1
|
Lam WH, Yu D, Zhang Q, Lin Y, Li N, Li J, Wu Y, Zhang Y, Gao N, Tye BK, Zhai Y, Dang S. DNA bending mediated by ORC is essential for replication licensing in budding yeast. Proc Natl Acad Sci U S A 2025; 122:e2502277122. [PMID: 40184174 PMCID: PMC12002289 DOI: 10.1073/pnas.2502277122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
In eukaryotes, the origin recognition complex (ORC) promotes the assembly of minichromosome maintenance 2 to 7 complexes into a head-to-head double hexamer at origin DNA in a process known as replication licensing. In this study, we present a series of cryoelectron microscopy structures of yeast ORC mutants in complex with origin DNA. We show that Orc6, the smallest subunit of ORC, utilizes its transcription factor II B-B domain to orchestrate the sequential binding of ORC to origin DNA. In addition, Orc6 plays the role of a scaffold by stabilizing the basic patch (BP) of Orc5 for ORC to capture and bend origin DNA. Importantly, disrupting DNA bending through mutating three key residues in Orc5-BP impairs ORC's ability to promote replication initiation at two points during the pre-RC assembly process. This study dissects the multifaceted role of Orc6 in orchestrating ORC's activities on DNA and underscores the vital role of DNA bending by ORC in replication licensing.
Collapse
Grants
- 32425014 MOST | National Natural Science Foundation of China (NSFC)
- GRF17119022 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF17109623 Research Grants Council, University Grants Committee (ç"究資助局)
- C6036-21GF Research Grants Council, University Grants Committee (ç"究資助局)
- C7035-23GF Research Grants Council, University Grants Committee (ç"究資助局)
- CRS_HKU705/23 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16103321 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16102822 Research Grants Council, University Grants Committee (ç"究資助局)
- GRF16100233 Research Grants Council, University Grants Committee (ç"究資助局)
- C6001-21E Research Grants Council, University Grants Committee (ç"究資助局)
- C6012-22G Research Grants Council, University Grants Committee (ç"究資助局)
- Research Grants Council, University Grants Committee (ç”究資助局)
Collapse
Affiliation(s)
- Wai Hei Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Daqi Yu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiongdan Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yuhan Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ningning Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing100084, China
| | - Jian Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yue Wu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yingyi Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing100084, China
| | - Bik Kwoon Tye
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - Yuanliang Zhai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
2
|
Göder A, Maric CA, Rainey MD, O’Connor A, Cazzaniga C, Shamavu D, Cadoret JC, Santocanale C. DBF4, not DRF1, is the crucial regulator of CDC7 kinase at replication forks. J Cell Biol 2024; 223:e202402144. [PMID: 38865090 PMCID: PMC11169917 DOI: 10.1083/jcb.202402144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 05/04/2024] [Indexed: 06/13/2024] Open
Abstract
CDC7 kinase is crucial for DNA replication initiation and is involved in fork processing and replication stress response. Human CDC7 requires the binding of either DBF4 or DRF1 for its activity. However, it is unclear whether the two regulatory subunits target CDC7 to a specific set of substrates, thus having different biological functions, or if they act redundantly. Using genome editing technology, we generated isogenic cell lines deficient in either DBF4 or DRF1: these cells are viable but present signs of genomic instability, indicating that both can independently support CDC7 for bulk DNA replication. Nonetheless, DBF4-deficient cells show altered replication efficiency, partial deficiency in MCM helicase phosphorylation, and alterations in the replication timing of discrete genomic regions. Notably, we find that CDC7 function at replication forks is entirely dependent on DBF4 and not on DRF1. Thus, DBF4 is the primary regulator of CDC7 activity, mediating most of its functions in unperturbed DNA replication and upon replication interference.
Collapse
Affiliation(s)
- Anja Göder
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Michael D. Rainey
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Aisling O’Connor
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cazzaniga
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Daniel Shamavu
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Corrado Santocanale
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. eLife 2024; 12:RP88087. [PMID: 38315095 PMCID: PMC10945306 DOI: 10.7554/elife.88087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, 'a site that binds Mcm in G1' might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here, we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least three orders of magnitude. Published data quantifying single-stranded DNA (ssDNA) during S phase revealed replication initiation among the most abundant 1600 of these sites, with replication activity decreasing with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5500 sites. Specifically, these sites: (1) appeared in intergenic nucleosome-free regions flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. We conclude that, if sites at which Mcm double hexamers are loaded can function as replication origins, then DNA replication origins are at least threefold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer CenterSeattleUnited States
| |
Collapse
|
4
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
6
|
Foss EJ, Lichauco C, Gatbonton-Schwager T, Gonske SJ, Lofts B, Lao U, Bedalov A. Identification of 1600 replication origins in S. cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536402. [PMID: 38014147 PMCID: PMC10680564 DOI: 10.1101/2023.04.11.536402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, "a site to which MCM is bound in G1" might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, a technique referred to as "Chromatin Endogenous Cleavage", we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least 3 orders of magnitude. Published data quantifying the production of ssDNA during S phase showed clear evidence of replication initiation among the most abundant 1600 of these sites, with replication activity decreasing in concert with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5,500 sites. Specifically, these sites (1) appeared in intergenic nucleosome-free regions that were flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. Furthermore, the high resolution of this technique allowed us to demonstrate a strong bias for detecting Mcm double-hexamers downstream rather than upstream of the ACS, which is consistent with the directionality of Mcm loading by Orc that has been observed in vitro. We conclude that, if sites at which Mcm double-hexamers are loaded can function as replication origins, then DNA replication origins are at least 3-fold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than is widely assumed.
Collapse
Affiliation(s)
- Eric J Foss
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Carmina Lichauco
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | | | - Sara J Gonske
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Brandon Lofts
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Uyen Lao
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutch Cancer Center, Seattle, WA 98109
| |
Collapse
|
7
|
Weiβ M, Chanou A, Schauer T, Tvardovskiy A, Meiser S, König AC, Schmidt T, Kruse E, Ummethum H, Trauner M, Werner M, Lalonde M, Hauck SM, Scialdone A, Hamperl S. Single-copy locus proteomics of early- and late-firing DNA replication origins identifies a role of Ask1/DASH complex in replication timing control. Cell Rep 2023; 42:112045. [PMID: 36701236 PMCID: PMC9989823 DOI: 10.1016/j.celrep.2023.112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
The chromatin environment at origins of replication is thought to influence DNA replication initiation in eukaryotic genomes. However, it remains unclear how and which chromatin features control the firing of early-efficient (EE) or late-inefficient (LI) origins. Here, we use site-specific recombination and single-locus chromatin isolation to purify EE and LI replication origins in Saccharomyces cerevisiae. Using mass spectrometry, we define the protein composition of native chromatin regions surrounding the EE and LI replication start sites. In addition to known origin interactors, we find the microtubule-binding Ask1/DASH complex as an origin-regulating factor. Strikingly, tethering of Ask1 to individual origin sites advances replication timing (RT) of the targeted chromosomal domain. Targeted degradation of Ask1 globally changes RT of a subset of origins, which can be reproduced by inhibiting microtubule dynamics. Thus, our findings mechanistically connect RT and chromosomal organization via Ask1/DASH with the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Matthias Weiβ
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Anna Chanou
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Tamas Schauer
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stefan Meiser
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Center for Environmental Health, Heidemannstrasse 1, 80939 München, Germany
| | - Tobias Schmidt
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Elisabeth Kruse
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Henning Ummethum
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Manuel Trauner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Marcel Werner
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Maxime Lalonde
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Center for Environmental Health, Heidemannstrasse 1, 80939 München, Germany
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephan Hamperl
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany.
| |
Collapse
|
8
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
9
|
A DNA Replication Fork-centric View of the Budding Yeast DNA Damage Response. DNA Repair (Amst) 2022; 119:103393. [DOI: 10.1016/j.dnarep.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
|
10
|
Abstract
DNA replication in eukaryotic cells initiates from large numbers of sites called replication origins. Initiation of replication from these origins must be tightly controlled to ensure the entire genome is precisely duplicated in each cell cycle. This is accomplished through the regulation of the first two steps in replication: loading and activation of the replicative DNA helicase. Here we describe what is known about the mechanism and regulation of these two reactions from a genetic, biochemical, and structural perspective, focusing on recent progress using proteins from budding yeast. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK;
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK;
| |
Collapse
|
11
|
Mishra PK, Wood H, Stanton J, Au WC, Eisenstatt JR, Boeckmann L, Sclafani RA, Weinreich M, Bloom KS, Thorpe PH, Basrai MA. Cdc7-mediated phosphorylation of Cse4 regulates high-fidelity chromosome segregation in budding yeast. Mol Biol Cell 2021; 32:ar15. [PMID: 34432494 PMCID: PMC8693968 DOI: 10.1091/mbc.e21-06-0323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Faithful chromosome segregation maintains chromosomal stability as errors in this process contribute to chromosomal instability (CIN), which has been observed in many diseases including cancer. Epigenetic regulation of kinetochore proteins such as Cse4 (CENP-A in humans) plays a critical role in high-fidelity chromosome segregation. Here we show that Cse4 is a substrate of evolutionarily conserved Cdc7 kinase, and that Cdc7-mediated phosphorylation of Cse4 prevents CIN. We determined that Cdc7 phosphorylates Cse4 in vitro and interacts with Cse4 in vivo in a cell cycle-dependent manner. Cdc7 is required for kinetochore integrity as reduced levels of CEN-associated Cse4, a faster exchange of Cse4 at the metaphase kinetochores, and defects in chromosome segregation, are observed in a cdc7-7 strain. Phosphorylation of Cse4 by Cdc7 is important for cell survival as constitutive association of a kinase-dead variant of Cdc7 (cdc7-kd) with Cse4 at the kinetochore leads to growth defects. Moreover, phospho-deficient mutations of Cse4 for consensus Cdc7 target sites contribute to CIN phenotype. In summary, our results have defined a role for Cdc7-mediated phosphorylation of Cse4 in faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K. Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Henry Wood
- Queen Mary University of London, London E1 4NS, UK
| | - John Stanton
- University of North Carolina, Chapel Hill, NC 27599
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jessica R. Eisenstatt
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lars Boeckmann
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
12
|
Karamitros T, Pogka V, Papadopoulou G, Tsitsilonis O, Evangelidou M, Sympardi S, Mentis A. Dual RNA-Seq Enables Full-Genome Assembly of Measles Virus and Characterization of Host-Pathogen Interactions. Microorganisms 2021; 9:1538. [PMID: 34361973 PMCID: PMC8303570 DOI: 10.3390/microorganisms9071538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Measles virus (MeV) has a negative-sense 15 kb long RNA genome, which is generally conserved. Recent advances in high-throughput sequencing (HTS) and Dual RNA-seq allow the analysis of viral RNA genomes and the discovery of viral infection biomarkers, via the simultaneous characterization of the host transcriptome. However, these host-pathogen interactions remain largely unexplored in MeV infections. We performed untargeted Dual RNA-seq in 6 pharyngeal and 6 peripheral blood mononuclear cell (PBMCs) specimens from patients with MeV infection, as confirmed via routine real-time PCR testing. Following optimised DNase treatment of total nucleic acids, we used the pharyngeal samples to build poly-A-enriched NGS libraries. We reconstructed the viral genomes using the pharyngeal datasets and we further conducted differential expression, gene-ontology and pathways enrichment analysis to compare both the pharyngeal and the peripheral blood transcriptomes of the MeV-infected patients vs. control groups of healthy individuals. We obtained 6 MeV genotype-B3 full-genome sequences. We minutely analyzed the transcriptome of the MeV-infected pharyngeal epithelium, detecting all known viral infection biomarkers, but also revealing a functional cluster of local antiviral and inflammatory immune responses, which differ substantially from those observed in the PBMCs transcriptome. The application of Dual RNA-seq technologies in MeV-infected patients can potentially provide valuable information on the virus genome structure and the cellular innate immune responses and drive the discovery of new targets for antiviral therapy.
Collapse
Affiliation(s)
- Timokratis Karamitros
- Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (V.P.); (M.E.); (A.M.)
- Bioinformatics and Applied Genomics Unit, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Vasiliki Pogka
- Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (V.P.); (M.E.); (A.M.)
| | - Gethsimani Papadopoulou
- Bioinformatics and Applied Genomics Unit, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Ourania Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Maria Evangelidou
- Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (V.P.); (M.E.); (A.M.)
| | - Styliani Sympardi
- 1st Department of Internal Medicine, Thriasion General Hospital, 19018 Elefsis, Greece;
| | - Andreas Mentis
- Public Health Laboratories, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece; (V.P.); (M.E.); (A.M.)
| |
Collapse
|
13
|
The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nat Commun 2021; 12:3883. [PMID: 34162887 PMCID: PMC8222357 DOI: 10.1038/s41467-021-24199-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/07/2021] [Indexed: 01/31/2023] Open
Abstract
The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins. Eukaryotic DNA replication is mediated by many proteins which are tightly regulated for an efficient firing of replication at each cell cycle. Here the authors report a cryo-EM structure of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA revealing additional insights into how Cdc6 contributes to origin DNA recognition.
Collapse
|
14
|
Maria H, Kapoor S, Liu T, Rusche LN. Conservation of a DNA Replication Motif among Phylogenetically Distant Budding Yeast Species. Genome Biol Evol 2021; 13:6300524. [PMID: 34132803 PMCID: PMC8290112 DOI: 10.1093/gbe/evab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 01/23/2023] Open
Abstract
Eukaryotic DNA replication begins at genomic loci termed origins, which are bound by the origin recognition complex (ORC). Although ORC is conserved across species, the sequence composition of origins is more varied. In the budding yeast Saccharomyces cerevisiae, the ORC-binding motif consists of an A/T-rich 17 bp “extended ACS” sequence adjacent to a B1 element composed of two 3-bp motifs. Similar sequences occur at origins in closely related species, but it is not clear when this type of replication origin arose and whether it predated a whole-genome duplication that occurred around 100 Ma in the budding yeast lineage. To address these questions, we identified the ORC-binding sequences in the nonduplicated species Torulaspora delbrueckii. We used chromatin immunoprecipitation followed by sequencing and identified 190 ORC-binding sites distributed across the eight T. delbrueckii chromosomes. Using these sites, we identified an ORC-binding motif that is nearly identical to the known motif in S. cerevisiae. We also found that the T. delbrueckii ORC-binding sites function as origins in T. delbrueckii when cloned onto a plasmid and that the motif is required for plasmid replication. Finally, we compared an S. cerevisiae origin with two T. delbrueckii ORC-binding sites and found that they conferred similar stabilities to a plasmid. These results reveal that the ORC-binding motif arose prior to the whole-genome duplication and has been maintained for over 100 Myr.
Collapse
Affiliation(s)
- Haniam Maria
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Shivali Kapoor
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Laura N Rusche
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
15
|
Dukaj L, Rhind N. The capacity of origins to load MCM establishes replication timing patterns. PLoS Genet 2021; 17:e1009467. [PMID: 33764973 PMCID: PMC8023499 DOI: 10.1371/journal.pgen.1009467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/06/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022] Open
Abstract
Loading of the MCM replicative helicase at origins of replication is a highly regulated process that precedes DNA replication in all eukaryotes. The stoichiometry of MCM loaded at origins has been proposed to be a key determinant of when those origins initiate replication during S phase. Nevertheless, the genome-wide regulation of MCM loading stoichiometry and its direct effect on replication timing remain unclear. In order to investigate why some origins load more MCM than others, we perturbed MCM levels in budding yeast cells and, for the first time, directly measured MCM levels and replication timing in the same experiment. Reduction of MCM levels through degradation of Mcm4, one of the six obligate components of the MCM complex, slowed progression through S phase and increased sensitivity to replication stress. Reduction of MCM levels also led to differential loading at origins during G1, revealing origins that are sensitive to reductions in MCM and others that are not. Sensitive origins loaded less MCM under normal conditions and correlated with a weak ability to recruit the origin recognition complex (ORC). Moreover, reduction of MCM loading at specific origins of replication led to a delay in their replication during S phase. In contrast, overexpression of MCM had no effects on cell cycle progression, relative MCM levels at origins, or replication timing, suggesting that, under optimal growth conditions, cellular MCM levels are not limiting for MCM loading. Our results support a model in which the loading capacity of origins is the primary determinant of MCM stoichiometry in wild-type cells, but that stoichiometry is controlled by origins' ability to recruit ORC and compete for MCM when MCM becomes limiting.
Collapse
Affiliation(s)
- Livio Dukaj
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, Massachusetts, United States of America
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, Massachusetts, United States of America
| |
Collapse
|
16
|
MTBP phosphorylation controls DNA replication origin firing. Sci Rep 2021; 11:4242. [PMID: 33608586 PMCID: PMC7895959 DOI: 10.1038/s41598-021-83287-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Faithful genome duplication requires regulation of origin firing to determine loci, timing and efficiency of replisome generation. Established kinase targets for eukaryotic origin firing regulation are the Mcm2-7 helicase, Sld3/Treslin/TICRR and Sld2/RecQL4. We report that metazoan Sld7, MTBP (Mdm2 binding protein), is targeted by at least three kinase pathways. MTBP was phosphorylated at CDK consensus sites by cell cycle cyclin-dependent kinases (CDK) and Cdk8/19-cyclin C. Phospho-mimetic MTBP CDK site mutants, but not non-phosphorylatable mutants, promoted origin firing in human cells. MTBP was also phosphorylated at DNA damage checkpoint kinase consensus sites. Phospho-mimetic mutations at these sites inhibited MTBP’s origin firing capability. Whilst expressing a non-phospho MTBP mutant was insufficient to relieve the suppression of origin firing upon DNA damage, the mutant induced a genome-wide increase of origin firing in unperturbed cells. Our work establishes MTBP as a regulation platform of metazoan origin firing.
Collapse
|
17
|
Lee KJ, Li Z. The CRK2-CYC13 complex functions as an S-phase cyclin-dependent kinase to promote DNA replication in Trypanosoma brucei. BMC Biol 2021; 19:29. [PMID: 33568178 PMCID: PMC7876812 DOI: 10.1186/s12915-021-00961-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Faithful DNA replication is essential to maintain genomic stability in all living organisms, and the regulatory pathway for DNA replication initiation is conserved from yeast to humans. The evolutionarily ancient human parasite Trypanosoma brucei, however, lacks many of the conserved DNA replication factors and may employ unusual mechanisms for DNA replication. Neither the S-phase cyclin-dependent kinase (CDK) nor the regulatory pathway governing DNA replication has been previously identified in T. brucei. RESULTS Here we report that CRK2 (Cdc2-related kinase 2) complexes with CYC13 (Cyclin13) and functions as an S-phase CDK to promote DNA replication in T. brucei. We further show that CRK2 phosphorylates Mcm3, a subunit of the Mcm2-7 sub-complex of the Cdc45-Mcm2-7-GINS complex, and demonstrate that Mcm3 phosphorylation by CRK2 facilitates interaction with Sld5, a subunit of the GINS sub-complex of the Cdc45-Mcm2-7-GINS complex. CONCLUSIONS These results identify the CRK2-CYC13 complex as an S-phase regulator in T. brucei and reveal its role in regulating DNA replication through promoting the assembly of the Cdc45-Mcm2-7-GINS complex.
Collapse
Affiliation(s)
- Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Reduced replication origin licensing selectively kills KRAS-mutant colorectal cancer cells via mitotic catastrophe. Cell Death Dis 2020; 11:499. [PMID: 32612138 PMCID: PMC7330027 DOI: 10.1038/s41419-020-2704-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
To unravel vulnerabilities of KRAS-mutant CRC cells, a shRNA-based screen specifically inhibiting MAPK pathway components and targets was performed in CaCo2 cells harboring conditional oncogenic KRASG12V. The custom-designed shRNA library comprised 121 selected genes, which were previously identified to be strongly regulated in response to MEK inhibition. The screen showed that CaCo2 cells expressing KRASG12V were sensitive to the suppression of the DNA replication licensing factor minichromosome maintenance complex component 7 (MCM7), whereas KRASwt CaCo2 cells were largely resistant to MCM7 suppression. Similar results were obtained in an isogenic DLD-1 cell culture model. Knockdown of MCM7 in a KRAS-mutant background led to replication stress as indicated by increased nuclear RPA focalization. Further investigation showed a significant increase in mitotic cells after simultaneous MCM7 knockdown and KRASG12V expression. The increased percentage of mitotic cells coincided with strongly increased DNA damage in mitosis. Taken together, the accumulation of DNA damage in mitotic cells is due to replication stress that remained unresolved, which results in mitotic catastrophe and cell death. In summary, the data show a vulnerability of KRAS-mutant cells towards suppression of MCM7 and suggest that inhibiting DNA replication licensing might be a viable strategy to target KRAS-mutant cancers.
Collapse
|
19
|
Dbf4-Dependent Kinase (DDK)-Mediated Proteolysis of CENP-A Prevents Mislocalization of CENP-A in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:2057-2068. [PMID: 32295767 PMCID: PMC7263675 DOI: 10.1534/g3.120.401131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of CENP-A to non-centromeric chromatin contributes to chromosomal instability (CIN) in yeast, fly, and human cells and CENP-A is highly expressed and mislocalized in cancers. Defining mechanisms that prevent mislocalization of CENP-A is an area of active investigation. Ubiquitin-mediated proteolysis of overexpressed Cse4 (GALCSE4) by E3 ubiquitin ligases such as Psh1 prevents mislocalization of Cse4, and psh1 Δ strains display synthetic dosage lethality (SDL) with GALCSE4 We previously performed a genome-wide screen and identified five alleles of CDC7 and DBF4 that encode the Dbf4-dependent kinase (DDK) complex, which regulates DNA replication initiation, among the top twelve hits that displayed SDL with GALCSE4 We determined that cdc7 -7 strains exhibit defects in ubiquitin-mediated proteolysis of Cse4 and show mislocalization of Cse4 Mutation of MCM5 (mcm5 -bob1) bypasses the requirement of Cdc7 for replication initiation and rescues replication defects in a cdc7 -7 strain. We determined that mcm5 -bob1 does not rescue the SDL and defects in proteolysis of GALCSE4 in a cdc7 -7 strain, suggesting a DNA replication-independent role for Cdc7 in Cse4 proteolysis. The SDL phenotype, defects in ubiquitin-mediated proteolysis, and the mislocalization pattern of Cse4 in a cdc7 -7 psh1 Δ strain were similar to that of cdc7 -7 and psh1 Δ strains, suggesting that Cdc7 regulates Cse4 in a pathway that overlaps with Psh1 Our results define a DNA replication initiation-independent role of DDK as a regulator of Psh1-mediated proteolysis of Cse4 to prevent mislocalization of Cse4.
Collapse
|
20
|
Reed DR, Alexandrow MG. Myc and the Replicative CMG Helicase: The Creation and Destruction of Cancer: Myc Over-Activation of CMG Helicases Drives Tumorigenesis and Creates a Vulnerability in CMGs for Therapeutic Intervention. Bioessays 2020; 42:e1900218. [PMID: 32080866 PMCID: PMC8223603 DOI: 10.1002/bies.201900218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replicative Cdc45-MCM-GINS (CMG) helicases. Excessive stimulation of CMG helicases by Myc mismanages CMG function by diminishing the number of reserve CMGs necessary for fidelity of DNA replication and recovery from replicative stresses. One potential outcome of these events is the creation of DNA damage that alters genomic structure/function, thereby acting as a driver for tumorigenesis and tumor heterogeneity. Intriguingly, another potential outcome of this Myc-induced CMG helicase over-activation is the creation of a vulnerability in cancer whereby tumor cells specifically lack enough unused reserve CMG helicases to recover from fork-stalling drugs commonly used in chemotherapy. This review provides molecular and clinical support for this provocative hypothesis that excessive activation of CMG helicases by Myc may not only drive tumorigenesis, but also confer an exploitable "reserve CMG helicase vulnerability" that supports developing innovative CMG-focused therapeutic approaches for cancer management.
Collapse
Affiliation(s)
- Damon R Reed
- Department of Interdisciplinary Cancer Management, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mark G Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| |
Collapse
|
21
|
Do DT, Le NQK. Using extreme gradient boosting to identify origin of replication in Saccharomyces cerevisiae via hybrid features. Genomics 2020; 112:2445-2451. [PMID: 31987913 DOI: 10.1016/j.ygeno.2020.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
DNA replication is a fundamental task that plays a crucial role in the propagation of all living things on earth. Hence, the accurate identification of its origin could be the key to giving an insightful understanding of the regulatory mechanism of gene expression. Indeed, with the robust development of computational techniques and the abundant biological sequencing data, it has become possible for scientists to identify the origin of replication accurately and promptly. This growing concern has drawn a lot of attention among experts in this field. However, to gain better outcomes, more work is required. Therefore, this study is designed to explore the combination of state-of-the-art features and extreme gradient boosting learning system in classifying DNA sequences. Our hybrid approach is able to identify the origin of DNA replication with achieved sensitivity of 85.19%, specificity of 93.83%, accuracy of 89.51%, and MCC of 0.7931. Evidence is presented to show that our proposed method is superior to the state-of-the-art methods on the same benchmark dataset. Moreover, the research results represent a further step towards developing the prediction models for DNA replication in particular and DNA sequences in general.
Collapse
Affiliation(s)
- Duyen Thi Do
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei City 106, Taiwan; Research Center of Artificial Intelligence in Medicine, Taipei Medical University, Taipei City 106, Taiwan.
| |
Collapse
|
22
|
Abstract
In all kingdoms of life, DNA is used to encode hereditary information. Propagation of the genetic material between generations requires timely and accurate duplication of DNA by semiconservative replication prior to cell division to ensure each daughter cell receives the full complement of chromosomes. DNA synthesis of daughter strands starts at discrete sites, termed replication origins, and proceeds in a bidirectional manner until all genomic DNA is replicated. Despite the fundamental nature of these events, organisms have evolved surprisingly divergent strategies that control replication onset. Here, we discuss commonalities and differences in replication origin organization and recognition in the three domains of life.
Collapse
Affiliation(s)
- Babatunde Ekundayo
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Franziska Bleichert
- Quantitative Biology, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Lou C, Zhao J, Shi R, Wang Q, Zhou W, Wang Y, Wang G, Huang L, Feng X, Zhou F. sefOri: selecting the best-engineered sequence features to predict DNA replication origins. Bioinformatics 2019; 36:49-55. [DOI: 10.1093/bioinformatics/btz506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/25/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
AbstractMotivationCell divisions start from replicating the double-stranded DNA, and the DNA replication process needs to be precisely regulated both spatially and temporally. The DNA is replicated starting from the DNA replication origins. A few successful prediction models were generated based on the assumption that the DNA replication origin regions have sequence level features like physicochemical properties significantly different from the other DNA regions.ResultsThis study proposed a feature selection procedure to further refine the classification model of the DNA replication origins. The experimental data demonstrated that as large as 26% improvement in the prediction accuracy may be achieved on the yeast Saccharomyces cerevisiae. Moreover, the prediction accuracies of the DNA replication origins were improved for all the four yeast genomes investigated in this study.Availability and implementationThe software sefOri version 1.0 was available at http://www.healthinformaticslab.org/supp/resources.php. An online server was also provided for the convenience of the users, and its web link may be found in the above-mentioned web page.Supplementary informationSupplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chenwei Lou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Jian Zhao
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Ruoyao Shi
- BioKnow Health Informatics Lab, College of Life Sciences, Jilin University, Changchun 130012, China
| | - Qian Wang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Wenyang Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Yubo Wang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Guoqing Wang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun 130012, China
| | - Lan Huang
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Xin Feng
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Masnadi-Shirazi M, Maurya MR, Pao G, Ke E, Verma IM, Subramaniam S. Time varying causal network reconstruction of a mouse cell cycle. BMC Bioinformatics 2019; 20:294. [PMID: 31142274 PMCID: PMC6542064 DOI: 10.1186/s12859-019-2895-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Biochemical networks are often described through static or time-averaged measurements of the component macromolecules. Temporal variation in these components plays an important role in both describing the dynamical nature of the network as well as providing insights into causal mechanisms. Few methods exist, specifically for systems with many variables, for analyzing time series data to identify distinct temporal regimes and the corresponding time-varying causal networks and mechanisms. Results In this study, we use well-constructed temporal transcriptional measurements in a mammalian cell during a cell cycle, to identify dynamical networks and mechanisms describing the cell cycle. The methods we have used and developed in part deal with Granger causality, Vector Autoregression, Estimation Stability with Cross Validation and a nonparametric change point detection algorithm that enable estimating temporally evolving directed networks that provide a comprehensive picture of the crosstalk among different molecular components. We applied our approach to RNA-seq time-course data spanning nearly two cell cycles from Mouse Embryonic Fibroblast (MEF) primary cells. The change-point detection algorithm is able to extract precise information on the duration and timing of cell cycle phases. Using Least Absolute Shrinkage and Selection Operator (LASSO) and Estimation Stability with Cross Validation (ES-CV), we were able to, without any prior biological knowledge, extract information on the phase-specific causal interaction of cell cycle genes, as well as temporal interdependencies of biological mechanisms through a complete cell cycle. Conclusions The temporal dependence of cellular components we provide in our model goes beyond what is known in the literature. Furthermore, our inference of dynamic interplay of multiple intracellular mechanisms and their temporal dependence on one another can be used to predict time-varying cellular responses, and provide insight on the design of precise experiments for modulating the regulation of the cell cycle. Electronic supplementary material The online version of this article (10.1186/s12859-019-2895-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Masnadi-Shirazi
- Department of Electrical and Computer Engineering and Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Mano R Maurya
- Department of Bioengineering and San Diego Supercomputer center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Gerald Pao
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Eugene Ke
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Inder M Verma
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shankar Subramaniam
- Department of Bioengineering, Departments of Computer Science and Engineering, Cellular and Molecular Medicine, and the Graduate Program in Bioinformatics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
25
|
A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in Arabidopsis. Int J Mol Sci 2018; 19:ijms19123925. [PMID: 30544514 PMCID: PMC6321140 DOI: 10.3390/ijms19123925] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/02/2022] Open
Abstract
The CRISPR/Cas9 system has been widely used for targeted genome editing in numerous plant species. In Arabidopsis, constitutive promoters usually result in a low efficiency of heritable mutation in the T1 generation. In this work, CRISPR/Cas9 gene editing efficiencies using different promoters to drive Cas9 expression were evaluated. Expression of Cas9 under the constitutive CaMV 35S promoter resulted in a 2.3% mutation rate in T1 plants and failed to produce homozygous mutations in the T1 and T2 generations. In contrast, expression of Cas9 under two cell division-specific promoters, YAO and CDC45, produced mutation rates of 80.9% to 100% in the T1 generation with nonchimeric mutations in the T1 (4.4–10%) and T2 (32.5–46.1%) generations. The pCDC45 promoter was used to modify a previously reported multiplex CRISPR/Cas9 system, replacing the original constitutive ubiquitin promoter. The multi-pCDC45-Cas9 system produced higher mutation efficiencies than the multi-pUBQ-Cas9 system in the T1 generation (60.17% vs. 43.71%) as well as higher efficiency of heritable mutations (11.30% vs. 4.31%). Sextuple T2 homozygous mutants were identified from a construct targeting seven individual loci. Our results demonstrate the advantage of using cell division promoters for CRISPR/Cas9 gene editing applications in Arabidopsis, especially in multiplex applications.
Collapse
|
26
|
Byrne BM, Oakley GG. Replication protein A, the laxative that keeps DNA regular: The importance of RPA phosphorylation in maintaining genome stability. Semin Cell Dev Biol 2018; 86:112-120. [PMID: 29665433 DOI: 10.1016/j.semcdb.2018.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
Abstract
The eukaryotic ssDNA-binding protein, Replication protein A (RPA), was first discovered almost three decades ago. Since then, much progress has been made to elucidate the critical roles for RPA in DNA metabolic pathways that help promote genomic stability. The canonical RPA heterotrimer (RPA1-3) is an essential coordinator of DNA metabolism that interacts with ssDNA and numerous protein partners to coordinate its roles in DNA replication, repair, recombination and telomere maintenance. An alternative form of RPA, termed aRPA, is formed by a complex of RPA4 with RPA1 and RPA3. aRPA is expressed differentially in cells compared to canonical RPA and has been shown to inhibit canonical RPA function while allowing for regular maintenance of cell viability. Interestingly, while aRPA is defective in DNA replication and cell cycle progression, it was shown to play a supporting role in nucleotide excision repair and recombination. The binding domains of canonical RPA interact with a growing number of partners involved in numerous genome maintenance processes. The protein interactions of the RPA-ssDNA complex are not only governed by competition between the binding proteins but also by post-translation modifications such as phosphorylation. Phosphorylation of RPA2 is an important post-translational modification of the RPA complex, and is essential for directing context-specific functions of the RPA complex in the DNA damage response. Due to the importance of RPA in cellular metabolism, it was identified as an appealing target for chemotherapeutic drug development that could be used in future cancer treatment regimens.
Collapse
Affiliation(s)
- Brendan M Byrne
- University of Nebraska Medical Center Department of Oral Biology, Lincoln NE, USA.
| | - Gregory G Oakley
- University of Nebraska Medical Center Department of Oral Biology, Lincoln NE, USA; Eppley Cancer Center, Omaha NE, USA.
| |
Collapse
|
27
|
Qian J, Chen Y, Hu Y, Deng Y, Liu Y, Li G, Zou W, Zhao J. Arabidopsis replication factor C4 is critical for DNA replication during the mitotic cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:288-303. [PMID: 29406597 DOI: 10.1111/tpj.13855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 06/07/2023]
Abstract
Replication factor C (RFC) is a conserved eukaryotic complex consisting of RFC1/2/3/4/5. It plays important roles in DNA replication and the cell cycle in yeast and fruit fly. However, it is not very clear how RFC subunits function in higher plants, except for the Arabidopsis (At) subunits AtRFC1 and AtRFC3. In this study, we investigated the functions of AtRFC4 and found that loss of function of AtRFC4 led to an early sporophyte lethality that initiated as early as the elongated zygote stage, all defective embryos arrested at the two- to four-cell embryo proper stage, and the endosperm possessed six to eight free nuclei. Complementation of rfc4-1/+ with AtRFC4 expression driven through the embryo-specific DD45pro and ABI3pro or the endosperm-specific FIS2pro could not completely restore the defective embryo or endosperm, whereas a combination of these three promoters in rfc4-1/+ enabled the aborted ovules to develop into viable seeds. This suggests that AtRFC4 functions simultaneously in endosperm and embryo and that the proliferation of endosperm is critical for embryo maturation. Assays of DNA content in rfc4-1/+ verified that DNA replication was disrupted in endosperm and embryo, resulting in blocked mitosis. Moreover, we observed a decreased proportion of late S-phase and M-phase cells in the rfc4-1/-FIS2;DD45;ABI3pro::AtRFC4 seedlings, suggesting that incomplete DNA replication triggered cell cycle arrest in cells of the root apical meristem. Therefore, we conclude that AtRFC4 is a crucial gene for DNA replication.
Collapse
Affiliation(s)
- Jie Qian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yueyue Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingtian Deng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxuan Zou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
28
|
Okada T, Okabe G, Tak YS, Mimura S, Takisawa H, Kubota Y. Suppression of targeting of Dbf4-dependent kinase to pre-replicative complex in G0 nuclei. Genes Cells 2018; 23:94-104. [PMID: 29314475 DOI: 10.1111/gtc.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 12/01/2022]
Abstract
Intact G0 nuclei isolated from quiescent cells are not capable of DNA replication in interphase Xenopus egg extracts, which allow efficient replication of permeabilized G0 nuclei. Previous studies have shown multiple control mechanisms for maintaining the quiescent state, but DNA replication inhibition of intact G0 nuclei in the extracts remains poorly understood. Here, we showed that pre-RC is assembled on chromatin, but its activation is inhibited after incubating G0 nuclei isolated from quiescent NIH3T3 cells in the extracts. Concomitant with the inhibition of replication, Mcm4 phosphorylation mediated by Dbf4-dependent kinase (DDK) as well as chromatin binding of DDK is suppressed in G0 nuclei without affecting the nuclear transport of DDK. We further found that the nuclear extracts of G0 but not proliferating cells inhibit the binding of recombinant DDK to pre-RC assembled plasmids. In addition, we observed rapid activation of checkpoint kinases after incubating G0 nuclei in the egg extracts. However, specific inhibitors of ATR/ATM are unable to promote DNA replication in G0 nuclei in the egg extracts. We suggest that a novel inhibitory mechanism is functional to prevent the targeting of DDK to pre-RC in G0 nuclei, thereby suppressing DNA replication in Xenopus egg extracts.
Collapse
Affiliation(s)
- Takuya Okada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto, Japan
| | - Gaku Okabe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.,Engineering Integration Department, Air Water Inc., Osaka, Japan
| | - Yon-Soo Tak
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Satoru Mimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Haruhiko Takisawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Yumiko Kubota
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
29
|
Induction of Apoptosis in Metastatic Breast Cancer Cells: XV. Downregulation of DNA Polymerase-α - Helicase Complex (Replisomes) and Glyco-Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:199-221. [PMID: 30637700 DOI: 10.1007/978-981-13-3065-0_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In normal and cancer cells, successful cell division requires accurate duplication of chromosomal DNA. All cells require a multiprotein DNA duplication system (replisomes) for their existence. However, death of normal cells in our body occurs through the apoptotic process. During apoptotic process several crucial genes are downregulated with the upregulation of caspase pathways, leading to ultimate degradation of genomic DNA. In metastatic cancer cells (SKBR-3, MCF -7, and MDA-462), this process is inhibited to achieve immortality as well as overexpression of the enzymes for the synthesis of marker molecules. It is believed that the GSL of the lacto family such as LeX, SA-LeX, LeY, Lea, and Leb are markers on the human colon and breast cancer cells. Recently, we have characterized that a few apoptotic chemicals (cis-platin, L-PPMP, D-PDMP, GD3 ganglioside, GD1b ganglioside, betulinic acid, tamoxifen, and melphalan) in low doses kill metastatic breast cancer cells. The apoptosis-inducing agent (e.g., cis-platin) showed inhibition of DNA polymerase/helicase (part of the replisomes) and also modulated (positively) a few glycolipid-glycosyltransferase (GSL-GLTs) transcriptions in the early stages (within 2 h after treatment) of apoptosis. These Lc-family GSLs are also present on the surfaces of human breast and colon carcinoma cells. It is advantageous to deliver these apoptotic chemicals through the metastatic cell surfaces containing high concentration of marker glycolipids (Lc-GSLs). Targeted application of apoptotic chemicals (in micro scale) to kill the cancer cells would be an ideal way to inhibit the metastatic growth of both breast and colon cancer cells. It was observed in three different breast cancer lines (SKBR-3, MDA-468, and MCF-7) that in 2 h very little apoptotic process had started, but predominant biochemical changes (including inactivation of replisomes) started between 6 and 24 h of the drug treatments. The contents of replisomes (replisomal complexes) during induction of apoptosis are not known. It is known that DNA helicase activities (major proteins catalyze the melting of dsDNA strands) change during apoptotic induction process. Previously DNA Helicase-III was characterized as a component of the replication complexes isolated from carcinoma cells and normal rapid growing embryonic chicken brain cells. Helicase activities were assayed by a novel method (combined immunoprecipitation-ROME assay), and DNA polymerase-alpha activities were determined by regular chain extension of nicked "ACT-DNA," by determining values obtained from +/- aphidicolin added to the incubation mixtures. Very little is known about the stability of the "replication complexes" (or replisomes) during the apoptotic process. DNA helicases are motor proteins that catalyze the melting of genomic DNA during replication, repair, and recombination processes. In all three breast carcinoma cell lines (SKBR-3, MCF-7, and MDA-468), a common trend, decrease of activities of DNA polymerase-alpha and Helicase-III (estimated and detected with a polyclonal antibody), was observed, after cis-platin- and L-PPMP-induced apoptosis. Previously our laboratory has documented downregulation (within 24-48 h) of several GSL-GLTs with these apoptotic reagents in breast and colon cancer cells also. Perhaps induced apoptosis would improve the prognosis in metastatic breast and colon cancer patients.
Collapse
|
30
|
Warner MD, Azmi IF, Kang S, Zhao Y, Bell SP. Replication origin-flanking roadblocks reveal origin-licensing dynamics and altered sequence dependence. J Biol Chem 2017; 292:21417-21430. [PMID: 29074622 PMCID: PMC5766963 DOI: 10.1074/jbc.m117.815639] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, DNA replication initiates from multiple origins of replication for timely genome duplication. These sites are selected by origin licensing, during which the core enzyme of the eukaryotic DNA replicative helicase, the Mcm2-7 (minichromosome maintenance) complex, is loaded at each origin. This origin licensing requires loading two Mcm2-7 helicases around origin DNA in a head-to-head orientation. Current models suggest that the origin-recognition complex (ORC) and cell-division cycle 6 (Cdc6) proteins recognize and encircle origin DNA and assemble an Mcm2-7 double-hexamer around adjacent double-stranded DNA. To test this model and assess the location of Mcm2-7 initial loading, we placed DNA-protein roadblocks at defined positions adjacent to the essential ORC-binding site within Saccharomyces cerevisiae origin DNA. Roadblocks were made either by covalent cross-linking of the HpaII methyltransferase to DNA or through binding of a transcription activator-like effector (TALE) protein. Contrary to the sites of Mcm2-7 recruitment being precisely defined, only single roadblocks that inhibited ORC-DNA binding showed helicase loading defects. We observed inhibition of helicase loading without inhibition of ORC-DNA binding only when roadblocks were placed on both sides of the origin to restrict sliding of a helicase-loading intermediate. Consistent with a sliding helicase-loading intermediate, when either one of the flanking roadblocks was eliminated, the remaining roadblock had no effect on helicase loading. Interestingly, either origin-flanking nucleosomes or roadblocks resulted in helicase loading being dependent on an additional origin sequence known to be a weaker ORC-DNA-binding site. Together, our findings support a model in which sliding helicase-loading intermediates increase the flexibility of the DNA sequence requirements for origin licensing.
Collapse
Affiliation(s)
- Megan D Warner
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Ishara F Azmi
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Sukhyun Kang
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| | - Yanding Zhao
- the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454
| | - Stephen P Bell
- From the Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and
| |
Collapse
|
31
|
Perez-Arnaiz P, Bruck I, Colbert MK, Kaplan DL. An intact Mcm10 coiled-coil interaction surface is important for origin melting, helicase assembly and the recruitment of Pol-α to Mcm2-7. Nucleic Acids Res 2017; 45:7261-7275. [PMID: 28510759 PMCID: PMC5499591 DOI: 10.1093/nar/gkx438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/03/2017] [Indexed: 11/16/2022] Open
Abstract
Mcm10 is an essential eukaryotic factor required for DNA replication. The replication fork helicase is composed of Cdc45, Mcm2–7 and GINS (CMG). DDK is an S-phase-specific kinase required for replication initiation, and the DNA primase-polymerase in eukaryotes is pol α. Mcm10 forms oligomers in vitro, mediated by the coiled-coil domain at the N-terminal region of the protein. We characterized an Mcm10 mutant at the N-terminal Domain (NTD), Mcm10-4A, defective for self-interaction. We found that the Mcm10-4A mutant was defective for stimulating DDK phosphorylation of Mcm2, binding to eighty-nucleotide ssDNA, and recruiting pol α to Mcm2–7 in vitro. Expression of wild-type levels of mcm10-4A resulted in severe growth and DNA replication defects in budding yeast cells, with diminished DDK phosphorylation of Mcm2. We then expressed the mcm10-4A in mcm5-bob1 mutant cells to bypass the defects mediated by diminished stimulation of DDK phosphorylation of Mcm2. Expression of wild-type levels of mcm10-4A in mcm5-bob1 mutant cells resulted in severe growth and DNA replication defects, along with diminished RPA signal at replication origins. We also detected diminished GINS and pol-α recruitment to the Mcm2–7 complex. We conclude that an intact Mcm10 coiled-coil interaction surface is important for origin melting, helicase assembly, and the recruitment of pol α to Mcm2–7.
Collapse
Affiliation(s)
- Patricia Perez-Arnaiz
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Irina Bruck
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Max K Colbert
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| | - Daniel L Kaplan
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, FL 32306, USA
| |
Collapse
|
32
|
Datta A, Ghatak D, Das S, Banerjee T, Paul A, Butti R, Gorain M, Ghuwalewala S, Roychowdhury A, Alam SK, Das P, Chatterjee R, Dasgupta M, Panda CK, Kundu GC, Roychoudhury S. p53 gain-of-function mutations increase Cdc7-dependent replication initiation. EMBO Rep 2017; 18:2030-2050. [PMID: 28887320 DOI: 10.15252/embr.201643347] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
Cancer-associated p53 missense mutants confer gain of function (GOF) and promote tumorigenesis by regulating crucial signaling pathways. However, the role of GOF mutant p53 in regulating DNA replication, a commonly altered pathway in cancer, is less explored. Here, we show that enhanced Cdc7-dependent replication initiation enables mutant p53 to confer oncogenic phenotypes. We demonstrate that mutant p53 cooperates with the oncogenic transcription factor Myb in vivo and transactivates Cdc7 in cancer cells. Moreover, mutant p53 cells exhibit enhanced levels of Dbf4, promoting the activity of Cdc7/Dbf4 complex. Chromatin enrichment of replication initiation factors and subsequent increase in origin firing confirm increased Cdc7-dependent replication initiation in mutant p53 cells. Further, knockdown of CDC7 significantly abrogates mutant p53-driven cancer phenotypes in vitro and in vivo Importantly, high CDC7 expression significantly correlates with p53 mutational status and predicts poor clinical outcome in lung adenocarcinoma patients. Collectively, this study highlights a novel functional interaction between mutant p53 and the DNA replication pathway in cancer cells. We propose that increased Cdc7-dependent replication initiation is a hallmark of p53 gain-of-function mutations.
Collapse
Affiliation(s)
- Arindam Datta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dishari Ghatak
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumit Das
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Taraswi Banerjee
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH Biomedical Research Center, NIH, Baltimore, MD, USA
| | - Anindita Paul
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Sangeeta Ghuwalewala
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sk Kayum Alam
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush Das
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Susanta Roychoudhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India .,Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
33
|
Nuclear DNA Replication in Trypanosomatids: There Are No Easy Methods for Solving Difficult Problems. Trends Parasitol 2017; 33:858-874. [PMID: 28844718 PMCID: PMC5662062 DOI: 10.1016/j.pt.2017.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
In trypanosomatids, etiological agents of devastating diseases, replication is robust and finely controlled to maintain genome stability and function in stressful environments. However, these parasites encode several replication protein components and complexes that show potentially variant composition compared with model eukaryotes. This review focuses on the advances made in recent years regarding the differences and peculiarities of the replication machinery in trypanosomatids, including how such divergence might affect DNA replication dynamics and the replication stress response. Comparing the DNA replication machinery and processes of parasites and their hosts may provide a foundation for the identification of targets that can be used in the development of chemotherapies to assist in the eradication of diseases caused by these pathogens. In trypanosomatids, DNA replication is tightly controlled by protein complexes that diverge from those of model eukaryotes. There is no consensus for the number of replication origins used by trypanosomatids; how their replication dynamics compares with that of model organisms is the subject of debate. The DNA replication rate in trypanosomatids is similar to, but slightly higher than, that of model eukaryotes, which may be related to chromatin structure and function. Recent data suggest that the origin recognition complex in trypanosomatids closely resembles the multisubunit eukaryotic model. The absence of fundamental replication-associated proteins in trypanosomatids suggests that new signaling pathways may be present in these parasites to direct DNA replication and the replicative stress response.
Collapse
|
34
|
Szambowska A, Tessmer I, Prus P, Schlott B, Pospiech H, Grosse F. Cdc45-induced loading of human RPA onto single-stranded DNA. Nucleic Acids Res 2017; 45:3217-3230. [PMID: 28100698 PMCID: PMC5389570 DOI: 10.1093/nar/gkw1364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/02/2017] [Indexed: 11/14/2022] Open
Abstract
Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8–10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork.
Collapse
Affiliation(s)
- Anna Szambowska
- Research Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef Schneider Strasse 2, D-97080 Würzburg, Germany
| | - Piotr Prus
- Biocenter Oulu, P.O. Box 5000, 90014 University of Oulu, Finland
| | - Bernhard Schlott
- Research Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany.,Proteomics Core Facility, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany
| | - Helmut Pospiech
- Research Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany.,Faculty of Biochemistry and Molecular Medicine, P.O. Box 5000, 90014 University of Oulu, Finland
| | - Frank Grosse
- Research Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, D-07745 Jena, Germany.,Center for Molecular Biomedicine, Friedrich-Schiller University, Biochemistry Department, Jena, Germany
| |
Collapse
|
35
|
Neves H, Kwok HF. In sickness and in health: The many roles of the minichromosome maintenance proteins. Biochim Biophys Acta Rev Cancer 2017; 1868:295-308. [DOI: 10.1016/j.bbcan.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
|
36
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
37
|
Sullenberger C, Piqué D, Ogata Y, Mensa-Wilmot K. AEE788 Inhibits Basal Body Assembly and Blocks DNA Replication in the African Trypanosome. Mol Pharmacol 2017; 91:482-498. [PMID: 28246189 PMCID: PMC5399642 DOI: 10.1124/mol.116.106906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis (HAT). The pyrrolopyrimidine AEE788 (a hit for anti-HAT drug discovery) associates with three trypanosome protein kinases. Herein we delineate the effects of AEE788 on T. brucei using chemical biology strategies. AEE788 treatment inhibits DNA replication in the kinetoplast (mitochondrial nucleoid) and nucleus. In addition, AEE788 blocks duplication of the basal body and the bilobe without affecting mitosis. Thus, AEE788 prevents entry into the S-phase of the cell division cycle. To study the kinetics of early events in trypanosome division, we employed an "AEE788 block and release" protocol to stage entry into the S-phase. A time-course of DNA synthesis (nuclear and kinetoplast DNA), duplication of organelles (basal body, bilobe, kinetoplast, nucleus), and cytokinesis was obtained. Unexpected findings include the following: 1) basal body and bilobe duplication are concurrent; 2) maturation of probasal bodies, marked by TbRP2 recruitment, is coupled with nascent basal body assembly, monitored by localization of TbSAS6 at newly forming basal bodies; and 3) kinetoplast division is observed in G2 after completion of nuclear DNA synthesis. Prolonged exposure of trypanosomes to AEE788 inhibited transferrin endocytosis, altered cell morphology, and decreased cell viability. To discover putative effectors for the pleiotropic effects of AEE788, proteome-wide changes in protein phosphorylation induced by the drug were determined. Putative effectors include an SR protein kinase, bilobe proteins, TbSAS4, TbRP2, and BILBO-1. Loss of function of one or more of these effectors can, from published literature, explain the polypharmacology of AEE788 on trypanosome biology.
Collapse
Affiliation(s)
- Catherine Sullenberger
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia (C.S., D.P., K.M.-W.); and the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington (Y.O.)
| | - Daniel Piqué
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia (C.S., D.P., K.M.-W.); and the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington (Y.O.)
| | - Yuko Ogata
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia (C.S., D.P., K.M.-W.); and the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington (Y.O.)
| | - Kojo Mensa-Wilmot
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia (C.S., D.P., K.M.-W.); and the Proteomics Facility, Fred Hutchinson Cancer Research Center, Seattle, Washington (Y.O.)
| |
Collapse
|
38
|
Köhler C, Koalick D, Fabricius A, Parplys AC, Borgmann K, Pospiech H, Grosse F. Cdc45 is limiting for replication initiation in humans. Cell Cycle 2017; 15:974-85. [PMID: 26919204 PMCID: PMC4889307 DOI: 10.1080/15384101.2016.1152424] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cdc45 is an essential protein that together with Mcm2-7 and GINS forms the eukaryotic replicative helicase CMG. Cdc45 seems to be rate limiting for the initial unwinding or firing of replication origins. In line with this view, Cdc45-overexpressing cells fired at least twice as many origins as control cells. However, these cells displayed an about 2-fold diminished fork elongation rate, a pronounced asymmetry of replication fork extension, and an early S phase arrest. This was accompanied by H2AX-phosphorylation and subsequent apoptosis. Unexpectedly, we did not observe increased ATR/Chk1 signaling but rather a mild ATM/Chk2 response. In addition, we detected accumulation of long stretches of single-stranded DNA, a hallmark of replication catastrophe. We conclude that increased origin firing by upregulated Cdc45 caused exhaustion of the single-strand binding protein RPA, which in consequence diminished the ATR/Chk1 response; the subsequently occurring fork breaks led to an ATM/Chk2 mediated phosphorylation of H2AX and eventually to apoptosis.
Collapse
Affiliation(s)
- Carsten Köhler
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Dennis Koalick
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Anja Fabricius
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany
| | - Ann Christin Parplys
- b Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Kerstin Borgmann
- b Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Helmut Pospiech
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany.,c Faculty of Biochemistry and Molecular Medicine, University of Oulu , Finland
| | - Frank Grosse
- a Research group Biochemistry, Leibniz Institute for Age Research - Fritz Lipmann Institute , Jena , Germany.,d Centre for Molecular Biomedicine, Friedrich-Schiller University , Jena , Germany
| |
Collapse
|
39
|
Li WM, Huang CN, Ke HL, Li CC, Wei YC, Yeh HC, Chang LL, Huang CH, Liang PI, Yeh BW, Chan TC, Li CF, Wu WJ. MCM10 overexpression implicates adverse prognosis in urothelial carcinoma. Oncotarget 2016; 7:77777-77792. [PMID: 27780919 PMCID: PMC5363620 DOI: 10.18632/oncotarget.12795] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Urothelial carcinoma (UC) occurs in the upper urinary tract (UTUC) and the urinary bladder (UBUC). The molecular pathogenesis of UC has not been fully elucidated. Through data mining of a published transcriptome of UBUC (GSE31684), we identified Minichromosome Maintenance Complex Component 2 (MCM2) and MCM10 as the two most significantly upregulated genes in UC progression among the MCM gene family, the key factors for the initiation of DNA replication. To validate the clinical significance of MCM2 and MCM10, immunohistochemistry, evaluated by H-score, was used in a pilot study of 50 UTUC and 50 UBUC samples. Only a high expression level of MCM10 predicted worse disease-specific survival (DSS) and inferior metastasis-free survival (MeFS) for both UTUC and UBUC. Correspondingly, evaluation of MCM10 mRNA expression in 36 UTUCs and 30 UBUCs showed significantly upregulated levels in high stage UC, suggesting its role in tumor progression. Evaluation of 340 UTUC and 296 UBUC tissue samples, respectively, demonstrated that high MCM10 immunoexpression was significantly associated with advanced primary tumors, nodal status, and the presence of vascular invasion in both groups of UCs. In multivariate Cox regression analyses, adjusted for standard clinicopathological features, MCM10 overexpression was independently associated with DSS (UTUC hazard ratio [HR]=2.401, P = 0.013; UBUC HR=4.323, P=0.001) and with MeFS (UTUC HR=3.294, P<0.001; UBUC HR=1.972, P=0.015). In vitro, knockdown of MCM10 gene significantly suppressed cell proliferation in both J82 and TCCSUP cells. In conclusion, MCM10 overexpression was associated with unfavorable clinicopathological characteristics and independent negative prognostic effects, justifying its potential theranostic value in UC.
Collapse
Affiliation(s)
- Wei-Ming Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Chun-Nung Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Microbiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hsiung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Bi-Wen Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- Departments of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
- National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Singh VK, Krishnamachari A. Context based computational analysis and characterization of ARS consensus sequences (ACS) of Saccharomyces cerevisiae genome. GENOMICS DATA 2016; 9:130-6. [PMID: 27508123 PMCID: PMC4971157 DOI: 10.1016/j.gdata.2016.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/27/2016] [Accepted: 07/06/2016] [Indexed: 01/08/2023]
Abstract
Genome-wide experimental studies in Saccharomyces cerevisiae reveal that autonomous replicating sequence (ARS) requires an essential consensus sequence (ACS) for replication activity. Computational studies identified thousands of ACS like patterns in the genome. However, only a few hundreds of these sites act as replicating sites and the rest are considered as dormant or evolving sites. In a bid to understand the sequence makeup of replication sites, a content and context-based analysis was performed on a set of replicating ACS sequences that binds to origin-recognition complex (ORC) denoted as ORC-ACS and non-replicating ACS sequences (nrACS), that are not bound by ORC. In this study, DNA properties such as base composition, correlation, sequence dependent thermodynamic and DNA structural profiles, and their positions have been considered for characterizing ORC-ACS and nrACS. Analysis reveals that ORC-ACS depict marked differences in nucleotide composition and context features in its vicinity compared to nrACS. Interestingly, an A-rich motif was also discovered in ORC-ACS sequences within its nucleosome-free region. Profound changes in the conformational features, such as DNA helical twist, inclination angle and stacking energy between ORC-ACS and nrACS were observed. Distribution of ACS motifs in the non-coding segments points to the locations of ORC-ACS which are found far away from the adjacent gene start position compared to nrACS thereby enabling an accessible environment for ORC-proteins. Our attempt is novel in considering the contextual view of ACS and its flanking region along with nucleosome positioning in the S. cerevisiae genome and may be useful for any computational prediction scheme.
Collapse
|
41
|
miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation. Biochem J 2016; 473:2131-9. [PMID: 27208176 DOI: 10.1042/bcj20160177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/17/2016] [Indexed: 02/04/2023]
Abstract
Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development.
Collapse
|
42
|
Bruck I, Kaplan DL. The Replication Initiation Protein Sld3/Treslin Orchestrates the Assembly of the Replication Fork Helicase during S Phase. J Biol Chem 2015; 290:27414-27424. [PMID: 26405041 DOI: 10.1074/jbc.m115.688424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 11/06/2022] Open
Abstract
The initiation of DNA replication is a highly regulated process in eukaryotic cells, and central to the process of initiation is the assembly and activation of the replication fork helicase. The replication fork helicase is comprised of CMG (Cdc45, Mcm2-7, and GINS) in eukaryotic cells, and the mechanism underlying assembly of the CMG during S phase was studied in this article. We identified a point mutation of Sld3 that is specifically defective for Mcm3 and Mcm5 interaction (sld3-m10), and also identified a point mutation of Sld3 that is specifically defective for single-stranded DNA (ssDNA) interaction (sld3-m9). Expression of wild-type levels of sld3-m9 resulted in a severe DNA replication defect with no recruitment of GINS to Mcm2-7, whereas expression of wild-type levels of sld3-m10 resulted in a severe replication defect with no Cdc45 recruitment to Mcm2-7. We propose a model for Sld3-mediated control of replication initiation, wherein Sld3 manages the proper assembly of the CMG during S phase. We also find that the biochemical functions identified for Sld3 are conserved in human Treslin, suggesting that Treslin orchestrates assembly of the CMG in human cells.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Daniel L Kaplan
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306.
| |
Collapse
|
43
|
Jeffery DCB, Kakusho N, You Z, Gharib M, Wyse B, Drury E, Weinreich M, Thibault P, Verreault A, Masai H, Yankulov K. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin. Cell Cycle 2015; 14:74-85. [PMID: 25602519 DOI: 10.4161/15384101.2014.973745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly.
Collapse
Affiliation(s)
- Daniel C B Jeffery
- a Department of Molecular and Cellular Biology ; University of Guelph ; Guelph , Ontario , Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Das SP, Borrman T, Liu VWT, Yang SCH, Bechhoefer J, Rhind N. Replication timing is regulated by the number of MCMs loaded at origins. Genome Res 2015; 25:1886-92. [PMID: 26359232 PMCID: PMC4665009 DOI: 10.1101/gr.195305.115] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Replication timing is a crucial aspect of genome regulation that is strongly correlated with chromatin structure, gene expression, DNA repair, and genome evolution. Replication timing is determined by the timing of replication origin firing, which involves activation of MCM helicase complexes loaded at replication origins. Nonetheless, how the timing of such origin firing is regulated remains mysterious. Here, we show that the number of MCMs loaded at origins regulates replication timing. We show for the first time in vivo that multiple MCMs are loaded at origins. Because early origins have more MCMs loaded, they are, on average, more likely to fire early in S phase. Our results provide a mechanistic explanation for the observed heterogeneity in origin firing and help to explain how defined replication timing profiles emerge from stochastic origin firing. These results establish a framework in which further mechanistic studies on replication timing, such as the strong effect of heterochromatin, can be pursued.
Collapse
Affiliation(s)
- Shankar P Das
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Tyler Borrman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Victor W T Liu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Scott C-H Yang
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
45
|
Chen YH, Jones MJK, Yin Y, Crist SB, Colnaghi L, Sims RJ, Rothenberg E, Jallepalli PV, Huang TT. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol Cell 2015; 58:323-38. [PMID: 25843623 DOI: 10.1016/j.molcel.2015.02.031] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/13/2015] [Accepted: 02/25/2015] [Indexed: 12/24/2022]
Abstract
Excess dormant origins bound by the minichromosome maintenance (MCM) replicative helicase complex play a critical role in preventing replication stress, chromosome instability, and tumorigenesis. In response to DNA damage, replicating cells must coordinate DNA repair and dormant origin firing to ensure complete and timely replication of the genome; how cells regulate this process remains elusive. Herein, we identify a member of the Fanconi anemia (FA) DNA repair pathway, FANCI, as a key effector of dormant origin firing in response to replication stress. Cells lacking FANCI have reduced number of origins, increased inter-origin distances, and slowed proliferation rates. Intriguingly, ATR-mediated FANCI phosphorylation inhibits dormant origin firing while promoting replication fork restart/DNA repair. Using super-resolution microscopy, we show that FANCI co-localizes with MCM-bound chromatin in response to replication stress. These data reveal a unique role for FANCI as a modulator of dormant origin firing and link timely genome replication to DNA repair.
Collapse
Affiliation(s)
- Yu-Hung Chen
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Mathew J K Jones
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA; Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yandong Yin
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Sarah B Crist
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Luca Colnaghi
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Robert J Sims
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
46
|
Rondinelli B, Schwerer H, Antonini E, Gaviraghi M, Lupi A, Frenquelli M, Cittaro D, Segalla S, Lemaitre JM, Tonon G. H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Res 2015; 43:2560-74. [PMID: 25712104 PMCID: PMC4357704 DOI: 10.1093/nar/gkv090] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
DNA replication is a tightly regulated process that initiates from multiple replication origins and leads to the faithful transmission of the genetic material. For proper DNA replication, the chromatin surrounding origins needs to be remodeled. However, remarkably little is known on which epigenetic changes are required to allow the firing of replication origins. Here, we show that the histone demethylase KDM5C/JARID1C is required for proper DNA replication at early origins. JARID1C dictates the assembly of the pre-initiation complex, driving the binding to chromatin of the pre-initiation proteins CDC45 and PCNA, through the demethylation of the histone mark H3K4me3. Fork activation and histone H4 acetylation, additional early events involved in DNA replication, are not affected by JARID1C downregulation. All together, these data point to a prominent role for JARID1C in a specific phase of DNA replication in mammalian cells, through its demethylase activity on H3K4me3.
Collapse
Affiliation(s)
- Beatrice Rondinelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Hélène Schwerer
- Laboratory of Stem Cell and Genome Plasticity in Development and Aging, Institute of Regenerative Medicine and Biotherapies, INSERM U1183, Montpellier University, Montpellier, France
| | - Elena Antonini
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Marco Gaviraghi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Alessio Lupi
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy Molecular Medicine PhD Program, Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Michela Frenquelli
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Davide Cittaro
- Centre for Translational Genomics and Bioinformatics, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Segalla
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Jean-Marc Lemaitre
- Laboratory of Stem Cell and Genome Plasticity in Development and Aging, Institute of Regenerative Medicine and Biotherapies, INSERM U1183, Montpellier University, Montpellier, France
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
47
|
Lesur I, Le Provost G, Bento P, Da Silva C, Leplé JC, Murat F, Ueno S, Bartholomé J, Lalanne C, Ehrenmann F, Noirot C, Burban C, Léger V, Amselem J, Belser C, Quesneville H, Stierschneider M, Fluch S, Feldhahn L, Tarkka M, Herrmann S, Buscot F, Klopp C, Kremer A, Salse J, Aury JM, Plomion C. The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics 2015; 16:112. [PMID: 25765701 PMCID: PMC4350297 DOI: 10.1186/s12864-015-1331-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/09/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- HelixVenture, F-33700, Mérignac, France.
| | - Grégoire Le Provost
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Pascal Bento
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Corinne Da Silva
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Jean-Charles Leplé
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières, F-45075, Orléans, France.
| | - Florent Murat
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, F-63039, Clermont-Ferrand, France.
| | - Saneyoshi Ueno
- Forestry and Forest Products Research Institute, Department of Forest Genetics, Tree Genetics Laboratory, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Jerôme Bartholomé
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- CIRAD, UMR AGAP, F-34398, Montpellier, France.
| | - Céline Lalanne
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - François Ehrenmann
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Céline Noirot
- Plateforme bioinformatique Toulouse Midi-Pyrénées, UBIA, INRA, F-31326, Auzeville Castanet-Tolosan, France.
| | - Christian Burban
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Valérie Léger
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Joelle Amselem
- INRA, Unité de Recherche Génomique Info (URGI), F78026, Versailles, France.
| | - Caroline Belser
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Hadi Quesneville
- INRA, Unité de Recherche Génomique Info (URGI), F78026, Versailles, France.
| | | | - Silvia Fluch
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Str 24, 3430, Tulln, Austria.
| | - Lasse Feldhahn
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
| | - Mika Tarkka
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
| | - Sylvie Herrmann
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, 06120, Halle/Saale, Germany.
| | - François Buscot
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
| | - Christophe Klopp
- Plateforme bioinformatique Toulouse Midi-Pyrénées, UBIA, INRA, F-31326, Auzeville Castanet-Tolosan, France.
| | - Antoine Kremer
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Jérôme Salse
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, F-63039, Clermont-Ferrand, France.
| | - Jean-Marc Aury
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Christophe Plomion
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| |
Collapse
|
48
|
Abstract
Hsk1 (homologue of Cdc7 kinase 1) of the fission yeast is a member of the conserved Cdc7 (cell division cycle 7) kinase family, and promotes initiation of chromosome replication by phosphorylating Mcm (minichromosome maintenance) subunits, essential components for the replicative helicase. Recent studies, however, indicate more diverse roles for Hsk1/Cdc7 in regulation of various chromosome dynamics, including initiation of meiotic recombination, meiotic chromosome segregation, DNA repair, replication checkpoints, centromeric heterochromatin formation and so forth. Hsk1/Cdc7, with its unique target specificity, can now be regarded as an important modulator of various chromosome transactions.
Collapse
|
49
|
Leman AR, Noguchi E. The replication fork: understanding the eukaryotic replication machinery and the challenges to genome duplication. Genes (Basel) 2014; 4:1-32. [PMID: 23599899 PMCID: PMC3627427 DOI: 10.3390/genes4010001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic cells must accurately and efficiently duplicate their genomes during each round of the cell cycle. Multiple linear chromosomes, an abundance of regulatory elements, and chromosome packaging are all challenges that the eukaryotic DNA replication machinery must successfully overcome. The replication machinery, the “replisome” complex, is composed of many specialized proteins with functions in supporting replication by DNA polymerases. Efficient replisome progression relies on tight coordination between the various factors of the replisome. Further, replisome progression must occur on less than ideal templates at various genomic loci. Here, we describe the functions of the major replisome components, as well as some of the obstacles to efficient DNA replication that the replisome confronts. Together, this review summarizes current understanding of the vastly complicated task of replicating eukaryotic DNA.
Collapse
Affiliation(s)
- Adam R. Leman
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| | - Eishi Noguchi
- Authors to whom correspondence should be addressed; E-Mails: (A.R.L.); (E.N.); Tel.: +1-215-762-4825 (E.N.); Fax: +1-215-762-4452 (E.N.)
| |
Collapse
|
50
|
Becker JR, Nguyen HD, Wang X, Bielinsky AK. Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle 2014; 13:1737-48. [PMID: 24674891 DOI: 10.4161/cc.28652] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mcm10 is a multifunctional replication factor with reported roles in origin activation, polymerase loading, and replication fork progression. The literature supporting these variable roles is controversial, and it has been debated whether Mcm10 has an active role in elongation. Here, we provide evidence that the mcm10-1 allele confers alterations in DNA synthesis that lead to defective-replisome-induced mutagenesis (DRIM). Specifically, we observed that mcm10-1 cells exhibited elevated levels of PCNA ubiquitination and activation of the translesion polymerase, pol-ζ. Whereas translesion synthesis had no measurable impact on viability, mcm10-1 mutants also engaged in error-free postreplicative repair (PRR), and this pathway promoted survival at semi-permissive conditions. Replication gaps in mcm10-1 were likely caused by elongation defects, as dbf4-1 mutants, which are compromised for origin activation did not display any hallmarks of replication stress. Furthermore, we demonstrate that deficiencies in priming, induced by a pol1-1 mutation, also resulted in DRIM, but not in error-free PRR. Similar to mcm10-1 mutants, DRIM did not rescue the replication defect in pol1-1 cells. Thus, it appears that DRIM is not proficient to fill replication gaps in pol1-1 and mcm10-1 mutants. Moreover, the ability to correctly prime nascent DNA may be a crucial prerequisite to initiate error-free PRR.
Collapse
Affiliation(s)
- Jordan R Becker
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Xiaohan Wang
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics; University of Minnesota; Minneapolis, MN USA
| |
Collapse
|