1
|
Borkar SA, Yin L, Venturi GM, Shen J, Chang KF, Fischer BM, Nepal U, Raplee ID, Sleasman JW, Goodenow MM. Youth Who Control HIV on Antiretroviral Therapy Display Unique Plasma Biomarkers and Cellular Transcriptome Profiles Including DNA Repair and RNA Processing. Cells 2025; 14:285. [PMID: 39996757 PMCID: PMC11853983 DOI: 10.3390/cells14040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Combination antiretroviral therapy (ART) suppresses detectible HIV-1 replication, but latent reservoirs and persistent immune activation contribute to residual viral-associated morbidities and potential viral reactivation. youth with HIV (YWH) virally suppressed on ART early in infection before CD4 T cell decline with fewer comorbidities compared to adults represent a critical population for identifying markers associated with viral control and predictors of viral breakthrough. This study employed a multi-omics approach to evaluate plasma biomarkers and cellular gene expression profiles in 52 participants, including 27 YWH on ART for 144 weeks and 25 youth with no infection (NI) (ages 18-24). Among the 27 YWH, 19 were virally suppressed (VS; <50 RNA copies/mL), while eight were non-suppressed (VNS; >50 RNA copies/mL). VS YWH displayed unique bioprofiles distinct from either VNS or NI. Early viral suppression mitigates inflammatory pathways and normalizes key biomarkers associated with HIV-related comorbidities. Genes upregulated in pathways linked to cellular homeostasis such as DNA repair, RNA processing, and transcription regulation may diminish viral breakthrough and maintain sustained HIV control on ART. Candidate markers and putative molecular mechanisms were identified, offering potential therapeutic targets to limit viral persistence, enhance HIV treatment strategies, and pave the way for improved clinical outcomes.
Collapse
Affiliation(s)
- Samiksha A. Borkar
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Li Yin
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Guglielmo M. Venturi
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (G.M.V.); (B.M.F.); (J.W.S.)
| | - Jerry Shen
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Kai-Fen Chang
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Bernard M. Fischer
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (G.M.V.); (B.M.F.); (J.W.S.)
| | - Upasana Nepal
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - Isaac D. Raplee
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| | - John W. Sleasman
- Division of Allergy and Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA; (G.M.V.); (B.M.F.); (J.W.S.)
| | - Maureen M. Goodenow
- Molecular HIV and Host Interactions Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20894, USA; (L.Y.); (J.S.); (K.-F.C.); (U.N.); (I.D.R.); (M.M.G.)
| |
Collapse
|
2
|
Sato C, Sugiyama M, Mori T, Nishino S, Tao K, Ogawa C, Yoshida A. Pediatric Mesenchymal Tumor With MN1::TAF3 Fusion. Genes Chromosomes Cancer 2024; 63:e70009. [PMID: 39545712 DOI: 10.1002/gcc.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/24/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
MN1 fusion is emerging as oncogenic in soft-tissue tumors. Here, we provided detailed clinicopathological documentation of a tumor with MN1::TAF3 fusion. The tumor developed on the face of an 8-year-old boy and did not recur or metastasize for 5 years after surgery without adjuvant therapy. Histologically, the tumor predominantly comprised sheets and nests of atypical, mildly pleomorphic epithelioid cells. Mallory body-like eosinophilic cytoplasmic inclusions, small round cells, and fascicles of spindle cells were focally observed. Mitotic activity was high, and focal necrosis was present. Immunohistochemically, the tumor was positive for cytokeratin AE1/AE3 in the epithelioid cell component but otherwise showed nonspecific phenotypes. Targeted RNA sequencing identified an in-frame MN1 (exon 1)::TAF3 (exon 3) fusion transcript. We validated the transcript with reverse transcription-polymerase chain reaction, Sanger sequencing, and MN1 break-apart fluorescence in situ hybridization. MN1::TAF3 was previously listed without details in a large-scale sequencing study involving a pediatric round cell sarcoma in the orbit, raising the possibility that these tumors might form a coherent group.
Collapse
Affiliation(s)
- Chikako Sato
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Department of Laboratory Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Masanaka Sugiyama
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shogo Nishino
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kayoko Tao
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chitose Ogawa
- Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Kim SH, Haynes KA. Reader-Effectors as Actuators of Epigenome Editing. Methods Mol Biol 2024; 2842:103-127. [PMID: 39012592 DOI: 10.1007/978-1-0716-4051-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Epigenome editing applications are gaining broader use for targeted transcriptional control as more enzymes with diverse chromatin-modifying functions are being incorporated into fusion proteins. Development of these fusion proteins, called epigenome editors, has outpaced the study of proteins that interact with edited chromatin. One type of protein that acts downstream of chromatin editing is the reader-effector, which bridges epigenetic marks with biological effects like gene regulation. As the name suggests, a reader-effector protein is generally composed of a reader domain and an effector domain. Reader domains directly bind epigenetic marks, while effector domains often recruit protein complexes that mediate transcription, chromatin remodeling, and DNA repair. In this chapter, we discuss the role of reader-effectors in driving the outputs of epigenome editing and highlight instances where abnormal and context-specific reader-effectors might impair the effects of epigenome editing. Lastly, we discuss how engineered reader-effectors may complement the epigenome editing toolbox to achieve robust and reliable gene regulation.
Collapse
Affiliation(s)
- Seong Hu Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
TFIID dependency of steady-state mRNA transcription altered epigenetically by simultaneous functional loss of Taf1 and Spt3 is Hsp104-dependent. PLoS One 2023; 18:e0281233. [PMID: 36757926 PMCID: PMC9910645 DOI: 10.1371/journal.pone.0281233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
In Saccharomyces cerevisiae, class II gene promoters have been divided into two subclasses, TFIID- and SAGA-dominated promoters or TFIID-dependent and coactivator-redundant promoters, depending on the experimental methods used to measure mRNA levels. A prior study demonstrated that Spt3, a TBP-delivering subunit of SAGA, functionally regulates the PGK1 promoter via two mechanisms: by stimulating TATA box-dependent transcriptional activity and conferring Taf1/TFIID independence. However, only the former could be restored by plasmid-borne SPT3. In the present study, we sought to determine why ectopically expressed SPT3 is unable to restore Taf1/TFIID independence to the PGK1 promoter, identifying that this function was dependent on the construction protocol for the SPT3 taf1 strain. Specifically, simultaneous functional loss of Spt3 and Taf1 during strain construction was a prerequisite to render the PGK1 promoter Taf1/TFIID-dependent in this strain. Intriguingly, genetic approaches revealed that an as-yet unidentified trans-acting factor reprogrammed the transcriptional mode of the PGK1 promoter from the Taf1/TFIID-independent state to the Taf1/TFIID-dependent state. This factor was generated in the haploid SPT3 taf1 strain in an Hsp104-dependent manner and inherited meiotically in a non-Mendelian fashion. Furthermore, RNA-seq analyses demonstrated that this factor likely affects the transcription mode of not only the PGK1 promoter, but also of many other class II gene promoters. Collectively, these findings suggest that a prion or biomolecular condensate is generated in a Hsp104-dependent manner upon simultaneous functional loss of TFIID and SAGA, and could alter the roles of these transcription complexes on a wide variety of class II gene promoters without altering their primary sequences. Therefore, these findings could provide the first evidence that TFIID dependence of class II gene transcription can be altered epigenetically, at least in Saccharomyces cerevisiae.
Collapse
|
5
|
The Plant Homeodomain Protein Clp1 Regulates Fungal Development, Virulence, and Autophagy Homeostasis in Magnaporthe oryzae. Microbiol Spectr 2022; 10:e0102122. [PMID: 36036638 PMCID: PMC9602895 DOI: 10.1128/spectrum.01021-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is a serious threat to global grain yield and food security. Cti6 is a nuclear protein containing a plant homeodomain (PHD) that is involved in transcriptional regulation in Saccharomyces cerevisiae. The biological function of its homologous protein in M. oryzae has been elusive. Here, we report Clp1 with a PHD domain in M. oryzae, a homologous protein of the yeast Cti6. Clp1 was mainly located in the nucleus and partly in the vesicles. Clp1 colocalized and interacted with the autophagy-related proteins Atg5, Atg7, Atg16, Atg24, and Atg28 at preautophagosomal structures (PAS) and autophagosomes, and the loss of Clp1 increased the fungal background autophagy level. Δclp1 displayed reduced hyphal growth and hyperbranching, abnormal fungal morphology (including colony, spore, and appressorium), hindered appressorial glycogen metabolism and turgor production, weakened plant infection, and decreased virulence. The PHD is indispensable for the function of Clp1. Therefore, this study revealed that Clp1 regulates development and pathogenicity by maintaining autophagy homeostasis and affecting gene transcription in M. oryzae. IMPORTANCE The fungal pathogen Magnaporthe oryzae causes serious diseases of grasses such as rice and wheat. Autophagy plays an indispensable role in the pathogenic process of M. oryzae. Here, we report a Cti6-like protein, Clp1, that is involved in fungal development and infection of plants through controlling autophagy homeostasis in the cytoplasm and gene transcription in the nucleus in M. oryzae. This study will help us to understand an elaborated molecular mechanism of autophagy, gene transcription, and virulence in the rice blast fungus.
Collapse
|
6
|
Chan J, Kumar A, Kono H. RNAPII driven post-translational modifications of nucleosomal histones. Trends Genet 2022; 38:1076-1095. [PMID: 35618507 DOI: 10.1016/j.tig.2022.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
Abstract
The current understanding of how specific distributions of histone post-translational modifications (PTMs) are achieved throughout the chromatin remains incomplete. This review focuses on the role of RNA polymerase II (RNAPII) in establishing H2BK120/K123 ubiquitination and H3K4/K36 methylation distribution. The rate of RNAPII transcription is mainly a function of the RNAPII elongation and recruitment rates. Two major mechanisms link RNAPII's transcription rate to the distribution of PTMs. First, the phosphorylation patterns of Ser2P/Ser5P in the C-terminal domain of RNAPII change as a function of time, since the start of elongation, linking them to the elongation rate. Ser2P/Ser5P recruits specific histone PTM enzymes/activators to the nucleosome. Second, multiple rounds of binding and catalysis by the enzymes are required to establish higher methylations (H3K4/36me3). Thus, methylation states are determined by the transcription rate. In summary, the first mechanism determines the location of methylations in the gene, while the second mechanism determines the methylation state.
Collapse
Affiliation(s)
- Justin Chan
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Team, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| |
Collapse
|
7
|
Understanding the interplay between CpG island-associated gene promoters and H3K4 methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194567. [PMID: 32360393 PMCID: PMC7294231 DOI: 10.1016/j.bbagrm.2020.194567] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
The precise regulation of gene transcription is required to establish and maintain cell type-specific gene expression programs during multicellular development. In addition to transcription factors, chromatin, and its chemical modification, play a central role in regulating gene expression. In vertebrates, DNA is pervasively methylated at CG dinucleotides, a modification that is repressive to transcription. However, approximately 70% of vertebrate gene promoters are associated with DNA elements called CpG islands (CGIs) that are refractory to DNA methylation. CGIs integrate the activity of a range of chromatin-regulating factors that can post-translationally modify histones and modulate gene expression. This is exemplified by the trimethylation of histone H3 at lysine 4 (H3K4me3), which is enriched at CGI-associated gene promoters and correlates with transcriptional activity. Through studying H3K4me3 at CGIs it has become clear that CGIs shape the distribution of H3K4me3 and, in turn, H3K4me3 influences the chromatin landscape at CGIs. Here we will discuss our understanding of the emerging relationship between CGIs, H3K4me3, and gene expression.
Collapse
|
8
|
Antonova SV, Boeren J, Timmers HTM, Snel B. Epigenetics and transcription regulation during eukaryotic diversification: the saga of TFIID. Genes Dev 2019; 33:888-902. [PMID: 31123066 PMCID: PMC6672047 DOI: 10.1101/gad.300475.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this perspective, Antonova et al. determine the evolutionary history of all TFIID subunits and place them in a functional context to understand their diversification. This analysis of TFIID evolution exemplifies how phylogenetic protein interrogation aids in uncovering existing structures, drawing parallels between related complexes and challenges offered by genome expansions that can be countered by exploiting chromatin modifications. The basal transcription factor TFIID is central for RNA polymerase II-dependent transcription. Human TFIID is endowed with chromatin reader and DNA-binding domains and protein interaction surfaces. Fourteen TFIID TATA-binding protein (TBP)-associated factor (TAF) subunits assemble into the holocomplex, which shares subunits with the Spt–Ada–Gcn5–acetyltransferase (SAGA) coactivator. Here, we discuss the structural and functional evolution of TFIID and its divergence from SAGA. Our orthologous tree and domain analyses reveal dynamic gains and losses of epigenetic readers, plant-specific functions of TAF1 and TAF4, the HEAT2-like repeat in TAF2, and, importantly, the pre-LECA origin of TFIID and SAGA. TFIID evolution exemplifies the dynamic plasticity in transcription complexes in the eukaryotic lineage.
Collapse
Affiliation(s)
- Simona V Antonova
- Molecular Cancer Research and Regenerative Medicine, University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Jeffrey Boeren
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, The Netherlands
| | - H T Marc Timmers
- Molecular Cancer Research and Regenerative Medicine, University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands.,Department of Urology, Medical Centre-University of Freiburg, 79106 Freiburg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK) Standort Freiburg, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
9
|
Kolesnikova O, Ben-Shem A, Luo J, Ranish J, Schultz P, Papai G. Molecular structure of promoter-bound yeast TFIID. Nat Commun 2018; 9:4666. [PMID: 30405110 PMCID: PMC6220335 DOI: 10.1038/s41467-018-07096-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 01/29/2023] Open
Abstract
Transcription preinitiation complex assembly on the promoters of protein encoding genes is nucleated in vivo by TFIID composed of the TATA-box Binding Protein (TBP) and 13 TBP-associate factors (Tafs) providing regulatory and chromatin binding functions. Here we present the cryo-electron microscopy structure of promoter-bound yeast TFIID at a resolution better than 5 Å, except for a flexible domain. We position the crystal structures of several subunits and, in combination with cross-linking studies, describe the quaternary organization of TFIID. The compact tri lobed architecture is stabilized by a topologically closed Taf5-Taf6 tetramer. We confirm the unique subunit stoichiometry prevailing in TFIID and uncover a hexameric arrangement of Tafs containing a histone fold domain in the Twin lobe. Transcription preinitiation complex assembly begins with the recognition of the gene promoter by the TATA-box Binding Protein-containing TFIID complex. Here the authors present a Cryo-EM structure of promoter-bound yeast TFIID complex, providing a detailed view of its subunit organization and promoter DNA contacts.
Collapse
Affiliation(s)
- Olga Kolesnikova
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Université de Strasbourg, Illkirch, 67404, France
| | - Adam Ben-Shem
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France.,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.,Université de Strasbourg, Illkirch, 67404, France
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jeff Ranish
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Patrick Schultz
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France. .,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. .,Université de Strasbourg, Illkirch, 67404, France.
| | - Gabor Papai
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France. .,Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France. .,Université de Strasbourg, Illkirch, 67404, France.
| |
Collapse
|
10
|
|
11
|
Fromm M, Avramova Z. ATX1/AtCOMPASS and the H3K4me3 marks: how do they activate Arabidopsis genes? CURRENT OPINION IN PLANT BIOLOGY 2014; 21:75-82. [PMID: 25047977 DOI: 10.1016/j.pbi.2014.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/26/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Despite the proven correlation between gene transcriptional activity and the levels of tri-methyl marks on histone 3 lysine4 (H3K4me3) of their nucleosomes, whether H3K4me3 contributes to, or 'registers', activated transcription is still controversial. Other questions of broad relevance are whether histone-modifying proteins are involved in the recruitment of Pol II and the general transcription machinery and whether they have roles other than their enzyme activities. We address these questions as well as the roles of the ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1), of the COMPASS-related (AtCOMPASS) protein complex, and of their product, H3K4me3, at ATX1-dependent genes. We suggest that the ambiguity about the role of H3K4me3 as an activating mark is due to the unknown duality of the ATX1/AtCOMPASS to facilitate PIC assembly and to generate H3K4me3, which is essential for activating transcriptional elongation.
Collapse
Affiliation(s)
- Michael Fromm
- Department of Agronomy and Plant Science Innovation, UNL, Lincoln, NE 68588-6008, USA
| | - Zoya Avramova
- School of Biological Science, UNL, Lincoln, NE 68588-6008, USA.
| |
Collapse
|
12
|
Alpern D, Langer D, Ballester B, Le Gras S, Romier C, Mengus G, Davidson I. TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation. eLife 2014; 3:e03613. [PMID: 25209997 PMCID: PMC4359380 DOI: 10.7554/elife.03613] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/09/2014] [Indexed: 12/25/2022] Open
Abstract
The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. In this study, we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4–TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A–TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation. DOI:http://dx.doi.org/10.7554/eLife.03613.001 To decode the information contained within a gene, a number of processes need to occur. For example, the DNA sequence that makes up the gene needs to be copied to make a molecule of RNA, which is then translated to build the corresponding protein. The first steps in the manufacture of RNA involve a structure called a ‘pre-initiation complex’ moving an enzyme called RNA polymerase II to the start of the gene that needs to be copied. The pre-initiation complex is made up of many types of protein, including a set of proteins called TAFs. However, the way that these proteins work in mammals is not well understood. There are good reasons for this: proteins are often studied by seeing what happens when the protein is removed, but many TAFs are so important that removing them is lethal. Alpern et al. have now studied the function of TAF4 by removing this protein from mouse liver cells. This causes severe hypoglycemia (that is, a drop in sugar levels in the blood). Moreover, it seems as if these cells start dying before they become fully mature. In liver cells lacking TAF4, some 1408 genes that are normally turned on just after birth are not properly switched on; these genes are necessary for the metabolic functions of the liver. Furthermore, 776 genes that are normally turned off after birth continue to be expressed. It seems that the absence of TAF4 sometimes disrupts the formation of the pre-initiation complex, which would slow down the production of RNA. However, it can also have the opposite effect by increasing the activity of RNA polymerase II, hence making too many copies of RNA from some genes. Alpern et al. also find that TAF4 is needed to allow a protein called HNF4A, which is important in the development of the liver and in controlling metabolism, to interact with over 7000 important DNA sequences. Mutations in HNF4A are responsible for a syndrome known as Maturity Onset of Diabetes in the Young. The next stage in this work will be to explore if these mutations influence the interaction between HNF4A and TAF4, and if they do, whether these changes contribute to this form of diabetes. DOI:http://dx.doi.org/10.7554/eLife.03613.002
Collapse
Affiliation(s)
- Daniil Alpern
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Diana Langer
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Benoit Ballester
- Laboratoire TAGC, Aix-Marseille Université, UMR1090, Marseille, France
| | - Stephanie Le Gras
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Christophe Romier
- Department of Integrated Structural Biology, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Gabrielle Mengus
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| |
Collapse
|
13
|
Chen D, Enroth S, Ivansson E, Gyllensten U. Pathway analysis of cervical cancer genome-wide association study highlights the MHC region and pathways involved in response to infection. Hum Mol Genet 2014; 23:6047-60. [PMID: 24934695 DOI: 10.1093/hmg/ddu304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cervical cancer is caused by infection with human papillomavirus (HPV). A genome-wide association study (GWAS) has identified several susceptibility loci for cervical cancer, but they explain only a small fraction of cervical cancer heritability. Other variants with weaker effect may be missed due to the stringent significance threshold. To identify important pathways in cervical carcinogenesis, we performed a two-stage pathway analysis in two independent GWASs in the Swedish population, using the single-nucleotide polymorphism (SNP) ratio test. The 565 predefined pathways from Kyoto Encyclopedia of Genes and Genomes and BioCarta databases were systematically evaluated in the discovery stage (1034 cases and 3948 controls with 632,668 SNPs) and the suggestive pathways were further validated in the replication stage (616 cases and 506 controls with 341,358 SNPs). We found 12 pathways that were significant in both stages, and these were further validated using set-based analysis. For 10 of these pathways, the effect was mainly due to genetic variation within the major histocompatibility complex (MHC) region. In addition, we identified a set of novel candidate genes outside the MHC region in the pathways denoted 'Staphylococcus aureus infection' and 'herpes simplex infection' that influenced susceptibility to cervical cancer (empirical P = 4.99 × 10(-5) and 4.99 × 10(-5) in the discovery study; empirical P = 8.98 × 10(-5) and 0.009 in the replication study, respectively). Staphylococcus aureus infection may evoke an inflammatory response that inadvertently enhances malignant progression caused by HPV infection, and Herpes simplex virus-2 infection may act in conjunction with HPV infection to increase the risk of cervical carcinoma development. These findings provide new insights into the etiology of cervical cancer.
Collapse
Affiliation(s)
- Dan Chen
- Department of Immunology, Genetics and Pathology, Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Emma Ivansson
- Department of Immunology, Genetics and Pathology, IMBIM, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden and
| | | |
Collapse
|
14
|
Wagner T, Robaa D, Sippl W, Jung M. Mind the Methyl: Methyllysine Binding Proteins in Epigenetic Regulation. ChemMedChem 2014; 9:466-83. [DOI: 10.1002/cmdc.201300422] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Indexed: 11/07/2022]
|
15
|
Durand A, Papai G, Schultz P. Structure, assembly and dynamics of macromolecular complexes by single particle cryo-electron microscopy. J Nanobiotechnology 2013; 11 Suppl 1:S4. [PMID: 24565374 PMCID: PMC4028798 DOI: 10.1186/1477-3155-11-s1-s4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins in their majority act rarely as single entities. Multisubunit macromolecular complexes are the actors in most of the cellular processes. These nanomachines are hold together by weak protein-protein interactions and undergo functionally important conformational changes. TFIID is such a multiprotein complex acting in eukaryotic transcription initiation. This complex is first to be recruited to the promoter of the genes and triggers the formation of the transcription preinitiation complex involving RNA polymerase II which leads to gene transcription. The exact role of TFIID in this process is not yet understood. METHODS Last generation electron microscopes, improved data collection and new image analysis tools made it possible to obtain structural information of biological molecules at atomic resolution. Cryo-electron microscopy of vitrified samples visualizes proteins in a fully hydrated, close to native state. Molecular images are recorded at liquid nitrogen temperature in low electron dose conditions to reduce radiation damage. Digital image analysis of these noisy images aims at improving the signal-to-noise ratio, at separating distinct molecular views and at reconstructing a three-dimensional model of the biological particle. RESULTS Using these methods we showed the early events of an activated transcription initiation process. We explored the interaction of the TFIID coactivator with the yeast Rap1 activator, the transcription factor TFIIA and the promoter DNA. We demonstrated that TFIID serves as an assembly platform for transient protein-protein interactions, which are essential for transcription initiation. CONCLUSIONS Recent developments in electron microscopy have provided new insights into the structural organization and the dynamic reorganization of large macromolecular complexes. Examples of near-atomic resolutions exist but the molecular flexibility of macromolecular complexes remains the limiting factor in most case. Electron microscopy has the potential to provide both structural and dynamic information of biological assemblies in order to understand the molecular mechanisms of their functions.
Collapse
|
16
|
Pistis G, Okonkwo SU, Traglia M, Sala C, Shin SY, Masciullo C, Buetti I, Massacane R, Mangino M, Thein SL, Spector TD, Ganesh S, Pirastu N, Gasparini P, Soranzo N, Camaschella C, Hart D, Green MR, Toniolo D. Genome wide association analysis of a founder population identified TAF3 as a gene for MCHC in humans. PLoS One 2013; 8:e69206. [PMID: 23935956 PMCID: PMC3729833 DOI: 10.1371/journal.pone.0069206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
The red blood cell related traits are highly heritable but their genetics are poorly defined. Only 5-10% of the total observed variance is explained by the genetic loci found to date, suggesting that additional loci should be searched using approaches alternative to large meta analysis. GWAS (Genome Wide Association Study) for red blood cell traits in a founder population cohort from Northern Italy identified a new locus for mean corpuscular hemoglobin concentration (MCHC) in the TAF3 gene. The association was replicated in two cohorts (rs1887582, P = 4.25E-09). TAF3 encodes a transcription cofactor that participates in core promoter recognition complex, and is involved in zebrafish and mouse erythropoiesis. We show here that TAF3 is required for transcription of the SPTA1 gene, encoding alpha spectrin, one of the proteins that link the plasma membrane to the actin cytoskeleton. Mutations in SPTA1 are responsible for hereditary spherocytosis, a monogenic disorder of MCHC, as well as for the normal MCHC level. Based on our results, we propose that TAF3 is required for normal erythropoiesis in human and that it might have a role in controlling the ratio between hemoglobin (Hb) and cell volume and in the dynamics of RBC maturation in healthy individuals. Finally, TAF3 represents a potential candidate or a modifier gene for disorders of red cell membrane.
Collapse
Affiliation(s)
- Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milano, Italy
| | - Shawntel U. Okonkwo
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milano, Italy
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milano, Italy
| | - So-Youn Shin
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Corrado Masciullo
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milano, Italy
| | - Iwan Buetti
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milano, Italy
| | | | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom
| | - Swee-Lay Thein
- Department of Molecular Hematology, King’s College London, London, United Kingdom
| | - Timothy D. Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom
| | - Santhi Ganesh
- Division of Cardiovascular Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States of America
| | - Nicola Pirastu
- Medical Genetics, Department of Reproductive Sciences and Development, University of Trieste, Trieste, Italy
| | - Paolo Gasparini
- Medical Genetics, Department of Reproductive Sciences and Development, University of Trieste, Trieste, Italy
- Medical Genetics, Department of Laboratory Medicine, Institute for Maternal and Child Health IRCCS-Burlo Garofolo, Trieste, Italy
| | - Nicole Soranzo
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Department of Twin Research & Genetic Epidemiology, King's College London, London, United Kingdom
| | - Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milano, Italy
| | - Daniel Hart
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, Program in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael R. Green
- Howard Hughes Medical Institute, Program in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milano, Italy
- Institute of Molecular Genetics-CNR, Pavia, Italy
| |
Collapse
|
17
|
Lauberth SM, Nakayama T, Wu X, Ferris AL, Tang Z, Hughes SH, Roeder RG. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 2013; 152:1021-36. [PMID: 23452851 DOI: 10.1016/j.cell.2013.01.052] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/31/2012] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
Abstract
Histone modifications regulate chromatin-dependent processes, yet the mechanisms by which they contribute to specific outcomes remain unclear. H3K4me3 is a prominent histone mark that is associated with active genes and promotes transcription through interactions with effector proteins that include initiation factor TFIID. We demonstrate that H3K4me3-TAF3 interactions direct global TFIID recruitment to active genes, some of which are p53 targets. Further analyses show that (1) H3K4me3 enhances p53-dependent transcription by stimulating preinitiation complex (PIC) formation; (2) H3K4me3, through TAF3 interactions, can act either independently or cooperatively with the TATA box to direct PIC formation and transcription; and (3) H3K4me3-TAF3/TFIID interactions regulate gene-selective functions of p53 in response to genotoxic stress. Our findings indicate a mechanism by which H3K4me3 directs PIC assembly for the rapid induction of specific p53 target genes.
Collapse
Affiliation(s)
- Shannon M Lauberth
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Structural bioinformatics of the general transcription factor TFIID. Biochimie 2013; 95:680-91. [DOI: 10.1016/j.biochi.2012.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022]
|
19
|
Jiao S, Hsu L, Berndt S, Bézieau S, Brenner H, Buchanan D, Caan BJ, Campbell PT, Carlson CS, Casey G, Chan AT, Chang-Claude J, Chanock S, Conti DV, Curtis KR, Duggan D, Gallinger S, Gruber SB, Harrison TA, Hayes RB, Henderson BE, Hoffmeister M, Hopper JL, Hudson TJ, Hutter CM, Jackson RD, Jenkins MA, Kantor ED, Kolonel LN, Küry S, Le Marchand L, Lemire M, Newcomb PA, Potter JD, Qu C, Rosse SA, Schoen RE, Schumacher FR, Seminara D, Slattery ML, Ulrich CM, Zanke BW, Peters U. Genome-wide search for gene-gene interactions in colorectal cancer. PLoS One 2012; 7:e52535. [PMID: 23300701 PMCID: PMC3530500 DOI: 10.1371/journal.pone.0052535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/15/2012] [Indexed: 12/28/2022] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified a number of single-nucleotide polymorphisms (SNPs) associated with colorectal cancer (CRC) risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG) is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI). With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10−4). For the known locus rs10795668 (10p14), we found an interacting SNP rs367615 (5q21) with replication p = 0.01 and combined p = 4.19×10−8. Among the top marginal SNPs after LD pruning (n = 163), we identified an interaction between rs1571218 (20p12.3) and rs10879357 (12q21.1) (nominal combined p = 2.51×10−6; Bonferroni adjusted p = 0.03). Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.
Collapse
Affiliation(s)
- Shuo Jiao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu M, Shu HB. MLL1/WDR5 complex in leukemogenesis and epigenetic regulation. CHINESE JOURNAL OF CANCER 2012; 30:240-6. [PMID: 21439245 PMCID: PMC4013350 DOI: 10.5732/cjc.011.10055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MLL1 is a histone H3Lys4 methyltransferase and forms a complex with WDR5 and other components. It plays important roles in developmental events, transcriptional regulation, and leukemogenesis. MLL1 -fusion proteins resulting from chromosomal translocations are molecular hallmarks of a special type of leukemia, which occurs in over 70% infant leukemia patients and often accompanies poor prognosis. Investigations in the past years on leukemogenesis and the MLL1-WDR5 histone H3Lys4 methyltransferase complex demonstrate that epigenetic regulation is one of the key steps in development and human diseases.
Collapse
Affiliation(s)
- Min Wu
- College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | | |
Collapse
|
21
|
Scheer E, Delbac F, Tora L, Moras D, Romier C. TFIID TAF6-TAF9 complex formation involves the HEAT repeat-containing C-terminal domain of TAF6 and is modulated by TAF5 protein. J Biol Chem 2012; 287:27580-92. [PMID: 22696218 DOI: 10.1074/jbc.m112.379206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The general transcription factor TFIID recognizes specifically the core promoter of genes transcribed by eukaryotic RNA polymerase II, nucleating the assembly of the preinitiation complex at the transcription start site. However, the understanding in molecular terms of TFIID assembly and function remains poorly understood. Histone fold motifs have been shown to be extremely important for the heterodimerization of many TFIID subunits. However, these subunits display several evolutionary conserved noncanonical features when compared with histones, including additional regions whose role is unknown. Here we show that the conserved additional C-terminal region of TFIID subunit TAF6 can be divided into two domains: a small middle domain (TAF6M) and a large C-terminal domain (TAF6C). Our crystal structure of the TAF6C domain from Antonospora locustae at 1.9 Å resolution reveals the presence of five conserved HEAT repeats. Based on these data, we designed several mutants that were introduced into full-length human TAF6. Surprisingly, the mutants affect the interaction between TAF6 and TAF9, suggesting that the formation of the complex between these two TFIID subunits do not only depend on their histone fold motifs. In addition, the same mutants affect even more strongly the interaction between TAF6 and TAF9 in the context of a TAF5-TAF6-TAF9 complex. Expression of these mutants in HeLa cells reveals that most of them are unstable, suggesting their poor incorporation within endogenous TFIID. Taken together, our results suggest that the conserved additional domains in histone fold-containing subunits of TFIID and of co-activator SAGA are important for the assembly of these complexes.
Collapse
Affiliation(s)
- Elisabeth Scheer
- Département de Biologie Intégrative, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UDS), CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | | | | | | | | |
Collapse
|
22
|
Liu Z, Scannell DR, Eisen MB, Tjian R. Control of embryonic stem cell lineage commitment by core promoter factor, TAF3. Cell 2011; 146:720-31. [PMID: 21884934 PMCID: PMC3191068 DOI: 10.1016/j.cell.2011.08.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/06/2011] [Accepted: 08/03/2011] [Indexed: 11/26/2022]
Abstract
Deciphering the molecular basis of pluripotency is fundamental to our understanding of development and embryonic stem cell function. Here, we report that TAF3, a TBP-associated core promoter factor, is highly enriched in ES cells. In this context, TAF3 is required for endoderm lineage differentiation and prevents premature specification of neuroectoderm and mesoderm. In addition to its role in the core promoter recognition complex TFIID, genome-wide binding studies reveal that TAF3 localizes to a subset of chromosomal regions bound by CTCF/cohesin that are selectively associated with genes upregulated by TAF3. Notably, CTCF directly recruits TAF3 to promoter distal sites and TAF3-dependent DNA looping is observed between the promoter distal sites and core promoters occupied by TAF3/CTCF/cohesin. Together, our findings support a new role of TAF3 in mediating long-range chromatin regulatory interactions that safeguard the finely-balanced transcriptional programs underlying pluripotency.
Collapse
Affiliation(s)
- Zhe Liu
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Devin R. Scannell
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael B. Eisen
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA 94720, USA
- LKS Bio-medical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
23
|
Functional synthetic Antennapedia genes and the dual roles of YPWM motif and linker size in transcriptional activation and repression. Proc Natl Acad Sci U S A 2011; 108:11959-64. [PMID: 21712439 DOI: 10.1073/pnas.1108686108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary--whereas the entire N terminus of the protein is dispensable--for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors.
Collapse
|
24
|
Yao J, Fetter RD, Hu P, Betzig E, Tjian R. Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev 2011; 25:569-80. [PMID: 21357673 DOI: 10.1101/gad.2021411] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent findings implicate alternate core promoter recognition complexes in regulating cellular differentiation. Here we report a spatial segregation of the alternative core factor TAF3, but not canonical TFIID subunits, away from the nuclear periphery, where the key myogenic gene MyoD is preferentially localized in myoblasts. This segregation is correlated with the differential occupancy of TAF3 versus TFIID at the MyoD promoter. Loss of this segregation by modulating either the intranuclear location of the MyoD gene or TAF3 protein leads to altered TAF3 occupancy at the MyoD promoter. Intriguingly, in differentiated myotubes, the MyoD gene is repositioned to the nuclear interior, where TAF3 resides. The specific high-affinity recognition of H3K4Me3 by the TAF3 PHD (plant homeodomain) finger appears to be required for the sequestration of TAF3 to the nuclear interior. We suggest that intranuclear sequestration of core transcription components and their target genes provides an additional mechanism for promoter selectivity during differentiation.
Collapse
Affiliation(s)
- Jie Yao
- Janelia Farm Research Campus, The Single Cell Biochemistry Consortium, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | | | | | | | | |
Collapse
|
25
|
Ding Y, Avramova Z, Fromm M. Two distinct roles of ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) at promoters and within transcribed regions of ATX1-regulated genes. THE PLANT CELL 2011; 23:350-63. [PMID: 21266657 PMCID: PMC3051232 DOI: 10.1105/tpc.110.080150] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana trithorax-like protein, ATX1, shares common structural domains, has similar histone methyltransferase (HMT) activity, and belongs in the same phylogenetic subgroup as its animal counterparts. Most of our knowledge of the role of HMTs in trimethylating lysine 4 of histone H3 (H3K4me3) in transcriptional regulation comes from studies of yeast and mammalian homologs. Little is known about the mechanism by which ATX1, or any other HMT of plant origin, affects transcription. Here, we provide insights into how ATX1 influences transcription at regulated genes, playing two distinct roles. At promoters, ATX1 is required for TATA binding protein (TBP) and RNA Polymerase II (Pol II) recruitment. In a subsequent event, ATX1 is recruited by a phosphorylated form of Pol II to the +300-bp region of transcribed sequences, where it trimethylates nucleosomes. In support of this model, inhibition of phosphorylation of the C-terminal domain of Pol II reduced the amounts of H3K4me3 and ATX1 bound at the +300-nucleotide region. Importantly, these changes did not reduce the occupancy of ATX1, TBP, or Pol II at promoters. Our results indicate that ATX1 affects transcription at target genes by a mechanism distinct from its ability to trimethylate H3K4 within genes.
Collapse
Affiliation(s)
- Yong Ding
- University of Nebraska Center for Biotechnology and Center for Plant Science Innovation, Lincoln, Nebraska 68588
- University of Nebraska School of Biological Sciences, Lincoln, Nebraska 68588
| | - Zoya Avramova
- University of Nebraska School of Biological Sciences, Lincoln, Nebraska 68588
| | - Michael Fromm
- University of Nebraska Center for Biotechnology and Center for Plant Science Innovation, Lincoln, Nebraska 68588
- Address correspondence to
| |
Collapse
|
26
|
Varier RA, Outchkourov NS, de Graaf P, van Schaik FMA, Ensing HJL, Wang F, Higgins JMG, Kops GJPL, Timmers HTM. A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. EMBO J 2010; 29:3967-78. [PMID: 20953165 DOI: 10.1038/emboj.2010.261] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 09/17/2010] [Indexed: 11/09/2022] Open
Abstract
Histone methylation patterns are correlated with eukaryotic gene transcription. High-affinity binding of the plant homeodomain (PHD) of TFIID subunit TAF3 to trimethylated lysine-4 of histone H3 (H3K4me3) is involved in promoter recruitment of this basal transcription factor. Here, we show that for transcription activation the PHD of TAF3 can be replaced by PHDs of other high-affinity H3K4me3 binders. Interestingly, H3K4me3 binding of TFIID and the TAF3-PHD is decreased by phosphorylation of the adjacent threonine residue (H3T3), which coincides with mitotic inhibition of transcription. Ectopic expression of the H3T3 kinase haspin repressed TAF3-mediated transcription of endogenous and of reporter genes and decreased TFIID association with chromatin. Conversely, immunofluorescence and live-cell microscopy studies showed an increased association of TFIID with mitotic chromosomes upon haspin knockdown. Based on our observations, we propose that a histone H3 phospho-methyl switch regulates TFIID-mediated transcription during mitotic progression of the cell cycle.
Collapse
Affiliation(s)
- Radhika A Varier
- Department of Physiological Chemistry and Netherlands Proteomics Center, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bhaumik SR. Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:97-108. [PMID: 20800707 DOI: 10.1016/j.bbagrm.2010.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
A growing number of human diseases are linked to abnormal gene expression which is largely controlled at the level of transcriptional initiation. The gene-specific activator promotes the initiation of transcription through its interaction with one or more components of the transcriptional initiation machinery, hence leading to stimulated transcriptional initiation or activation. However, all activator proteins do not target the same component(s) of the transcriptional initiation machinery. Rather, they can have different target specificities, and thus, can lead to distinct mechanisms of transcriptional activation. Two such distinct mechanisms of transcriptional activation in yeast are mediated by the SAGA (Spt-Ada-Gcn5-Acetyltransferase) and TFIID (Transcription factor IID) complexes, and are termed as "SAGA-dependent" and "TFIID-dependent" transcriptional activation, respectively. SAGA is the target of the activator in case of SAGA-dependent transcriptional activation, while the targeting of TFIID by the activator leads to TFIID-dependent transcriptional activation. Both the SAGA and TFIID complexes are highly conserved from yeast to human, and play crucial roles in gene activation among eukaryotes. The regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID are discussed here. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illnois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
28
|
Cler E, Papai G, Schultz P, Davidson I. Recent advances in understanding the structure and function of general transcription factor TFIID. Cell Mol Life Sci 2009; 66:2123-34. [PMID: 19308322 PMCID: PMC11115924 DOI: 10.1007/s00018-009-0009-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/19/2009] [Accepted: 02/23/2009] [Indexed: 01/18/2023]
Abstract
The general transcription factor TFIID is a macromolecular complex comprising the TATA-binding protein (TBP) and a set of 13-14 TBP associated factors (TAFs). This review discusses biochemical, genetic and electron microscopic data acquired over the past years that provide a model for the composition, organisation and assembly of TFIID. We also revisit ideas on how TFIID is recruited to the promoters of active and possibly repressed genes. Recent observations show that recognition of acetylated and methylated histone residues by structural domains in several TAFs plays an important role. Finally, we highlight several genetic studies suggesting that TFIID is required for initiation of transcription, but not for maintaining transcription once a promoter is in an active state.
Collapse
Affiliation(s)
- Emilie Cler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Gabor Papai
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Patrick Schultz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cedex, France
| |
Collapse
|
29
|
Analysis of the sequence and phenotype of Drosophila Sex combs reduced alleles reveals potential functions of conserved protein motifs of the Sex combs reduced protein. Genetics 2009; 182:191-203. [PMID: 19293143 DOI: 10.1534/genetics.109.100438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Hox gene, Sex combs reduced (Scr), is required for patterning the larval and adult, labial and prothoracic segments. Fifteen Scr alleles were sequenced and the phenotypes analyzed in detail. Six null alleles were nonsense mutations (Scr(2), Scr(4), Scr(11), Scr(13), Scr(13A), and Scr(16)) and one was an intragenic deletion (Scr(17)). Five hypomorphic alleles were missense mutations (Scr(1), Scr(3), Scr(5), Scr(6), and Scr(8)) and one was a small protein deletion (Scr(15)). Protein sequence changes were found in four of the five highly conserved domains of SCR: the DYTQL motif (Scr(15)), YPWM motif (Scr(3)), Homeodomain (Scr(1)), and C-terminal domain (CTD) (Scr(6)), indicating importance for SCR function. Analysis of the pleiotropy of viable Scr alleles for the formation of pseudotracheae suggests that the DYTQL motif and the CTD mediate a genetic interaction with proboscipedia. One allele Scr(14), a missense allele in the conserved octapeptide, was an antimorphic allele that exhibited three interesting genetic properties. First, Scr(14)/Df had the same phenotype as Scr(+)/Df. Second, the ability of the Scr(14) allele to interact intragenetically with Scr alleles mapped to the first 82 amino acids of SCR, which contains the octapeptide motif. Third, Scr(6), which has two missense changes in the CTD, did not interact genetically with Scr(14).
Collapse
|
30
|
Wilhelm E, Pellay FX, Benecke A, Bell B. TAF6delta controls apoptosis and gene expression in the absence of p53. PLoS One 2008; 3:e2721. [PMID: 18628956 PMCID: PMC2444026 DOI: 10.1371/journal.pone.0002721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/18/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Life and death decisions of metazoan cells hinge on the balance between the expression of pro- versus anti-apoptotic gene products. The general RNA polymerase II transcription factor, TFIID, plays a central role in the regulation of gene expression through its core promoter recognition and co-activator functions. The core TFIID subunit TAF6 acts in vitro as an essential co-activator of transcription for the p53 tumor suppressor protein. We previously identified a splice variant of TAF6, termed TAF6delta that can be induced during apoptosis. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the impact of TAF6delta on cell death and gene expression, we have employed modified antisense oligonucleotides to enforce expression of endogenous TAF6delta. The induction of endogenous TAF6delta triggered apoptosis in tumor cell lines, including cells devoid of p53. Microarray experiments revealed that TAF6delta activates gene expression independently of cellular p53 status. CONCLUSIONS Our data define TAF6delta as a pivotal node in a signaling pathway that controls gene expression programs and apoptosis in the absence of p53.
Collapse
Affiliation(s)
- Emmanuelle Wilhelm
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - François-Xavier Pellay
- Institut des Hautes Études Scientifiques and Institut de Recherche Interdisciplinaire – CNRS USR3078 - Université de Lille, Bures sur Yvette, France
| | - Arndt Benecke
- Institut des Hautes Études Scientifiques and Institut de Recherche Interdisciplinaire – CNRS USR3078 - Université de Lille, Bures sur Yvette, France
| | - Brendan Bell
- RNA Group, Département de microbiologie et d'infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
31
|
Bereczki O, Ujfaludi Z, Pardi N, Nagy Z, Tora L, Boros IM, Balint E. TATA binding protein associated factor 3 (TAF3) interacts with p53 and inhibits its function. BMC Mol Biol 2008; 9:57. [PMID: 18549481 PMCID: PMC2441632 DOI: 10.1186/1471-2199-9-57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 06/12/2008] [Indexed: 01/16/2023] Open
Abstract
Background The tumour suppressor protein p53 is a sequence specific DNA-binding transcription regulator, which exerts its versatile roles in genome protection and apoptosis by affecting the expression of a large number of genes. In an attempt to obtain a better understanding of the mechanisms by which p53 transcription function is regulated, we studied p53 interactions. Results We identified BIP2 (Bric-à-brac interacting protein 2), the fly homolog of TAF3, a histone fold and a plant homeodomain containing subunit of TFIID, as an interacting partner of Drosophila melanogaster p53 (Dmp53). We detected physical interaction between the C terminus of Dmp53 and the central region of TAF3 both in yeast two hybrid assays and in vitro. Interestingly, DmTAF3 can also interact with human p53, and mammalian TAF3 can bind to both Dmp53 and human p53. This evolutionarily conserved interaction is functionally significant, since elevated TAF3 expression severely and selectively inhibits transcription activation by p53 in human cell lines, and it decreases the level of the p53 protein as well. Conclusion We identified TAF3 as an evolutionarily conserved negative regulator of p53 transcription activation function.
Collapse
Affiliation(s)
- Orsolya Bereczki
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
32
|
Prince F, Katsuyama T, Oshima Y, Plaza S, Resendez-Perez D, Berry M, Kurata S, Gehring WJ. The YPWM motif links Antennapedia to the basal transcriptional machinery. Development 2008; 135:1669-79. [DOI: 10.1242/dev.018028] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
HOX genes specify segment identity along the anteroposterior axis of the embryo. They code for transcription factors harbouring the highly conserved homeodomain and a YPWM motif, situated amino terminally to it. Despite their highly diverse functions in vivo, HOX proteins display similar biochemical properties in vitro, raising the question of how this specificity is achieved. In our study, we investigated the importance of the Antennapedia(Antp) YPWM motif for homeotic transformations in adult Drosophila. By ectopic overexpression, the head structures of the fly can be transformed into structures of the second thoracic segment, such as antenna into second leg, head capsule into thorax (notum) and eye into wing. We found that the YPWM motif is absolutely required for the eye-to-wing transformation. Using the yeast two-hybrid system, we were able to identify a novel ANTP-interacting protein, Bric-à-brac interacting protein 2(BIP2), that specifically interacts with the YPWM motif of ANTP in vitro, as well as in vivo, transforming eye to wing tissue. BIP2 is a TATA-binding protein associated factor (also known as dTAFII3) that links ANTP to the basal transcriptional machinery.
Collapse
Affiliation(s)
- Frédéric Prince
- Biozentrum, University of Basel, Klingelberstrasse 70, CH-4056 Basel,Switzerland
| | | | - Yoshiteru Oshima
- ETH Zurich, Department of Biosystems, CH-4058 Basel, Switzerland
| | - Serge Plaza
- CNS-Centre de Biologie du Developpement, 118 route de NARBONNE, Bat 4R3, 31062 Toulouse, France
| | | | - Meera Berry
- Micromet AG, Am Klopferspitz 19, 82152 Martinsried/Munich, Germany
| | - Shoichiro Kurata
- ETH Zurich, Department of Biosystems, CH-4058 Basel, Switzerland
| | - Walter J. Gehring
- Biozentrum, University of Basel, Klingelberstrasse 70, CH-4056 Basel,Switzerland
| |
Collapse
|
33
|
Chopra VS, Srinivasan A, Kumar RP, Mishra K, Basquin D, Docquier M, Seum C, Pauli D, Mishra RK. Transcriptional activation by GAGA factor is through its direct interaction with dmTAF3. Dev Biol 2008; 317:660-70. [PMID: 18367161 DOI: 10.1016/j.ydbio.2008.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 01/27/2008] [Accepted: 02/02/2008] [Indexed: 01/02/2023]
Abstract
The GAGA factor (GAF), encoded by the Trithorax like gene (Trl) is a multifunctional protein involved in gene activation, Polycomb-dependent repression, chromatin remodeling and is a component of chromatin domain boundaries. Although first isolated as transcriptional activator of the Drosophila homeotic gene Ultrabithorax (Ubx), the molecular basis of this GAF activity is unknown. Here we show that dmTAF3 (also known as BIP2 and dTAF(II)155), a component of TFIID, interacts directly with GAF. We generated mutations in dmTAF3 and show that, in Trl mutant background, they affect transcription of Ubx leading to enhancement of Ubx phenotype. These results reveal that the gene activation pathway involving GAF is through its direct interaction with dmTAF3.
Collapse
|
34
|
Vermeulen M, Mulder KW, Denissov S, Pijnappel WWMP, van Schaik FMA, Varier RA, Baltissen MPA, Stunnenberg HG, Mann M, Timmers HTM. Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 2007; 131:58-69. [PMID: 17884155 DOI: 10.1016/j.cell.2007.08.016] [Citation(s) in RCA: 676] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/09/2007] [Accepted: 08/15/2007] [Indexed: 12/25/2022]
Abstract
Trimethylation of histone H3 at lysine 4 (H3K4me3) is regarded as a hallmark of active human promoters, but it remains unclear how this posttranslational modification links to transcriptional activation. Using a stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic screening we show that the basal transcription factor TFIID directly binds to the H3K4me3 mark via the plant homeodomain (PHD) finger of TAF3. Selective loss of H3K4me3 reduces transcription from and TFIID binding to a subset of promoters in vivo. Equilibrium binding assays and competition experiments show that the TAF3 PHD finger is highly selective for H3K4me3. In transient assays, TAF3 can act as a transcriptional coactivator in a PHD finger-dependent manner. Interestingly, asymmetric dimethylation of H3R2 selectively inhibits TFIID binding to H3K4me3, whereas acetylation of H3K9 and H3K14 potentiates TFIID interaction. Our experiments reveal crosstalk between histone modifications and the transcription factor TFIID. This has important implications for regulation of RNA polymerase II-mediated transcription in higher eukaryotes.
Collapse
Affiliation(s)
- Michiel Vermeulen
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Deato MDE, Tjian R. Switching of the core transcription machinery during myogenesis. Genes Dev 2007; 21:2137-49. [PMID: 17704303 PMCID: PMC1950853 DOI: 10.1101/gad.1583407] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 07/13/2007] [Indexed: 12/26/2022]
Abstract
Transcriptional mechanisms that govern cellular differentiation typically include sequence-specific DNA-binding proteins and chromatin-modifying activities. These regulatory factors are assumed necessary and sufficient to drive both divergent programs of proliferation and terminal differentiation. By contrast, potential contributions of the basal transcriptional apparatus to orchestrate cell-specific gene expression have been poorly explored. In order to probe alternative mechanisms that control differentiation, we have assessed the fate of the core promoter recognition complex, TFIID, during skeletal myogenesis. Here we report that differentiation of myoblast to myotubes involves the disruption of the canonical holo-TFIID and replacement by a novel TRF3/TAF3 (TBP-related factor 3/TATA-binding protein-associated factor 3) complex. This required switching of core promoter complexes provides organisms a simple yet effective means to selectively turn on one transcriptional program while silencing many others. Although this drastic but parsimonious transcriptional switch had previously escaped our attention, it may represent a more general mechanism for regulating cell type-specific terminal differentiation.
Collapse
Affiliation(s)
- Maria Divina E. Deato
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
36
|
Jones KA. Transcription strategies in terminally differentiated cells: shaken to the core. Genes Dev 2007; 21:2113-7. [PMID: 17785521 DOI: 10.1101/gad.1598007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Katherine A Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
37
|
Lawit SJ, O'Grady K, Gurley WB, Czarnecka-Verner E. Yeast two-hybrid map of Arabidopsis TFIID. PLANT MOLECULAR BIOLOGY 2007; 64:73-87. [PMID: 17340043 DOI: 10.1007/s11103-007-9135-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 01/05/2007] [Indexed: 05/11/2023]
Abstract
General transcription factor IID (TFIID) is a multisubunit protein complex involved in promoter recognition and is fundamental to the nucleation of the RNA polymerase II transcriptional preinitiation complex. TFIID is comprised of the TATA binding protein (TBP) and 12-15 TBP-associated factors (TAFs). While general transcription factors have been extensively studied in metazoans and yeast, little is known about the details of their structure and function in the plant kingdom. This work represents the first attempt to compare the structure of a plant TFIID complex with that determined for other organisms. While no TAF3 homolog has been observed in plants, at least one homolog has been identified for each of the remaining 14 TFIID subunits, including both TAF14 and TAF15 which have previously been shown to be unique to either yeast or humans. The presence of both TAFs 14 and 15 in plants suggests ancient roles for these proteins that were lost in metazoans and fungi, respectively. Yeast two-hybrid interaction assays resulted in a total of 65 binary interactions between putative subunits of Arabidopsis TFIID, including 26 contacts unique to plants. The interaction matrix of Arabidopsis TAFs is largely consistent with the three-lobed topological map for yeast TFIID, which suggests that the structure and composition of TFIID have been highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Shai J Lawit
- Pioneer Hi-Bred International, Inc., a DuPont Company, 7300 N.W. 62nd Ave, PO Box 1004, Johnston, IA 50131-1004, USA
| | | | | | | |
Collapse
|
38
|
Demény MA, Soutoglou E, Nagy Z, Scheer E, Jànoshàzi À, Richardot M, Argentini M, Kessler P, Tora L. Identification of a small TAF complex and its role in the assembly of TAF-containing complexes. PLoS One 2007; 2:e316. [PMID: 17375202 PMCID: PMC1820849 DOI: 10.1371/journal.pone.0000316] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 02/27/2007] [Indexed: 12/03/2022] Open
Abstract
TFIID plays a role in nucleating RNA polymerase II preinitiation complex assembly on protein-coding genes. TFIID is a multisubunit complex comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). Another class of multiprotein transcriptional regulatory complexes having histone acetyl transferase (HAT) activity, and containing TAFs, includes TFTC, STAGA and the PCAF/GCN5 complex. Looking for as yet undiscovered subunits by a proteomic approach, we had identified TAF8 and SPT7L in human TFTC preparations. Subsequently, however, we demonstrated that TAF8 was not a stable component of TFTC, but that it is present in a small TAF complex (SMAT), containing TAF8, TAF10 and SPT7L, that co-purified with TFTC. Thus, TAF8 is a subunit of both TFIID and SMAT. The latter has to be involved in a pathway of complex formation distinct from the other known TAF complexes, since these three histone fold (HF)-containing proteins (TAF8, TAF10 and SPT7L) can never be found together either in TFIID or in STAGA/TFTC HAT complexes. Here we show that TAF8 is absolutely necessary for the integration of TAF10 in a higher order TFIID core complex containing seven TAFs. TAF8 forms a heterodimer with TAF10 through its HF and proline rich domains, and also interacts with SPT7L through its C-terminal region, and the three proteins form a complex in vitro and in vivo. Thus, the TAF8-TAF10 and TAF10-SPT7L HF pairs, and also the SMAT complex, seem to be important regulators of the composition of different TFIID and/or STAGA/TFTC complexes in the nucleus and consequently may play a role in gene regulation.
Collapse
Affiliation(s)
- Màté A. Demény
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| | - Zita Nagy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| | - Àgnes Jànoshàzi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| | - Magalie Richardot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| | - Manuela Argentini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| | - Pascal Kessler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM)U 596, Université Louis Pasteur de Strasbourg, Illkirch, Strasbourg, France
| |
Collapse
|
39
|
Romier C, James N, Birck C, Cavarelli J, Vivarès C, Collart MA, Moras D. Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly. J Mol Biol 2007; 368:1292-306. [PMID: 17397863 DOI: 10.1016/j.jmb.2007.02.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/09/2007] [Accepted: 02/13/2007] [Indexed: 11/16/2022]
Abstract
General transcription factor TFIID plays an essential role in transcription initiation by RNA polymerase II at numerous promoters. However, understanding of the assembly and a full structural characterization of this large 15 subunit complex is lacking. TFIID subunit TAF(II)5 has been shown to be present twice in this complex and to be critical for the function and assembly of TFIID. Especially, the TAF(II)5 N-terminal domain is required for its incorporation within TFIID and immuno-labelling experiments carried out by electron microscopy at low resolution have suggested that this domain might homodimerize, possibly explaining the three-lobed architecture of TFIID. However, the resolution at which the electron microscopy (EM) analyses were conducted is not sufficient to determine whether homodimerization occurs or whether a more intricate assembly implying other subunits is required. Here we report the X-ray structures of the fully evolutionary conserved C-terminal sub-domain of the TAF(II)5 N terminus, from yeast and the mammalian parasite Encephalitozoon cuniculi. This sub-domain displays a novel fold with specific surfaces having conserved physico-chemical properties that can form protein-protein interactions. Although a crystallographic dimer implying one of these surfaces is present in one of the crystal forms, several biochemical analyses show that this sub-domain is monomeric in solution, even at various salt conditions and in presence of different divalent cations. Consequently, the N-terminal sub-domain of the TAF(II)5 N terminus, which is homologous to a dimerization motif but has not been fully conserved during evolution, was studied by analytical ultracentrifugation and yeast genetics. Our results show that this sub-domain dimerizes at very high concentration but is neither required for yeast viability, nor for incorporation of two TAF(II)5 molecules within TFIID and for the assembly of this complex. Altogether, although our results do not argue in favour of a homodimerization of the TAF(II)5 N-terminal domain, our structural analyses suggest a role for this domain in assembly of TFIID and its related complexes SAGA, STAGA, TFTC and PCAF.
Collapse
Affiliation(s)
- Christophe Romier
- Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie et Génomique Structurales, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Soutoglou E, Demény MA, Scheer E, Fienga G, Sassone-Corsi P, Tora L. The nuclear import of TAF10 is regulated by one of its three histone fold domain-containing interaction partners. Mol Cell Biol 2005; 25:4092-104. [PMID: 15870280 PMCID: PMC1087738 DOI: 10.1128/mcb.25.10.4092-4104.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TFIID, comprising the TATA box binding protein (TBP) and 13 TBP-associated factors (TAFs), plays a role in nucleation in the assembly of the RNA polymerase II preinitiation complexes on protein-encoding genes. TAFs are shared among other transcription regulatory complexes (e.g., SAGA, TBP-free TAF-containing complex [TFTC], STAGA, and PCAF/GCN5). Human TAF10, a subunit of both TFIID and TFTC, has three histone fold-containing interaction partners: TAF3, TAF8, and SPT7Like (SPT7L). In human cells, exogenously expressed TAF10 remains rather cytoplasmic and leptomycin B does not affect this localization. By using fluorescent fusion proteins, we show that TAF10 does not have an intrinsic nuclear localization signal (NLS) and needs one of its three interaction partners to be transported into the nucleus. When the NLS sequences of either TAF8 or SPT7L are mutated, TAF10 remains cytoplasmic, but a heterologous NLS can drive TAF10 into the nucleus. Experiments using fluorescence recovery after photobleaching show that TAF10 does not associate with any cytoplasmic partner but that once transported into the nucleus it binds to nuclear structures. TAF10 binding to importin beta in vitro is dependent on the coexpression of either TAF8 or TAF3, but not SPT7L. The cytoplasmic-nuclear transport of TAF10 is naturally observed during the differentiation of adult male germ cells. Thus, here we describe a novel role of the three mammalian interacting partners in the nuclear localization of TAF10, and our data suggest that a complex network of regulated cytoplasmic associations may exist among these factors and that this network is important for the composition of different TFIID and TFTC-type complexes in the nucleus.
Collapse
Affiliation(s)
- Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, Department of Transcriptional and Post-Transcriptional Control of Gene Regulation, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The developmental programs of eukaryotic organisms involve the programmed transcription of genes. A characteristic gene expression pattern is established and preserved in each different cell type. Therefore, gene activation at a particular time and its maintenance during cell division are significant for cellular differentiation and individual development. Although many studies have sought to explain the molecular mechanisms of gene expression regulation, the mechanism through which gene expression states are inherited during cell division has not been fully elucidated yet. This review illustrates the general principles and the complexities involved in the establishment and maintenance of active transcription through cell cycles. It focuses on the most-recent findings about the ways in which molecular memory marks for active transcription are coordinated with cell cycle events, such as replication, mitosis and nuclear organization, to mediate transcription memory across cell division events, which may establish a unifying memory process of active transcription.
Collapse
Affiliation(s)
- Guo-Ling Zhou
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R.China
| | | | | |
Collapse
|
42
|
Wykoff DD, O'Shea EK. Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol Cell Proteomics 2004; 4:73-83. [PMID: 15596868 DOI: 10.1074/mcp.m400166-mcp200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identification of post-translational modifications to proteins is critical for understanding many important aspects of biology. Utilizing a collection of epitope-tagged yeast strains, we developed a novel approach to determine which proteins are modified by the small ubiquitin-related modifier (SUMO). We crossed traits useful for the detection of SUMO conjugation into 4246 tandem affinity purification-tagged strains and successfully immunoprecipitated and screened 2893 of these proteins for association with SUMO ( approximately 70% of the expressed proteome detectable by immunoblot analysis). We found 82 proteins associated with SUMO, including many of low abundance. Because our screen was performed under non-denaturing conditions, we were able to identify multiple members of four complexes that were associated with SUMO: the RSC chromatin remodeling complex, the mediator complex, the TFIID complex, and the septin complex. In addition, we describe five new direct conjugates of SUMO, and we mutated SUMO conjugation sites in four proteins. This is the first attempt to immunoprecipitate a large fraction of the proteome of a eukaryote, and it demonstrates the utility of this method to identify post-translational modifications in the yeast proteome.
Collapse
Affiliation(s)
- Dennis D Wykoff
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, California 94143-2240, USA
| | | |
Collapse
|
43
|
Lago C, Clerici E, Mizzi L, Colombo L, Kater MM. TBP-associated factors in Arabidopsis. Gene 2004; 342:231-41. [PMID: 15527982 DOI: 10.1016/j.gene.2004.08.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/08/2004] [Accepted: 08/19/2004] [Indexed: 11/19/2022]
Abstract
Initiation of transcription mediated by RNA polymerase II requires a number of transcription factors among which TFIID is the major core promoter recognition factor. TFIID is composed of highly conserved factors which include the TATA-binding protein (TBP) and about 14 TBP-associated factors (TAFs). Since TAFs play important roles in transcription they have been extensively studied in organisms like yeast, Drosophila and human. Surprisingly, TAFs have been poorly characterized in plants. With the completion of the Arabidopsis genome sequence, it is possible to search for TAFs, since many of them have conserved amino acid sequences. Mining the genome of Arabidopsis for TAFs resulted in the identification of 18 putative Arabidopsis TAFs (AtTAFs). We have analyzed their protein structure and their genomic localisation. Expression profiling by RT-PCR showed that these TAFs are expressed in all parts of the plant which is in agreement with their general role in transcription. These analyses in combination with their evolutionary conservation with TAFs of other organisms are discussed.
Collapse
Affiliation(s)
- Clara Lago
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli studi di Milano, via Celoria 26, 20133, Milan, Italy
| | | | | | | | | |
Collapse
|
44
|
Matangkasombut O, Auty R, Buratowski S. Structure and Function of the TFIID Complex. ADVANCES IN PROTEIN CHEMISTRY 2004; 67:67-92. [PMID: 14969724 DOI: 10.1016/s0065-3233(04)67003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Oranart Matangkasombut
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
45
|
Lours C, Bardot O, Godt D, Laski FA, Couderc JL. The Drosophila melanogaster BTB proteins bric à brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook motif. Nucleic Acids Res 2003; 31:5389-98. [PMID: 12954775 PMCID: PMC203310 DOI: 10.1093/nar/gkg724] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The bric à brac (bab) locus is composed of two paralogous genes, bab1 and bab2, in Drosophila melanogaster. Bab1 and Bab2 are nuclear proteins that contain a broad complex, tramtrack, bric à brac/poxviruses and zinc-finger (BTB/POZ) domain. Many BTB/POZ proteins are transcriptional regulators of which the majority contain C(2)H(2) zinc-finger motifs. There is no detectable zinc-finger motif in either Bab protein. However, they share the Bab conserved domain (BabCD) that is highly conserved between Bab1 and Bab2, and the Bab proteins of several other species, e.g. Anopheles gambiae, Apis mellifera and Drosophila virilis. Here we show that Bab2 binds to several discrete sites on polytene chromosomes including the bab locus, and that the BabCD of both Bab1 and Bab2 binds in vitro to the cis-regulatory regions of bab1 and bab2. Our results indicate that the BabCD binds to A/T-rich regions and that its optimum binding sites contain TA or TAA repeats. The BabCD is a composite DNA binding domain with a psq motif and an AT-Hook motif; both motifs are required for DNA binding activity. Structural similarities suggest that the BabCD may bind to DNA in a similar manner as some prokaryotic recombinases.
Collapse
Affiliation(s)
- Corinne Lours
- INSERM UMR 384, Laboratoire de Biochimie, 28 place Henri Dunant, 63001 Clermont-Ferrand, Cedex, France
| | | | | | | | | |
Collapse
|
46
|
Yang X, Makaroff CA, Ma H. The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. THE PLANT CELL 2003; 15:1281-95. [PMID: 12782723 PMCID: PMC156366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Accepted: 03/27/2003] [Indexed: 03/16/2024]
Abstract
In plants, reproductive development requires normal meiosis, which involved several highly coordinated events. Such meiotic events are regulated in a number of ways in yeast and animal systems, including transcriptional and checkpoint control mechanisms. Although a number of mutations that affect different aspects of meiosis have been characterized in plants, very little is known about the regulation of plant meiosis at the molecular level. In particular, no meiosis-specific transcriptional regulators have been identified in plants, and checkpoint control has not been observed during plant meiosis. We report here the isolation and characterization of a new Arabidopsis male-sterile mutant that exhibits meiotic defects. Meiocytes from mutant plants appeared normal up to diakinesis, when they exhibited signs of apoptosis, including defects in chromosome behavior, cytoplasmic shrinkage, and chromatin fragmentation, followed by cell death before cytokinesis. Therefore, the mutant was named male meiocyte death1 (mmd1). The MMD1 gene was cloned using Dissociation transposon tagging and encodes a plant homeo domain domain-containing protein. MMD1 is expressed preferentially during male meiosis. Our results suggest that MMD1 may be involved in the regulation of gene expression during meiosis and that the mmd1 mutation triggers cell death in male meiocytes.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | |
Collapse
|
47
|
Mohan WS, Scheer E, Wendling O, Metzger D, Tora L. TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol 2003; 23:4307-18. [PMID: 12773572 PMCID: PMC156135 DOI: 10.1128/mcb.23.12.4307-4318.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TAF10 (formerly TAF(II)30), is a component of TFIID and the TATA box-binding protein (TBP)-free TAF-containing complexes (TFTC/PCAF/STAGA). To investigate the physiological function of TAF10, we disrupted its gene in mice by using a Cre recombinase/LoxP strategy. Interestingly, no TAF10(-/-) animals were born from intercrosses of TAF10(+/-) mice, indicating that TAF10 is required for embryogenesis. TAF10(-/-) embryos developed to the blastocyst stage, implanted, but died shortly after ca. 5.5 days postcoitus. Surprisingly, trophoblast cells from TAF10(-/-) blastocysts were viable, whereas inner cell mass cells failed to survive, highlighting that TAF10 is not generally required for transcription in all cells. TAF10-deficient cells express normal levels of TBP and TAFs other than TAF10 but contain only partially formed TFIID, are endocycle arrested, and have undetectable levels of transcription. Thus, our results demonstrate that TAF10 is required for TFIID stability, cell cycle progression, and transcription in the early mouse embryo.
Collapse
Affiliation(s)
- William S Mohan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, F-67404 Illkirch Cedex, CU de Strasbourg, France
| | | | | | | | | |
Collapse
|
48
|
Pointud JC, Mengus G, Brancorsini S, Monaco L, Parvinen M, Sassone-Corsi P, Davidson I. The intracellular localisation of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation. J Cell Sci 2003; 116:1847-58. [PMID: 12665565 DOI: 10.1242/jcs.00391] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription regulation in male germ cells can involve specialised mechanisms and testis-specific paralogues of the general transcription machinery. Here we describe TAF7L, a germ-cell-specific paralogue of the TFIID subunit TAF7. TAF7L is expressed through most of the male germ-cell differentiation programme, but its intracellular localisation is dynamically regulated from cytoplasmic in spermatogonia and early spermatocytes to nuclear in late pachytene spermatocytes and haploid round spermatids. Import of TAF7L into the nucleus coincides with decreased TAF7 expression and a strong increase in nuclear TBP expression, which suggests that TAF7L replaces TAF7 as a TFIID subunit in late pachytene spermatocytes and in haploid cells. In agreement with this, biochemical experiments indicate that a subpopulation of TAF7L is tightly associated with TBP in both pachytene and haploid cells and TAF7L interacts with the TFIID subunit TAF1. We further show that TAF3, TAF4 and TAF10 are all strongly expressed in early spermatocytes, but that in contrast to TBP and TAF7L, they are downregulated in haploid cells. Hence, different subunits of the TFIID complex are regulated in distinct ways during male germ-cell differentiation. These results show for the first time how the composition of a general transcription factor such as TFIID and other TAF-containing complexes are modulated during a differentiation programme highlighting the unique nature of the transcription regulatory machinery in spermatogenesis.
Collapse
Affiliation(s)
- Jean-Christophe Pointud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, 67404 Illkirch Cédex, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Martinez E. Multi-protein complexes in eukaryotic gene transcription. PLANT MOLECULAR BIOLOGY 2002; 50:925-47. [PMID: 12516863 DOI: 10.1023/a:1021258713850] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Specific transcription initiation by RNA polymerase II at eukaryotic protein-coding genes involves the cooperative assembly at the core promoter of more than 40 distinct proteins--with a total mass of over 2 MDa--including RNA polymerase II itself and general/basal transcription initiation factors, to form a stable pre-initiation complex (PIC). In vivo, PIC assembly is a major point of regulation by sequence-specific transcription regulators (activators and repressors) and is hindered by the packaging of promoter DNA into nucleosomes and higher order chromatin structures. Genetic and biochemical studies have recently identified a variety of transcription cofactors/co-regulators (coactivators and corepressors) that interact with sequence-specific regulators and/or various components of the general/basal transcription machinery and are essential for regulated transcription. An emerging view from these studies is that regulators must target two types of transcription cofactors: chromatin-modifying/remodeling cofactors and general cofactors that associate with and/or influence the activities of components of the general/basal transcription machinery. The recent biochemical identification and characterization of many different chromatin-modifying and general transcription cofactors has revealed their often complex multi-subunit nature and a previously unsuspected level of structural and functional redundancy. Another emerging theme is the multi-functional nature of chromatin-modifying cofactor complexes that appear to couple gene-specific transcription to other cellular processes.
Collapse
Affiliation(s)
- Ernest Martinez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
50
|
Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I. Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain. J Biol Chem 2002; 277:45510-7. [PMID: 12237303 DOI: 10.1074/jbc.m206556200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Yeast TFIID comprises the TATA binding protein and 14 TBP-associated factors (TAF(II)s), nine of which contain histone-fold domains (HFDs). The C-terminal region of the TFIID-specific yTAF4 (yTAF(II)48) containing the HFD shares strong sequence similarity with Drosophila (d)TAF4 (dTAF(II)110) and human TAF4 (hTAF(II)135). A structure/function analysis of yTAF4 demonstrates that the HFD, a short conserved C-terminal domain (CCTD), and the region separating them are all required for yTAF4 function. Temperature-sensitive mutations in the yTAF4 HFD alpha2 helix or the CCTD can be suppressed upon overexpression of yTAF12 (yTAF(II)68). Moreover, coexpression in Escherichia coli indicates direct yTAF4-yTAF12 heterodimerization optimally requires both the yTAF4 HFD and CCTD. The x-ray crystal structure of the orthologous hTAF4-hTAF12 histone-like heterodimer indicates that the alpha3 region within the predicted TAF4 HFD is unstructured and does not correspond to the bona fide alpha3 helix. Our functional and biochemical analysis of yTAF4, rather provides strong evidence that the HFD alpha3 helix of the TAF4 family lies within the CCTD. These results reveal an unexpected and novel HFD organization in which the alpha3 helix is separated from the alpha2 helix by an extended loop containing a conserved functional domain.
Collapse
Affiliation(s)
- Sylvie Thuault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Boîte Postale 163 67404 Illkirch Cédex, Communauté Urbaine de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|