1
|
Ruiz-Gutierrez N, Dupas J, Auquier E, Barbarin-Bocahu I, Gaudon-Plesse C, Saveanu C, Graille M, Le Hir H. RNA anchoring of Upf1 facilitates recruitment of Dcp2 in the NMD decapping complex. Nucleic Acids Res 2025; 53:gkaf160. [PMID: 40071934 PMCID: PMC11897886 DOI: 10.1093/nar/gkaf160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Upf1 RNA helicase is a pivotal factor in the conserved nonsense-mediated mRNA decay (NMD) process. Upf1 is responsible for coordinating the recognition of premature termination codons (PTCs) in a translation-dependent manner and subsequently triggering mRNA degradation. Multiple factors assist Upf1 during these two consecutive steps. In Saccharomyces cerevisiae, Upf2 and Upf3 associated with Upf1 (Upf1-2/3) contribute to PTC recognition but are absent from the Upf1-decapping complex that includes Nmd4, Ebs1, Dcp1, and Dcp2. Despite their importance for NMD, the organization and dynamics of these Upf1-containing complexes remain unclear. Using recombinant proteins, here we show how distinct domains of Upf1 make direct contacts with Dcp1/Dcp2, Nmd4, and Ebs1. These proteins also bind to each other, forming an extended network of interactions within the Upf1-decapping complex. Dcp2 and Upf2 compete for the same binding site on the N-terminal CH domain of Upf1, which explains the presence of two mutually exclusive Upf1-containing complexes in cells. Our data demonstrate that Nmd4-assisted recruitment of Upf1 promotes anchoring of the decapping enzyme to NMD targets.
Collapse
Affiliation(s)
- Nadia Ruiz-Gutierrez
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Jeanne Dupas
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Elvire Auquier
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Irène Barbarin-Bocahu
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Claudine Gaudon-Plesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM, U1258, Université de Strasbourg, Illkirch, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, Unité de Biologie des ARN des Pathogènes Fongiques, 75015 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Hervé Le Hir
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| |
Collapse
|
2
|
Das R, Panigrahi GK. Messenger RNA Surveillance: Current Understanding, Regulatory Mechanisms, and Future Implications. Mol Biotechnol 2025; 67:393-409. [PMID: 38411790 DOI: 10.1007/s12033-024-01062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism in eukaryotes primarily deployed to ensure RNA quality control by eliminating aberrant transcripts and also involved in modulating the expression of several physiological transcripts. NMD, the mRNA surveillance pathway, is a major form of gene regulation in eukaryotes. NMD serves as one of the most significant quality control mechanisms as it primarily scans the newly synthesized transcripts and differentiates the aberrant and non-aberrant transcripts. The synthesis of truncated proteins is restricted, which would otherwise lead to cellular dysfunctions. The up-frameshift factors (UPFs) play a central role in executing the NMD event, largely by recognizing and recruiting multiple protein factors that result in the decay of non-physiological mRNAs. NMD exhibits astounding variability in its ability across eukaryotes in an array of pathological and physiological contexts. The detailed understanding of NMD and the underlying molecular mechanisms remains blurred. This review outlines our current understanding of NMD, in regulating multifaceted cellular events during development and disease. It also attempts to identify unanswered questions that deserve further investigation.
Collapse
Affiliation(s)
- Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Jatni, Khordha, Odisha, India.
| |
Collapse
|
3
|
Dowdle ME, Lykke-Andersen J. Cytoplasmic mRNA decay and quality control machineries in eukaryotes. Nat Rev Genet 2025:10.1038/s41576-024-00810-1. [PMID: 39870755 DOI: 10.1038/s41576-024-00810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/29/2025]
Abstract
mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation. Recent advances in structural, single-molecule and genome-wide methods have provided new insights into the central machineries that carry out mRNA turnover, the mechanisms by which mRNAs are targeted for degradation and the general principles that govern mRNA stability at a global level. This improved understanding of mRNA degradation in the cytoplasm of eukaryotic cells is finding practical applications in the design of therapeutic mRNAs.
Collapse
Affiliation(s)
- Megan E Dowdle
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Patro AK, Panigrahi GK, Majumder S, Das R, Sahoo A. Nonsense-mediated mRNA decay: Physiological significance, mechanistic insights and future implications. Pathol Res Pract 2024; 264:155677. [PMID: 39486251 DOI: 10.1016/j.prp.2024.155677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades premature aberrant transcripts and importantly, it also takes part in gene expression regulation by regulating the endogenous transcripts. NMD distinguishes aberrant and non-aberrant transcript by looking after the NMD signatures such as long 3' UTR. NMD modulates cellular surveillance and eliminates the plausible synthesis of truncated proteins as because if the aberrant mRNA escapes the surveillance pathway it can lead to potential negative phenotype resulting in genetic diseases. NMD involves multiple proteins and any alteration or mutation within these proteins results in various pathophysiological consequences. NMD plays a complex role in cancer, it can either aggravate or downregulates the tumour. Some tumours agitate NMD to deteriorate mRNAs encoding tumour suppressor proteins, stress response proteins and neoantigens. In other case, tumours suppress the NMD to encourage the expression of oncoproteins for tumour growth and survival. In this review, we have shed light on the core and associated proteins of NMD, further summarized the mechanism of the NMD pathway and also described the implications of mutations in NMD factors resulting in severe pathological conditions including neurodevelopmental disorder, effects on male sterility and cancer. Understanding the complexities of NMD regulation and its interaction with other cellular processes can lead to the development of new interventions for various diseases. This review summarizes the current understanding of NMD and its role in controlling various cellular processes in both development and disease.
Collapse
Affiliation(s)
- Asish Kumar Patro
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Gagan Kumar Panigrahi
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India.
| | - Sanjoy Majumder
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Rutupurna Das
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India
| | - Annapurna Sahoo
- Department of Zoology, School of Applied Sciences, Centurion University of Technology and Management, Khordha, Odisha, India.
| |
Collapse
|
5
|
Mallick M, Boehm V, Xue G, Blackstone M, Gehring N, Chakrabarti S. Modulation of UPF1 catalytic activity upon interaction of SARS-CoV-2 Nucleocapsid protein with factors involved in nonsense mediated-mRNA decay. Nucleic Acids Res 2024; 52:13325-13339. [PMID: 39360627 PMCID: PMC11602160 DOI: 10.1093/nar/gkae829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/09/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
The RNA genome of the SARS-CoV-2 virus encodes for four structural proteins, 16 non-structural proteins and nine putative accessory factors. A high throughput analysis of interactions between human and SARS-CoV-2 proteins identified multiple interactions of the structural Nucleocapsid (N) protein with RNA processing factors. The N-protein, which is responsible for packaging of the viral genomic RNA was found to interact with two RNA helicases, UPF1 and MOV10 that are involved in nonsense-mediated mRNA decay (NMD). Using a combination of biochemical and biophysical methods, we investigated the interaction of the SARS-CoV-2 N-protein with NMD factors at a molecular level. Our studies led us to identify the core NMD factor, UPF2, as an interactor of N. The viral N-protein engages UPF2 in multipartite interactions and can negate the stimulatory effect of UPF2 on UPF1 catalytic activity. N also inhibits UPF1 ATPase and unwinding activities by competing in binding to the RNA substrate. We further investigate the functional implications of inhibition of UPF1 catalytic activity by N in mammalian cells. The interplay of SARS-CoV-2 N with human UPF1 and UPF2 does not affect decay of host cell NMD targets but might play a role in stabilizing the viral RNA genome.
Collapse
Affiliation(s)
- Megha Mallick
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Guangpu Xue
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Mark Blackstone
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne 50674, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 6, D-14195 Berlin, Germany
| |
Collapse
|
6
|
Patro I, Sahoo A, Nayak BR, Das R, Majumder S, Panigrahi GK. Nonsense-Mediated mRNA Decay: Mechanistic Insights and Physiological Significance. Mol Biotechnol 2024; 66:3077-3091. [PMID: 37930508 DOI: 10.1007/s12033-023-00927-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation. It essentially ensures recognition and removal of aberrant transcripts. Therefore, the NMD protects the cellular system by restricting the synthesis of truncated proteins, potentially by eliminating the faulty mRNAs. NMD is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation as well. Primarily, the NMD machinery scans and differentiates the aberrant and non-aberrant transcripts. A myriad of cellular dysfunctions arise due to production of truncated proteins, so the NMD core proteins, the up-frameshift factors (UPFs) recognizes the faulty mRNAs and further recruits factors resulting in the mRNA degradation. NMD exhibits astounding variability in its ability in regulating cellular mechanisms including both pathological and physiological events. But, the detailed underlying molecular mechanisms in NMD remains blurred and require extensive investigation to gain insights on cellular homeostasis. The complexity in understanding of NMD pathway arises due to the involvement of numerous proteins, molecular interactions and their functioning in different steps of this process. Moreover methods such as alternative splicing generates numerous isoforms of mRNA, so it makes difficulties in understanding the impact of alternative splicing on the efficiency of NMD functioning. Role of NMD in cancer development is very complex. Studies have shown that in some cases cancer cells use NMD pathway as a tool to exploit the NMD mechanism to maintain tumor microenvironment. A greater level of understanding about the intricate mechanism of how tumor used NMD pathway for their benefits, a strategy can be developed for targeting and inhibiting NMD factors involved in pro-tumor activity. There are very little amount of information available about the NMD pathway, how it discriminate mRNAs that are targeted by NMD from those that are not. This review highlights our current understanding of NMD, specifically the regulatory mechanisms and attempts to outline less explored questions that warrant further investigations. Taken as a whole, a detailed molecular understanding of the NMD mechanism could lead to wide-ranging applications for improving cellular homeostasis and paving out strategies in combating pathological disorders leaping forward toward achieving United Nations sustainable development goals (SDG 3: Good health and well-being).
Collapse
Affiliation(s)
- Ipsita Patro
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Annapurna Sahoo
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
| | - Bilash Ranjan Nayak
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Rutupurna Das
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Sanjoy Majumder
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Gagan Kumar Panigrahi
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
| |
Collapse
|
7
|
Yadav P, Tamilselvan R, Mani H, Singh KK. MicroRNA-mediated regulation of nonsense-mediated mRNA decay factors: Insights into microRNA prediction tools and profiling techniques. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195022. [PMID: 38437914 DOI: 10.1016/j.bbagrm.2024.195022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) stands out as a prominent RNA surveillance mechanism within eukaryotes, meticulously overseeing both RNA abundance and integrity by eliminating aberrant transcripts. These defective transcripts are discerned through the concerted efforts of translating ribosomes, eukaryotic release factors (eRFs), and trans-acting NMD factors, with Up-Frameshift 3 (UPF3) serving as a noteworthy component. Remarkably, in humans, UPF3 exists in two paralogous forms, UPF3A (UPF3) and UPF3B (UPF3X). Beyond its role in quality control, UPF3 wields significant influence over critical cellular processes, including neural development, synaptic plasticity, and axon guidance. However, the precise regulatory mechanisms governing UPF3 remain elusive. MicroRNAs (miRNAs) emerge as pivotal post-transcriptional gene regulators, exerting substantial impact on diverse pathological and physiological pathways. This comprehensive review encapsulates our current understanding of the intricate regulatory nexus between NMD and miRNAs, with particular emphasis on the essential role played by UPF3B in neurodevelopment. Additionally, we bring out the significance of the 3'-untranslated region (3'-UTR) as the molecular bridge connecting NMD and miRNA-mediated gene regulation. Furthermore, we provide an in-depth exploration of diverse computational tools tailored for the prediction of potential miRNA targets. To complement these computational approaches, we delineate experimental techniques designed to validate predicted miRNA-mRNA interactions, empowering readers with the knowledge necessary to select the most appropriate methodology for their specific research objectives.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Raja Tamilselvan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Harita Mani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
8
|
Chapman JH, Youle AM, Grimme AL, Neuman K, Hogg J. UPF1 ATPase autoinhibition and activation modulate RNA binding kinetics and NMD efficiency. Nucleic Acids Res 2024; 52:5376-5391. [PMID: 38412299 PMCID: PMC11109973 DOI: 10.1093/nar/gkae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited 'closed' state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active 'open' state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants (i.e. poorly processive, slow, and mechanochemically uncoupled) can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower RNA binding kinetics and enhanced ATP-stimulated RNA dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2 and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.
Collapse
Affiliation(s)
- Joseph H Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice M Youle
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Singh AK. Rules and impacts of nonsense-mediated mRNA decay in the degradation of long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1853. [PMID: 38741356 DOI: 10.1002/wrna.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality-control process that selectively degrades mRNAs having premature termination codon, upstream open reading frame, or unusually long 3'UTR. NMD detects such mRNAs and rapidly degrades them during initial rounds of translation in the eukaryotic cells. Since NMD is a translation-dependent cytoplasmic mRNA surveillance process, the noncoding RNAs were initially believed to be NMD-resistant. The sequence feature-based analysis has revealed that many putative long noncoding RNAs (lncRNAs) have short open reading frames, most of which have translation potential. Subsequent transcriptome-based molecular studies showed an association of a large set of such putative lncRNAs with translating ribosomes, and some of them produce stable and functionally active micropeptides. The translationally active lncRNAs typically have relatively longer and unprotected 3'UTR, which can induce their NMD-dependent degradation. This review defines the mechanism and regulation of NMD-dependent degradation of lncRNAs and its impact on biological processes related to the functions of lncRNAs or their encoded micropeptides. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
10
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
11
|
Colón EM, Haddock LA, Lasalde C, Lin Q, Ramírez-Lugo JS, González CI. Characterization of the mIF4G Domains in the RNA Surveillance Protein Upf2p. Curr Issues Mol Biol 2023; 46:244-261. [PMID: 38248319 PMCID: PMC10814901 DOI: 10.3390/cimb46010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Thirty percent of all mutations causing human disease generate mRNAs with premature termination codons (PTCs). Recognition and degradation of these PTC-containing mRNAs is carried out by the mechanism known as nonsense-mediated mRNA decay (NMD). Upf2 is a scaffold protein known to be a central component of the NMD surveillance pathway. It harbors three middle domains of eukaryotic initiation factor 4G (mIF4G-1, mIF4G-2, mIF4G-3) in its N-terminal region that are potentially important in regulating the surveillance pathway. In this study, we defined regions within the mIF4G-1 and mIF4G-2 that are required for proper function of Upf2p in NMD and translation termination in Saccharomyces cerevisiae. In addition, we narrowed down the activity of these regions to an aspartic acid (D59) in mIF4G-1 that is important for NMD activity and translation termination accuracy. Taken together, these studies suggest that inherently charged residues within mIF4G-1 of Upf2p play a role in the regulation of the NMD surveillance mechanism in S. cerevisiae.
Collapse
Affiliation(s)
- Edgardo M. Colón
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Luis A. Haddock
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Clarivel Lasalde
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
| | - Qishan Lin
- Department of Chemistry, University at Albany, Albany, NY 12222, USA;
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Juan S. Ramírez-Lugo
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
| | - Carlos I. González
- Department of Biology, Río Piedras Campus, University of Puerto Rico, San Juan, PR 00931, USA (C.L.); (J.S.R.-L.)
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| |
Collapse
|
12
|
Burkart V, Kowalski K, Disch A, Hilfiker-Kleiner D, Lal S, Dos Remedios C, Perrot A, Zeug A, Ponimaskin E, Kosanke M, Dittrich-Breiholz O, Kraft T, Montag J. Nonsense mediated decay factor UPF3B is associated with cMyBP-C haploinsufficiency in hypertrophic cardiomyopathy patients. J Mol Cell Cardiol 2023; 185:26-37. [PMID: 37797718 DOI: 10.1016/j.yjmcc.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most prevalent inherited cardiac disease. Up to 40% of cases are associated with heterozygous mutations in myosin binding protein C (cMyBP-C, MYBPC3). Most of these mutations lead to premature termination codons (PTC) and patients show reduction of functional cMyBP-C. This so-called haploinsufficiency most likely contributes to disease development. We analyzed mechanisms underlying haploinsufficiency using cardiac tissue from HCM-patients with truncation mutations in MYBPC3 (MYBPC3trunc). We compared transcriptional activity, mRNA and protein expression to donor controls. To differentiate between HCM-specific and general hypertrophy-induced mechanisms we used patients with left ventricular hypertrophy due to aortic stenosis (AS) as an additional control. We show that cMyBP-C haploinsufficiency starts at the mRNA level, despite hypertrophy-induced increased transcriptional activity. Gene set enrichment analysis (GSEA) of RNA-sequencing data revealed an increased expression of NMD-components. Among them, Up-frameshift protein UPF3B, a regulator of NMD was upregulated in MYBPC3trunc patients and not in AS-patients. Strikingly, we show that in sarcomeres UPF3B but not UPF1 and UPF2 are localized to the Z-discs, the presumed location of sarcomeric protein translation. Our data suggest that cMyBP-C haploinsufficiency in HCM-patients is established by UPF3B-dependent NMD during the initial translation round at the Z-disc.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Alina Disch
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | - Sean Lal
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Cristobal Dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Andreas Perrot
- Charité - Universitätsmedizin Berlin, Experimental & Clinical Research Center, Berlin, Germany
| | - Andre Zeug
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Evgeni Ponimaskin
- Institute of Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | | | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Ma X, Li Y, Chengyan C, Shen Y, Wang H, Li T. Spatial expression of the nonsense-mediated mRNA decay factors UPF3A and UPF3B among mouse tissues. J Zhejiang Univ Sci B 2023; 24:1062-1068. [PMID: 37961809 PMCID: PMC10646394 DOI: 10.1631/jzus.b2300126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/15/2023] [Indexed: 11/15/2023]
Abstract
无义介导的信使RNA(mRNA)降解途径(nonsense-mediated mRNA decay,简称为NMD)是真核生物细胞内一种重要的基因转录后表达调控机制,它积极参与一系列细胞生理和生化过程,控制细胞命运和生命体的组织稳态。NMD的缺陷会导致人类疾病,如神经发育障碍、肿瘤发生和自身免疫疾病等。UPF3 (Up-frameshift protein 3)是一个核心的NMD因子,它最早在酵母中被发现。UPF3A和UPF3B是UPF3在生物进化到脊椎动物阶段出现的两个旁系同源物,在NMD中具有激活或抑制的作用。以往研究发现,UPF3B蛋白几乎在所有哺乳动物器官中均有表达,而UPF3A蛋白在除睾丸外的大多数哺乳动物组织中难以被检测到。解释这一现象的假说为:在NMD途径中,UPF3B具有比UPF3A更高的竞争性结合UPF2的能力,UPF3B和UPF2的结合促使UPF3A成为游离状态,而游离的UPF3A蛋白不稳定且易被降解。此假说提示UPF3A和UPF3B在NMD中存在拮抗作用。在本研究中,我们重新定量评估了UPF3A和UPF3B在野生型成年雄性和雌性小鼠的9个主要组织和生殖器官中的mRNA和蛋白表达,结果证实UPF3A在雄性生殖细胞中表达量最高。令人惊讶的是,我们发现在包括大脑和胸腺在内的大多数组织中,UPF3A与UPF3B的蛋白水平相当,而在小鼠脾、肺组织中,UPF3A表达高于UPF3B。公共基因表达数据进一步支持了上述发现。因此,我们的研究表明了UPF3A是小鼠组织中普遍表达的NMD因子。同时,该研究结果推测:在生理条件下,UPF3A和UPF3B蛋白之间不存在竞争抑制,且UPF3A在多种哺乳动物组织的稳态中发挥重要作用。
Collapse
Affiliation(s)
- Xin Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chen Chengyan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yanmin Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hua Wang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
14
|
Chapman JH, Youle AM, Grimme AL, Neuman KC, Hogg JR. UPF1 ATPase autoinhibition and activation modulate RNA binding kinetics and NMD efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565554. [PMID: 38076847 PMCID: PMC10705565 DOI: 10.1101/2023.11.03.565554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited "closed" state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active "open" state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower nucleic acid binding kinetics and enhanced ATP-stimulated nucleic acid dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2, and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.
Collapse
Affiliation(s)
- Joseph H. Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Alice M. Youle
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Acadia L. Grimme
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Keir C. Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - J. Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
15
|
Monaghan L, Longman D, Cáceres JF. Translation-coupled mRNA quality control mechanisms. EMBO J 2023; 42:e114378. [PMID: 37605642 PMCID: PMC10548175 DOI: 10.15252/embj.2023114378] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.
Collapse
Affiliation(s)
- Laura Monaghan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
16
|
Chen C, Shen Y, Li L, Ren Y, Wang ZQ, Li T. UPF3A is dispensable for nonsense-mediated mRNA decay in mouse pluripotent and somatic cells. Life Sci Alliance 2023; 6:e202201589. [PMID: 36997282 PMCID: PMC10070813 DOI: 10.26508/lsa.202201589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved regulatory mechanism of post-transcriptional gene expression in eukaryotic cells. NMD plays essential roles in mRNA quality and quantity control and thus safeguards multiple biological processes including embryonic stem cell differentiation and organogenesis. UPF3A and UPF3B in vertebrate species, originated from a single UPF3 gene in yeast, are key factors in the NMD machinery. Although UPF3B is a well-recognized weak NMD-promoting factor, whether UPF3A functions in promoting or suppressing NMD is under debate. In this study, we generated a Upf3a conditional knockout mouse strain and established multiple lines of embryonic stem cells and somatic cells without UPF3A. Through extensive analysis on the expressions of 33 NMD targets, we found UPF3A neither represses NMD in mouse embryonic stem cells, somatic cells, nor in major organs including the liver, spleen, and thymus. Our study reinforces that UPF3A is dispensable for NMD when UPF3B is present. Furthermore, UPF3A may weakly and selectively promote NMD in certain murine organs.
Collapse
Affiliation(s)
- Chengyan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanmin Shen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Luqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yaoxin Ren
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Chapman JH, Craig JM, Wang CD, Gundlach JH, Neuman K, Hogg J. UPF1 mutants with intact ATPase but deficient helicase activities promote efficient nonsense-mediated mRNA decay. Nucleic Acids Res 2022; 50:11876-11894. [PMID: 36370101 PMCID: PMC9723629 DOI: 10.1093/nar/gkac1026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
The conserved RNA helicase UPF1 coordinates nonsense-mediated mRNA decay (NMD) by engaging with mRNAs, RNA decay machinery and the terminating ribosome. UPF1 ATPase activity is implicated in mRNA target discrimination and completion of decay, but the mechanisms through which UPF1 enzymatic activities such as helicase, translocase, RNP remodeling, and ATPase-stimulated dissociation influence NMD remain poorly defined. Using high-throughput biochemical assays to quantify UPF1 enzymatic activities, we show that UPF1 is only moderately processive (<200 nt) in physiological contexts and undergoes ATPase-stimulated dissociation from RNA. We combine an in silico screen with these assays to identify and characterize known and novel UPF1 mutants with altered helicase, ATPase, and RNA binding properties. We find that UPF1 mutants with substantially impaired processivity (E797R, G619K/A546H), faster (G619K) or slower (K547P, E797R, G619K/A546H) unwinding rates, and/or reduced mechanochemical coupling (i.e. the ability to harness ATP hydrolysis for work; K547P, R549S, G619K, G619K/A546H) can still support efficient NMD of well-characterized targets in human cells. These data are consistent with a central role for UPF1 ATPase activity in driving cycles of RNA binding and dissociation to ensure accurate NMD target selection.
Collapse
Affiliation(s)
- Joseph H Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Clara D Wang
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Robert Hogg
- To whom correspondence should be addressed. Tel: +1 301 827 0724; Fax: +1 301 451 5459;
| |
Collapse
|
18
|
Embree CM, Abu-Alhasan R, Singh G. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. J Biol Chem 2022; 298:102592. [PMID: 36244451 PMCID: PMC9661723 DOI: 10.1016/j.jbc.2022.102592] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a quality control pathway in eukaryotes that continuously monitors mRNA transcripts to ensure truncated polypeptides are not produced. The expression of many normal mRNAs that encode full-length polypeptides is also regulated by this pathway. Such transcript surveillance by NMD is intimately linked to translation termination. When a ribosome terminates translation at a normal termination codon, NMD is not activated, and mRNA can undergo repeated rounds of translation. On the other hand, when translation termination is deemed abnormal, such as that on a premature termination codon, it leads to a series of poorly understood events involving the NMD pathway, which destabilizes the transcript. In this review, we summarize our current understanding of how the NMD machinery interfaces with the translation termination factors to initiate NMD. We also discuss a variety of cis-acting sequence contexts and trans-acting factors that can cause readthrough, ribosome reinitiation, or ribosome frameshifting at stop codons predicted to induce NMD. These alternative outcomes can lead to the ribosome translating downstream of such stop codons and hence the transcript escaping NMD. NMD escape via these mechanisms can have wide-ranging implications on human health, from being exploited by viruses to hijack host cell systems to being harnessed as potential therapeutic possibilities to treat genetic diseases.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Rabab Abu-Alhasan
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA
| | - Guramrit Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA; Center for RNA Biology, The Ohio State University, Columbus, Ohio USA.
| |
Collapse
|
19
|
Bufton JC, Powers KT, Szeto JYA, Toelzer C, Berger I, Schaffitzel C. Structures of nonsense-mediated mRNA decay factors UPF3B and UPF3A in complex with UPF2 reveal molecular basis for competitive binding and for neurodevelopmental disorder-causing mutation. Nucleic Acids Res 2022; 50:5934-5947. [PMID: 35640974 PMCID: PMC9177958 DOI: 10.1093/nar/gkac421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
UPF3 is a key nonsense-mediated mRNA decay (NMD) factor required for mRNA surveillance and eukaryotic gene expression regulation. UPF3 exists as two paralogs (A and B) which are differentially expressed depending on cell type and developmental stage and believed to regulate NMD activity based on cellular requirements. UPF3B mutations cause intellectual disability. The underlying molecular mechanisms remain elusive, as many of the mutations lie in the poorly characterized middle-domain of UPF3B. Here, we show that UPF3A and UPF3B share structural and functional homology to paraspeckle proteins comprising an RNA-recognition motif-like domain (RRM-L), a NONA/paraspeckle-like domain (NOPS-L), and extended α-helical domain. These domains are essential for RNA/ribosome-binding, RNA-induced oligomerization and UPF2 interaction. Structures of UPF2's third middle-domain of eukaryotic initiation factor 4G (MIF4GIII) in complex with either UPF3B or UPF3A reveal unexpectedly intimate binding interfaces. UPF3B's disease-causing mutation Y160D in the NOPS-L domain displaces Y160 from a hydrophobic cleft in UPF2 reducing the binding affinity ∼40-fold compared to wildtype. UPF3A, which is upregulated in patients with the UPF3B-Y160D mutation, binds UPF2 with ∼10-fold higher affinity than UPF3B reliant mainly on NOPS-L residues. Our characterization of RNA- and UPF2-binding by UPF3's middle-domain elucidates its essential role in NMD.
Collapse
Affiliation(s)
- Joshua C Bufton
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK
| | - Kyle T Powers
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK
| | - Jenn-Yeu A Szeto
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK
| | - Christine Toelzer
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK.,Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK
| | | |
Collapse
|
20
|
Wallmeroth D, Lackmann JW, Kueckelmann S, Altmüller J, Dieterich C, Boehm V, Gehring NH. Human UPF3A and UPF3B enable fault-tolerant activation of nonsense-mediated mRNA decay. EMBO J 2022; 41:e109191. [PMID: 35451084 PMCID: PMC9108619 DOI: 10.15252/embj.2021109191] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
The paralogous human proteins UPF3A and UPF3B are involved in recognizing mRNAs targeted by nonsense‐mediated mRNA decay (NMD). UPF3B has been demonstrated to support NMD, presumably by bridging an exon junction complex (EJC) to the NMD factor UPF2. The role of UPF3A has been described either as a weak NMD activator or an NMD inhibitor. Here, we present a comprehensive functional analysis of UPF3A and UPF3B in human cells using combinatory experimental approaches. Overexpression or knockout of UPF3A as well as knockout of UPF3B did not substantially change global NMD activity. In contrast, the co‐depletion of UPF3A and UPF3B resulted in a marked NMD inhibition and a transcriptome‐wide upregulation of NMD substrates, demonstrating a functional redundancy between both NMD factors. In rescue experiments, UPF2 or EJC binding‐deficient UPF3B largely retained NMD activity. However, combinations of different mutants, including deletion of the middle domain, showed additive or synergistic effects and therefore failed to maintain NMD. Collectively, UPF3A and UPF3B emerge as fault‐tolerant, functionally redundant NMD activators in human cells.
Collapse
Affiliation(s)
- Damaris Wallmeroth
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Sabrina Kueckelmann
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
21
|
Lejeune F. Nonsense-Mediated mRNA Decay, a Finely Regulated Mechanism. Biomedicines 2022; 10:biomedicines10010141. [PMID: 35052820 PMCID: PMC8773229 DOI: 10.3390/biomedicines10010141] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is both a mechanism for rapidly eliminating mRNAs carrying a premature termination codon and a pathway that regulates many genes. This implies that NMD must be subject to regulation in order to allow, under certain physiological conditions, the expression of genes that are normally repressed by NMD. Therapeutically, it might be interesting to express certain NMD-repressed genes or to allow the synthesis of functional truncated proteins. Developing such approaches will require a good understanding of NMD regulation. This review describes the different levels of this regulation in human cells.
Collapse
Affiliation(s)
- Fabrice Lejeune
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France;
- Unité Tumorigenèse et Résistance aux Traitements, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
22
|
Zhang X, Kebaara BW. Nonsense-mediated mRNA decay and metal ion homeostasis and detoxification in Saccharomyces cerevisiae. Biometals 2022; 35:1145-1156. [PMID: 36255607 PMCID: PMC9674712 DOI: 10.1007/s10534-022-00450-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
The highly conserved Nonsense-mediated mRNA decay (NMD) pathway is a translation dependent mRNA degradation pathway. Although NMD is best known for its role in degrading mRNAs with premature termination codons (PTCs) generated during transcription, splicing, or damage to the mRNAs, NMD is now also recognized as a pathway with additional important functions. Notably, NMD precisely regulates protein coding natural mRNAs, hence controlling gene expression within several physiologically significant pathways. Such pathways affected by NMD include nutritional bio-metal homeostasis and metal ion detoxification, as well as crosstalk between these pathways. Here, we focus on the relationships between NMD and various metal homeostasis and detoxification pathways. We review the described role that the NMD pathway plays in magnesium, zinc, iron, and copper homeostasis, as well as cadmium detoxification.
Collapse
Affiliation(s)
- Xinyi Zhang
- grid.252890.40000 0001 2111 2894Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798 USA
| | - Bessie W. Kebaara
- grid.252890.40000 0001 2111 2894Department of Biology, Baylor University, One Bear Place #97388, Waco, TX 76798 USA
| |
Collapse
|
23
|
Molecular Determinants and Specificity of mRNA with Alternatively-Spliced UPF1 Isoforms, Influenced by an Insertion in the 'Regulatory Loop'. Int J Mol Sci 2021; 22:ijms222312744. [PMID: 34884553 PMCID: PMC8657986 DOI: 10.3390/ijms222312744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/25/2023] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway rapidly detects and degrades mRNA containing premature termination codons (PTCs). UP-frameshift 1 (UPF1), the master regulator of the NMD process, has two alternatively-spliced isoforms; one carries 353-GNEDLVIIWLR-363 insertion in the ‘regulatory loop (involved in mRNA binding)’. Such insertion can induce catalytic and/or ATPase activity, as determined experimentally; however, the kinetics and molecular level information are not fully understood. Herein, applying all-atom molecular dynamics, we probe the binding specificity of UPF1 with different GC- and AU-rich mRNA motifs and the influence of insertion to the viable control over UPF1 catalytic activity. Our results indicate two distinct conformations between 1B and RecA2 domains of UPF1: ‘open (isoform_2; without insertion)’ and ‘closed (isoform_1; with insertion)’. These structural movements correspond to an important stacking pattern in mRNA motifs, i.e., absence of stack formation in mRNA, with UPF1 isoform_2 results in the ‘open conformation’. Particularly, for UPF1 isoform_1, the increased distance between 1B and RecA2 domains has resulted in reducing the mRNA–UPF1 interactions. Lower fluctuating GC-rich mRNA motifs have better binding with UPF1, compared with AU-rich sequences. Except CCUGGGG, all other GC-rich motifs formed a 4-stack pattern with UPF1. High occupancy R363, D364, T627, and G862 residues were common binding GC-rich motifs, as were R363, N535, and T627 for the AU-rich motifs. The GC-rich motifs behave distinctly when bound to either of the isoforms; lower stability was observed with UPF1 isoform_2. The cancer-associated UPF1 variants (P533L/T and A839T) resulted in decreased protein–mRNA binding efficiency. Lack of mRNA stacking poses in the UPF1P533T system significantly decreased UPF1-mRNA binding efficiency and increased distance between 1B-RecA2. These novel findings can serve to further inform NMD-associated mechanistic and kinetic studies.
Collapse
|
24
|
Zinshteyn B, Sinha NK, Enam SU, Koleske B, Green R. Translational repression of NMD targets by GIGYF2 and EIF4E2. PLoS Genet 2021; 17:e1009813. [PMID: 34665823 PMCID: PMC8555832 DOI: 10.1371/journal.pgen.1009813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/29/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Translation of messenger RNAs (mRNAs) with premature termination codons produces truncated proteins with potentially deleterious effects. This is prevented by nonsense-mediated mRNA decay (NMD) of these mRNAs. NMD is triggered by ribosomes terminating upstream of a splice site marked by an exon-junction complex (EJC), but also acts on many mRNAs lacking a splice junction after their termination codon. We developed a genome-wide CRISPR flow cytometry screen to identify regulators of mRNAs with premature termination codons in K562 cells. This screen recovered essentially all core NMD factors and suggested a role for EJC factors in degradation of PTCs without downstream splicing. Among the strongest hits were the translational repressors GIGYF2 and EIF4E2. GIGYF2 and EIF4E2 mediate translational repression but not mRNA decay of a subset of NMD targets and interact with NMD factors genetically and physically. Our results suggest a model wherein recognition of a stop codon as premature can lead to its translational repression through GIGYF2 and EIF4E2.
Collapse
Affiliation(s)
- Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Niladri K. Sinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Syed Usman Enam
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Benjamin Koleske
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Terrey M, Adamson SI, Chuang JH, Ackerman SL. Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. eLife 2021; 10:e66904. [PMID: 33899734 PMCID: PMC8075583 DOI: 10.7554/elife.66904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
Translation-dependent quality control pathways such as no-go decay (NGD), non-stop decay (NSD), and nonsense-mediated decay (NMD) govern protein synthesis and proteostasis by resolving non-translating ribosomes and preventing the production of potentially toxic peptides derived from faulty and aberrant mRNAs. However, how translation is altered and the in vivo defects that arise in the absence of these pathways are poorly understood. Here, we show that the NGD/NSD factors Pelo and Hbs1l are critical in mice for cerebellar neurogenesis but expendable for survival of these neurons after development. Analysis of mutant mouse embryonic fibroblasts revealed translational pauses, alteration of signaling pathways, and translational reprogramming. Similar effects on signaling pathways, including mTOR activation, the translatome and mouse cerebellar development were observed upon deletion of the NMD factor Upf2. Our data reveal that these quality control pathways that function to mitigate errors at distinct steps in translation can evoke similar cellular responses.
Collapse
Affiliation(s)
- Markus Terrey
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
- Graduate School of Biomedical Sciences and Engineering, University of MaineOronoUnited States
| | - Scott I Adamson
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| |
Collapse
|
26
|
Deka B, Chandra P, Singh KK. Functional roles of human Up-frameshift suppressor 3 (UPF3) proteins: From nonsense-mediated mRNA decay to neurodevelopmental disorders. Biochimie 2020; 180:10-22. [PMID: 33132159 DOI: 10.1016/j.biochi.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/03/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a post-transcriptional quality control mechanism that eradicates aberrant transcripts from cells. Aberrant transcripts are recognized by translating ribosomes, eRFs, and trans-acting NMD factors leading to their degradation. The trans-factors are conserved among eukaryotes and consist of UPF1, UPF2, and UPF3 proteins. Intriguingly, in humans, UPF3 exists as paralog proteins, UPF3A, and UPF3B. While UPF3 paralogs are traditionally known to be involved in the NMD pathway, there is a growing consensus that there are other critical cellular functions beyond quality control that are dictated by the UPF3 proteins. This review presents the current knowledge on the biochemical functions of UPF3 paralogs in diverse cellular processes, including NMD, translation, and genetic compensation response. We also discuss the contribution of the UPF3 paralogs in development and function of the central nervous system and germ cells. Furthermore, significant advances in the past decade have provided new perspectives on the implications of UPF3 paralogs in neurodevelopmental diseases. In this regard, genome- and transcriptome-wide sequencing analysis of patient samples revealed that loss of UPF3B is associated with brain disorders such as intellectual disability, autism, attention deficit hyperactivity disorder, and schizophrenia. Therefore, we further aim to provide an insight into the brain diseases associated with loss-of-function mutations of UPF3B.
Collapse
Affiliation(s)
- Bhagyashree Deka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
27
|
The Branched Nature of the Nonsense-Mediated mRNA Decay Pathway. Trends Genet 2020; 37:143-159. [PMID: 33008628 DOI: 10.1016/j.tig.2020.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved translation-coupled quality control mechanism in all eukaryotes that regulates the expression of a significant fraction of both the aberrant and normal transcriptomes. In vertebrates, NMD has become an essential process owing to expansion of the diversity of NMD-regulated transcripts, particularly during various developmental processes. Surprisingly, however, some core NMD factors that are essential for NMD in simpler organisms appear to be dispensable for vertebrate NMD. At the same time, numerous NMD enhancers and suppressors have been identified in multicellular organisms including vertebrates. Collectively, the available data suggest that vertebrate NMD is a complex, branched pathway wherein individual branches regulate specific mRNA subsets to fulfill distinct physiological functions.
Collapse
|
28
|
Longman D, Jackson-Jones KA, Maslon MM, Murphy LC, Young RS, Stoddart JJ, Hug N, Taylor MS, Papadopoulos DK, Cáceres JF. Identification of a localized nonsense-mediated decay pathway at the endoplasmic reticulum. Genes Dev 2020; 34:1075-1088. [PMID: 32616520 PMCID: PMC7397857 DOI: 10.1101/gad.338061.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
Nonsense-mediated decay (NMD) is a translation-dependent RNA quality control mechanism that occurs in the cytoplasm. However, it is unknown how NMD regulates the stability of RNAs translated at the endoplasmic reticulum (ER). Here, we identify a localized NMD pathway dedicated to ER-translated mRNAs. We previously identified NBAS, a component of the Syntaxin 18 complex involved in Golgi-to-ER trafficking, as a novel NMD factor. Furthermore, we show that NBAS fulfills an independent function in NMD. This ER-NMD pathway requires the interaction of NBAS with the core NMD factor UPF1, which is partially localized at the ER in the proximity of the translocon. NBAS and UPF1 coregulate the stability of ER-associated transcripts, in particular those associated with the cellular stress response. We propose a model where NBAS recruits UPF1 to the membrane of the ER and activates an ER-dedicated NMD pathway, thus providing an ER-protective function by ensuring quality control of ER-translated mRNAs.
Collapse
Affiliation(s)
- Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kathryn A Jackson-Jones
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Magdalena M Maslon
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Robert S Young
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Jack J Stoddart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nele Hug
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Martin S Taylor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Dimitrios K Papadopoulos
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
29
|
Michalak M, Katzenmaier EM, Roeckel N, Woerner SM, Fuchs V, Warnken U, Yuan YP, Bork P, Neu-Yilik G, Kulozik A, von Knebel Doeberitz M, Kloor M, Kopitz J, Gebert J. (Phospho)proteomic Profiling of Microsatellite Unstable CRC Cells Reveals Alterations in Nuclear Signaling and Cholesterol Metabolism Caused by Frameshift Mutation of NMD Regulator UPF3A. Int J Mol Sci 2020; 21:ijms21155234. [PMID: 32718059 PMCID: PMC7432364 DOI: 10.3390/ijms21155234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
DNA mismatch repair-deficient colorectal cancers (CRCs) accumulate numerous frameshift mutations at repetitive sequences recognized as microsatellite instability (MSI). When coding mononucleotide repeats (cMNRs) are affected, tumors accumulate frameshift mutations and premature termination codons (PTC) potentially leading to truncated proteins. Nonsense-mediated RNA decay (NMD) can degrade PTC-containing transcripts and protect from such faulty proteins. As it also regulates normal transcripts and cellular physiology, we tested whether NMD genes themselves are targets of MSI frameshift mutations. A high frequency of cMNR frameshift mutations in the UPF3A gene was found in MSI CRC cell lines (67.7%), MSI colorectal adenomas (55%) and carcinomas (63%). In normal colonic crypts, UPF3A expression was restricted to single chromogranin A-positive cells. SILAC-based proteomic analysis of KM12 CRC cells revealed UPF3A-dependent down-regulation of several enzymes involved in cholesterol biosynthesis. Furthermore, reconstituted UPF3A expression caused alterations of 85 phosphosites in 52 phosphoproteins. Most of them (38/52, 73%) reside in nuclear phosphoproteins involved in regulation of gene expression and RNA splicing. Since UPF3A mutations can modulate the (phospho)proteomic signature and expression of enzymes involved in cholesterol metabolism in CRC cells, UPF3A may influence other processes than NMD and loss of UPF3A expression might provide a growth advantage to MSI CRC cells.
Collapse
Affiliation(s)
- Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Department of Pediatric Oncology, Hematology and Immunology, Children’s Hospital, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Eva-Maria Katzenmaier
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
| | - Nina Roeckel
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
| | - Stefan M. Woerner
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Department of Internal Medicine I, Endocrinology and Metabolism, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Vera Fuchs
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, DKFZ (German Cancer Research Center), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
| | - Yan P. Yuan
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany;
| | - Peer Bork
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany;
- Max-Delbrück-Centre for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Department of Pediatric Oncology, Hematology and Immunology, Children’s Hospital, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Andreas Kulozik
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Department of Pediatric Oncology, Hematology and Immunology, Children’s Hospital, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; (M.M.); (E.-M.K.); (N.R.); (V.F.); (M.v.K.D.); (M.K.); (J.K.)
- Molecular Medicine Partnership Unit, Medical Faculty of the University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany; (S.M.W.); (P.B.); (G.N.-Y.); (A.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-564223
| |
Collapse
|
30
|
Lavysh D, Neu-Yilik G. UPF1-Mediated RNA Decay-Danse Macabre in a Cloud. Biomolecules 2020; 10:E999. [PMID: 32635561 PMCID: PMC7407380 DOI: 10.3390/biom10070999] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is the prototype example of a whole family of RNA decay pathways that unfold around a common central effector protein called UPF1. While NMD in yeast appears to be a linear pathway, NMD in higher eukaryotes is a multifaceted phenomenon with high variability with respect to substrate RNAs, degradation efficiency, effector proteins and decay-triggering RNA features. Despite increasing knowledge of the mechanistic details, it seems ever more difficult to define NMD and to clearly distinguish it from a growing list of other UPF1-mediated RNA decay pathways (UMDs). With a focus on mammalian, we here critically examine the prevailing NMD models and the gaps and inconsistencies in these models. By exploring the minimal requirements for NMD and other UMDs, we try to elucidate whether they are separate and definable pathways, or rather variations of the same phenomenon. Finally, we suggest that the operating principle of the UPF1-mediated decay family could be considered similar to that of a computing cloud providing a flexible infrastructure with rapid elasticity and dynamic access according to specific user needs.
Collapse
Affiliation(s)
- Daria Lavysh
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany;
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
- Department Clinical Pediatric Oncology, Hopp Kindertumorzentrum am NCT Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany;
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
- Department Clinical Pediatric Oncology, Hopp Kindertumorzentrum am NCT Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
31
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
32
|
Insights into the assembly and architecture of a Staufen-mediated mRNA decay (SMD)-competent mRNP. Nat Commun 2019; 10:5054. [PMID: 31699982 PMCID: PMC6838198 DOI: 10.1038/s41467-019-13080-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian Staufen proteins (Stau1 and Stau2) mediate degradation of mRNA containing complex secondary structures in their 3’-untranslated region (UTR) through a pathway known as Staufen-mediated mRNA decay (SMD). This pathway also involves the RNA helicase UPF1, which is best known for its role in the nonsense-mediated mRNA decay (NMD) pathway. Here we present a biochemical reconstitution of the recruitment and activation of UPF1 in context of the SMD pathway. We demonstrate the involvement of UPF2, a core NMD factor and a known activator of UPF1, in SMD. UPF2 acts as an adaptor between Stau1 and UPF1, stimulates the catalytic activity of UPF1 and plays a central role in the formation of an SMD-competent mRNP. Our study elucidates the molecular mechanisms of SMD and points towards extensive cross-talk between UPF1-mediated mRNA decay pathways in cells. The Staufen proteins recognize secondary structures in 3’-untranslated regions in mRNA transcripts and induce degradation of these mRNAs with the help of the RNA helicase UPF1. Here the authors report that the nonsense-mediated mRNA decay factor UPF2 mediates the interaction between Stau1 and UPF1 in Staufen-mediated mRNA decay.
Collapse
|
33
|
Hong D, Park T, Jeong S. Nuclear UPF1 Is Associated with Chromatin for Transcription-Coupled RNA Surveillance. Mol Cells 2019; 42:523-529. [PMID: 31234619 PMCID: PMC6681869 DOI: 10.14348/molcells.2019.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
mRNA quality is controlled by multiple RNA surveillance machineries to reduce errors during gene expression processes in eukaryotic cells. Nonsense-mediated mRNA decay (NMD) is a well-characterized mechanism that degrades error-containing transcripts during translation. The ATP-dependent RNA helicase up-frameshift 1 (UPF1) is a key player in NMD that is mostly prevalent in the cytoplasm. However, recent studies on UPF1-RNA interaction suggest more comprehensive roles of UPF1 on diverse forms of target transcripts. Here we used subcellular fractionation and immunofluorescence to understand such complex functions of UPF1. We demonstrated that UPF1 can be localized to the nucleus and predominantly associated with the chromatin. Moreover, we showed that UPF1 associates more strongly with the chromatin when the transcription elongation and translation inhibitors were used. These findings suggest a novel role of UPF1 in transcription elongation-coupled RNA machinery in the chromatin, as well as in translation-coupled NMD in the cytoplasm. Thus, we propose that cytoplasmic UPF1-centric RNA surveillance mechanism could be extended further up to the chromatin-associated UPF1 and cotranscriptional RNA surveillance. Our findings could provide the mechanistic insights on extensive regulatory roles of UPF1 for many cellular RNAs.
Collapse
Affiliation(s)
- Dawon Hong
- Graduate Department of Bioconvergence Science and Technology, Dankook University, Yongin 16892,
Korea
| | - Taeyoung Park
- Graduate Department of Bioconvergence Science and Technology, Dankook University, Yongin 16892,
Korea
| | - Sunjoo Jeong
- Graduate Department of Bioconvergence Science and Technology, Dankook University, Yongin 16892,
Korea
| |
Collapse
|
34
|
Kishor A, Fritz SE, Hogg JR. Nonsense-mediated mRNA decay: The challenge of telling right from wrong in a complex transcriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1548. [PMID: 31131562 DOI: 10.1002/wrna.1548] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
The nonsense-mediated mRNA decay pathway selects and degrades its targets using a dense network of RNA-protein and protein-protein interactions. Together, these interactions allow the pathway to collect copious information about the translating mRNA, including translation termination status, splice junction positions, mRNP composition, and 3'UTR length and structure. The core NMD machinery, centered on the RNA helicase UPF1, integrates this information to determine the efficiency of decay. A picture of NMD is emerging in which many factors contribute to the dynamics of decay complex assembly and disassembly, thereby influencing the probability of decay. The ability of the NMD pathway to recognize mRNP features of diverse potential substrates allows it to simultaneously perform quality control and regulatory functions. In vertebrates, increased transcriptome complexity requires balance between these two functions since high NMD efficiency is desirable for maintenance of quality control fidelity but may impair expression of normal mRNAs. NMD has adapted to this challenge by employing mechanisms to enhance identification of certain potential substrates, while using sequence-specific RNA-binding proteins to shield others from detection. These elaborations on the conserved NMD mechanism permit more sensitive post-transcriptional gene regulation but can have severe deleterious consequences, including the failure to degrade pathogenic aberrant mRNAs in many B cell lymphomas. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Sarah E Fritz
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Kim YK, Maquat LE. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA (NEW YORK, N.Y.) 2019; 25:407-422. [PMID: 30655309 PMCID: PMC6426291 DOI: 10.1261/rna.070136.118] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nonsense-mediated mRNA decay (NMD), which is arguably the best-characterized translation-dependent regulatory pathway in mammals, selectively degrades mRNAs as a means of post-transcriptional gene control. Control can be for the purpose of ensuring the quality of gene expression. Alternatively, control can facilitate the adaptation of cells to changes in their environment. The key to NMD, no matter what its purpose, is the ATP-dependent RNA helicase upstream frameshift 1 (UPF1), without which NMD fails to occur. However, UPF1 does much more than regulate NMD. As examples, UPF1 is engaged in functionally diverse mRNA decay pathways mediated by a variety of RNA-binding proteins that include staufen, stem-loop-binding protein, glucocorticoid receptor, and regnase 1. Moreover, UPF1 promotes tudor-staphylococcal/micrococcal-like nuclease-mediated microRNA decay. In this review, we first focus on how the NMD machinery recognizes an NMD target and triggers mRNA degradation. Next, we compare and contrast the mechanisms by which UPF1 functions in the decay of other mRNAs and also in microRNA decay. UPF1, as a protein polymath, engenders cells with the ability to shape their transcriptome in response to diverse biological and physiological needs.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
36
|
Karousis ED, Mühlemann O. Nonsense-Mediated mRNA Decay Begins Where Translation Ends. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032862. [PMID: 29891560 DOI: 10.1101/cshperspect.a032862] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is arguably the best-studied eukaryotic messenger RNA (mRNA) surveillance pathway, yet fundamental questions concerning the molecular mechanism of target RNA selection remain unsolved. Besides degrading defective mRNAs harboring premature termination codons (PTCs), NMD also targets many mRNAs encoding functional full-length proteins. Thus, NMD impacts on a cell's transcriptome and is implicated in a range of biological processes that affect a broad spectrum of cellular homeostasis. Here, we focus on the steps involved in the recognition of NMD targets and the activation of NMD. We summarize the accumulating evidence that tightly links NMD to translation termination and we further discuss the recruitment and activation of the mRNA degradation machinery and the regulation of this complex series of events. Finally, we review emerging ideas concerning the mechanistic details of NMD activation and the potential role of NMD as a general surveyor of translation efficacy.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
37
|
Ma Q, Tatsuno T, Nakamura Y, Izumi S, Tomosugi N, Ishigaki Y. Immuno‐detection of mRNA‐binding protein complex in human cells under transmission electron microscopy. Microsc Res Tech 2019; 82:680-688. [DOI: 10.1002/jemt.23214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Qingfeng Ma
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
- Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Takanori Tatsuno
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
| | - Yuka Nakamura
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
| | - Shin‐Ichi Izumi
- Department of Cell Biology, Unit of Biomedical SciencesNagasaki University Graduate School of Biomedical Sciences Sakamoto Nagasaki Japan
| | - Naohisa Tomosugi
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
- Medical Care Proteomics Biotechnology Co., Ltd. Uchinada Kahoku Japan
| | - Yasuhito Ishigaki
- Medical Research InstituteKanazawa Medical University Uchinada Kahoku Japan
| |
Collapse
|
38
|
Karamyshev AL, Karamysheva ZN. Lost in Translation: Ribosome-Associated mRNA and Protein Quality Controls. Front Genet 2018; 9:431. [PMID: 30337940 PMCID: PMC6180196 DOI: 10.3389/fgene.2018.00431] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant, misfolded, and mislocalized proteins are often toxic to cells and result in many human diseases. All proteins and their mRNA templates are subject to quality control. There are several distinct mechanisms that control the quality of mRNAs and proteins during translation at the ribosome. mRNA quality control systems, nonsense-mediated decay, non-stop decay, and no-go decay detect premature stop codons, the absence of a natural stop codon, and stalled ribosomes in translation, respectively, and degrade their mRNAs. Defective truncated polypeptide nascent chains generated from faulty mRNAs are degraded by ribosome-associated protein quality control pathways. Regulation of aberrant protein production, a novel pathway, senses aberrant proteins by monitoring the status of nascent chain interactions during translation and triggers degradation of their mRNA. Here, we review the current progress in understanding of the molecular mechanisms of mRNA and protein quality controls at the ribosome during translation.
Collapse
Affiliation(s)
- Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zemfira N Karamysheva
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
39
|
Chicois C, Scheer H, Garcia S, Zuber H, Mutterer J, Chicher J, Hammann P, Gagliardi D, Garcia D. The UPF1 interactome reveals interaction networks between RNA degradation and translation repression factors in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:119-132. [PMID: 29983000 DOI: 10.1111/tpj.14022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
The RNA helicase UP-FRAMESHIFT (UPF1) is a key factor of nonsense-mediated decay (NMD), a mRNA decay pathway involved in RNA quality control and in the fine-tuning of gene expression. UPF1 recruits UPF2 and UPF3 to constitute the NMD core complex, which is conserved across eukaryotes. No other components of UPF1-containing ribonucleoproteins (RNPs) are known in plants, despite its key role in regulating gene expression. Here, we report the identification of a large set of proteins that co-purify with the Arabidopsis UPF1, either in an RNA-dependent or RNA-independent manner. We found that like UPF1, several of its co-purifying proteins have a dual localization in the cytosol and in P-bodies, which are dynamic structures formed by the condensation of translationally repressed mRNPs. Interestingly, more than half of the proteins of the UPF1 interactome also co-purify with DCP5, a conserved translation repressor also involved in P-body formation. We identified a terminal nucleotidyltransferase, ribonucleases and several RNA helicases among the most significantly enriched proteins co-purifying with both UPF1 and DCP5. Among these, RNA helicases are the homologs of DDX6/Dhh1, known as translation repressors in humans and yeast, respectively. Overall, this study reports a large set of proteins associated with the Arabidopsis UPF1 and DCP5, two components of P-bodies, and reveals an extensive interaction network between RNA degradation and translation repression factors. Using this resource, we identified five hitherto unknown components of P-bodies in plants, pointing out the value of this dataset for the identification of proteins potentially involved in translation repression and/or RNA degradation.
Collapse
Affiliation(s)
- Clara Chicois
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Shahïnez Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Jérôme Mutterer
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| | - Damien Garcia
- Institut de biologie moléculaire des plantes (IBMP), CNRS, Université de Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
40
|
NMD-degradome sequencing reveals ribosome-bound intermediates with 3'-end non-templated nucleotides. Nat Struct Mol Biol 2018; 25:940-950. [PMID: 30275517 DOI: 10.1038/s41594-018-0132-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/08/2018] [Indexed: 11/08/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) controls mRNA quality and degrades physiologic mRNAs to fine-tune gene expression in changing developmental or environmental milieus. NMD requires that its targets are removed from the translating pool of mRNAs. Since the decay steps of mammalian NMD remain unknown, we developed assays to isolate and sequence direct NMD decay intermediates transcriptome-wide based on their co-immunoprecipitation with phosphorylated UPF1, which is the active form of this essential NMD factor. We show that, unlike steady-state UPF1, phosphorylated UPF1 binds predominantly deadenylated mRNA decay intermediates and activates NMD cooperatively from 5'- and 3'-ends. We leverage method modifications to characterize the 3'-ends of NMD decay intermediates, show that they are ribosome-bound, and reveal that some are subject to the addition of non-templated nucleotide. Uridines are added by TUT4 and TUT7 terminal uridylyl transferases and removed by the Perlman syndrome-associated exonuclease DIS3L2. The addition of other non-templated nucleotides appears to inhibit decay.
Collapse
|
41
|
Rao S, Amorim R, Niu M, Temzi A, Mouland AJ. The RNA surveillance proteins UPF1, UPF2 and SMG6 affect HIV-1 reactivation at a post-transcriptional level. Retrovirology 2018; 15:42. [PMID: 29954456 PMCID: PMC6022449 DOI: 10.1186/s12977-018-0425-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/06/2018] [Indexed: 11/24/2022] Open
Abstract
Background The ability of human immunodeficiency virus type 1 (HIV-1) to form a stable viral reservoir is the major obstacle to an HIV-1 cure and post-transcriptional events contribute to the maintenance of viral latency. RNA surveillance proteins such as UPF1, UPF2 and SMG6 affect RNA stability and metabolism. In our previous work, we demonstrated that UPF1 stabilises HIV-1 genomic RNA (vRNA) and enhances its translatability in the cytoplasm. Thus, in this work we evaluated the influence of RNA surveillance proteins on vRNA expression and, as a consequence, viral reactivation in cells of the lymphoid lineage. Methods Quantitative fluorescence in situ hybridisation—flow cytometry (FISH-flow), si/shRNA-mediated depletions and Western blotting were used to characterise the roles of RNA surveillance proteins on HIV-1 reactivation in a latently infected model T cell line and primary CD4+ T cells. Results UPF1 was found to be a positive regulator of viral reactivation, with a depletion of UPF1 resulting in impaired vRNA expression and viral reactivation. UPF1 overexpression also modestly enhanced vRNA expression and its ATPase activity and N-terminal domain were necessary for this effect. UPF2 and SMG6 were found to negatively influence viral reactivation, both via an interaction with UPF1. UPF1 knockdown also resulted in reduced vRNA levels and viral gene expression in HIV-1-infected primary CD4+ T cells. Conclusion Overall, these data suggest that RNA surveillance proteins affect HIV-1 gene expression at a post-transcriptional level. An elucidation of the role of vRNA metabolism on the maintenance of HIV-1 persistence can lead to the development of novel curative strategies. Electronic supplementary material The online version of this article (10.1186/s12977-018-0425-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC, H3T 1E2, Canada.,Department of Medicine, McGill University, Montreal, QC, H3A 0G4, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Abdelkrim Temzi
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC, H3T 1E2, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC, H3T 1E2, Canada. .,Department of Microbiology and Immunology, McGill University, Montreal, QC, H3A 2B4, Canada. .,Department of Medicine, McGill University, Montreal, QC, H3A 0G4, Canada.
| |
Collapse
|
42
|
MacDonald CC, Grozdanov PN. Nonsense in the testis: multiple roles for nonsense-mediated decay revealed in male reproduction. Biol Reprod 2018; 96:939-947. [PMID: 28444146 PMCID: PMC5803779 DOI: 10.1093/biolre/iox033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/20/2017] [Indexed: 01/23/2023] Open
Abstract
Nonsense-mediated mRNA decay, or NMD, is a quality control mechanism that identifies cytoplasmic mRNAs containing translational termination (stop) codons in specific contexts—either premature termination codons or unusually long 3΄ untranslated regions (UTRs)—and targets them for degradation. In recent studies, researchers in different labs have knocked out important genes involved in NMD, the up-frameshift genes Upf2 and Upf3a, and one component of chromatoid bodies, the Tudor domain-containing protein Tdrd6, and examined the consequences for spermatogenesis. Disruption of Upf2 during early stages of spermatogenesis resulted in disappearance of nearly all spermatogenic cells through loss of NMD. However, disruption of Upf2 during postmeiotic stages resulted in decreased long 3΄ UTR-mediated NMD but no interruption of exon junction-associated NMD. This difference in NMD targeting is possibly due to increased expression of Upf3a in postmeiotic germ cells that antagonizes the functions of Upf3b and somehow favors long 3΄ UTR-mediated NMD. Tying these all together, loss of Tdrd6, a structural component of the germ cell-specific cytoplasmic structures called chromatoid bodies, also resulted in loss of long 3΄ UTR-mediated NMD by interfering with UPF1/UPF2 interactions, delocalizing UPF1, and destroying chromatoid body integrity. These results suggest that chromatoid bodies play a specialized role in modulating the NMD machinery in postmeiotic spermatids.
Collapse
Affiliation(s)
- Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
- Correspondence: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA. Tel: +1-806-743-2524; Fax: +1-806-743-2990; E-mail:
| | - Petar N. Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
43
|
Gupta P, Li YR. Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay. Mol Biol Rep 2017; 45:39-55. [PMID: 29282598 DOI: 10.1007/s11033-017-4139-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/14/2017] [Indexed: 11/28/2022]
Abstract
Over 10% of genetic diseases are caused by mutations that introduce a premature termination codon in protein-coding mRNA. Nonsense-mediated mRNA decay (NMD) is an essential cellular pathway that degrades these mRNAs to prevent the accumulation of harmful partial protein products. NMD machinery is also increasingly appreciated to play a role in other essential cellular functions, including telomere homeostasis and the regulation of normal mRNA turnover, and is misregulated in numerous cancers. Hence, understanding and designing therapeutics targeting NMD is an important goal in biomedical science. The central regulator of NMD, the Upf1 protein, interacts with translation termination factors and contextual factors to initiate NMD specifically on mRNAs containing PTCs. The molecular details of how these contextual factors affect Upf1 function remain poorly understood. Here, we review plausible models for the NMD pathway and the evidence for the variety of roles NMD machinery may play in different cellular processes.
Collapse
Affiliation(s)
- Puneet Gupta
- Harvard College, Harvard University, Cambridge, MA, 02138, USA.,School of Arts and Sciences, St. Bonaventure University, St. Bonaventure, NY, 14778, USA
| | - Yan-Ruide Li
- Harvard Medical School, Harvard University, Boston, MA, 02115, USA. .,College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Dehghani-Tafti S, Sanders CM. DNA substrate recognition and processing by the full-length human UPF1 helicase. Nucleic Acids Res 2017; 45:7354-7366. [PMID: 28541562 PMCID: PMC5499549 DOI: 10.1093/nar/gkx478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro. Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence.
Collapse
Affiliation(s)
- Saba Dehghani-Tafti
- Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| | - Cyril M Sanders
- Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| |
Collapse
|
45
|
Jia J, Werkmeister E, Gonzalez-Hilarion S, Leroy C, Gruenert DC, Lafont F, Tulasne D, Lejeune F. Premature termination codon readthrough in human cells occurs in novel cytoplasmic foci and requires UPF proteins. J Cell Sci 2017; 130:3009-3022. [PMID: 28743738 DOI: 10.1242/jcs.198176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
Nonsense-mutation-containing messenger ribonucleoprotein particles (mRNPs) transit through cytoplasmic foci called P-bodies before undergoing nonsense-mediated mRNA decay (NMD), a cytoplasmic mRNA surveillance mechanism. This study shows that the cytoskeleton modulates transport of nonsense-mutation-containing mRNPs to and from P-bodies. Impairing the integrity of cytoskeleton causes inhibition of NMD. The cytoskeleton thus plays a crucial role in NMD. Interestingly, disruption of actin filaments results in both inhibition of NMD and activation of premature termination codon (PTC) readthrough, while disruption of microtubules causes only NMD inhibition. Activation of PTC readthrough occurs concomitantly with the appearance of cytoplasmic foci containing UPF proteins and mRNAs with nonsense mutations but lacking the P-body marker DCP1a. These findings demonstrate that in human cells, PTC readthrough occurs in novel 'readthrough bodies' and requires the presence of UPF proteins.
Collapse
Affiliation(s)
- Jieshuang Jia
- Univ. Lille, UMR8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France.,CNRS, UMR 8161, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Elisabeth Werkmeister
- Institut Pasteur de Lille, 59000 Lille, France.,Cellular Microbiology and Physics of Infection group - Center for Infection and Immunity of Lille, Univ. Lille, 59019 Lille, France.,CNRS, UMR8204, 59019 Lille, France.,Inserm, U1019, 59019 Lille, France.,CHU de Lille, 59000 Lille, France
| | | | - Catherine Leroy
- Univ. Lille, UMR8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France.,CNRS, UMR 8161, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Dieter C Gruenert
- Department of Otolaryngology-Head and Neck Surgery, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, Institute for Human Genetics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Pediatrics, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Frank Lafont
- CNRS, UMR8204, 59019 Lille, France.,Inserm, U1019, 59019 Lille, France.,CHU de Lille, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - David Tulasne
- Univ. Lille, UMR8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France.,CNRS, UMR 8161, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Fabrice Lejeune
- Univ. Lille, UMR8161 - M3T - Mechanisms of Tumorigenesis and Target Therapies, 59000 Lille, France .,CNRS, UMR 8161, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| |
Collapse
|
46
|
Elbarbary RA, Miyoshi K, Hedaya O, Myers JR, Maquat LE. UPF1 helicase promotes TSN-mediated miRNA decay. Genes Dev 2017; 31:1483-1493. [PMID: 28827400 PMCID: PMC5588929 DOI: 10.1101/gad.303537.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/24/2017] [Indexed: 12/22/2022]
Abstract
While microRNAs (miRNAs) regulate the vast majority of protein-encoding transcripts, little is known about how miRNAs themselves are degraded. We recently described Tudor-staphylococcal/micrococcal-like nuclease (TSN)-mediated miRNA decay (TumiD) as a cellular pathway in which the nuclease TSN promotes the decay of miRNAs that contain CA and/or UA dinucleotides. While TSN-mediated degradation of either protein-free or AGO2-loaded miRNAs does not require the ATP-dependent RNA helicase UPF1 in vitro, we report here that cellular TumiD requires UPF1. Results from experiments using AGO2-loaded miRNAs in duplex with target mRNAs indicate that UPF1 can dissociate miRNAs from their mRNA targets, making the miRNAs susceptible to TumiD. miR-seq (deep sequencing of miRNAs) data reveal that the degradation of ∼50% of candidate TumiD targets in T24 human urinary bladder cancer cells is augmented by UPF1. We illustrate the physiological relevance by demonstrating that UPF1-augmented TumiD promotes the invasion of T24 cells in part by degrading anti-invasive miRNAs so as to up-regulate the expression of proinvasive proteins.
Collapse
Affiliation(s)
- Reyad A Elbarbary
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Keita Miyoshi
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Omar Hedaya
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester, Rochester, New York 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
47
|
Deka B, Singh KK. Multifaceted Regulation of Gene Expression by the Apoptosis- and Splicing-Associated Protein Complex and Its Components. Int J Biol Sci 2017; 13:545-560. [PMID: 28539829 PMCID: PMC5441173 DOI: 10.7150/ijbs.18649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
The differential deposition of RNA-binding proteins (RBPs) on pre-mRNA mediates the processes of gene expression. One of the complexes containing RBPs that play a crucial part in RNA metabolism is the apoptosis-and splicing-associated protein (ASAP) complex. In this review, we present a summary of the structure of ASAP complex and its localization. Also, we discuss the findings by different groups on various functions of the subunits of the ASAP complex in RNA metabolism. The subunits of the ASAP complex are RNPS1, Acinus and SAP18. Originally, the ASAP complex was thought to link RNA processing with apoptosis. Further studies have shown the role of these components in RNA metabolism of cells, including transcription, splicing, translation and nonsense-mediated mRNA decay (NMD). In transcription, RNPS1 is involved in preventing the formation of R-loop, while Acinus and SAP18 suppress transcription with the help of histone deacetylase. On the one hand, individual components of the ASAP complex, namely RNPS1 and Acinus act as splicing activators, whereas on the other hand, in-vitro assay shows that the ASAP complex behaves as splicing repressor. In addition, the individual members of the ASAP complex associates with the exon junction complex (EJC) to play roles in splicing and translation. RNPS1 increases the translation efficiency by participating in the 3'end processing and polysome association of mRNAs. Similarly, during NMD RNPS1 aids in the recruitment of decay factors by interacting with EJC.
Collapse
Affiliation(s)
| | - Kusum Kumari Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
48
|
Jones SH, Wilkinson M. RNA decay, evolution, and the testis. RNA Biol 2017; 14:146-155. [PMID: 27911186 PMCID: PMC5324745 DOI: 10.1080/15476286.2016.1265199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/16/2016] [Accepted: 11/19/2016] [Indexed: 01/23/2023] Open
Abstract
NMD is a highly conserved pathway that degrades specific subsets of RNAs. There is increasing evidence for roles of NMD in development. In this commentary, we focus on spermatogenesis, a process dramatically impeded upon loss or disruption of NMD. NMD requires strict regulation for normal spermatogenesis, as loss of a newly discovered NMD repressor, UPF3A, also causes spermatogenic defects, most prominently during meiosis. We discuss the unusual evolution of UPF3A, whose paralog, UPF3B, has the opposite biochemical function and acts in brain development. We also discuss the regulation of NMD during germ cell development, including in chromatoid bodies, which are specifically found in haploid germ cells. The ability of NMD to coordinately degrade batteries of RNAs in a regulated fashion during development is akin to the action of transcriptional pathways, yet has the advantage of driving rapid changes in gene expression.
Collapse
Affiliation(s)
- Samantha H. Jones
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miles Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries. Viruses 2016; 8:v8110320. [PMID: 27886048 PMCID: PMC5127034 DOI: 10.3390/v8110320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus type-1 (HIV-1) unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs) containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1), Staufen double-stranded RNA binding protein 1/2 (STAU1/2), or components of miRNA-induced silencing complex (miRISC) and processing bodies (PBs). More recently, the HIV-1 unspliced mRNA was shown to contain N⁶-methyladenosine (m⁶A), allowing the recruitment of YTH N⁶-methyladenosine RNA binding protein 2 (YTHDF2), an m⁶A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.
Collapse
|
50
|
Maity A, Chaudhuri A, Das B. DRN and TRAMP degrade specific and overlapping aberrant mRNAs formed at various stages of mRNP biogenesis inSaccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow088. [DOI: 10.1093/femsyr/fow088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
|