1
|
Thiry L, Sirois J, Durcan TM, Stifani S. Generation of human iPSC-derived phrenic-like motor neurons to model respiratory motor neuron degeneration in ALS. Commun Biol 2024; 7:238. [PMID: 38418587 PMCID: PMC10901792 DOI: 10.1038/s42003-024-05925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/16/2024] [Indexed: 03/01/2024] Open
Abstract
The fatal motor neuron (MN) disease Amyotrophic Lateral Sclerosis (ALS) is characterized by progressive MN degeneration. Phrenic MNs (phMNs) controlling the activity of the diaphragm are prone to degeneration in ALS, leading to death by respiratory failure. Understanding of the mechanisms of phMN degeneration in ALS is limited, mainly because human experimental models to study phMNs are lacking. Here we describe a method enabling the derivation of phrenic-like MNs from human iPSCs (hiPSC-phMNs) within 30 days. This protocol uses an optimized combination of small molecules followed by cell-sorting based on a cell-surface protein enriched in hiPSC-phMNs, and is highly reproducible using several hiPSC lines. We show further that hiPSC-phMNs harbouring ALS-associated amplification of the C9orf72 gene progressively lose their electrophysiological activity and undergo increased death compared to isogenic controls. These studies establish a previously unavailable protocol to generate human phMNs offering a disease-relevant system to study mechanisms of respiratory MN dysfunction.
Collapse
Affiliation(s)
- Louise Thiry
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, 3801, rue University, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
2
|
Nickerson KR, Tom I, Cortés E, Abolafia JR, Özkan E, Gonzalez LC, Jaworski A. WFIKKN2 is a bifunctional axon guidance cue that signals through divergent DCC family receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544950. [PMID: 37398498 PMCID: PMC10312737 DOI: 10.1101/2023.06.15.544950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Axon pathfinding is controlled by attractive and repulsive molecular cues that activate receptors on the axonal growth cone, but the full repertoire of axon guidance molecules remains unknown. The vertebrate DCC receptor family contains the two closely related members DCC and Neogenin with prominent roles in axon guidance and three additional, divergent members - Punc, Nope, and Protogenin - for which functions in neural circuit formation have remained elusive. We identified a secreted Punc/Nope/Protogenin ligand, WFIKKN2, which guides mouse peripheral sensory axons through Nope-mediated repulsion. In contrast, WFIKKN2 attracts motor axons, but not via Nope. These findings identify WFIKKN2 as a bifunctional axon guidance cue that acts through divergent DCC family members, revealing a remarkable diversity of ligand interactions for this receptor family in nervous system wiring. One-Sentence Summary WFIKKN2 is a ligand for the DCC family receptors Punc, Nope, and Prtg that repels sensory axons and attracts motor axons.
Collapse
|
3
|
Franchini P, Xiong P, Fruciano C, Schneider RF, Woltering JM, Hulsey CD, Meyer A. MicroRNA Gene Regulation in Extremely Young and Parallel Adaptive Radiations of Crater Lake Cichlid Fish. Mol Biol Evol 2019; 36:2498-2511. [PMID: 31397871 DOI: 10.1093/molbev/msz168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
AbstractCichlid fishes provide textbook examples of explosive phenotypic diversification and sympatric speciation, thereby making them ideal systems for studying the molecular mechanisms underlying rapid lineage divergence. Despite the fact that gene regulation provides a critical link between diversification in gene function and speciation, many genomic regulatory mechanisms such as microRNAs (miRNAs) have received little attention in these rapidly diversifying groups. Therefore, we investigated the posttranscriptional regulatory role of miRNAs in the repeated sympatric divergence of Midas cichlids (Amphilophus spp.) from Nicaraguan crater lakes. Using miRNA and mRNA sequencing of embryos from five Midas species, we first identified miRNA binding sites in mRNAs and highlighted the presences of a surprising number of novel miRNAs in these adaptively radiating species. Then, through analyses of expression levels, we identified putative miRNA/gene target pairs with negatively correlated expression level that were consistent with the role of miRNA in downregulating mRNA. Furthermore, we determined that several miRNA/gene pairs show convergent expression patterns associated with the repeated benthic/limnetic sympatric species divergence implicating these miRNAs as potential molecular mechanisms underlying replicated sympatric divergence. Finally, as these candidate miRNA/gene pairs may play a central role in phenotypic diversification in these cichlids, we characterized the expression domains of selected miRNAs and their target genes via in situ hybridization, providing further evidence that miRNA regulation likely plays a role in the Midas cichlid adaptive radiation. These results provide support for the hypothesis that extremely quickly evolving miRNA regulation can contribute to rapid evolutionary divergence even in the presence of gene flow.
Collapse
Affiliation(s)
- Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Peiwen Xiong
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, PSL Université Paris, Paris, France
| | - Ralf F Schneider
- Marine Ecology, Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Düsternbrooker Weg 20, Kiel, Germany
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Joost M Woltering
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christopher Darrin Hulsey
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
4
|
Martinez-Martin N, Ramani SR, Hackney JA, Tom I, Wranik BJ, Chan M, Wu J, Paluch MT, Takeda K, Hass PE, Clark H, Gonzalez LC. The extracellular interactome of the human adenovirus family reveals diverse strategies for immunomodulation. Nat Commun 2016; 7:11473. [PMID: 27145901 PMCID: PMC4858740 DOI: 10.1038/ncomms11473] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
Viruses encode secreted and cell-surface expressed proteins essential to modulate host immune defenses and establish productive infections. However, to date there has been no systematic study of the extracellular interactome of any human virus. Here we utilize the E3 proteins, diverse and rapidly evolving transmembrane-containing proteins encoded by human adenoviruses, as a model system to survey the extracellular immunomodulatory landscape. From a large-scale protein interaction screen against a microarray of more than 1,500 human proteins, we find and validate 51 previously unidentified virus–host interactions. Our results uncover conserved strategies as well as substantial diversity and multifunctionality in host targeting within and between viral species. Prominent modulation of the leukocyte immunoglobulin-like and signalling lymphocyte activation molecule families and a number of inhibitory receptors were identified as hubs for viral perturbation, suggesting unrecognized immunoregulatory strategies. We describe a virus–host extracellular interaction map of unprecedented scale that provides new insights into viral immunomodulation. Viruses interact with their hosts via secreted and membrane-bound proteins to affect host immune responses and virulence. Here the authors contribute to our understanding of this relationship with an extracellular interaction map of human and adenoviral E3 immunomodulatory proteins.
Collapse
Affiliation(s)
- Nadia Martinez-Martin
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Sree R Ramani
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics and Computational Biology, Genentech, 455 East Grand Avenue, South San Francisco, California 94080, USA
| | - Irene Tom
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Bernd J Wranik
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Michelle Chan
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Johnny Wu
- Department of Bioinformatics and Computational Biology, Genentech, 455 East Grand Avenue, South San Francisco, California 94080, USA
| | - Maciej T Paluch
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Kentaro Takeda
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Philip E Hass
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| | - Hilary Clark
- Department of Bioinformatics and Computational Biology, Genentech, 455 East Grand Avenue, South San Francisco, California 94080, USA
| | - Lino C Gonzalez
- Department of Protein Chemistry, Genentech, 470 East Grand Avenue, South San Francisco, California 94080, USA
| |
Collapse
|
5
|
Precocious cerebellum development and improved motor functions in mice lacking the astrocyte cilium-, patched 1-associated Gpr37l1 receptor. Proc Natl Acad Sci U S A 2013; 110:16486-91. [PMID: 24062445 DOI: 10.1073/pnas.1314819110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the developing cerebellum, the proliferation and differentiation of glial and neuronal cell types depend on the modulation of the sonic hedgehog (Shh) signaling pathway. The vertebrate G-protein-coupled receptor 37-like 1 (GPR37L1) gene encodes a putative G-protein-coupled receptor that is expressed in newborn and adult cerebellar Bergmann glia astrocytes. This study shows that the ablation of the murine Gpr37l1 gene results in premature down-regulation of proliferation of granule neuron precursors and precocious maturation of Bergmann glia and Purkinje neurons. These alterations are accompanied by improved adult motor learning and coordination. Gpr37l1(-/-) mice also exhibit specific modifications of the Shh signaling cascade. Specific assays show that in Bergmann glia cells Gpr37l1 is associated with primary cilium membranes and it specifically interacts and colocalizes with the Shh primary receptor, patched 1. These findings indicate that the patched 1-associated Gpr37l1 receptor participates in the regulation of postnatal cerebellum development by modulating the Shh pathway.
Collapse
|
6
|
Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, Millonig JH, DiCicco-Bloom E, Crawley JN. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 2012; 7:e40914. [PMID: 22829897 PMCID: PMC3400671 DOI: 10.1371/journal.pone.0040914] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders.
Collapse
Affiliation(s)
- Jennifer Brielmaier
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takahashi KF, Kiyoshima T, Kobayashi I, Xie M, Yamaza H, Fujiwara H, Ookuma Y, Nagata K, Wada H, Sakai T, Terada Y, Sakai H. Protogenin, a new member of the immunoglobulin superfamily, is implicated in the development of the mouse lower first molar. BMC DEVELOPMENTAL BIOLOGY 2010; 10:115. [PMID: 21108791 PMCID: PMC3014897 DOI: 10.1186/1471-213x-10-115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/25/2010] [Indexed: 01/21/2023]
Abstract
Background Protogenin (Prtg) has been identified as a gene which is highly expressed in the mouse mandible at embryonic day 10.5 (E10.5) by a cDNA subtraction method between mandibles at E10.5 and E12.0. Prtg is a new member of the deleted in colorectal carcinoma (DCC) family, which is composed of DCC, Neogenin, Punc and Nope. Although these members play an important role in the development of the embryonic central nervous system, recent research has also shed on the non-neuronal organization. However, very little is known regarding the fetal requirement of the non-neuronal organization for Prtg and how this may be associated with the tooth germ development. This study examined the functional implications of Prtg in the developing tooth germ of the mouse lower first molar. Results Ptrg is preferentially expressed in the early stage of organogenesis. Prtg mRNA and protein were widely expressed in the mesenchymal cells in the mandible at E10.5. The oral epithelial cells were also positive for Prtg. The expression intensity of Prtg after E12.0 was markedly reduced in the mesenchymal cells of the mandible, and was restricted to the area where the tooth bud was likely to be formed. Signals were also observed in the epithelial cells of the tooth germ. Weak signals were observed in the inner enamel epithelial cells at E16.0 and E18.0. An inhibition assay using a hemagglutinating virus of Japan-liposome containing Prtg antisense-phosphorothioated-oligodeoxynucleotide (AS-S-ODN) in cultured mandibles at E10.5 showed a significant growth inhibition in the tooth germ. The relationship between Prtg and the odontogenesis-related genes was examined in mouse E10.5 mandible, and we verified that the Bmp-4 expression had significantly been decreased in the mouse E10.5 mandible 24 hr after treatment with Prtg AS-S-ODN. Conclusion These results indicated that the Prtg might be related to the initial morphogenesis of the tooth germ leading to the differentiation of the inner enamel epithelial cells in the mouse lower first molar. A better understanding of the Prtg function might thus play a critical role in revealing a precious mechanism in tooth germ development.
Collapse
Affiliation(s)
- Keiko F Takahashi
- Laboratory of Oral Pathology and Medicine, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Feng W, Leach SM, Tipney H, Phang T, Geraci M, Spritz RA, Hunter LE, Williams T. Spatial and temporal analysis of gene expression during growth and fusion of the mouse facial prominences. PLoS One 2009; 4:e8066. [PMID: 20016822 PMCID: PMC2789411 DOI: 10.1371/journal.pone.0008066] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 10/25/2009] [Indexed: 11/19/2022] Open
Abstract
Orofacial malformations resulting from genetic and/or environmental causes are frequent human birth defects yet their etiology is often unclear because of insufficient information concerning the molecular, cellular and morphogenetic processes responsible for normal facial development. We have, therefore, derived a comprehensive expression dataset for mouse orofacial development, interrogating three distinct regions – the mandibular, maxillary and frontonasal prominences. To capture the dynamic changes in the transcriptome during face formation, we sampled five time points between E10.5–E12.5, spanning the developmental period from establishment of the prominences to their fusion to form the mature facial platform. Seven independent biological replicates were used for each sample ensuring robustness and quality of the dataset. Here, we provide a general overview of the dataset, characterizing aspects of gene expression changes at both the spatial and temporal level. Considerable coordinate regulation occurs across the three prominences during this period of facial growth and morphogenesis, with a switch from expression of genes involved in cell proliferation to those associated with differentiation. An accompanying shift in the expression of polycomb and trithorax genes presumably maintains appropriate patterns of gene expression in precursor or differentiated cells, respectively. Superimposed on the many coordinated changes are prominence-specific differences in the expression of genes encoding transcription factors, extracellular matrix components, and signaling molecules. Thus, the elaboration of each prominence will be driven by particular combinations of transcription factors coupled with specific cell:cell and cell:matrix interactions. The dataset also reveals several prominence-specific genes not previously associated with orofacial development, a subset of which we externally validate. Several of these latter genes are components of bidirectional transcription units that likely share cis-acting sequences with well-characterized genes. Overall, our studies provide a valuable resource for probing orofacial development and a robust dataset for bioinformatic analysis of spatial and temporal gene expression changes during embryogenesis.
Collapse
Affiliation(s)
- Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Sonia M. Leach
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Hannah Tipney
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Tzulip Phang
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Mark Geraci
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Richard A. Spritz
- Human Medical Genetics Program, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Lawrence E. Hunter
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
9
|
Expression of S100B during embryonic development of the mouse cerebellum. BMC DEVELOPMENTAL BIOLOGY 2007; 7:17. [PMID: 17362503 PMCID: PMC1832187 DOI: 10.1186/1471-213x-7-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 03/15/2007] [Indexed: 12/21/2022]
Abstract
BACKGROUND In the cerebellum of newborn S100B-EGFP mice, we had previously noted the presence of a large population of S100B-expressing cells, which we assumed to be immature Bergmann glial cells. In the present study, we have drawn on this observation to establish the precise spatio-temporal pattern of S100B gene expression in the embryonic cerebellum. RESULTS From E12.5 until E17.5, S100B was expressed in the primary radial glial scaffold involved in Purkinje progenitor exit from the ventricular zone and in the Sox9+ glial progenitors derived from it. During the same period coinciding with the primary phase of granule neuron precursor genesis, transient EGFP expression tagged the Pax6+ forerunners of granule precursors born in the cerebellar rhombic lip. CONCLUSION This study provides the first characterization of S100B-expressing cell types of the embryonic mouse cerebellum in a high-resolution map. The transient activation of the S100B gene distinguishes granule neuron precursors from all other types of precursors so far identified in the rhombic lip, whereas its activation in radial glial precursors is a feature of Bergmann cell gliogenesis.
Collapse
|
10
|
Vesque C, Anselme I, Couvé E, Charnay P, Schneider-Maunoury S. Cloning of vertebrate Protogenin (Prtg) and comparative expression analysis during axis elongation. Dev Dyn 2007; 235:2836-44. [PMID: 16881056 DOI: 10.1002/dvdy.20898] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A murine cDNA encoding Protogenin, which belongs to the DCC/Neogenin family, was cloned in a screen performed to identify novel cDNAs regionally expressed in the neural plate. Isolation of the putative zebrafish orthologues allowed a comparative analysis of the expression patterns of Protogenin genes during embryogenesis in different vertebrate species. From mid-gastrulation to early somite stages, Protogenin expression is restricted to posterior neural plate and mesoderm, with an anterior limit at the level of the rhombencephalon in mouse, chicken, and zebrafish. During somitogenesis, the expression profiles in the three species share features in the neural tube but present also species-specific characteristics. The initiation of Protogenin expression just before somitogenesis and its maintenance in the neural tube and paraxial mesoderm during this process suggest a conserved role in axis elongation.
Collapse
|
11
|
Li C, Scott DA, Hatch E, Tian X, Mansour SL. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 2007; 134:167-76. [PMID: 17164422 PMCID: PMC2424197 DOI: 10.1242/dev.02701] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are major mediators of extracellular signals that are transduced to the nucleus. MAPK signaling is attenuated at several levels, and one class of dual-specificity phosphatases, the MAPK phosphatases (MKPs), inhibit MAPK signaling by dephosphorylating activated MAPKs. Several of the MKPs are themselves induced by the signaling pathways they regulate, forming negative feedback loops that attenuate the signals. We show here that in mouse embryos, Fibroblast growth factor receptors (FGFRs) are required for transcription of Dusp6, which encodes MKP3, an extracellular signal-regulated kinase (ERK)-specific MKP. Targeted inactivation of Dusp6 increases levels of phosphorylated ERK, as well as the pERK target, Erm, and transcripts initiated from the Dusp6 promoter itself. Finally, the Dusp6 mutant allele causes variably penetrant, dominant postnatal lethality, skeletal dwarfism, coronal craniosynostosis and hearing loss; phenotypes that are also characteristic of mutations that activate FGFRs inappropriately. Taken together, these results show that DUSP6 serves in vivo as a negative feedback regulator of FGFR signaling and suggest that mutations in DUSP6 or related genes are candidates for causing or modifying unexplained cases of FGFR-like syndromes.
Collapse
Affiliation(s)
- Chaoying Li
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Daryl A. Scott
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Ekaterina Hatch
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Xiaoyan Tian
- Department of Radiology (Division of Radiobiology), University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Suzanne L. Mansour
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
12
|
Forrai A, Robb L. The gene trap resource: a treasure trove for hemopoiesis research. Exp Hematol 2005; 33:845-56. [PMID: 16038776 DOI: 10.1016/j.exphem.2005.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
The laboratory mouse is an invaluable tool for functional gene discovery because of its genetic malleability and a biological similarity to human systems that facilitates identification of human models of disease. A number of mutagenic technologies are being used to elucidate gene function in the mouse. Gene trapping is an insertional mutagenesis strategy that is being undertaken by multiple research groups, both academic and private, in an effort to introduce mutations across the mouse genome. Large-scale, publicly funded gene trap programs have been initiated in several countries with the International Gene Trap Consortium coordinating certain efforts and resources. We outline the methodology of mammalian gene trapping and how it can be used to identify genes expressed in both primitive and definitive blood cells and to discover hemopoietic regulator genes. Mouse mutants with hematopoietic phenotypes derived using gene trapping are described. The efforts of the large-scale gene trapping consortia have now led to the availability of libraries of mutagenized ES cell clones. The identity of the trapped locus in each of these clones can be identified by sequence-based searching via the world wide web. This resource provides an extraordinary tool for all researchers wishing to use mouse genetics to understand gene function.
Collapse
Affiliation(s)
- Ariel Forrai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
13
|
Molyneaux KA, Wang Y, Schaible K, Wylie C. Transcriptional profiling identifies genes differentially expressed during and after migration in murine primordial germ cells. Gene Expr Patterns 2004; 4:167-81. [PMID: 15161097 DOI: 10.1016/j.modgep.2003.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 09/03/2003] [Accepted: 09/04/2003] [Indexed: 12/25/2022]
Abstract
Mouse primordial germ cells (PGCs) are migratory until they colonize the genital ridges, assemble with the somatic tissue, and start to differentiate into oocytes or spermatogonia. Using cell transplantation experiments, we show here that germ cells isolated during migration (at E10.5) will migrate actively to the genital ridges, whereas post-migratory PGCs isolated from E12.5 embryos are non-motile even when transferred into a permissive environment (e.g. E10.5 host tissue). Major transcriptional changes must take place between E10.5 and E12.5 that convert germ cells from a migratory to a non-migratory state. To identify the genes involved, we have performed transcriptional profiling of motile and non-motile populations of PGCs. We have identified 55 transcripts that are expressed in E10.5 PGCs at levels at least 3 x their expression at E12.5, and 48 transcripts with the reciprocal expression levels. Additionally, 309 transcripts were found to be expressed in both populations. Many of the E10.5 transcripts encode proteins involved in controlling cytoskeletal and adhesive interactions implicated in cell motility. Many of the E12.5 transcripts encode proteins implicated in germ cell differentiation.
Collapse
Affiliation(s)
- Kathleen A Molyneaux
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
14
|
Takeda Y, Akasaka K, Lee S, Kobayashi S, Kawano H, Murayama S, Takahashi N, Hashimoto K, Kano M, Asano M, Sudo K, Iwakura Y, Watanabe K. Impaired motor coordination in mice lacking neural recognition molecule NB-3 of the contactin/F3 subgroup. JOURNAL OF NEUROBIOLOGY 2003; 56:252-65. [PMID: 12884264 DOI: 10.1002/neu.10222] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neural recognition molecule NB-3, which belongs to the contactin subgroup of the immunoglobulin superfamily, is expressed exclusively in the nervous system and mainly upregulated at the early postnatal stage during mouse brain development. The expression of NB-3 in the cerebellum increases until adulthood. In contrast, the expression in the cerebrum declines to a low level after postnatal day 7. To characterize the functional roles of NB-3 in vivo, we generated NB-3-deficient mice by substituting a part of the NB-3 gene with the beta-galactosidase (Lac Z) gene. Complete overlap of the Lac Z expression in the heterozygous mouse brain with the NB-3 immunostaining pattern in the rat cerebellum and with the previously reported pattern of in situ hybridization of NB-3 transcripts indicated that Lac Z expression reflects the expression of NB-3 in the mouse brain. NB-3-deficient mice were viable and fertile. The formation and organization of all nuclei and layers throughout the brains of mutant mice appeared normal. Behavioral tests to examine motor function showed that the mice deficient for NB-3 were slow to learn to stay on the rotating rod in the rotorod test during repeated trials, and that they displayed dysfunction of equilibrium and vestibular senses in the wire hang and horizontal rod-walking tests. In contrast, the mutant mice showed no difference of grasp force from the wild-type mice. Thus, NB-3-deficient mice are impaired in motor coordination.
Collapse
Affiliation(s)
- Yasuo Takeda
- Department of Cell Recognition, Tokyo Metropolitan Institute of Gerontology, Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rustay NR, Wahlsten D, Crabbe JC. Influence of task parameters on rotarod performance and sensitivity to ethanol in mice. Behav Brain Res 2003; 141:237-49. [PMID: 12742261 DOI: 10.1016/s0166-4328(02)00376-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Motor performance in mice can be assessed with multiple apparatus and protocols. Use of the rotarod (a.k.a. rotorod, rota-rod, roto-rod, or accelerod) is very common, and it is often used with the apparent assumption by the experimenters that it is a straightforward and simple assay of coordination. The rotarod is sensitive to drugs that affect motor coordination, including ethanol. However, there are few systematic data assessing the range of "normal" performance in mice. There are also few data exploring optimal task parameters (e.g. the influence of different speeds of rotation). In these experiments, we show that both accelerating and fixed-speed rotarod (FSRR) performance vary under different test protocols and conditions, and that moderate to high doses of ethanol disrupt performance. Under certain conditions, low doses of ethanol were found to enhance performance on the accelerating rotarod (ARR). Therefore, it is not possible to characterize individual differences fully using a single set of test parameters. For example, because of the biphasic effect of ethanol on performance, at least two doses of the drug are necessary to explore individual sensitivity differences. We offer recommendations of parameters we believe to be generally suitable for exploring the performance of new genotypes using the rotarod. We suggest that other putative tests of "ataxia" are similarly complex, and that characterizing the contribution of genetic differences will require similar attention to the details of task apparatus and protocols. These data also underscore the need to employ multiple behavioral assays in order to model a complex domain such as "ataxia" or "coordination."
Collapse
Affiliation(s)
- Nathan R Rustay
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, & VA Medical Center, Portland, OR 97239, USA.
| | | | | |
Collapse
|
16
|
Teufel A, Malik N, Mukhopadhyay M, Westphal H. Frcp1 and Frcp2, two novel fibronectin type III repeat containing genes. Gene 2002; 297:79-83. [PMID: 12384288 DOI: 10.1016/s0378-1119(02)00828-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The fibronectin type III (FNIII) repeat is one of three structural motifs originally identified in the fibronectin protein and has been well characterized in recent years. The consensus sequence has since been found in many different proteins including receptors and cell adhesion molecules. We report the cloning and expression analysis of Frcp1 and Frcp2, two members of a new FNIII repeat containing gene family. During embryonic development both genes are primarily expressed in the brain. In adult tissues, Frcp1 is strongly expressed in the liver and Frcp2 in the heart.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- COS Cells
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Embryo, Mammalian/metabolism
- Fibronectins/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Green Fluorescent Proteins
- In Situ Hybridization
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred Strains
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Amino Acid/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Andreas Teufel
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, NIH, Building 6B, Room 413, 9000 Rockville Pike, Bethesda, MD 20892-2790, USA
| | | | | | | |
Collapse
|
17
|
Abstract
The Bergmann glia is composed of unipolar protoplasmic astrocytes in the cerebellar cortex. Bergmann glial cells locate their cell bodies around Purkinje cells, and extend radial or Bergmann fibers enwrapping synapses on Purkinje cell dendrites. During development, Bergmann fibers display a tight association with migrating granule cells, from which the concept of glia-guided neuronal migration has been proposed. Thus, it is widely known that the Bergmann glia is associated with granule cells in the developing cerebellum and with Purkinje cells in the adult cerebellum. As the information on how Bergmann glial cells are related structurally and functionally with differentiating Purkinje cells is quite fragmental, this issue has been investigated using cytochemical techniques for Bergmann glial cells. This review classifies the cytodifferentiation of Bergmann glial cells into four stages, that is, radial glia, migration, transformation and protoplasmic astrocytes, and then summarizes their structural relationship with Purkinje cells at each stage. The results conclude that the cytodifferentiation of Bergmann glial cells proceeds in correlation with the migration, dendritogenesis, synaptogenesis and maturation of Purkinje cells. Furthermore, morphological and molecular plasticity of this neuroglia appears to be regulated depending on the cytodifferentiation of nearby Purkinje cells. The functional relevance of this intimate neuron-glial relationship is also discussed with reference to recent studies in cell biology, cell ablation and gene knockout.
Collapse
Affiliation(s)
- Keiko Yamada
- Department of Anatomy, Hokkaido University School of Medicine, N15-W7, Kita-ku, Sapporo 060-8638, Japan
| | | |
Collapse
|