitment of Rad10-YFP to DSBs when flaps were ~500 nt did require SAW1 in G1 phase of cell cycle. Interestingly, we observed a substantial increase in colocalization of Saw1-CFP and Rad10-YFP at DSBs when short flaps were formed during repair, especially in G1, indicating significant recruitment of Saw1 despite there being no requirement for Saw1 to recruit Rad10. Saw1-CFP was seldom observed at DSBs without Rad10-YFP. Together, these results support a model in which Saw1 and Rad1-Rad10 are recruited as a complex to short and long flaps in all phases of cell cycle, but that Saw1 is only required for recruitment of Rad1-Rad10 to DSBs when long flaps are formed in G1.
Collapse
|
12
|
Abstract
Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell.
Collapse
|
13
|
|
14
|
Štafa A, Miklenić M, Zunar B, Lisnić B, Symington LS, Svetec IK. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting. DNA Repair (Amst) 2014; 22:12-23. [PMID: 25089886 DOI: 10.1016/j.dnarep.2014.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/05/2014] [Accepted: 07/09/2014] [Indexed: 10/24/2022]
Abstract
Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.
Collapse
Affiliation(s)
- Anamarija Štafa
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia; Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.
| | - Marina Miklenić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Bojan Zunar
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Berislav Lisnić
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Ivan-Krešimir Svetec
- Laboratory for Biology and Microbial Genetics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia.
| |
Collapse
|
15
|
Abstract
Recombination-dependent DNA replication, often called break-induced replication (BIR), was initially invoked to explain recombination events in bacteriophage but it has recently been recognized as a fundamentally important mechanism to repair double-strand chromosome breaks in eukaryotes. This mechanism appears to be critically important in the restarting of stalled and broken replication forks and in maintaining the integrity of eroded telomeres. Although BIR helps preserve genome integrity during replication, it also promotes genome instability by the production of loss of heterozygosity and the formation of nonreciprocal translocations, as well as in the generation of complex chromosomal rearrangements.
Collapse
Affiliation(s)
- Ranjith P Anand
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | |
Collapse
|
16
|
Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P. Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:873-82. [PMID: 23137232 DOI: 10.1111/tpj.12066] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 05/18/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a versatile model for fundamental and biotechnological research. A wide range of tools for genetic manipulation have been developed for this alga, but specific modification of nuclear genes is still not routinely possible. Here, we present a nuclear gene targeting strategy for Chlamydomonas that is based on the application of zinc-finger nucleases (ZFNs). Our approach includes (i) design of gene-specific ZFNs using available online tools, (ii) evaluation of the designed ZFNs in a Chlamydomonas in situ model system, (iii) optimization of ZFN activity by modification of the nuclease domain, and (iv) application of the most suitable enzymes for mutagenesis of an endogenous gene. Initially, we designed a set of ZFNs to target the COP3 gene that encodes the light-activated ion channel channelrhodopsin-1. To evaluate the designed ZFNs, we constructed a model strain by inserting a non-functional aminoglycoside 3'-phosphotransferase VIII (aphVIII) selection marker interspaced with a short COP3 target sequence into the nuclear genome. Upon co-transformation of this recipient strain with the engineered ZFNs and an aphVIII DNA template, we were able to restore marker activity and select paromomycin-resistant (Pm-R) clones with expressing nucleases. Of these Pm-R clones, 1% also contained a modified COP3 locus. In cases where cells were co-transformed with a modified COP3 template, the COP3 locus was specifically modified by homologous recombination between COP3 and the supplied template DNA. We anticipate that this ZFN technology will be useful for studying the functions of individual genes in Chlamydomonas.
Collapse
Affiliation(s)
- Irina Sizova
- Institute of Biology, Experimental Biophysics, Humboldt Universität Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 2013; 32:742-55. [PMID: 23395907 PMCID: PMC3594751 DOI: 10.1038/emboj.2013.9] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability. An unexpected non-catalytic function of the recombination-attenuating helicase Srs2 further expands the manifold roles of PCNA modifications in ensuring genome stability.
Collapse
|
18
|
Mukherjee K, Storici F. A mechanism of gene amplification driven by small DNA fragments. PLoS Genet 2012; 8:e1003119. [PMID: 23271978 PMCID: PMC3521702 DOI: 10.1371/journal.pgen.1003119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation in nature.
Collapse
Affiliation(s)
- Kuntal Mukherjee
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Costelloe T, Louge R, Tomimatsu N, Mukherjee B, Martini E, Khadaroo B, Dubois K, Wiegant WW, Thierry A, Burma S, van Attikum H, Llorente B. The yeast Fun30 and human SMARCAD1 chromatin remodellers promote DNA end resection. Nature 2012; 489:581-4. [PMID: 22960744 PMCID: PMC3493121 DOI: 10.1038/nature11353] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 06/28/2012] [Indexed: 12/25/2022]
Abstract
Several homology-dependent pathways can repair potentially lethal DNA double-strand breaks (DSBs). The first step common to all homologous recombination reactions is the 5′-3′ degradation of DSB ends that yields 3′ single-stranded DNA (ssDNA) required for loading of checkpoint and recombination proteins. The Mre11-Rad50-Xrs2/NBS1 complex and Sae2/CtIP initiate end resection while long-range resection depends on the exonuclease Exo1 or the helicase-topoisomerase complex Sgs1-Top3-Rmi1 with the endonuclease Dna21-6. DSBs occur in the context of chromatin, but how the resection machinery navigates through nucleosomal DNA is a process that is not well understood7. Here, we show that the yeast S. cerevisiae Fun30 protein and its human counterpart SMARCAD18, two poorly characterized ATP-dependent chromatin remodelers of the Snf2 ATPase family, are novel factors that are directly involved in the DSB response. Fun30 physically associates with DSB ends and directly promotes both Exo1- and Sgs1-dependent end resection through a mechanism involving its ATPase activity. The function of Fun30 in resection facilitates repair of camptothecin (CPT)-induced DNA lesions, and it becomes dispensable when Exo1 is ectopically overexpressed. Interestingly, SMARCAD1 is also recruited to DSBs and the kinetics of recruitment is similar to that of Exo1. Loss of SMARCAD1 impairs end resection, recombinational DNA repair and renders cells hypersensitive to DNA damage resulting from CPT or PARP inhibitor treatments. These findings unveil an evolutionarily conserved role for the Fun30 and SMARCAD1 chromatin remodelers in controlling end resection, homologous recombination and genome stability in the context of chromatin.
Collapse
Affiliation(s)
- Thomas Costelloe
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nat Struct Mol Biol 2012; 19:964-71. [PMID: 22885325 PMCID: PMC3443319 DOI: 10.1038/nsmb.2359] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/11/2012] [Indexed: 01/26/2023]
Abstract
Holliday junctions can be formed during homology-dependent repair of DNA double-strand breaks and their resolution is essential for chromosome segregation and generation of crossover products. The Mus81–Mms4 and Yen1 nucleases are required for mitotic crossovers between chromosome homologs in Saccharomyces cerevisiae; however, crossovers between dispersed repeats are still detected in their absence. Here we show the Rad1–Rad10 nuclease promotes formation of crossover and noncrossover recombinants between ectopic sequences. Crossover products were not recovered from the mus81Δ rad1Δ yen1Δ triple mutant indicating that all three nucleases participate in processing recombination intermediates that form between dispersed repeats. We suggest a novel mechanism for crossovers that involves Rad1–Rad10 clipping and resolution of a single Holliday junction-containing intermediate by Mus81–Mms4 or Yen1 cleavage, or by replication. Consistent with the model, we show the accumulation of Rad1 dependent joint molecules in the mus81Δ yen1Δ mutant.
Collapse
|
21
|
Doerfler L, Harris L, Viebranz E, Schmidt KH. Differential genetic interactions between Sgs1, DNA-damage checkpoint components and DNA repair factors in the maintenance of chromosome stability. Genome Integr 2011; 2:8. [PMID: 22040455 PMCID: PMC3231943 DOI: 10.1186/2041-9414-2-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/31/2011] [Indexed: 11/21/2022] Open
Abstract
Background Genome instability is associated with human cancers and chromosome breakage syndromes, including Bloom's syndrome, caused by inactivation of BLM helicase. Numerous mutations that lead to genome instability are known, yet how they interact genetically is poorly understood. Results We show that spontaneous translocations that arise by nonallelic homologous recombination in DNA-damage-checkpoint-defective yeast lacking the BLM-related Sgs1 helicase (sgs1Δ mec3Δ) are inhibited if cells lack Mec1/ATR kinase. Tel1/ATM, in contrast, acts as a suppressor independently of Mec3 and Sgs1. Translocations are also inhibited in cells lacking Dun1 kinase, but not in cells defective in a parallel checkpoint branch defined by Chk1 kinase. While we had previously shown that RAD51 deletion did not inhibit translocation formation, RAD59 deletion led to inhibition comparable to the rad52Δ mutation. A candidate screen of other DNA metabolic factors identified Exo1 as a strong suppressor of chromosomal rearrangements in the sgs1Δ mutant, becoming even more important for chromosomal stability upon MEC3 deletion. We determined that the C-terminal third of Exo1, harboring mismatch repair protein binding sites and phosphorylation sites, is dispensable for Exo1's roles in chromosomal rearrangement suppression, mutation avoidance and resistance to DNA-damaging agents. Conclusions Our findings suggest that translocations between related genes can form by Rad59-dependent, Rad51-independent homologous recombination, which is independently suppressed by Sgs1, Tel1, Mec3 and Exo1 but promoted by Dun1 and the telomerase-inhibitor Mec1. We propose a model for the functional interaction between mitotic recombination and the DNA-damage checkpoint in the suppression of chromosomal rearrangements in sgs1Δ cells.
Collapse
Affiliation(s)
- Lillian Doerfler
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Lorena Harris
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Emilie Viebranz
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina H Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
22
|
Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mutat Res 2011; 714:33-43. [PMID: 21741981 DOI: 10.1016/j.mrfmmm.2011.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/06/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022]
Abstract
The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.
Collapse
|
23
|
Pirakitikulr N, Ostrov N, Peralta-Yahya P, Cornish VW. PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci 2011; 19:2336-46. [PMID: 20936671 DOI: 10.1002/pro.513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The directed evolution of biomolecules with new functions is largely performed in vitro, with PCR mutagenesis followed by high-throughput assays for desired activities. As synthetic biology creates impetus for generating biomolecules that function in living cells, new technologies are needed for performing mutagenesis and selection for directed evolution in vivo. Homologous recombination, routinely exploited for targeted gene alteration, is an attractive tool for in vivo library mutagenesis, yet surprisingly is not routinely used for this purpose. Here, we report the design and characterization of a yeast-based system for library mutagenesis of protein loops via oligonucleotide recombination. In this system, a linear vector is co-transformed with single-stranded mutagenic oligonucleotides. Using repair of nonsense codons engineered in three different active-site loops in the selectable marker TRP1 as a model system, we first optimized the recombination efficiency. Single-loop recombination was highly efficient, averaging 5%, or 4.0×10(5) recombinants. Multiple loops could be simultaneously mutagenized, although the efficiencies dropped to 0.2%, or 6.0×10(3) recombinants, for two loops and 0.01% efficiency, or 1.5×10(2) recombinants, for three loops. Finally, the utility of this system for directed evolution was tested explicitly by selecting functional variants from a mock library of 1:10(6) wild-type:nonsense codons. Sequencing showed that oligonucleotide recombination readily covered this large library, mutating not only the target codon but also encoded silent mutations on either side of the library cassette. Together these results establish oligonucleotide recombination as a simple and powerful library mutagenesis technique and advance efforts to engineer the cell for fully in vivo directed evolution.
Collapse
|
24
|
Marrero VA, Symington LS. Extensive DNA end processing by exo1 and sgs1 inhibits break-induced replication. PLoS Genet 2010; 6:e1001007. [PMID: 20628570 PMCID: PMC2900301 DOI: 10.1371/journal.pgen.1001007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
Homology-dependent repair of DNA double-strand breaks (DSBs) by gene conversion involves short tracts of DNA synthesis and limited loss of heterozygosity (LOH). For DSBs that present only one end, repair occurs by invasion into a homologous sequence followed by replication to the end of the chromosome resulting in extensive LOH, a process called break-induced replication (BIR). We developed a BIR assay in Saccharomyces cerevisiae consisting of a plasmid with a telomere seeding sequence separated from sequence homologous to chromosome III by an I-SceI endonuclease recognition site. Following cleavage of the plasmid by I-SceI in vivo, de novo telomere synthesis occurs at one end of the vector, and the other end invades at the homologous sequence on chromosome III and initiates replication to the end of the chromosome to generate a stable chromosome fragment (CF). BIR was infrequent in wild-type cells due to degradation of the linearized vector. However, in the exo1Δ sgs1Δ mutant, which is defective in the 5′-3′ resection of DSBs, the frequency of BIR was increased by 39-fold. Extension of the invading end of the plasmid was detected by physical analysis two hours after induction of the I-SceI endonuclease in the wild-type exo1Δ, sgs1Δ, and exo1Δ sgs1Δ mutants, but fully repaired products were only visible in the exo1Δ sgs1Δ mutant. The inhibitory effect of resection was less in a plasmid-chromosome gene conversion assay, compared to BIR, and products were detected by physical assay in the wild-type strain. The rare chromosome rearrangements due to BIR template switching at repeated sequences were increased in the exo1Δ sgs1Δ mutant, suggesting that reduced resection can decrease the fidelity of homologous recombination. DNA double-strand breaks (DSBs) can occur spontaneously in cells by defective DNA replication or are induced by various types of DNA damaging agents, such as those used in chemo- or radiation therapy. Failure to repair DSBs, or inappropriate repair, can result in chromosome loss or chromosome rearrangements, events associated with development of cancer cells. Typically, DNA DSBs have two ends that are reunited faithfully by copying from a homologous donor chromosome. For DSBs that present only one end, repair occurs by invasion into a homologous sequence followed by replication to the end of the chromosome, a process called break-induced replication (BIR). This repair pathway is thought to be suppressed at two-ended DSBs to prevent extensive loss of heterozygosity. Here, we describe a new assay to physically monitor BIR to see how this repair pathway differs from the repair of two-ended DSBs. We show this pathway is infrequent, but can be detected by eliminating factors (Exo1 and Sgs1) that degrade linear DNA. However, increased chromosome rearrangements were found in the resection-defective strain. We found the kinetics of strand invasion in two-ended and one-ended DSB repair were the same, suggesting that the distinction between these pathways occurs after initial repair steps have begun.
Collapse
Affiliation(s)
- Vanessa A. Marrero
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Lorraine S. Symington
- Department of Microbiology and Immunology, Columbia University Medical Center New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Schaefer DG, Delacote F, Charlot F, Vrielynck N, Guyon-Debast A, Le Guin S, Neuhaus JM, Doutriaux MP, Nogué F. RAD51 loss of function abolishes gene targeting and de-represses illegitimate integration in the moss Physcomitrella patens. DNA Repair (Amst) 2010; 9:526-33. [PMID: 20189889 DOI: 10.1016/j.dnarep.2010.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 01/16/2023]
Abstract
Gene targeting (GT) is a major tool for basic and applied research during which the transforming DNA, which shares sequence homology with a chromosomal target, integrates at the corresponding locus by homologous recombination (HR). In eukaryotes, GT recruits enzymes from the HR-mediated double strand break repair pathway. Different mechanisms of HR have been described which depend on the Rad52 epistasis group of genes, but which specific mechanism is used by the cell for GT remains unclear. In Saccharomyces cerevisiae, the RAD52 protein is essential for GT, and the RAD51 protein plays a minor role. In filamentous fungi and animal cells, however, GT depends on RAD51 and is weakly affected by suppression of RAD52. Genetic evidence also indicates that the non-homologous end-joining pathway of DSB repair has a negative impact on GT efficiencies, but how the balance between these two pathways is controlled is poorly understood. Here, we have examined the role of RAD51 in the only plant that exhibits high GT frequencies, the model bryophyte Physcomitrella patens. Our results show that the two RAD51 proteins have partially redundant functions in the maintenance of genome integrity and resistance to ionizing radiation. Furthermore, we demonstrate that loss of function of the two RAD51 proteins completely abolishes GT and strongly increases illegitimate integration rates in this moss. These findings demonstrate for the first time in plant the critical role of RAD51 in controlling the balance between targeted and random integration events observed upon transgenesis, and confirm that P. patens is a particularly interesting tool for studying GT in higher eukaryotes.
Collapse
Affiliation(s)
- D G Schaefer
- Institut Jean-Pierre Bourgin, Station de Génétique et d'Amélioration des Plantes, UR254, INRA, Route de St Cyr, 78026 Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tay YD, Sidebotham JM, Wu L. Mph1 requires mismatch repair-independent and -dependent functions of MutSalpha to regulate crossover formation during homologous recombination repair. Nucleic Acids Res 2010; 38:1889-901. [PMID: 20047969 PMCID: PMC2847250 DOI: 10.1093/nar/gkp1199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In budding yeast the DNA helicase Mph1 prevents genome rearrangements during ectopic homologous recombination (HR) by suppressing the formation of crossovers (COs). Here we show that during ectopic HR repair, the anti-CO function of Mph1 is intricately associated with the mismatch repair (MMR) factor, MutSα. In particular, during HR repair using a completely homologous substrate, we reveal an MMR-independent function of MutSα in generating COs that is specifically antagonized by Mph1, but not Sgs1. In contrast, both Mph1 and MutSα are required to efficiently suppress COs in the presence of a homeologous substrate. Mph1 acts redundantly with Sgs1 in this respect since mph1Δ sgs1Δ double mutant cells pheno-copy MutSα mutants and completely fail to discriminate homologous and homeologous sequences during HR repair. However, this defect of mph1Δ sgs1Δ cells is not due to an inability to carry out MMR but rather is accompanied by elevated levels of gene conversion (GC) and bi-directional GC tracts specifically in non-crossover products. Models describing how Mph1, MutSα and Sgs1 act in concert to suppress genome rearrangements during ectopic HR repair are discussed.
Collapse
Affiliation(s)
- Ye Dee Tay
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
27
|
Tinline-Purvis H, Savory AP, Cullen JK, Davé A, Moss J, Bridge WL, Marguerat S, Bähler J, Ragoussis J, Mott R, Walker CA, Humphrey TC. Failed gene conversion leads to extensive end processing and chromosomal rearrangements in fission yeast. EMBO J 2009; 28:3400-12. [PMID: 19798055 DOI: 10.1038/emboj.2009.265] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 08/17/2009] [Indexed: 01/06/2023] Open
Abstract
Loss of heterozygosity (LOH), a causal event in cancer and human genetic diseases, frequently encompasses multiple genetic loci and whole chromosome arms. However, the mechanisms by which such extensive LOH arises, and how it is suppressed in normal cells is poorly understood. We have developed a genetic system to investigate the mechanisms of DNA double-strand break (DSB)-induced extensive LOH, and its suppression, using a non-essential minichromosome, Ch(16), in fission yeast. We find extensive LOH to arise from a new break-induced mechanism of isochromosome formation. Our data support a model in which Rqh1 and Exo1-dependent end processing from an unrepaired DSB leads to removal of the broken chromosome arm and to break-induced replication of the intact arm from the centromere, a considerable distance from the initial lesion. This process also promotes genome-wide copy number variation. A genetic screen revealed Rhp51, Rhp55, Rhp57 and the MRN complex to suppress both isochromosome formation and chromosome loss, in accordance with these events resulting from extensive end processing associated with failed homologous recombination repair.
Collapse
Affiliation(s)
- Helen Tinline-Purvis
- CRUK-MRC Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, Oxfordshire, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Redundant roles of Srs2 helicase and replication checkpoint in survival and rDNA maintenance in Schizosaccharomyces pombe. Mol Genet Genomics 2009; 281:497-509. [PMID: 19205745 DOI: 10.1007/s00438-009-0426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
Srs2 helicase is believed to function as an anti-recombinase by resolving inappropriate Rad51-DNA filament. We found synthetic lethality or poor growth of srs2 with rad3 or mrc1 in Schizosaccharomyces pombe. Lethality may result from a defect in non-checkpoint function of Rad3 or Mrc1 in the absence of Srs2, because srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A (non-phosphorylatable mrc1 allele) did not show significant growth impairment. Notably, the inactivation of rhp51/RAD51 or rad22/RAD52 failed to rescue the growth, suggesting that events that impose lethality are independent of homologous recombination. Incubation of the conditional srs2 rad3 ( ts ) cells at restrictive temperature led not only to a viability decrease but also to a remarkable shortening of rDNA clusters (approximately 100 copies). As opposed to the growth defect, shortening of rDNA clusters was also observed in srs2 rad9, srs2 chk1 cds1 or srs2 mrc1-14A, indicating that proper replication checkpoint signaling is critical for rDNA maintenance. Activation of Chk1 in the unchallenged mrc1-14A srs2 cells implies a certain level of spontaneous fork damage that might be the cause for rDNA instability. The data suggest that redundant functions of Srs2 and checkpoint proteins are essential for two independent aspects of genome maintenance.
Collapse
|
29
|
Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase delta complex. Mol Cell Biol 2009; 29:1432-41. [PMID: 19139272 DOI: 10.1128/mcb.01469-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homologous recombination is an error-free mechanism for the repair of DNA double-strand breaks (DSBs). Most DSB repair events occur by gene conversion limiting loss of heterozygosity (LOH) for markers downstream of the site of repair and restricting deleterious chromosome rearrangements. DSBs with only one end available for repair undergo strand invasion into a homologous duplex DNA, followed by replication to the chromosome end (break-induced replication [BIR]), leading to LOH for all markers downstream of the site of strand invasion. Using a transformation-based assay system, we show that most of the apparent BIR events that arise in diploid Saccharomyces cerevisiae rad51Delta mutants are due to half crossovers instead of BIR. These events lead to extensive LOH because one arm of chromosome III is deleted. This outcome is also observed in pol32Delta and pol3-ct mutants, defective for components of the DNA polymerase delta (Pol delta) complex. The half crossovers formed in Pol delta complex mutants show evidence of limited homology-dependent DNA synthesis and are partially Mus81 dependent, suggesting that strand invasion occurs and the stalled intermediate is subsequently cleaved. In contrast to rad51Delta mutants, the Pol delta complex mutants are proficient for repair of a 238-bp gap by gene conversion. Thus, the BIR defect observed for rad51 mutants is due to strand invasion failure, whereas the Pol delta complex mutants are proficient for strand invasion but unable to complete extensive tracts of recombination-initiated DNA synthesis.
Collapse
|
30
|
Downing B, Morgan R, VanHulle K, Deem A, Malkova A. Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51. Mutat Res 2008; 645:9-18. [PMID: 18755201 DOI: 10.1016/j.mrfmmm.2008.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/18/2022]
Abstract
DNA double-strand breaks (DSBs) are critical lesions that can lead to cell death or chromosomal rearrangements. Rad51 is necessary for most mitotic and meiotic DSB repair events, although a number of RAD51-independent pathways exist. Previously, we described DSB repair in rad51Delta yeast diploids that was stimulated by a DNA region termed "facilitator of break-induced replication" (FBI) located approximately 30kb from the site of an HO-induced DSB. Here, we demonstrate that FBI is a large inverted DNA repeat that channels the repair of DSBs into the single-strand annealing-gross chromosomal rearrangements (SSA-GCR) pathway. Further, analysis of DSB repair in rad54Delta cells allowed us to propose that the SSA-GCR repair pathway is suppressed in the presence of Rad51p. Therefore, an additional role of Rad51 might be to protect eukaryotic genomes from instabilities by preventing chromosomal rearrangements.
Collapse
Affiliation(s)
- Brandon Downing
- Department of Biology, School of Science, IUPUI, Indianapolis, IN 46202-5132, USA
| | | | | | | | | |
Collapse
|
31
|
Sequence divergence impedes crossover more than noncrossover events during mitotic gap repair in yeast. Genetics 2008; 179:1251-62. [PMID: 18562664 DOI: 10.1534/genetics.108.090233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Homologous recombination between dispersed repeated sequences is important in shaping eukaryotic genome structure, and such ectopic interactions are affected by repeat size and sequence identity. A transformation-based, gap-repair assay was used to examine the effect of 2% sequence divergence on the efficiency of mitotic double-strand break repair templated by chromosomal sequences in yeast. Because the repaired plasmid could either remain autonomous or integrate into the genome, the effect of sequence divergence on the crossover-noncrossover (CO-NCO) outcome was also examined. Finally, proteins important for regulating the CO-NCO outcome and for enforcing identity requirements during recombination were examined by transforming appropriate mutant strains. Results demonstrate that the basic CO-NCO outcome is regulated by the Rad1-Rad10 endonuclease and the Sgs1 and Srs2 helicases, that sequence divergence impedes CO to a much greater extent than NCO events, that an intact mismatch repair system is required for the discriminating identical and nonidentical repair templates, and that the Sgs1 and Srs2 helicases play additional, antirecombination roles when the interacting sequences are not identical.
Collapse
|
32
|
Abstract
Rad51 requires a number of other proteins, including the Rad51 paralogs, for efficient recombination in vivo. Current evidence suggests that the yeast Rad51 paralogs, Rad55 and Rad57, are important in formation or stabilization of the Rad51 nucleoprotein filament. To gain further insights into the function of the Rad51 paralogs, reporters were designed to measure spontaneous or double-strand break (DSB)-induced sister or nonsister recombination. Spontaneous sister chromatid recombination (SCR) was reduced 6000-fold in the rad57 mutant, significantly more than in the rad51 mutant. Although the DSB-induced recombination defect of rad57 was suppressed by overexpression of Rad51, elevated temperature, or expression of both mating-type alleles, the rad57 defect in spontaneous SCR was not strongly suppressed by these same factors. In addition, the UV sensitivity of the rad57 mutant was not strongly suppressed by MAT heterozygosity, even though Rad51 foci were restored under these conditions. This lack of suppression suggests that Rad55 and Rad57 have different roles in the recombinational repair of stalled replication forks compared with DSB repair. Furthermore, these data suggest that most spontaneous SCR initiates from single-stranded gaps formed at stalled replication forks rather than DSBs.
Collapse
|
33
|
Lam AF, Krogh BO, Symington LS. Unique and overlapping functions of the Exo1, Mre11 and Pso2 nucleases in DNA repair. DNA Repair (Amst) 2008; 7:655-62. [PMID: 18295552 DOI: 10.1016/j.dnarep.2007.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 12/21/2022]
Abstract
The Mre11 and Pso2 nucleases function in homologous recombination and interstrand cross-link (ICL) repair pathways, respectively, while the Exo1 nuclease is involved in homologous recombination and mismatch repair. Characterization of the sensitivity of single, double and triple mutants for these nucleases in Saccharomyces cerevisiae to various DNA damaging agents reveals complex interactions that depend on the type of DNA damage. The pso2 mutant is uniquely sensitive to agents that generate ICLs and mre11-H125N shows the highest sensitivity of the single mutants for ionizing radiation and methyl methane sulfonate. However, elimination of all three nucleases confers higher sensitivity to IR than any of the single or double mutant combinations indicating a high degree of redundancy and versatility in the response to DNA damage. In response to ICL agents, double-strand breaks are still formed in the triple nuclease mutant indicating that none of these nucleases are responsible for unhooking cross-links.
Collapse
Affiliation(s)
- Alicia F Lam
- Department of Microbiology, Columbia University Medical Center, New York, NY 10032, United States
| | | | | |
Collapse
|
34
|
Santoyo G, Strathern JN. Non-homologous end joining is important for repair of Cr(VI)-induced DNA damage in Saccharomyces cerevisiae. Microbiol Res 2008; 163:113-9. [DOI: 10.1016/j.micres.2007.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 08/14/2007] [Accepted: 09/01/2007] [Indexed: 11/30/2022]
|
35
|
Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol Cell Biol 2007; 28:897-906. [PMID: 18039855 DOI: 10.1128/mcb.00524-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homologous recombination (HR) is critical for DNA double-strand break (DSB) repair and genome stabilization. In yeast, HR is catalyzed by the Rad51 strand transferase and its "mediators," including the Rad52 single-strand DNA-annealing protein, two Rad51 paralogs (Rad55 and Rad57), and Rad54. A Rad51 homolog, Dmc1, is important for meiotic HR. In wild-type cells, most DSB repair results in gene conversion, a conservative HR outcome. Because Rad51 plays a central role in the homology search and strand invasion steps, DSBs either are not repaired or are repaired by nonconservative single-strand annealing or break-induced replication mechanisms in rad51Delta mutants. Although DSB repair by gene conversion in the absence of Rad51 has been reported for ectopic HR events (e.g., inverted repeats or between plasmids), Rad51 has been thought to be essential for DSB repair by conservative interchromosomal (allelic) gene conversion. Here, we demonstrate that DSBs stimulate gene conversion between homologous chromosomes (allelic conversion) by >30-fold in a rad51Delta mutant. We show that Rad51-independent allelic conversion and break-induced replication occur independently of Rad55, Rad57, and Dmc1 but require Rad52. Unlike DSB-induced events, spontaneous allelic conversion was detected in both rad51Delta and rad52Delta mutants, but not in a rad51Delta rad52Delta double mutant. The frequencies of crossovers associated with DSB-induced gene conversion were similar in the wild type and the rad51Delta mutant, but discontinuous conversion tracts were fivefold more frequent and tract lengths were more widely distributed in the rad51Delta mutant, indicating that heteroduplex DNA has an altered structure, or is processed differently, in the absence of Rad51.
Collapse
|
36
|
McMahill MS, Sham CW, Bishop DK. Synthesis-dependent strand annealing in meiosis. PLoS Biol 2007; 5:e299. [PMID: 17988174 PMCID: PMC2062477 DOI: 10.1371/journal.pbio.0050299] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 09/20/2007] [Indexed: 11/26/2022] Open
Abstract
Recent studies led to the proposal that meiotic gene conversion can result after transient engagement of the donor chromatid and subsequent DNA synthesis-dependent strand annealing (SDSA). Double Holliday junction (dHJ) intermediates were previously proposed to form both reciprocal crossover recombinants (COs) and noncrossover recombinants (NCOs); however, dHJs are now thought to give rise mainly to COs, with SDSA forming most or all NCOs. To test this model in Saccharomyces cerevisiae, we constructed a random spore system in which it is possible to identify a subset of NCO recombinants that can readily be accounted for by SDSA, but not by dHJ-mediated recombination. The diagnostic class of recombinants is one in which two markers on opposite sides of a double-strand break site are converted, without conversion of an intervening heterologous insertion located on the donor chromatid. This diagnostic class represents 26% of selected NCO recombinants. Tetrad analysis using the same markers provided additional evidence that SDSA is a major pathway for NCO gene conversion in meiosis.
Collapse
Affiliation(s)
- Melissa S McMahill
- Committee on Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Caroline W Sham
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Douglas K Bishop
- Committee on Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
37
|
Cortés-Ledesma F, Tous C, Aguilera A. Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication. Nucleic Acids Res 2007; 35:6560-70. [PMID: 17905819 PMCID: PMC2095809 DOI: 10.1093/nar/gkm488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Homologous recombination (HR) is the major mechanism used to repair double-strand breaks (DSBs) that result from replication, but a study of repair of DSBs specifically induced during S-phase is lacking. Using an inverted-repeat assay in which a DSB is generated by the encountering of the replication fork with nicks, we can physically detect repair by sister-chromatid recombination (SCR) and intra-chromatid break-induced replication (IC-BIR). As expected, both events depend on Rad52, but, in contrast to previous data, both require Rad59, suggesting a prominent role of Rad59 in repair of replication-born DSBs. In the absence of Rad51, SCR is severely affected while IC-BIR increases, a phenotype that is also observed in the absence of Rad54 but not of its paralog Rdh54/Tid1. These data are consistent with SCR occurring by Rad51-dependent mechanisms assisted by Rad54, and indicate that in the absence of strand exchange-dependent SCR, breaks can be channeled to IC-BIR, which works efficiently in the absence of Rad51. Our study provides molecular evidence for inversions between repeats occurring by BIR followed by single-strand annealing (SSA) in the absence of strand exchange.
Collapse
Affiliation(s)
| | | | - Andrés Aguilera
- *To whom correspondence should be addressed. +34 954 468 372+34 954 461 664
| |
Collapse
|
38
|
Smith CE, Llorente B, Symington LS. Template switching during break-induced replication. Nature 2007; 447:102-5. [PMID: 17410126 DOI: 10.1038/nature05723] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 02/27/2007] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks (DSBs) are potentially lethal lesions that arise spontaneously during normal cellular metabolism, as a consequence of environmental genotoxins or radiation, or during programmed recombination processes. Repair of DSBs by homologous recombination generally occurs by gene conversion resulting from transfer of information from an intact donor duplex to both ends of the break site of the broken chromosome. In mitotic cells, gene conversion is rarely associated with reciprocal exchange and thus limits loss of heterozygosity for markers downstream of the site of repair and restricts potentially deleterious chromosome rearrangements. DSBs that arise by replication fork collapse or by erosion of uncapped telomeres have only one free end and are thought to repair by strand invasion into a homologous duplex DNA followed by replication to the chromosome end (break-induced replication, BIR). BIR from one of the two ends of a DSB would result in loss of heterozygosity, suggesting that BIR is suppressed when DSBs have two ends so that repair occurs by the more conservative gene conversion mechanism. Here we show that BIR can occur by several rounds of strand invasion, DNA synthesis and dissociation. We further show that chromosome rearrangements can occur during BIR if dissociation and reinvasion occur within dispersed repeated sequences. This dynamic process could function to promote gene conversion by capture of the displaced invading strand at two-ended DSBs to prevent BIR.
Collapse
Affiliation(s)
- Catherine E Smith
- Department of Microbiology, Columbia University Medical Center, 701 West 168th Street, New York, New York 10032, USA
| | | | | |
Collapse
|
39
|
Tanaka F, Ando A, Nakamura T, Takagi H, Shima J. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Food Microbiol 2006; 23:717-28. [PMID: 16943074 DOI: 10.1016/j.fm.2006.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 02/09/2006] [Accepted: 02/09/2006] [Indexed: 12/21/2022]
Abstract
Gene expression profiles of baker's yeast during initial dough-fermentation were investigated using liquid fermentation (LF) media to obtain insights at the molecular level into rapid adaptation mechanisms of baker's yeast. Results showed that onset of fermentation caused drastic changes in gene expression profiles within 15 min. Genes involved in the tricarboxylic acid (TCA) cycle were down-regulated and genes involved in glycolysis were up-regulated, indicating a metabolic shift from respiration to fermentation. Genes involved in ethanol production (PDC genes and ADH1), in glycerol synthesis (GPD1 and HOR2), and in low-affinity hexose transporters (HXT1 and HXT3) were up-regulated at the beginning of model dough-fermentation. Among genes up-regulated at 15 min, several genes classified as transcription were down-regulated within 30 min. These down-regulated genes are involved in messenger RNA splicing and ribosomal protein biogenesis and in transcriptional regulator (SRB8, MIG1). In contrast, genes involved in amino acid metabolism and in vitamin metabolism, such as arginine biosynthesis, riboflavin biosynthesis, and thiamin biosynthesis, were subsequently up-regulated after 30 min. Interestingly, the genes involved in the unfolded protein response (UPR) pathway were also subsequently up-regulated. Our study presents the first overall description of the transcriptional response of baker's yeast during dough-fermentation, and will thus help clarify genomic responses to various stresses during commercial fermentation processes.
Collapse
Affiliation(s)
- Fumiko Tanaka
- National Food Research Institute, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
40
|
Herzberg K, Bashkirov VI, Rolfsmeier M, Haghnazari E, McDonald WH, Anderson S, Bashkirova EV, Yates JR, Heyer WD. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks. Mol Cell Biol 2006; 26:8396-409. [PMID: 16966380 PMCID: PMC1636779 DOI: 10.1128/mcb.01317-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA damage checkpoints coordinate the cellular response to genotoxic stress and arrest the cell cycle in response to DNA damage and replication fork stalling. Homologous recombination is a ubiquitous pathway for the repair of DNA double-stranded breaks and other checkpoint-inducing lesions. Moreover, homologous recombination is involved in postreplicative tolerance of DNA damage and the recovery of DNA replication after replication fork stalling. Here, we show that the phosphorylation on serines 2, 8, and 14 (S2,8,14) of the Rad55 protein is specifically required for survival as well as for normal growth under genome-wide genotoxic stress. Rad55 is a Rad51 paralog in Saccharomyces cerevisiae and functions in the assembly of the Rad51 filament, a central intermediate in recombinational DNA repair. Phosphorylation-defective rad55-S2,8,14A mutants display a very slow traversal of S phase under DNA-damaging conditions, which is likely due to the slower recovery of stalled replication forks or the slower repair of replication-associated DNA damage. These results suggest that Rad55-S2,8,14 phosphorylation activates recombinational repair, allowing for faster recovery after genotoxic stress.
Collapse
Affiliation(s)
- Kristina Herzberg
- Section of Microbiology, University of California, Davis, Davis, CA 95616-8665, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Homologous recombination (HR) is a ubiquitous cellular pathway that mediates transfer of genetic information between homologous or near homologous (homeologous) DNA sequences. During meiosis it ensures proper chromosome segregation in the first division. Moreover, HR is critical for the tolerance and repair of DNA damage, as well as in the recovery of stalled and broken replication forks. Together these functions preserve genomic stability and assure high fidelity transmission of the genetic material in the mitotic and meiotic cell divisions. This review will focus on the Rad54 protein, a member of the Snf2-family of SF2 helicases, which translocates on dsDNA but does not display strand displacement activity typical for a helicase. A wealth of genetic, cytological, biochemical and structural data suggests that Rad54 is a core factor of HR, possibly acting at multiple stages during HR in concert with the central homologous pairing protein Rad51.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Sections of Microbiology, University of California Davis, CA 95616-8665, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
In the budding yeast Saccharomyces cerevisiae, the RAD52 gene is essential for all homologous recombination events and its homologue, the RAD59 gene, is important for those that occur independently of RAD51. Both Rad52 and Rad59 proteins can anneal complementary single-stranded (ss) DNA. We quantitatively examined the ssDNA annealing activity of Rad52 and Rad59 proteins and found significant differences in their biochemical properties. First, and most importantly, they differ in their ability to anneal ssDNA that is complexed with replication protein A (RPA). Rad52 can anneal an RPA-ssDNA complex, but Rad59 cannot. Second, Rad59-promoted DNA annealing follows first-order reaction kinetics, whereas Rad52-promoted annealing follows second-order reaction kinetics. Last, Rad59 enhances Rad52-mediated DNA annealing at increased NaCl concentrations, both in the absence and presence of RPA. These results suggest that Rad59 performs different functions in the recombination process, and should be more accurately viewed as a Rad52 paralogue.
Collapse
Affiliation(s)
- Yun Wu
- Section of Microbiology, Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, California 95616-8665, USA
| | | | | |
Collapse
|
43
|
Fasullo M, Dong Z, Sun M, Zeng L. Saccharomyces cerevisiae RAD53 (CHK2) but not CHK1 is required for double-strand break-initiated SCE and DNA damage-associated SCE after exposure to X rays and chemical agents. DNA Repair (Amst) 2005; 4:1240-51. [PMID: 16039914 DOI: 10.1016/j.dnarep.2005.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/07/2005] [Accepted: 06/15/2005] [Indexed: 11/23/2022]
Abstract
Saccharomyces cerevisiae RAD53 (CHK2) and CHK1 control two parallel branches of the RAD9-mediated pathway for DNA damage-induced G(2) arrest. Previous studies indicate that RAD9 is required for X-ray-associated sister chromatid exchange (SCE), suppresses homology-directed translocations, and is involved in pathways for double-strand break repair (DSB) repair that are different than those controlled by PDS1. We measured DNA damage-associated SCE in strains containing two tandem fragments of his3, his3-Delta5' and his3-Delta3'::HOcs, and rates of spontaneous translocations in diploids containing GAL1::his3-Delta5' and trp1::his3-Delta3'::HOcs. DNA damage-associated SCE was measured after log phase cells were exposed to methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4-NQO), UV, X rays and HO-induced DSBs. We observed that rad53 mutants were defective in MMS-, 4-NQO, X-ray-associated and HO-induced SCE but not in UV-associated SCE. Similar to rad9 pds1 double mutants, rad53 pds1 double mutants exhibited more X-ray sensitivity than the single mutants. rad53 sml1 diploid mutants exhibited a 10-fold higher rate of spontaneous translocations compared to the sml1 diploid mutants. chk1 mutants were not deficient in DNA damage-associated SCE after exposure to DNA damaging agents or after DSBs were generated at trp1::his3-Delta5'his3-Delta3'::HOcs. These data indicate that RAD53, not CHK1, is required for DSB-initiated SCE, and DNA damage-associated SCE after exposure to X-ray-mimetic and UV-mimetic chemicals.
Collapse
Affiliation(s)
- Michael Fasullo
- Ordway Research Institute, 150 New Scotland Avenue, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
44
|
Lewis LK, Karthikeyan G, Cassiano J, Resnick MA. Reduction of nucleosome assembly during new DNA synthesis impairs both major pathways of double-strand break repair. Nucleic Acids Res 2005; 33:4928-39. [PMID: 16141196 PMCID: PMC1197131 DOI: 10.1093/nar/gki806] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/15/2005] [Indexed: 11/23/2022] Open
Abstract
Assembly of new chromatin during S phase requires the histone chaperone complexes CAF-1 (Cac2p, Msi1p and Rlf2p) and RCAF (Asf1p plus acetylated histones H3 and H4). Cells lacking CAF-1 and RCAF are hypersensitive to DNA-damaging agents, such as methyl methanesulfonate and camptothecin, suggesting a possible defect in double-strand break (DSB) repair. Assays developed to quantitate repair of defined, cohesive-ended break structures revealed that DSB-induced plasmid:chromosome recombination was reduced approximately 10-fold in RCAF/CAF-1 double mutants. Recombination defects were similar with both chromosomal and plasmid targets in vivo, suggesting that inhibitory chromatin structures were not involved. Consistent with these observations, ionizing radiation-induced loss of heterozygosity was abolished in the mutants. Nonhomologous end-joining (NHEJ) repair proficiency and accuracy were intermediate between wild-type levels and those of NHEJ-deficient yku70 and rad50 mutants. The defects in NHEJ, but not homologous recombination, could be rescued by deletion of HMR-a1, a component of the a1/alpha2 transcriptional repressor complex. The findings are consistent with the observation that silent mating loci are partially derepressed. These results demonstrate that defective assembly of nucleosomes during new DNA synthesis compromises each of the known pathways of DSB repair and that the effects can be indirect consequences of changes in silenced chromatin structure.
Collapse
Affiliation(s)
- L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | | | | | | |
Collapse
|
45
|
Langston LD, Symington LS. Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting. EMBO J 2005; 24:2214-23. [PMID: 15920474 PMCID: PMC1150892 DOI: 10.1038/sj.emboj.7600698] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 05/06/2005] [Indexed: 12/12/2022] Open
Abstract
Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.
Collapse
Affiliation(s)
- Lance D Langston
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University Medical Center, New York, NY, USA
| | - Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University Medical Center, New York, NY, USA
- Department of Microbiology and Institute of Cancer Research, Columbia University Medical Center, 701 W 168th Street, New York, NY 10032, USA. Tel.: +1 212 305 4793; Fax: +1 212 305 1741; E-mail:
| |
Collapse
|
46
|
Cortés-Ledesma F, Malagón F, Aguilera A. A novel yeast mutation, rad52-L89F, causes a specific defect in Rad51-independent recombination that correlates with a reduced ability of Rad52-L89F to interact with Rad59. Genetics 2005; 168:553-7. [PMID: 15454565 PMCID: PMC1448092 DOI: 10.1534/genetics.104.030551] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We isolated a novel rad52 mutation, rad52-L89F, which specifically impairs recombination in rad51Delta cells. rad52-L89F displays phenotypes similar to rad59Delta and encodes a mutant protein impaired in its ability to interact with Rad59. These results support the idea that Rad59 acts in homologous recombination via physical interaction with Rad52.
Collapse
Affiliation(s)
- Felipe Cortés-Ledesma
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012, Spain
| | | | | |
Collapse
|
47
|
Abstract
The process of homologous recombination promotes error-free repair of double-strand breaks and is essential for meiosis. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Herein, we review recent genetic, biochemical, and structural analyses of the genes and proteins involved in recombination.
Collapse
|
48
|
Schildkraut E, Miller CA, Nickoloff JA. Gene conversion and deletion frequencies during double-strand break repair in human cells are controlled by the distance between direct repeats. Nucleic Acids Res 2005; 33:1574-80. [PMID: 15767282 PMCID: PMC1065255 DOI: 10.1093/nar/gki295] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks and maintains genome stability. HR between linked, direct repeats can occur by gene conversion without an associated crossover that maintains the gross repeat structure. Alternatively, direct repeat HR can occur by gene conversion with a crossover, or by single-strand annealing (SSA), both of which delete one repeat and the sequences between the repeats. Prior studies of different repeat structures in yeast and mammalian cells revealed disparate conversion:deletion ratios. Here, we show that a key factor controlling this ratio is the distance between the repeats, with conversion frequency increasing linearly with the distances from 850 to 3800 bp. Deletions are thought to arise primarily by SSA, which involves extensive end-processing to reveal complementary single-strands in each repeat. The results can be explained by a model in which strand-invasion leading to gene conversion competes more effectively with SSA as more extensive end-processing is required for SSA. We hypothesized that a transcription unit between repeats would inhibit end-processing and SSA, thereby increasing the fraction of conversions. However, conversion frequencies were identical for direct repeats separated by 3800 bp of transcriptionally silent or active DNA, indicating that end-processing and SSA are not affected by transcription.
Collapse
Affiliation(s)
| | | | - Jac A. Nickoloff
- To whom correspondence should be addressed. Tel: +1 505 272 6960; Fax: +1 505 272 6029;
| |
Collapse
|
49
|
Llorente B, Symington LS. The Mre11 nuclease is not required for 5' to 3' resection at multiple HO-induced double-strand breaks. Mol Cell Biol 2004; 24:9682-94. [PMID: 15485933 PMCID: PMC522228 DOI: 10.1128/mcb.24.21.9682-9694.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Current hypotheses suggest the Mre11 nuclease activity could be directly involved in double-strand break (DSB) resection in the presence of a large number of DSBs or limited to processing abnormal DNA ends. To distinguish between these possibilities, we used two methods to create large numbers of DSBs in Saccharomyces cerevisiae chromosomes, without introducing other substrates for the Mre11 nuclease. Multiple DSBs were created either by expressing the HO endonuclease in strains containing several HO cut sites embedded within randomly dispersed Ty1 elements or by phleomycin treatment. Analysis of resection by single-strand DNA formation in these systems showed no difference between strains containing MRE11 or the mre11-D56N nuclease defective allele, suggesting that the Mre11 nuclease is not involved in the extensive 5' to 3' resection of DSBs. We postulate that the ionizing radiation (IR) sensitivity of mre11 nuclease-defective mutants results from the accumulation of IR-induced DNA damage that is normally processed by the Mre11 nuclease. We also report that the processivity of 5' to 3' DSB resection and the yield of repaired products are affected by the number of DSBs in a dose-dependent manner. Finally, we show that the exonuclease Exo1 is involved in the processivity of 5' to 3' resection of an HO-induced DSB at the MAT locus.
Collapse
Affiliation(s)
- Bertrand Llorente
- Department of Microbiology, Columbia University Medical Center, 701 W. 168th St., New York, NY 10032, USA
| | | |
Collapse
|
50
|
Langston LD, Symington LS. Gene targeting in yeast is initiated by two independent strand invasions. Proc Natl Acad Sci U S A 2004; 101:15392-7. [PMID: 15489271 PMCID: PMC524428 DOI: 10.1073/pnas.0403748101] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the mechanism of gene targeting, we examined heteroduplex DNA (hDNA) formation during targeting of two separate chromosomal locations in Saccharomyces cerevisiae. We examined both replacement of the entire gene with a heterologous selectable marker and correction of a single base pair insertion mutation by gene targeting, and in all cases our results were consistent with separate strand invasion/resolution at the two ends of the targeting fragment as the dominant mechanism in wild-type cells. A small subset of transformants was consistent with assimilation of a single strand of targeting DNA encompassing both flanking homology regions and the marker into hDNA. hDNA formation during correction of a point mutation by targeted integration was conspicuously altered in a mismatch repair-deficient background and was consistent with single-strand invasion/assimilation without mismatch correction, confirming that gene targeting by this pathway is actively impeded in wild-type yeast. Finally, inversion of one targeted locus and mutation of an active origin of DNA replication at the other locus affected hDNA formation significantly, suggesting that formation of productive interactions between the targeting DNA and the targeted site in the chromosome is sensitive to local DNA dynamics.
Collapse
Affiliation(s)
- Lance D Langston
- Integrated Program in Cellular, Molecular, and Biophysical Studies and Department of Microbiology, Columbia University Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | | |
Collapse
|