1
|
Gatti PHF, Mangone FRR, Pavanelli AC, Nonogaki S, Osorio CABDT, Capelozzi VL, Nagai MA. Downregulation of DNAJC12 Expression Predicts Worse Survival for ER-Positive Breast Cancer Patients. Biomark Insights 2025; 20:11772719251323095. [PMID: 40008192 PMCID: PMC11851741 DOI: 10.1177/11772719251323095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background DNAJC12 (DnaJ heat shock protein family (Hsp40) member C12) encodes a member of the molecular chaperone Hsp40/DnaJ family, which are important protein folding and proteostasis regulators. Its role as a biomarker has been studied for a limited number of cancer types. Objectives: Here, we sought to investigate the potential of DNAJC12 mRNA and protein expression as a prognostic and predictive biomarker for breast cancer (BC). Methods Using in silico analysis and data from immunohistochemistry analysis (IHC) of 292 samples from patients with primary BC, we determined the expression pattern and prognostic value of DNAJC12 mRNA and protein expression. Results From online publicly available data, we were able to identify the transcripts of DNAJC12 as differentially expressed in patients with different clinicopathological characteristics, such as ER status (P < .001), PR status (P < .001), HER2 status (P < .010) and molecular subtype (P ⩽ .001). We also found DNAJC12 to be a potential prognostic predictor for overall survival, disease-free survival, and responsiveness to treatment; a low DNAJC12 mRNA expression is commonly associated with a worse prognosis. Using IHC analysis, we showed that low DNAJC12 protein-level expression is also associated with a worse prognosis in patients with all subtypes of BC and patients with Luminal BC, and its expression is significantly different between patients with different tumor size classifications (T1/T2 vs T3/T4; P = .013) or with different lymph node involvement (N0 vs N+; P = .005). Conclusion Our findings suggested a potential role for DNAJC12 as a prognostic and predictive biomarker for BC.
Collapse
Affiliation(s)
- Pedro Henrique Fernandes Gatti
- Laboratory of Molecular Genetics, Centro de Investigação Translacional em Oncologia-CTO, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Regina Rotea Mangone
- Laboratory of Molecular Genetics, Centro de Investigação Translacional em Oncologia-CTO, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo, Brazil
| | - Ana Carolina Pavanelli
- Laboratory of Molecular Genetics, Centro de Investigação Translacional em Oncologia-CTO, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo, Brazil
| | - Suely Nonogaki
- Departamento de Patologia, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Vera Luiza Capelozzi
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Aparecida Nagai
- Laboratory of Molecular Genetics, Centro de Investigação Translacional em Oncologia-CTO, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo, Brazil
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
2
|
Edkins AL, Blatch GL. Complementation Assays for Co-chaperone Function. Methods Mol Biol 2023; 2693:105-111. [PMID: 37540430 DOI: 10.1007/978-1-0716-3342-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The development of mutant microorganisms lacking J domain proteins (JDPs; formerly called Hsp40s) has enabled the development of complementation assays for testing the co-chaperone function of JDPs. In these assays, an exogenously expressed novel JDP is tested for its ability to functionally substitute for a non-expressed or nonfunctional endogenous JDP(s) by reversing a stress phenotype. For example, the in vivo functionality of prokaryotic JDPs can be tested on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant strain of the bacterium Escherichia coli (OD259). Similarly, the in vivo functionality of eukaryotic JDPs can be assessed in a thermosensitive ydj1 mutant strain of the yeast Saccharomyces cerevisiae (JJ160). Here we outline the use of these thermosensitive microorganisms in complementation assays to functionally characterize a JDP from the bacterium, Agrobacterium tumefaciens (AgtDnaJ), and a JDP from the trypanosomal parasite, Trypanosoma cruzi (TcJ2).
Collapse
Affiliation(s)
- Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa.
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa.
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates.
- The University of Notre Dame Australia, Fremantle, WA, Australia.
| |
Collapse
|
3
|
Sagarika P, Yadav K, Sahi C. Volleying plasma membrane proteins from birth to death: Role of J-domain proteins. Front Mol Biosci 2022; 9:1072242. [PMID: 36589230 PMCID: PMC9798423 DOI: 10.3389/fmolb.2022.1072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The function, stability, and turnover of plasma membrane (PM) proteins are crucial for cellular homeostasis. Compared to soluble proteins, quality control of plasma membrane proteins is extremely challenging. Failure to meet the high quality control standards is detrimental to cellular and organismal health. J-domain proteins (JDPs) are among the most diverse group of chaperones that collaborate with other chaperones and protein degradation machinery to oversee cellular protein quality control (PQC). Although fragmented, the available literature from different models, including yeast, mammals, and plants, suggests that JDPs assist PM proteins with their synthesis, folding, and trafficking to their destination as well as their degradation, either through endocytic or proteasomal degradation pathways. Moreover, some JDPs interact directly with the membrane to regulate the stability and/or functionality of proteins at the PM. The deconvoluted picture emerging is that PM proteins are relayed from one JDP to another throughout their life cycle, further underscoring the versatility of the Hsp70:JDP machinery in the cell.
Collapse
|
4
|
Noddings CM, Wang RYR, Johnson JL, Agard DA. Structure of Hsp90-p23-GR reveals the Hsp90 client-remodelling mechanism. Nature 2022; 601:465-469. [PMID: 34937936 PMCID: PMC8994517 DOI: 10.1038/s41586-021-04236-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/13/2021] [Indexed: 01/11/2023]
Abstract
Hsp90 is a conserved and essential molecular chaperone responsible for the folding and activation of hundreds of 'client' proteins1-3. The glucocorticoid receptor (GR) is a model client that constantly depends on Hsp90 for activity4-9. GR ligand binding was previously shown to nr inhibited by Hsp70 and restored by Hsp90, aided by the co-chaperone p2310. However, a molecular understanding of the chaperone-mediated remodelling that occurs between the inactive Hsp70-Hsp90 'client-loading complex' and an activated Hsp90-p23 'client-maturation complex' is lacking for any client, including GR. Here we present a cryo-electron microscopy (cryo-EM) structure of the human GR-maturation complex (GR-Hsp90-p23), revealing that the GR ligand-binding domain is restored to a folded, ligand-bound conformation, while being simultaneously threaded through the Hsp90 lumen. In addition, p23 directly stabilizes native GR using a C-terminal helix, resulting in enhanced ligand binding. This structure of a client bound to Hsp90 in a native conformation contrasts sharply with the unfolded kinase-Hsp90 structure11. Thus, aided by direct co-chaperone-client interactions, Hsp90 can directly dictate client-specific folding outcomes. Together with the GR-loading complex structure12, we present the molecular mechanism of chaperone-mediated GR remodelling, establishing the first, to our knowledge, complete chaperone cycle for any Hsp90 client.
Collapse
Affiliation(s)
- Chari M. Noddings
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ray Yu-Ruei Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA,Correspondence to David A. Agard ()
| |
Collapse
|
5
|
Düppre E, Schneider D. The J- and G/F-domains of the major Synechocystis DnaJ protein Sll0897 are sufficient for cell viability but not for heat resistance. FEBS Open Bio 2020; 10:2343-2349. [PMID: 32965069 PMCID: PMC7609799 DOI: 10.1002/2211-5463.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022] Open
Abstract
Hsp70 proteins and their Hsp40 co‐chaperones are essential components of cellular chaperone networks in both prokaryotes and eukaryotes. Here, we performed a genetic analysis to define the protein domains required for the key functions of the major Hsp40/DnaJ protein Sll0897 of the cyanobacterium Synechocystis sp. PCC6803. The expression of the N‐terminally located J‐ and G/F‐domains is essential and sufficient for the proteins’ fundamental in vivo functions, whereas the presence of the full‐length protein, containing the C‐terminal substrate‐binding domains, is crucial under stress conditions.
Collapse
Affiliation(s)
- Eva Düppre
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| |
Collapse
|
6
|
The Hsp70 co-chaperone Ydj1/HDJ2 regulates ribonucleotide reductase activity. PLoS Genet 2018; 14:e1007462. [PMID: 30452489 PMCID: PMC6277125 DOI: 10.1371/journal.pgen.1007462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/03/2018] [Accepted: 10/11/2018] [Indexed: 11/19/2022] Open
Abstract
Hsp70 is a well-conserved molecular chaperone involved in the folding, stabilization, and eventual degradation of many “client” proteins. Hsp70 is regulated by a suite of co-chaperone molecules that assist in Hsp70-client interaction and stimulate the intrinsic ATPase activity of Hsp70. While previous studies have shown the anticancer target ribonucleotide reductase (RNR) is a client of Hsp70, the regulatory co-chaperones involved remain to be determined. To identify co-chaperone(s) involved in RNR activity, 28 yeast co-chaperone knockout mutants were screened for sensitivity to the RNR-perturbing agent Hydroxyurea. Ydj1, an important cytoplasmic Hsp70 co-chaperone was identified to be required for growth on HU. Ydj1 bound the RNR subunit Rnr2 and cells lacking Ydj1 showed a destabilized RNR complex. Suggesting broad conservation from yeast to human, HDJ2 binds R2B and regulates RNR stability in human cells. Perturbation of the Ssa1-Ydj1 interaction through mutation or Hsp70-HDJ2 via the small molecule 116-9e compromised RNR function, suggesting chaperone dependence of this novel role. Mammalian cells lacking HDJ2 were significantly more sensitive to RNR inhibiting drugs such as hydroxyurea, gemcitabine and triapine. Taken together, this work suggests a novel anticancer strategy-inhibition of RNR by targeting Hsp70 co-chaperone function. Ribonucleotide reductase (RNR) is a key enzyme in the synthesis of DNA and inhibition of RNR leads to cellular sensitivity to radiation. As such, RNR is a well-validated therapeutic target for a variety of diseases including cancer. Anti-RNR drugs are effective but are associated with a range of side effects in patients. Our previous work had identified that the Hsp90 and Hsp70 molecular chaperone proteins regulate RNR. The specificity and activity of Hsp70 and Hsp90 are regulated by “co-chaperone” proteins. We examined RNR activity in cells lacking individual co-chaperones and identified the Ydj1/HDJ2 protein as a novel regulator of RNR in yeast and human cells. Importantly, we demonstrate that inhibiting HDJ2 sensitizes cells to currently used anticancer drugs.
Collapse
|
7
|
Ohno M, Negishi M. GR Utilizes a Co-Chaperone Cytoplasmic CAR Retention Protein to Form an N/C Interaction. NUCLEAR RECEPTOR SIGNALING 2018; 15:1550762918801072. [PMID: 30718983 PMCID: PMC6348740 DOI: 10.1177/1550762918801072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/06/2016] [Indexed: 01/18/2023]
Abstract
The N-terminal domain (NTD) of nuclear receptor superfamily members has been recently reported to regulate functions of the receptor through the interaction between the NTD and the C-terminal ligand binding domain (LBD), so-called an N/C interaction. Although this N/C interaction has been demonstrated in various nuclear receptors, eg, androgen receptor, this concept has not been observed in glucocorticoid receptor (GR). We hypothesized that GR requires its co-chaperone CCRP (cytoplasmic constitutive active/androstane receptor retention protein) to form a stable N/C interaction. This hypothesis was examined by co-immunoprecipitation assays using GR fragments overexpressing COS-1 cell lysate. Here, we demonstrated that GR undergoes the N/C interaction between the 26VMDFY30 motif in the NTD and the LBD. More importantly, co-chaperone CCRP is now found to induce this interaction. By the fact that a negative charge at Y30 disrupts this interaction, this residue, a potential phosphorylation site, was indicated to regulate the GR N/C interaction critically. Utilizing Y30F and Y30E mutants as N/C interacting and noninteracting forms of GR, respectively, a 2-dimensional blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed to examine whether or not the N/C interaction regulated formation of GR complexes. A cDNA microarray analysis was performed with COS-1 cells expressing Y30F or Y30E. We will present experimental data to demonstrate that CCRP is essential for GR to form the N/C interaction and will discuss its implications in GR functions.
Collapse
Affiliation(s)
- Marumi Ohno
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Masahiko Negishi
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
8
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
9
|
Stiegler SC, Rübbelke M, Korotkov VS, Weiwad M, John C, Fischer G, Sieber SA, Sattler M, Buchner J. A chemical compound inhibiting the Aha1-Hsp90 chaperone complex. J Biol Chem 2017; 292:17073-17083. [PMID: 28851842 PMCID: PMC5641884 DOI: 10.1074/jbc.m117.797829] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic Hsp90 chaperone machinery comprises many co-chaperones and regulates the conformation of hundreds of cytosolic client proteins. Therefore, it is not surprising that the Hsp90 machinery has become an attractive therapeutic target for diseases such as cancer. The compounds used so far to target this machinery affect the entire Hsp90 system. However, it would be desirable to achieve a more selective targeting of Hsp90-co-chaperone complexes. To test this concept, in this-proof-of-principle study, we screened for modulators of the interaction between Hsp90 and its co-chaperone Aha1, which accelerates the ATPase activity of Hsp90. A FRET-based assay that monitored Aha1 binding to Hsp90 enabled identification of several chemical compounds modulating the effect of Aha1 on Hsp90 activity. We found that one of these inhibitors can abrogate the Aha1-induced ATPase stimulation of Hsp90 without significantly affecting Hsp90 ATPase activity in the absence of Aha1. NMR spectroscopy revealed that this inhibitory compound binds the N-terminal domain of Hsp90 close to its ATP-binding site and overlapping with a transient Aha1-interaction site. We also noted that this inhibitor does not dissociate the Aha1-Hsp90 complex but prevents the specific interaction with the N-terminal domain of Hsp90 required for catalysis. In consequence, the inhibitor affected the activation and processing of Hsp90-Aha1-dependent client proteins in vivo We conclude that it is possible to abrogate a specific co-chaperone function of Hsp90 without inhibiting the entire Hsp90 machinery. This concept may also hold true for other co-chaperones of Hsp90.
Collapse
Affiliation(s)
- Sandrine C Stiegler
- From the Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Martin Rübbelke
- From the Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vadim S Korotkov
- From the Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Matthias Weiwad
- the Max Planck Research Unit for Enzymology of Protein Folding, 06120 Halle/Saale, Germany, and
| | - Christine John
- From the Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Gunter Fischer
- the Max Planck Research Unit for Enzymology of Protein Folding, 06120 Halle/Saale, Germany, and
| | - Stephan A Sieber
- From the Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Michael Sattler
- From the Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Buchner
- From the Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, D-85747 Garching, Germany,
| |
Collapse
|
10
|
Takano A, Kajita T, Mochizuki M, Endo T, Yoshihisa T. Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. eLife 2015; 4:e04659. [PMID: 25853343 PMCID: PMC4432389 DOI: 10.7554/elife.04659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 04/05/2015] [Indexed: 01/31/2023] Open
Abstract
tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.
Collapse
Affiliation(s)
- Akira Takano
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takuya Kajita
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Makoto Mochizuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
11
|
The ribosomal biogenesis protein Utp21 interacts with Hsp90 and has differing requirements for Hsp90-associated proteins. PLoS One 2014; 9:e92569. [PMID: 24647762 PMCID: PMC3960262 DOI: 10.1371/journal.pone.0092569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/24/2014] [Indexed: 01/11/2023] Open
Abstract
The molecular chaperone Hsp90 buffers the effects of genetic variation by assisting the stabilization and folding of multiple clients critical for cell signaling and growth. We identified an interaction of Hsp90 and associated proteins with the essential nucleolar protein, Utp21, part of a large complex required for biogenesis of the small ribosomal subunit. The utp21-S602F mutation, which causes minor defects in otherwise wild-type yeast, exhibited severe or lethal growth defects when combined with mutations in Hsp90 or co-chaperones. WT Utp21 and Utp21-S602F exhibited similar interactions with Hsp90, and steady-state levels of WT Utp21 were reduced upon Hsp90 mutation or inhibition. Mutations in the human homolog of UTP21, WDR36, have been associated with adult-onset primary open-angle glaucoma, a leading cause of blindness worldwide. Three different mutant forms of Utp21 analogous to glaucoma-associated WDR36 mutations exhibit reduced levels in yeast cells expressing mutations in Hsp90 or associated chaperones, suggesting that Hsp90 and co-chaperones buffer the effects of those mutations.
Collapse
|
12
|
Borklu Yucel E, Ulgen KO. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. MOLECULAR BIOSYSTEMS 2013; 9:2914-31. [DOI: 10.1039/c3mb70248k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 384] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
14
|
Shankar J, Wu TD, Clemons KV, Monteiro JP, Mirels LF, Stevens DA. Influence of 17β-estradiol on gene expression of Paracoccidioides during mycelia-to-yeast transition. PLoS One 2011; 6:e28402. [PMID: 22194832 PMCID: PMC3237447 DOI: 10.1371/journal.pone.0028402] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/07/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Paracoccidioides is the causative agent of paracoccidioidomycosis, a systemic mycosis endemic to Latin America. Infection is initiated by inhalation of conidia (C) or mycelial (M) fragments, which subsequently differentiate into yeast (Y). Epidemiological studies show a striking predominance of paracoccidioidomycosis in adult men compared to premenopausal women. In vitro and in vivo studies suggest that the female hormone (17β-estradiol, E(2)) regulates or inhibits M-or-C-to-Y transition. In this study we have profiled transcript expression to understand the molecular mechanism of how E(2) inhibits M-to-Y transition. METHODOLOGY We assessed temporal gene expression in strain Pb01 in the presence or absence of E(2) at various time points through 9 days of the M-to-Y transition using an 11,000 element random-shear genomic DNA microarray and verified the results using quantitative real time-PCR. E(2)-regulated clones were sequenced to identify genes and biological function. PRINCIPAL FINDINGS E(2)-treatment affected gene expression of 550 array elements, with 331 showing up-regulation and 219 showing down-regulation at one or more time points (p≤0.001). Genes with low expression after 4 or 12 h exposure to E(2) belonged to pathways involved in heat shock response (hsp90 and hsp70), energy metabolism, and several retrotransposable elements. Y-related genes, α-1,3-glucan synthase, mannosyltransferase and Y20, demonstrated low or delayed expression in E(2)-treated cultures. Genes potentially involved in signaling, such as palmitoyltransferase (erf2), small GTPase RhoA, phosphatidylinositol-4-kinase, and protein kinase (serine/threonine) showed low expression in the presence of E(2), whereas a gene encoding for an arrestin domain-containing protein showed high expression. Genes related to ubiquitin-mediated protein degradation, and oxidative stress response genes were up-regulated by E(2). CONCLUSION This study characterizes the effect of E(2) at the molecular level on the inhibition of the M-to-Y transition and is indicative that the inhibitory actions of E(2) may be working through signaling genes that regulate dimorphism.
Collapse
Affiliation(s)
- Jata Shankar
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Thomas D. Wu
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, California, United States of America
| | - Karl V. Clemons
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Jomar P. Monteiro
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Laurence F. Mirels
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - David A. Stevens
- California Institute for Medical Research, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, California, United States of America
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
15
|
Control of the function of the transcription and repair factor TFIIH by the action of the cochaperone Ydj1. Proc Natl Acad Sci U S A 2011; 108:15300-5. [PMID: 21876155 DOI: 10.1073/pnas.1107425108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Yeast rad3-102, a mutant of the TFIIH complex involved in nucleotide excision repair (NER) and transcription, can perform NER initial steps but not late steps of postincision gap filing. Because removal of early-acting NER proteins prevents rad3-102 deleterious action, we used this feature to explore if chaperones act in early NER. We found that the cochaperone Ydj1 is required for NER and that Ydj1 guarantees TFIIH stoichiometry. Importantly, in the absence of Ydj1, the roles of TFIIH in transcription and transactivation, the ability to activate transcription by nuclear receptors in response to hormones, are strongly impaired. We propose that TFIIH constitutes a multitarget complex for Ydj1, as six of the seven TFIIH core components contain biologically relevant Ydj1- binding motives. Our results provide evidence for a role of chaperones in NER and transcription, with implications in cancer and TFIIH-associated syndromes.
Collapse
|
16
|
Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA. [SWI], the prion formed by the chromatin remodeling factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity. PLoS Genet 2011; 7:e1001309. [PMID: 21379326 PMCID: PMC3040656 DOI: 10.1371/journal.pgen.1001309] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 01/12/2011] [Indexed: 11/24/2022] Open
Abstract
The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two of its J-protein co-chaperones, Sis1 and Ydj1, and the nucleotide exchange factors of the Hsp110 family (Sse1/2). Notably, while all yeast prions tested thus far require Sis1, [SWI+] is the only one known to require the activity of Ydj1, the most abundant J-protein in yeast. The C-terminal region of Ydj1, which contains the client protein interaction domain, is required for [SWI+] propagation. However, Ydj1 is not unique in this regard, as another, closely related J-protein, Apj1, can substitute for it when expressed at a level approaching that of Ydj1. While dependent upon Ydj1 and Sis1 for propagation, [SWI+] is also highly sensitive to overexpression of both J-proteins. However, this increased prion-loss requires only the highly conserved 70 amino acid J-domain, which serves to stimulate the ATPase activity of Hsp70 and thus to stabilize its interaction with client protein. Overexpression of the J-domain from Sis1, Ydj1, or Apj1 is sufficient to destabilize [SWI+]. In addition, [SWI+] is lost upon overexpression of Sse nucleotide exchange factors, which act to destabilize Hsp70's interaction with client proteins. Given the plethora of genes affected by the activity of the SWI/SNF chromatin-remodeling complex, it is possible that this sensitivity of [SWI+] to the activity of Hsp70 chaperone machinery may serve a regulatory role, keeping this prion in an easily-lost, meta-stable state. Such sensitivity may provide a means to reach an optimal balance of phenotypic diversity within a cell population to better adapt to stressful environments. Yeast prions are heritable genetic elements, formed spontaneously by aggregation of a single protein. Prions can thus generate diverse phenotypes in a dominant, non-Mendelian fashion, without a corresponding change in chromosomal gene structure. Since the phenotypes caused by the presence of a prion are thought to affect the ability of cells to survive under different environmental conditions, those that have global effects on cell physiology are of particular interest. Here we report the results of a study of one such prion, [SWI+], formed by a component of the SWI/SNF chromatin-remodeling complex, which is required for the regulation of a diverse set of genes. We found that, compared to previously well-studied prions, [SWI+] is highly sensitive to changes in the activities of molecular chaperones, particularly components of the Hsp70 machinery. Both under- and over-expression of components of this system initiated rapid loss of the prion from the cell population. Since expression of molecular chaperones, often known as heat shock proteins, are known to vary under diverse environmental conditions, such “chaperone sensitivity” may allow alteration of traits that under particular environmental conditions convey a selective advantage and may be a common characteristic of prions formed from proteins involved in global gene regulation.
Collapse
Affiliation(s)
- Justin K. Hines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Xiaomo Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zhiqiang Du
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Takashi Higurashi
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Liming Li
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail: (EAC); (LL)
| | - Elizabeth A. Craig
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- * E-mail: (EAC); (LL)
| |
Collapse
|
17
|
Cox MB, Johnson JL. The role of p23, Hop, immunophilins, and other co-chaperones in regulating Hsp90 function. Methods Mol Biol 2011; 787:45-66. [PMID: 21898226 DOI: 10.1007/978-1-61779-295-3_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes, such as protein translation, translocation, and disassembly of protein complexes (1). Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | | |
Collapse
|
18
|
Abstract
Molecular chaperones of the Hsp70 family have diverse functions in cells. They assist the folding of newly synthesized and stress-denatured proteins, as well as the import of proteins into organelles, and the dissociation of aggregated proteins. The well-conserved Hsp70 chaperones are ATP dependent: binding and hydrolysis of ATP regulates their interactions with unfolded polypeptide substrates, and ATPase cycling is necessary for their function. All cellular functions of Hsp70 chaperones use the same mechanism of ATP-driven polypeptide binding and release. The Hsp40 co-chaperones stimulate ATP hydrolysis by Hsp70 and the type 1 Hsp40 proteins are conserved from Escherichia coli to humans. Various nucleotide exchange factors also promote the Hsp70 ATPase cycle. Recent advances have added to our understanding of the Hsp70 mechanism at a molecular level.
Collapse
Affiliation(s)
- Jason C Young
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
19
|
Cwc23, an essential J protein critical for pre-mRNA splicing with a dispensable J domain. Mol Cell Biol 2010; 30:33-42. [PMID: 19822657 DOI: 10.1128/mcb.00842-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
J proteins are structurally diverse, obligatory cochaperones of Hsp70s, each with a highly conserved J domain that plays a critical role in the stimulation of Hsp70's ATPase activity. The essential protein, Cwc23, is one of 13 J proteins found in the cytosol and/or nucleus of Saccharomyces cerevisiae. We report that a partial loss-of-function CWC23 mutant has severe, global defects in pre-mRNA splicing. This mutation leads to accumulation of the excised, lariat form of the intron, as well as unspliced pre-mRNA, suggesting a role for Cwc23 in spliceosome disassembly. Such a role is further supported by the observation that this mutation results in reduced interaction between Cwc23 and Ntr1 (SPP382), a known component of the disassembly pathway. However, Cwc23 is a very atypical J protein. Its J domain, although functional, is dispensable for both cell viability and pre-mRNA splicing. Nevertheless, strong genetic interactions were uncovered between point mutations encoding alterations in Cwc23's J domain and either Ntr1 or Prp43, a DExD/H-box helicase essential for spliceosome disassembly. These genetic interactions suggest that Hsp70-based chaperone machinery does play a role in the disassembly process. Cwc23 provides a unique example of a J protein; its partnership with Hsp70 plays an auxiliary, rather than a central, role in its essential cellular function.
Collapse
|
20
|
Flom GA, Lemieszek M, Fortunato EA, Johnson JL. Farnesylation of Ydj1 is required for in vivo interaction with Hsp90 client proteins. Mol Biol Cell 2008; 19:5249-58. [PMID: 18829866 DOI: 10.1091/mbc.e08-04-0435] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ydj1 of Saccharomyces cerevisiae is an abundant cytosolic Hsp40, or J-type, molecular chaperone. Ydj1 cooperates with Hsp70 of the Ssa family in the translocation of preproteins to the ER and mitochondria and in the maturation of Hsp90 client proteins. The substrate-binding domain of Ydj1 directly interacts with steroid receptors and is required for the activity of diverse Hsp90-dependent client proteins. However, the effect of Ydj1 alteration on client interaction was unknown. We analyzed the in vivo interaction of Ydj1 with the protein kinase Ste11 and the glucocorticoid receptor. Amino acid alterations in the proposed client-binding domain or zinc-binding domain had minor effects on the physical interaction of Ydj1 with both clients. However, alteration of the carboxy-terminal farnesylation signal disrupted the functional and physical interaction of Ydj1 and Hsp90 with both clients. Similar effects were observed upon deletion of RAM1, which encodes one of the subunits of yeast farnesyltransferase. Our results indicate that farnesylation is a major factor contributing to the specific requirement for Ydj1 in promoting proper regulation and activation of diverse Hsp90 clients.
Collapse
Affiliation(s)
- Gary A Flom
- Department of Microbiology, Molecular Biology and Biochemistry and the Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
21
|
Moffatt NSC, Bruinsma E, Uhl C, Obermann WMJ, Toft D. Role of the cochaperone Tpr2 in Hsp90 chaperoning. Biochemistry 2008; 47:8203-13. [PMID: 18620420 DOI: 10.1021/bi800770g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The molecular chaperones Hsp90 and Hsp70 are highly regulated by various cochaperones that participate in the activation of steroid receptors. Here we study Tpr2 (also called DjC7), a TPR domain-containing type III J protein implicated in steroid receptor chaperoning. We propose that Tpr2 plays a role in the Hsp90-dependent chaperoning of the progesterone receptor (PR). Tpr2 overexpression or knockdown resulted in slight reductions in PR transcriptional activity in HeLa cells. Immunoprecipitation and pulldown experiments indicated that Tpr2 associates with Hsp90 and Hsp70 complexes, some of which also contain the PR. Tpr2 can bind Hsp90 and Hsp70 simultaneously, which is also a property of the cochaperone Hop. However, unlike Hop, Tpr2 binding to Hsp70 in the presence of Hsp90 is ATP-dependent, and Tpr2 cannot replace Hop in Hsp90 chaperoning in vitro or in vivo. While Tpr2 was not detected as a component of PR heterocomplexes in cell lysates, purified Tpr2 bound the PR readily. Surprisingly, Tpr2 replaced type I and II J proteins in the Hsp90-dependent chaperoning of the PR and the protein kinase, Chk1. Unlike other J proteins, Tpr2 promoted the accumulation of Hsp70 in PR heterocomplexes in the presence of Hsp90. Thus, Tpr2 has the potential to regulate PR chaperoning.
Collapse
Affiliation(s)
- Nela S Cintrón Moffatt
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
22
|
Sahi C, Craig EA. Network of general and specialty J protein chaperones of the yeast cytosol. Proc Natl Acad Sci U S A 2007; 104:7163-8. [PMID: 17438278 PMCID: PMC1855418 DOI: 10.1073/pnas.0702357104] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Indexed: 11/18/2022] Open
Abstract
J proteins are obligate cochaperones of Hsp70s, stimulating their ATPase activity and thus allowing them to function in multiple cellular processes. In most cellular compartments, an Hsp70 works with multiple, structurally divergent J proteins. To better understand the functional specificity of J proteins and the complexity of the Hsp70:J protein network, we undertook a comprehensive analysis of 13 J proteins of the cytosol of the yeast Saccharomyces cerevisiae. Phenotypes caused by the absence of four proteins, Sis1, Jjj1, Jjj3, and Cwc23, could not be rescued by overexpression of any other cytosolic J protein, demonstrating the distinctive nature of J proteins. In one case, that of Zuo1, the phenotypic effects of the absence of a J protein could be rescued by overexpression of only one other J protein, Jjj1, which, like Zuo1, is ribosome-associated. In contrast, the severe growth phenotype caused by the absence of the cytosol's most abundant J protein, Ydj1, was substantially rescued by expression of J domain-containing fragments of many cytosolic J proteins. We conclude that many functions of Hsp70 chaperone machineries only require stimulation of Hsp70's ATPase activity by J protein partners. However, a subset of Hsp70 functions requires specific J protein partners, likely demanding either sublocalization within the compartment or binding to specific client proteins.
Collapse
Affiliation(s)
- Chandan Sahi
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706
| | - Elizabeth Anne Craig
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706
| |
Collapse
|
23
|
Nicoll W, Botha M, McNamara C, Schlange M, Pesce ER, Boshoff A, Ludewig M, Zimmermann R, Cheetham M, Chapple J, Blatch G. Cytosolic and ER J-domains of mammalian and parasitic origin can functionally interact with DnaK. Int J Biochem Cell Biol 2006; 39:736-51. [PMID: 17239655 PMCID: PMC1906734 DOI: 10.1016/j.biocel.2006.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/12/2006] [Accepted: 11/14/2006] [Indexed: 02/05/2023]
Abstract
Both prokaryotic and eukaryotic cells contain multiple heat shock protein 40 (Hsp40) and heat shock protein 70 (Hsp70) proteins, which cooperate as molecular chaperones to ensure fidelity at all stages of protein biogenesis. The Hsp40 signature domain, the J-domain, is required for binding of an Hsp40 to a partner Hsp70, and may also play a role in the specificity of the association. Through the creation of chimeric Hsp40 proteins by the replacement of the J-domain of a prokaryotic Hsp40 (DnaJ), we have tested the functional equivalence of J-domains from a number of divergent Hsp40s of mammalian and parasitic origin (malarial Pfj1 and Pfj4, trypanosomal Tcj3, human ERj3, ERj5, and Hsj1, and murine ERj1). An in vivo functional assay was used to test the functionality of the chimeric proteins on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant Escherichia coli strain (OD259). The Hsp40 chimeras containing J-domains originating from soluble (cytosolic or endoplasmic reticulum (ER)-lumenal) Hsp40s were able to reverse the thermosensitivity of E. coli OD259. In all cases, modified derivatives of these chimeric proteins containing an His to Gln substitution in the HPD motif of the J-domain were unable to reverse the thermosensitivity of E. coli OD259. This suggested that these J-domains exerted their in vivo functionality through a specific interaction with E. coli Hsp70, DnaK. Interestingly, a Hsp40 chimera containing the J-domain of ERj1, an integral membrane-bound ER Hsp40, was unable to reverse the thermosensitivity of E. coli OD259, suggesting that this J-domain was unable to functionally interact with DnaK. Substitutions of conserved amino acid residues and motifs were made in all four helices (I–IV) and the loop regions of the J-domains, and the modified chimeric Hsp40s were tested for functionality using the in vivo assay. Substitution of a highly conserved basic residue in helix II of the J-domain was found to disrupt in vivo functionality for all the J-domains tested. We propose that helix II and the HPD motif of the J-domain represent the fundamental elements of a binding surface required for the interaction of Hsp40s with Hsp70s, and that this surface has been conserved in mammalian, parasitic and bacterial systems.
Collapse
Affiliation(s)
- W.S. Nicoll
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M. Botha
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - C. McNamara
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M. Schlange
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - E.-R. Pesce
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - A. Boshoff
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M.H. Ludewig
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - R. Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Universität des Saarlandes, Homburg D66421, Germany
| | - M.E. Cheetham
- Division of Molecular and Cellular Neuroscience, Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - J.P. Chapple
- Center for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London C1M 6BQ, UK
| | - G.L. Blatch
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
- Corresponding author. Tel.: +27 46 603 8262; fax: +27 46 622 3984.
| |
Collapse
|
24
|
Picard D. Chaperoning steroid hormone action. Trends Endocrinol Metab 2006; 17:229-35. [PMID: 16806964 DOI: 10.1016/j.tem.2006.06.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/30/2006] [Accepted: 06/14/2006] [Indexed: 01/08/2023]
Abstract
Those that efface themselves in the action tend to be forgotten. But molecular chaperones are always there, often serving as equal partners. Because of their intrinsic functional frailty, a large number of signaling molecules have come to depend on molecular chaperones, notably the Hsp90 chaperone machine. This applies to the subset of nuclear receptors that converts steroid hormone signals to transcriptional outputs. Steroid receptors appear to rely on the Hsp90 machine for folding, regulation of the allosteric switch and recycling. This review discusses the complexities of the chaperone machinery and the diversity of regulatory options afforded by this assistance for hormone action.
Collapse
Affiliation(s)
- Didier Picard
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, CH 1211 Genève 4, Switzerland.
| |
Collapse
|
25
|
Abstract
Heat-shock proteins (hsps) have been identified as molecular chaperones conserved between microbes and man and grouped by their molecular mass and high degree of amino acid homology. This article reviews the major hsps of Saccharomyces cerevisiae, their interactions with trehalose, the effect of fermentation and the role of the heat-shock factor. Information derived from this model, as well as from Neurospora crassa and Achlya ambisexualis, helps in understanding the importance of hsps in the pathogenic fungi, Candida albicans, Cryptococcus neoformans, Aspergillus spp., Histoplasma capsulatum, Paracoccidioides brasiliensis, Trichophyton rubrum, Phycomyces blakesleeanus, Fusarium oxysporum, Coccidioides immitis and Pneumocystis jiroveci. This has been matched with proteomic and genomic information examining hsp expression in response to noxious stimuli. Fungal hsp90 has been identified as a target for immunotherapy by a genetically recombinant antibody. The concept of combining this antibody fragment with an antifungal drug for treating life-threatening fungal infection and the potential interactions with human and microbial hsp90 and nitric oxide is discussed.
Collapse
Affiliation(s)
- James P Burnie
- Department of Medical Microbiology, Clinical Sciences Building, University of Manchester, Manchester Royal Infirmary, Manchester, UK.
| | | | | | | |
Collapse
|
26
|
Guzhova I, Margulis B. Hsp70 Chaperone as a Survival Factor in Cell Pathology. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:101-49. [PMID: 17147998 DOI: 10.1016/s0074-7696(06)54003-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat shock protein Hsp70 is implicated in the mechanism of cell reaction to a variety of cytotoxic factors. The protective function of Hsp70 is related to its ability to promote folding of nascent polypeptides and to remove denatured proteins. Many types of cancer cells contain high amounts of Hsp70, whose protective capacity may pose a problem for therapy in oncology. Hsp70 was shown to be expressed on the surface of cancer cells and to participate in the presentation of tumor antigens to immune cells. Therefore, the chaperone activity of Hsp70 is an important factor that should be taken into consideration in cancer therapy. The protective role of Hsp70 is also evident in neuropathology. Many neurodegenerative processes are associated with the accumulation of insoluble aggregates of misfolded proteins in neural cells. These aggregates hamper intracellular transport, inhibit metabolism, and activate apoptosis through diverse pathways. The increase of Hsp70 content results in the reduction of aggregate size and number and ultimately enhances cell viability.
Collapse
Affiliation(s)
- Irina Guzhova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology, Russian Academy of Science, St Petersburg, Russia
| | | |
Collapse
|
27
|
Flom G, Weekes J, Williams JJ, Johnson JL. Effect of mutation of the tetratricopeptide repeat and asparatate-proline 2 domains of Sti1 on Hsp90 signaling and interaction in Saccharomyces cerevisiae. Genetics 2005; 172:41-51. [PMID: 16219779 PMCID: PMC1456168 DOI: 10.1534/genetics.105.045815] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Through simultaneous interactions with Hsp70 and Hsp90 via separate tetratricopeptide repeat (TPR) domains, the cochaperone protein Hop/Sti1 has been proposed to play a critical role in the transfer of client proteins from Hsp70 to Hsp90. However, no prior mutational analysis demonstrating a critical in vivo role for the TPR domains of Sti1 has been reported. We used site-directed mutagenesis of the TPR domains combined with a genetic screen to isolate mutations that disrupt Sti1 function. A single amino acid alteration in TPR2A disrupted Hsp90 interaction in vivo but did not significantly affect function. However, deletion of a conserved residue in TPR2A or mutations in the carboxy-terminal DP2 domain completely disrupted Sti1 function. Surprisingly, mutations in TPR1, previously shown to interact with Hsp70, were not sufficient to disrupt in vivo functions unless combined with mutations in TPR2B, suggesting that TPR1 and TPR2B have redundant or overlapping in vivo functions. We further examined the genetic and physical interaction of Sti1 with a mutant form of Hsp90, providing insight into the importance of the TPR2A domain of Sti1 in regulating Hsp90 function.
Collapse
Affiliation(s)
- Gary Flom
- Department of Microbiology, Molecular Biology and Biochemistry and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | |
Collapse
|
28
|
Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL. Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 2005; 14:1697-709. [PMID: 15987899 PMCID: PMC2253343 DOI: 10.1110/ps.051406805] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.
Collapse
Affiliation(s)
- Fritha Hennessy
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | | | |
Collapse
|
29
|
Li J, Sha B. Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40. Biochem J 2005; 386:453-60. [PMID: 15500443 PMCID: PMC1134863 DOI: 10.1042/bj20041050] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ydj1 is the major type I Hsp40 (heat-shock protein 40) family member in yeast. Ydj1 can pair with yeast Hsp70 Ssa1 to facilitate protein translocation and protein folding. Ydj1 itself can also function as a molecular chaperone to bind the non-native polypeptides and suppress protein aggregations in vitro. The crystal structure of Ydj1 complexed with its peptide substrate GWLYEIS reveals that a hydrophobic pocket located on Ydj1 domain I may play a major role in mediating the interactions between Ydj1 and the peptide substrate. To understand the mechanism by which Ydj1 interacts with non-native polypeptide, we have mutated the residues forming the hydrophobic pocket, based on the structural information. We have also constructed deletion mutations of the zinc-finger motifs within Ydj1. We have examined the functional consequences of these Ydj1 mutants by in vivo and in vitro assays. The results indicated that the hydrophobic pocket located on Ydj1 plays a critical role in its molecular chaperone activity by mediating interactions with the non-native polypeptides.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-0005, U.S.A
| | - Bingdong Sha
- Department of Cell Biology, Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294-0005, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
30
|
Flom G, Weekes J, Johnson JL. Novel interaction of the Hsp90 chaperone machine with Ssl2, an essential DNA helicase in Saccharomyces cerevisiae. Curr Genet 2005; 47:368-80. [PMID: 15871019 PMCID: PMC2267864 DOI: 10.1007/s00294-005-0580-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 03/20/2005] [Accepted: 03/24/2005] [Indexed: 12/01/2022]
Abstract
Hsp90 is an essential molecular chaperone that is critical for the activity of diverse cellular proteins. Hsp90 functions with a number of co-chaperone proteins, including Sti1/Hop. We conducted a genetic screen in Saccharomyces cerevisiae to isolate mutations that exhibit enhanced growth defects in the absence of STI1. We obtained mutations in genes encoding components of the Hsp90 chaperone machine, HSC82, CPR7 and YDJ1, and two essential genes, SSL2 and UTP21, not previously linked to Hsp90. Ssl2, the yeast homologue of XPB, is an ATP-dependent DNA helicase that is a component of the TFIIH multiprotein complex and has dual functions in transcription and DNA repair. In order to determine whether Ssl2 function is dependent on Hsp90, we further examined the interaction between Ssl2 and Hsp90. Multiple mutant alleles of SSL2 exhibited a pronounced growth defect when co-expressed with a mutant allele of Hsp90. In addition, isolation of Ssl2 protein resulted in the co-purification of Hsp90 and Sti1, suggesting that Ssl2 and Hsp90 are in the same protein complexes in vivo. These results suggest a novel role for Hsp90 in the essential cellular functions of transcription and DNA repair.
Collapse
Affiliation(s)
- Gary Flom
- Department of Microbiology, Molecular Biology and Biochemistry, Center for Reproductive Biology, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | |
Collapse
|
31
|
Hennessy F, Boshoff A, Blatch GL. Rational mutagenesis of a 40 kDa heat shock protein from Agrobacterium tumefaciens identifies amino acid residues critical to its in vivo function. Int J Biochem Cell Biol 2005; 37:177-91. [PMID: 15381160 DOI: 10.1016/j.biocel.2004.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 04/16/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Prokaryotic DnaJ and DnaK, homologous to the eukaryotic 40 and 70kDa heat shock proteins (Hsp40 and Hsp70) respectively, play an important role as molecular chaperones in assisted protein folding under both normal and stressed conditions. DnaJ-like proteins are defined by the presence of a 70 amino acid domain termed the J domain, similar to the initial 73 amino acids of the Escherichia coli protein DnaJ. The J domain comprises four alpha-helices and a loop region containing the invariant tripeptide of histidine, proline and aspartic acid (HPD motif). This motif and Helix II have been shown previously to be important for the interaction with partner Hsp70s. Conserved amino acid residues present in the J domain were identified, and substitutions of these residues were performed to examine their effect on the in vivo functioning of the J domain of Agrobacterium tumefaciens DnaJ. Three conserved, charged residues, and three conserved, hydrophobic residues, in addition to the HPD motif, were shown to be important for the correct functioning of A. tumefaciens DnaJ. These included Arg26 located on Helix II, Arg63 and Asp59 located on Helix IV, Tyr7 and Leu10 located on Helix I, and Leu57 located on Helix III. This study has identified charged and hydrophobic residues on all the structural elements of the J domain that were critical to the structure and function of DnaJ, and in particular shown that Helix IV may have an important role in the structure and function of DnaJs in general.
Collapse
Affiliation(s)
- Fritha Hennessy
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | | | | |
Collapse
|
32
|
Nagai MA, Da Rós N, Neto MM, de Faria Junior SR, Brentani MM, Hirata R, Neves EJ. Gene expression profiles in breast tumors regarding the presence or absence of estrogen and progesterone receptors. Int J Cancer 2004; 111:892-9. [PMID: 15300801 DOI: 10.1002/ijc.20329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Estrogen acts via its receptor (ER) to stimulate cell growth and differentiation in the mammary gland. ER and progesterone receptor (PR), which is regulated by estrogen via ER, have been used as prognostic markers in clinical management of breast cancer patients. Patients with ER- breast tumors have a poorer prognosis than patients with ER+ tumors. The aim of the present study was the identification of tumor-associated genes differentially expressed in breast tumors regarding the presence or absence of ER and PR hybridized with cDNA microarrays containing 4,500 tumor-derived expressed sequence tags generated using the ORESTES technique. Samples of human primary breast carcinomas from 38 patients were analyzed. The experiments were performed in triplicates and data from each element were acquired by phosphoimage scanning. Data acquisition was performed using the ArrayVision software. After normalization statistical analysis was applied. In a preliminary analysis, 98 differentially expressed transcripts were identified, 46 were found to be more expressed in ER+/PR+ and 52 were found to be more expressed in ER-/PR- breast tumors. The biochemical functions of the genes in the reported expression profile are diverse and include metabolic enzymes, protein kinases, helicases, transcription factors, cell cycle regulators and apoptotic factors. ER-/PR- breast tumors displayed increased levels of transcripts of genes associated with neurodegeneration and genes associated with proliferation were found in ER+/PR+ tumors.
Collapse
Affiliation(s)
- Maria Aparecida Nagai
- Disciplina de Oncologia, Departamento de Radiologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lan C, Lee HC, Tang S, Zhang L. A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex. J Biol Chem 2004; 279:27607-12. [PMID: 15102838 DOI: 10.1074/jbc.m402777200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones Hsp90 and Hsp70 control many signal transducers, including cyclin-dependent kinases and steroid receptors. The yeast heme-responsive transcriptional activator Hap1 is a native substrate of both Hsp90 and Hsp70. Hsp90 and Hsp70 are critical for the precise regulation of Hap1 activity by heme. Here, to decipher the molecular events underlying the actions of Hsp90 and Hsp70 in heme regulation, we purified various multichaperone-Hap1 complexes and characterized the complexes linked to Hap1 repression and activation by two-dimensional electrophoresis analysis. Notably, we found that in vitro Hap1 is associated continuously with Ssa and its co-chaperones, and this association is not weakened by heme. Heme enhances the interaction between Hap1 and Hsp90. In vivo, defective Ssa, Ydj1, or Sro9 function causes Hap1 derepression in the absence of heme, whereas defective Hsp90 function causes reduced Hap1 activity at high heme concentrations. These results show that continuous association of Hap1 with Ssa, Ydj1, and Sro9 confers Hap1 repression, whereas enhanced association of Hsp90 with the repressed Hap1-Ssa-Ydj1-Sro9 complex by heme causes Hap1 activation. This novel mechanism of chaperone action may operate to control the activity of other important signal transducers.
Collapse
Affiliation(s)
- Changgui Lan
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, New York 10032, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Molecular chaperones are a functionally defined set of proteins which assist the structure formation of proteins in vivo. Without certain protective mechanisms, such as binding nascent polypeptide chains by molecular chaperones, cellular protein concentrations would lead to misfolding and aggregation. In the mammalian system, the molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins, like steroid hormone receptors, transcription factors, and kinases, some of which are involved in cancer progression. Hsp70 and Hsp90 form a multichaperone complex, in which both are connected by a third protein called Hop. The connection of and the interplay between the two chaperone machineries is of crucial importance for cell viability. This review provides a detailed view of the Hsp70 and Hsp90 machineries, their cofactors and their mode of regulation. It summarizes the current knowledge in the field, including the ATP-dependent regulation of the Hsp70/Hsp90 multichaperone cycle and elucidates the complex interplay and their synergistic interaction.
Collapse
Affiliation(s)
- H Wegele
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | |
Collapse
|
35
|
Lopez N, Aron R, Craig EA. Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+]. Mol Biol Cell 2003; 14:1172-81. [PMID: 12631732 PMCID: PMC151588 DOI: 10.1091/mbc.e02-09-0593] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sis1 and Ydj1, functionally distinct heat shock protein (Hsp)40 molecular chaperones of the yeast cytosol, are homologs of Hdj1 and Hdj2 of mammalian cells, respectively. Sis1 is necessary for propagation of the Saccharomyces cerevisiae prion [RNQ(+)]; Ydj1 is not. The ability to function in [RNQ(+)] maintenance has been conserved, because Hdj1 can function to maintain Rnq1 in an aggregated form in place of Sis1, but Hdj2 cannot. An extended glycine-rich region of Sis1, composed of a region rich in phenylalanine residues (G/F) and another rich in methionine residues (G/M), is critical for prion maintenance. Single amino acid alterations in a short stretch of amino acids of the G/F region of Sis1 that are absent in the otherwise highly conserved G/F region of Ydj1 cause defects in prion maintenance. However, there is some functional redundancy within the glycine-rich regions of Sis1, because a deletion of the adjacent glycine/methionine (G/M) region was somewhat defective in propagation of [RNQ(+)] as well. These results are consistent with a model in which the glycine-rich regions of Hsp40s contain specific determinants of function manifested through interaction with Hsp70s.
Collapse
Affiliation(s)
- Nelson Lopez
- Department of Bacteriology, University of Wisconsin, Madison, 53706, USA
| | | | | |
Collapse
|
36
|
Lee P, Rao J, Fliss A, Yang E, Garrett S, Caplan AJ. The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. J Cell Biol 2002; 159:1051-9. [PMID: 12499358 PMCID: PMC2173992 DOI: 10.1083/jcb.200210121] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cdc37 is a molecular chaperone required for folding of protein kinases. It functions in association with Hsp90, although little is known of its mechanism of action or where it fits into a folding pathway involving other Hsp90 cochaperones. Using a genetic approach with Saccharomyces cerevisiae, we show that CDC37 overexpression suppressed a defect in v-Src folding in yeast deleted for STI1, which recruits Hsp90 to misfolded clients. Expression of CDC37 truncation mutants that were deleted for the Hsp90-binding site stabilized v-Src and led to some folding in both sti1Delta and hsc82Delta strains. The protein kinase-binding domain of Cdc37 was sufficient for yeast cell viability and permitted efficient signaling through the yeast MAP kinase-signaling pathway. We propose a model in which Cdc37 can function independently of Hsp90, although its ability to do so is restricted by its normally low expression levels. This may be a form of regulation by which cells restrict access to Cdc37 until it has passed through a triage involving other chaperones such as Hsp70 and Hsp90.
Collapse
Affiliation(s)
- Paul Lee
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
37
|
Mayer MP, Brehmer D, Gässler CS, Bukau B. Hsp70 chaperone machines. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:1-44. [PMID: 11868269 DOI: 10.1016/s0065-3233(01)59001-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M P Mayer
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
38
|
Miller CA. Two tetratricopeptide repeat proteins facilitate human aryl hydrocarbon receptor signalling in yeast. Cell Signal 2002; 14:615-23. [PMID: 11955954 DOI: 10.1016/s0898-6568(02)00002-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A human aryl hydrocarbon (Ah) receptor signalling pathway was constructed in yeast and used to identify regulatory proteins that may be related to those present in mammalian cells. The sequence similarity of human hepatitis B protein X-associated protein 2 (XAP2) protein to yeast Cpr7 and Cns1 proteins suggested that these proteins might be involved in Ah receptor signalling in this model system. Ah receptor signalling from a lacZ reporter gene was reduced by approximately 60% in cells that lacked Cpr7. In vitro interaction experiments indicated that a Cpr7-GST fusion protein and Ah receptor formed a complex. Expression of Cpr7, Cns1 and the isolated tetratricopeptide repeat (TPR) region of Cpr7 from plasmids restored Ah receptor signalling function in the Cpr7-deficient strain. Thus, Cpr7 and Cns1 proteins facilitate the signalling of human Ah receptor expressed in yeast, perhaps in the same manner as the TPR-containing XAP2 protein and related chaperone proteins in mammalian cells.
Collapse
Affiliation(s)
- Charles A Miller
- Environmental Health Sciences Department, Center for Bioenvironmental Research, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
39
|
Hernández MP, Chadli A, Toft DO. HSP40 binding is the first step in the HSP90 chaperoning pathway for the progesterone receptor. J Biol Chem 2002; 277:11873-81. [PMID: 11809754 DOI: 10.1074/jbc.m111445200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The progesterone receptor (PR) can be isolated in its native conformation able to bind hormone, yet its ligand-binding domain rapidly loses its activity at elevated temperature. However, an in vitro chaperoning system consisting of five proteins (HSP40, HSP70, HOP, HSP90, and p23) with ATP is capable of restoring this function. The first step of this chaperoning mechanism is usually thought to be the binding of HSP70 to PR. Our findings here show that the binding of HSP40 to PR is, instead, the first step. HSP40 binding occurred rapidly and was not dependent on ATP or other proteins. The stoichiometry of HSP40 to native PR in these complexes was approximately 1:1. HSP40 bound specifically and with a high affinity to native PR (K(d) = 77 nm). The binding of HSP40 to PR was sustained and did not interact in the highly dynamic fashion that has been observed previously for HSP90 in this system. The HSP40 small middle dotPR complex could be isolated as a functional unit that could, after the addition of the other chaperones, progress to a PR complex capable of hormone binding. These results indicate that HSP40 initiates the entry of PR into the HSP90 pathway.
Collapse
Affiliation(s)
- M Patricia Hernández
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
40
|
Abstract
Recent years have witnessed dramatic advances in our understanding of how newly translated proteins fold in the cell and the contribution of molecular chaperones to this process. Folding in the cell must be achieved in a highly crowded macromolecular environment, in which release of nonnative polypeptides into the cytosolic solution might lead to formation of potentially toxic aggregates. Here I review the cellular mechanisms that ensure efficient folding of newly translated proteins in vivo. De novo protein folding appears to occur in a protected environment created by a highly processive chaperone machinery that is directly coupled to translation. Genetic and biochemical analysis shows that several distinct chaperone systems, including Hsp70 and the cylindrical chaperonins, assist the folding of proteins upon translation in the cytosol of both prokaryotic and eukaryotic cells. The cellular chaperone machinery is specifically recruited to bind to ribosomes and protects nascent chains and folding intermediates from nonproductive interactions. In addition, initiation of folding during translation appears to be important for efficient folding of multidomain proteins.
Collapse
Affiliation(s)
- J Frydman
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
41
|
Hon T, Lee HC, Hach A, Johnson JL, Craig EA, Erdjument-Bromage H, Tempst P, Zhang L. The Hsp70-Ydj1 molecular chaperone represses the activity of the heme activator protein Hap1 in the absence of heme. Mol Cell Biol 2001; 21:7923-32. [PMID: 11689685 PMCID: PMC99961 DOI: 10.1128/mcb.21.23.7923-7932.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, heme directly mediates the effects of oxygen on transcription through the heme activator protein Hap1. In the absence of heme, Hap1 is bound by at least four cellular proteins, including Hsp90 and Ydj1, forming a higher-order complex, termed HMC, and its activity is repressed. Here we purified the HMC and showed by mass spectrometry that two previously unidentified major components of the HMC are the Ssa-type Hsp70 molecular chaperone and Sro9 proteins. In vivo functional analysis, combined with biochemical analysis, strongly suggests that Ssa proteins are critical for Hap1 repression in the absence of heme. Ssa may repress the activities of both Hap1 DNA-binding and activation domains. The Ssa cochaperones Ydj1 and Sro9 appear to assist Ssa in Hap1 repression, and only Ydj1 residues 1 to 172 containing the J domain are required for Hap1 repression. Our results suggest that Ssa-Ydj1 and Sro9 act together to mediate Hap1 repression in the absence of heme and that molecular chaperones promote heme regulation of Hap1 by a mechanism distinct from the mechanism of steroid signaling.
Collapse
Affiliation(s)
- T Hon
- Department of Biochemistry, NYU School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rao J, Lee P, Benzeno S, Cardozo C, Albertus J, Robins DM, Caplan AJ. Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor. J Biol Chem 2001; 276:5814-20. [PMID: 11085988 DOI: 10.1074/jbc.m007385200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc37 is a molecular chaperone closely associated with the folding of protein kinases. Results from studies using a yeast model system showed that it was also important for activation of the human androgen receptor (AR). Based on results from the yeast model system (Fliss, A. E., Fang, Y., Boschelli, F., and Caplan, A. J. (1997) Mol. Biol. Cell 8, 2501-2509), we initiated studies to address whether AR and Cdc37 interact with each other in animal cell systems. Our results show that Cdc37 binds to AR but not to glucocorticoid receptors (GR) synthesized in rabbit reticulocyte lysates. This binding occurs via the ligand-binding domain of the AR in a manner that is partially dependent on Hsp90 and the presence of hormone. Further studies using the yeast system showed that Cdc37 is not interchangeable with Hsp90, suggesting that it functions at a distinct step in the activation pathway. Expression of a dominant negative form of Cdc37 in animal cells down-regulates full-length AR but has very little effect on an AR truncation lacking the ligand-binding domain or full-length GR. These results reveal differences in the mechanisms by which AR and GR become active transcription factors and strengthen the notion that Cdc37 has a wider range of polypeptide clients than was realized previously.
Collapse
Affiliation(s)
- J Rao
- Department of Cell Biology and Anatomy , Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Johnson JL, Craig EA. An essential role for the substrate-binding region of Hsp40s in Saccharomyces cerevisiae. J Cell Biol 2001; 152:851-6. [PMID: 11266475 PMCID: PMC2195774 DOI: 10.1083/jcb.152.4.851] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2000] [Accepted: 01/04/2001] [Indexed: 11/22/2022] Open
Abstract
In addition to regulating the ATPase cycle of Hsp70, a second critical role of Hsp40s has been proposed based on in vitro studies: binding to denatured protein substrates, followed by their presentation to Hsp70 for folding. However, the biological importance of this model is challenged by the fact that deletion of the substrate-binding domain of either of the two major Hsp40s of the yeast cytosol, Ydj1 and Sis1, leads to no severe defects, as long as regions necessary for Hsp70 interaction are retained. As an in vivo test of this model, requirements for viability were examined in a strain having deletions of both Hsp40 genes. Despite limited sequence similarity, the substrate-binding domain of either Sis1 or Ydj1 allowed cell growth, indicating they share overlapping essential functions. Furthermore, the substrate-binding domain must function in cis with a functional Hsp70-interacting domain. We conclude that the ability of cytosolic Hsp40s to bind unfolded protein substrates is an essential function in vivo.
Collapse
Affiliation(s)
- Jill L. Johnson
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconson 53706
| | - Elizabeth A. Craig
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconson 53706
| |
Collapse
|
44
|
Marchler G, Wu C. Modulation of Drosophila heat shock transcription factor activity by the molecular chaperone DROJ1. EMBO J 2001; 20:499-509. [PMID: 11157756 PMCID: PMC133474 DOI: 10.1093/emboj/20.3.499] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock transcription factors (HSFs) play important roles in the cellular response to physiological stress signals. To examine the control of HSF activity, we undertook a yeast two-hybrid screen for proteins interacting with Drosophila HSF. DROJ1, the fly counterpart of the human heat shock protein HSP40/HDJ1, was identified as the dominant interacting protein (15 independent isolates from 58 candidates). Overexpression of DROJ1 in Drosophila SL2 cells delays the onset of the heat shock response. Moreover, RNA interference involving transfection of SL2 cells with double-stranded droj1 RNA depletes the endogenous level of DROJ1 protein, leading to constitutive activation of endogenous heat shock genes. The induction level, modest when DROJ1 was depleted alone, reached maximal levels when DROJ1 and HSP70/HSC70, or DROJ1 and HSP90, were depleted concurrently. Chaperone co-depletion was also correlated with strong induction of the DNA binding activity of HSF. Our findings support a model in which synergistic interactions between DROJ1 and the HSP70/HSC70 and HSP90 chaperones modulate HSF activity by feedback repression.
Collapse
Affiliation(s)
| | - Carl Wu
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 5E-26, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|