1
|
Abascal-Palacios G, Jochem L, Pla-Prats C, Beuron F, Vannini A. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes. Nat Commun 2021; 12:6992. [PMID: 34848735 PMCID: PMC8632968 DOI: 10.1038/s41467-021-27338-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Retrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.
Collapse
Affiliation(s)
| | - Laura Jochem
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Carlos Pla-Prats
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Human Technopole, 20157, Milan, Italy.
| |
Collapse
|
2
|
Bonnet A, Lesage P. Light and shadow on the mechanisms of integration site selection in yeast Ty retrotransposon families. Curr Genet 2021; 67:347-357. [PMID: 33590295 DOI: 10.1007/s00294-021-01154-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Transposable elements are ubiquitous in genomes. Their successful expansion depends in part on their sites of integration in their host genome. In Saccharomyces cerevisiae, evolution has selected various strategies to target the five Ty LTR-retrotransposon families into gene-poor regions in a genome, where coding sequences occupy 70% of the DNA. The integration of Ty1/Ty2/Ty4 and Ty3 occurs upstream and at the transcription start site of the genes transcribed by RNA polymerase III, respectively. Ty5 has completely different integration site preferences, targeting heterochromatin regions. Here, we review the history that led to the identification of the cellular tethering factors that play a major role in anchoring Ty retrotransposons to their preferred sites. We also question the involvement of additional factors in the fine-tuning of the integration site selection, with several studies converging towards an importance of the structure and organization of the chromatin.
Collapse
Affiliation(s)
- Amandine Bonnet
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
3
|
Kling E, Spaller T, Schiefner J, Bönisch D, Winckler T. Convergent evolution of integration site selection upstream of tRNA genes by yeast and amoeba retrotransposons. Nucleic Acids Res 2019; 46:7250-7260. [PMID: 29945249 PMCID: PMC6101501 DOI: 10.1093/nar/gky582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Transposable elements amplify in genomes as selfish DNA elements and challenge host fitness because their intrinsic integration steps during mobilization can compromise genome integrity. In gene-dense genomes, transposable elements are notably under selection to avoid insertional mutagenesis of host protein-coding genes. We describe an example of convergent evolution in the distantly related amoebozoan Dictyostelium discoideum and the yeast Saccharomyces cerevisiae, in which the D. discoideum retrotransposon DGLT-A and the yeast Ty3 element developed different mechanisms to facilitate position-specific integration at similar sites upstream of tRNA genes. Transcription of tRNA genes by RNA polymerase III requires the transcription factor complexes TFIIIB and TFIIIC. Whereas Ty3 recognizes tRNA genes mainly through interactions of its integrase with TFIIIB subunits, the DGLT-A-encoded ribonuclease H contacts TFIIIC subunit Tfc4 at an interface that covers tetratricopeptide repeats (TPRs) 7 and 8. A major function of this interface is to connect TFIIIC subcomplexes τA and τB and to facilitate TFIIIB assembly. During the initiation of tRNA gene transcription τB is displaced from τA, which transiently exposes the TPR 7/8 surface of Tfc4 on τA. We propose that the DGLT-A intasome uses this binding site to obtain access to genomic DNA for integration during tRNA gene transcription.
Collapse
Affiliation(s)
- Eva Kling
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Spaller
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Jana Schiefner
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Doreen Bönisch
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Winckler
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| |
Collapse
|
4
|
Patterson K, Shavarebi F, Magnan C, Chang I, Qi X, Baldi P, Bilanchone V, Sandmeyer SB. Local features determine Ty3 targeting frequency at RNA polymerase III transcription start sites. Genome Res 2019; 29:1298-1309. [PMID: 31249062 PMCID: PMC6673722 DOI: 10.1101/gr.240861.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Abstract
Retroelement integration into host genomes affects chromosome structure and function. A goal of a considerable number of investigations is to elucidate features influencing insertion site selection. The Saccharomyces cerevisiae Ty3 retrotransposon inserts proximal to the transcription start sites (TSS) of genes transcribed by RNA polymerase III (RNAP3). In this study, differential patterns of insertion were profiled genome-wide using a random barcode-tagged Ty3. Saturation transposition showed that tRNA genes (tDNAs) are targeted at widely different frequencies even within isoacceptor families. Ectopic expression of Ty3 integrase (IN) showed that it localized to targets independent of other Ty3 proteins and cDNA. IN, RNAP3, and transcription factor Brf1 were enriched at tDNA targets with high frequencies of transposition. To examine potential effects of cis-acting DNA features on transposition, targeting was tested on high-copy plasmids with restricted amounts of 5′ flanking sequence plus tDNA. Relative activity of targets was reconstituted in these constructions. Weighting of genomic insertions according to frequency identified an A/T-rich sequence followed by C as the dominant site of strand transfer. This site lies immediately adjacent to the adenines previously implicated in the RNAP3 TSS motif (CAA). In silico DNA structural analysis upstream of this motif showed that targets with elevated DNA curvature coincide with reduced integration. We propose that integration mediated by the Ty3 intasome complex (IN and cDNA) is subject to inputs from a combination of host factor occupancy and insertion site architecture, and that this results in the wide range of Ty3 targeting frequencies.
Collapse
Affiliation(s)
- Kurt Patterson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Farbod Shavarebi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Christophe Magnan
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Ivan Chang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Xiaojie Qi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Pierre Baldi
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Suzanne B Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
5
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
6
|
Mechanisms of LTR-Retroelement Transposition: Lessons from Drosophila melanogaster. Viruses 2017; 9:v9040081. [PMID: 28420154 PMCID: PMC5408687 DOI: 10.3390/v9040081] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/02/2023] Open
Abstract
Long terminal repeat (LTR) retrotransposons occupy a special place among all mobile genetic element families. The structure of LTR retrotransposons that have three open reading frames is identical to DNA forms of retroviruses that are integrated into the host genome. Several lines of evidence suggest that LTR retrotransposons share a common ancestry with retroviruses and thus are highly relevant to understanding mechanisms of transposition. Drosophila melanogaster is an exceptionally convenient model for studying the mechanisms of retrotransposon movement because many such elements in its genome are transpositionally active. Moreover, two LTRretrotransposons of D. melanogaster, gypsy and ZAM, have been found to have infectious properties and have been classified as errantiviruses. Despite numerous studies focusing on retroviral integration process, there is still no clear understanding of integration specificity in a target site. Most LTR retrotransposons non-specifically integrate into a target site. Site-specificity of integration at vertebrate retroviruses is rather relative. At the same time, sequence-specific integration is the exclusive property of errantiviruses and their derivatives with two open reading frames. The possible basis for the errantivirus integration specificity is discussed in the present review.
Collapse
|
7
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
8
|
RNA Polymerase III Advances: Structural and tRNA Functional Views. Trends Biochem Sci 2016; 41:546-559. [PMID: 27068803 DOI: 10.1016/j.tibs.2016.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
RNA synthesis in eukaryotes is divided among three RNA polymerases (RNAPs). RNAP III transcribes hundreds of tRNA genes and fewer additional short RNA genes. We survey recent work on transcription by RNAP III including an atomic structure, mechanisms of action, interactions with chromatin and retroposons, and a conserved link between its activity and a tRNA modification that enhances mRNA decoding. Other new work suggests important mechanistic connections to oxidative stress, autoimmunity and cancer, embryonic stem cell pluripotency, and tissue-specific developmental effects. We consider that, for some of its complex functions, variation in RNAP III activity levels lead to nonuniform changes in tRNAs that can shift the translation profiles of key codon-biased mRNAs with resultant phenotypes or disease states.
Collapse
|
9
|
Abstract
Long terminal repeat (LTR) retrotransposons constitute significant fractions of many eukaryotic genomes. Two ancient families are Ty1/Copia (Pseudoviridae) and Ty3/Gypsy (Metaviridae). The Ty3/Gypsy family probably gave rise to retroviruses based on the domain order, similarity of sequences, and the envelopes encoded by some members. The Ty3 element of Saccharomyces cerevisiae is one of the most completely characterized elements at the molecular level. Ty3 is induced in mating cells by pheromone stimulation of the mitogen-activated protein kinase pathway as cells accumulate in G1. The two Ty3 open reading frames are translated into Gag3 and Gag3-Pol3 polyprotein precursors. In haploid mating cells Gag3 and Gag3-Pol3 are assembled together with Ty3 genomic RNA into immature virus-like particles in cellular foci containing RNA processing body proteins. Virus-like particle Gag3 is then processed by Ty3 protease into capsid, spacer, and nucleocapsid, and Gag3-Pol3 into those proteins and additionally, protease, reverse transcriptase, and integrase. After haploid cells mate and become diploid, genomic RNA is reverse transcribed into cDNA. Ty3 integration complexes interact with components of the RNA polymerase III transcription complex resulting in Ty3 integration precisely at the transcription start site. Ty3 activation during mating enables proliferation of Ty3 between genomes and has intriguing parallels with metazoan retrotransposon activation in germ cell lineages. Identification of nuclear pore, DNA replication, transcription, and repair host factors that affect retrotransposition has provided insights into how hosts and retrotransposons interact to balance genome stability and plasticity.
Collapse
|
10
|
Cheung S, Ma L, Chan PHW, Hu HL, Mayor T, Chen HT, Measday V. Ty1 Integrase Interacts with RNA Polymerase III-specific Subcomplexes to Promote Insertion of Ty1 Elements Upstream of Polymerase (Pol) III-transcribed Genes. J Biol Chem 2016; 291:6396-411. [PMID: 26797132 DOI: 10.1074/jbc.m115.686840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 01/01/2023] Open
Abstract
Retrotransposons are eukaryotic mobile genetic elements that transpose by reverse transcription of an RNA intermediate and are derived from retroviruses. The Ty1 retrotransposon of Saccharomyces cerevisiae belongs to the Ty1/Copia superfamily, which is present in every eukaryotic genome. Insertion of Ty1 elements into the S. cerevisiae genome, which occurs upstream of genes transcribed by RNA Pol III, requires the Ty1 element-encoded integrase (IN) protein. Here, we report that Ty1-IN interacts in vivo and in vitro with RNA Pol III-specific subunits to mediate insertion of Ty1 elements upstream of Pol III-transcribed genes. Purification of Ty1-IN from yeast cells followed by mass spectrometry (MS) analysis identified an enrichment of peptides corresponding to the Rpc82/34/31 and Rpc53/37 Pol III-specific subcomplexes. GFP-Trap purification of multiple GFP-tagged RNA Pol III subunits from yeast extracts revealed that the majority of Pol III subunits co-purify with Ty1-IN but not two other complexes required for Pol III transcription, transcription initiation factors (TF) IIIB and IIIC. In vitro binding studies with bacterially purified RNA Pol III proteins demonstrate that Rpc31, Rpc34, and Rpc53 interact directly with Ty1-IN. Deletion of the N-terminal 280 amino acids of Rpc53 abrogates insertion of Ty1 elements upstream of the hot spot SUF16 tRNA locus and abolishes the interaction of Ty1-IN with Rpc37. The Rpc53/37 complex therefore has an important role in targeting Ty1-IN to insert Ty1 elements upstream of Pol III-transcribed genes.
Collapse
Affiliation(s)
- Stephanie Cheung
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| | | | - Patrick H W Chan
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hui-Lan Hu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Thibault Mayor
- From the Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada and
| | - Hung-Ta Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115
| | - Vivien Measday
- From the Department of Biochemistry and Molecular Biology, Wine Research Centre, and
| |
Collapse
|
11
|
Guo Y, Singh PK, Levin HL. A long terminal repeat retrotransposon of Schizosaccharomyces japonicus integrates upstream of RNA pol III transcribed genes. Mob DNA 2015; 6:19. [PMID: 26457121 PMCID: PMC4600332 DOI: 10.1186/s13100-015-0048-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 01/29/2023] Open
Abstract
Background Transposable elements (TEs) are common constituents of centromeres. However, it is not known what causes this relationship. Schizosaccharomyces japonicus contains 10 families of Long Terminal Repeat (LTR)-retrotransposons and these elements cluster in centromeres and telomeres. In the related yeast, Schizosaccharomyces pombe LTR-retrotransposons Tf1 and Tf2 are distributed in the promoter regions of RNA pol II transcribed genes. Sequence analysis of TEs indicates that Tj1 of S. japonicus is related to Tf1 and Tf2, and uses the same mechanism of self-primed reverse transcription. Thus, we wondered why these related retrotransposons localized in different regions of the genome. Results To characterize the integration behavior of Tj1 we expressed it in S. pombe. We found Tj1 was active and capable of generating de novo integration in the chromosomes of S. pombe. The expression of Tj1 is similar to Type C retroviruses in that a stop codon at the end of Gag must be present for efficient integration. 17 inserts were sequenced, 13 occurred within 12 bp upstream of tRNA genes and 3 occurred at other RNA pol III transcribed genes. The link between Tj1 integration and RNA pol III transcription is reminiscent of Ty3, an LTR-retrotransposon of Saccharomyces cerevisiae that interacts with TFIIIB and integrates upstream of tRNA genes. Conclusion The integration of Tj1 upstream of tRNA genes and the centromeric clustering of tRNA genes in S. japonicus demonstrate that the clustering of this TE in centromere sequences is due to a unique pattern of integration.
Collapse
Affiliation(s)
- Yabin Guo
- Present address: University of Texas Southwestern Medical Center, Dallas, Texas USA
| | - Parmit Kumar Singh
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 18 T, room 106, Bethesda, MD 20892 USA
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Building 18 T, room 106, Bethesda, MD 20892 USA
| |
Collapse
|
12
|
Taylor NMI, Baudin F, von Scheven G, Müller CW. RNA polymerase III-specific general transcription factor IIIC contains a heterodimer resembling TFIIF Rap30/Rap74. Nucleic Acids Res 2013; 41:9183-96. [PMID: 23921640 PMCID: PMC3799434 DOI: 10.1093/nar/gkt664] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcription of tRNA-encoding genes by RNA polymerase (Pol) III requires the six-subunit general transcription factor IIIC that uses subcomplexes τA and τB to recognize two gene-internal promoter elements named A- and B-box. The Schizosaccharomyces pombe τA subcomplex comprises subunits Sfc1, Sfc4 and Sfc7. The crystal structure of the Sfc1/Sfc7 heterodimer reveals similar domains and overall domain architecture to the Pol II-specific general transcription factor TFIIF Rap30/Rap74. The N-terminal Sfc1/Sfc7 dimerization module consists of a triple β-barrel similar to the N-terminal TFIIF Rap30/Rap74 dimerization module, whereas the C-terminal Sfc1 DNA-binding domain contains a winged-helix domain most similar to the TFIIF Rap30 C-terminal winged-helix domain. Sfc1 DNA-binding domain recognizes single and double-stranded DNA by an unknown mechanism. Several features observed for A-box recognition by τA resemble the recognition of promoters by bacterial RNA polymerase, where σ factor unfolds double-stranded DNA and stabilizes the non-coding DNA strand in an open conformation. Such a function has also been proposed for TFIIF, suggesting that the observed structural similarity between Sfc1/Sfc7 and TFIIF Rap30/Rap74 might also reflect similar functions.
Collapse
Affiliation(s)
- Nicholas M I Taylor
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany and UJF-EMBL-CNRS UMI 3265, Unit of Virus Host-Cell Interactions, 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
13
|
Qi X, Daily K, Nguyen K, Wang H, Mayhew D, Rigor P, Forouzan S, Johnston M, Mitra RD, Baldi P, Sandmeyer S. Retrotransposon profiling of RNA polymerase III initiation sites. Genome Res 2012; 22:681-92. [PMID: 22287102 DOI: 10.1101/gr.131219.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although retroviruses are relatively promiscuous in choice of integration sites, retrotransposons can display marked integration specificity. In yeast and slime mold, some retrotransposons are associated with tRNA genes (tDNAs). In the Saccharomyces cerevisiae genome, the long terminal repeat retrotransposon Ty3 is found at RNA polymerase III (Pol III) transcription start sites of tDNAs. Ty1, 2, and 4 elements also cluster in the upstream regions of these genes. To determine the extent to which other Pol III-transcribed genes serve as genomic targets for Ty3, a set of 10,000 Ty3 genomic retrotranspositions were mapped using high-throughput DNA sequencing. Integrations occurred at all known tDNAs, two tDNA relics (iYGR033c and ZOD1), and six non-tDNA, Pol III-transcribed types of genes (RDN5, SNR6, SNR52, RPR1, RNA170, and SCR1). Previous work in vitro demonstrated that the Pol III transcription factor (TF) IIIB is important for Ty3 targeting. However, seven loci that bind the TFIIIB loader, TFIIIC, were not targeted, underscoring the unexplained absence of TFIIIB at those sites. Ty3 integrations also occurred in two open reading frames not previously associated with Pol III transcription, suggesting the existence of a small number of additional sites in the yeast genome that interact with Pol III transcription complexes.
Collapse
Affiliation(s)
- Xiaojie Qi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Voigt K, Izsvák Z, Ivics Z. Targeted gene insertion for molecular medicine. J Mol Med (Berl) 2008; 86:1205-19. [PMID: 18607557 DOI: 10.1007/s00109-008-0381-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022]
Abstract
Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.
Collapse
Affiliation(s)
- Katrin Voigt
- Max Delbrück Center for Molecular Medicine, Robert-Rössle Strasse 10, 13092, Berlin, Germany
| | | | | |
Collapse
|
15
|
Winckler T, Szafranski K, Glöckner G. Transfer RNA gene-targeted integration: an adaptation of retrotransposable elements to survive in the compact Dictyostelium discoideum genome. Cytogenet Genome Res 2005; 110:288-98. [PMID: 16093681 DOI: 10.1159/000084961] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Accepted: 10/10/2003] [Indexed: 11/19/2022] Open
Abstract
Almost every organism carries along a multitude of molecular parasites known as transposable elements (TEs). TEs influence their host genomes in many ways by expanding genome size and complexity, rearranging genomic DNA, mutagenizing host genes, and altering transcription levels of nearby genes. The eukaryotic microorganism Dictyostelium discoideum is attractive for the study of fundamental biological phenomena such as intercellular communication, formation of multicellularity, cell differentiation, and morphogenesis. D. discoideum has a highly compacted, haploid genome with less than 1 kb of genomic DNA separating coding regions. Nevertheless, the D. discoideum genome is loaded with 10% of TEs that managed to settle and survive in this inhospitable environment. In depth analysis of D. discoideum genome project data has provided intriguing insights into the evolutionary challenges that mobile elements face when they invade compact genomes. Two different mechanisms are used by D. discoideum TEs to avoid disruption of host genes upon retrotransposition. Several TEs have invented the specific targeting of tRNA gene-flanking regions as a means to avoid integration into coding regions. These elements have been dispersed on all chromosomes, closely following the distribution of tRNA genes. By contrast, TEs that lack bona fide integration specificities show a strong bias to nested integration, thus forming large TE clusters at certain chromosomal loci that are hardly resolved by bioinformatics approaches. We summarize our current view of D. discoideum TEs and present new data from the analysis of the complete sequences of D. discoideum chromosomes 1 and 2, which comprise more than one third of the total genome.
Collapse
Affiliation(s)
- T Winckler
- Institut für Pharmazeutische Biologie, Universität Frankfurt am Main (Biozentrum), Frankfurt, Germany.
| | | | | |
Collapse
|
16
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
17
|
Gelbart ME, Bachman N, Delrow J, Boeke JD, Tsukiyama T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev 2005; 19:942-54. [PMID: 15833917 PMCID: PMC1080133 DOI: 10.1101/gad.1298905] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Isw2 ATP-dependent chromatin-remodeling activity is targeted to early meiotic and MATa-specific gene promoters in Saccharomyces cerevisiae. Unexpectedly, preferential cross-linking of wild-type Isw2p was not detected at these loci. Instead, the catalytically inactive Isw2p-K215R mutant is enriched at Isw2 targets, suggesting that Isw2p-K215R, but not wild-type Isw2p, is a sensitive chromatin immunoprecipitation (ChIP) reagent for marking sites of Isw2 activity in vivo. Genome-wide ChIP analyses confirmed this conclusion and identified tRNA genes (tDNAs) as a new class of Isw2 targets. Loss of Isw2p disrupted the periodic pattern of Ty1 integration upstream of tDNAs, but did not affect transcription of tDNAs or the associated Ty1 retrotransposons. In addition to identifying new Isw2 targets, our localization studies have important implications for the mechanism of Isw2 association with chromatin in vivo. Target-specific enrichment of Isw2p-K215R, not wild-type Isw2p, suggests that Isw2 is recruited transiently to remodel chromatin structure at these sites. In contrast, we found no evidence for Isw2 function at sites preferentially enriched by wild-type Isw2p, leading to our proposal that wild-type Isw2p cross-linking reveals a scanning mode of the complex as it surveys the genome for its targets.
Collapse
Affiliation(s)
- Marnie E Gelbart
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
18
|
Irwin B, Aye M, Baldi P, Beliakova-Bethell N, Cheng H, Dou Y, Liou W, Sandmeyer S. Retroviruses and yeast retrotransposons use overlapping sets of host genes. Genome Res 2005; 15:641-54. [PMID: 15837808 PMCID: PMC1088292 DOI: 10.1101/gr.3739005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A collection of 4457 Saccharomyces cerevisiae mutants deleted for nonessential genes was screened for mutants with increased or decreased mobilization of the gypsylike retroelement Ty3. Of these, 64 exhibited increased and 66 decreased Ty3 transposition compared with the parental strain. Genes identified in this screen were grouped according to function by using GOnet software developed as part of this study. Gene clusters were related to chromatin and transcript elongation, translation and cytoplasmic RNA processing, vesicular trafficking, nuclear transport, and DNA maintenance. Sixty-six of the mutants were tested for Ty3 proteins and cDNA. Ty3 cDNA and transposition were increased in mutants affected in nuclear pore biogenesis and in a subset of mutants lacking proteins that interact physically or genetically with a replication clamp loader. Our results suggest that nuclear entry is linked mechanistically to Ty3 cDNA synthesis but that host replication factors antagonize Ty3 replication. Some of the factors we identified have been previously shown to affect Ty1 transposition and others to affect retroviral budding. Host factors, such as these, shared by distantly related Ty retroelements and retroviruses are novel candidates for antiviral targets.
Collapse
Affiliation(s)
- Becky Irwin
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Aye M, Irwin B, Beliakova-Bethell N, Chen E, Garrus J, Sandmeyer S. Host factors that affect Ty3 retrotransposition in Saccharomyces cerevisiae. Genetics 2004; 168:1159-76. [PMID: 15579677 PMCID: PMC1448793 DOI: 10.1534/genetics.104.028126] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 06/18/2004] [Indexed: 11/18/2022] Open
Abstract
The retrovirus-like element Ty3 of Saccharomyces cerevisiae integrates at the transcription initiation region of RNA polymerase III. To identify host genes that affect transposition, a collection of insertion mutants was screened using a genetic assay in which insertion of Ty3 activates expression of a tRNA suppressor. Fifty-three loci were identified in this screen. Corresponding knockout mutants were tested for the ability to mobilize a galactose-inducible Ty3, marked with the HIS3 gene. Of 42 mutants tested, 22 had phenotypes similar to those displayed in the original assay. The proteins encoded by the defective genes are involved in chromatin dynamics, transcription, RNA processing, protein modification, cell cycle regulation, nuclear import, and unknown functions. These mutants were induced for Ty3 expression and assayed for Gag3p protein, integrase, cDNA, and Ty3 integration upstream of chromosomal tDNA(Val(AAC)) genes. Most mutants displayed differences from the wild type in one or more intermediates, although these were typically not as severe as the genetic defect. Because a relatively large number of genes affecting retrotransposition can be identified in yeast and because the majority of these genes have mammalian homologs, this approach provides an avenue for the identification of potential antiviral targets.
Collapse
Affiliation(s)
- Michael Aye
- Department of Biological Chemistry, University of California College of Medicine, Irvine, California 92697, USA
| | | | | | | | | | | |
Collapse
|
20
|
Bachman N, Eby Y, Boeke JD. Local definition of Ty1 target preference by long terminal repeats and clustered tRNA genes. Genome Res 2004; 14:1232-47. [PMID: 15197163 PMCID: PMC442138 DOI: 10.1101/gr.2052904] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
LTR-containing retrotransposons reverse transcribe their RNA genomes, and the resulting cDNAs are integrated into the genome by the element-encoded integrase protein. The yeast LTR retrotransposon Ty1 preferentially integrates into a target window upstream of tDNAs (tRNA genes) in the yeast genome. We investigated the nature of these insertions and the target window on a genomic scale by analyzing several hundred de novo insertions upstream of tDNAs in two different multicopy gene families. The pattern of insertion upstream of tDNAs was nonrandom and periodic, with peaks separated by approximately 80 bp. Insertions were not distributed equally throughout the genome, as certain tDNAs within a given family received higher frequencies of upstream Ty1 insertions than others. We showed that the presence and relative position of additional tDNAs and LTRs surrounding the target tDNA dramatically influenced the frequency of insertion events upstream of that target.
Collapse
Affiliation(s)
- Nurjana Bachman
- The Johns Hopkins University School of Medicine, Department of Molecular Biology and Genetics, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
21
|
Abstract
The Saccharomyces cerevisiae retrovirus-like element Ty3 inserts specifically into the initiation sites of genes transcribed by RNA polymerase III (pol III). A strain with a disruption of LHP1, which encodes the homologue of autoantigen La protein, was recovered in a screen for mutants defective in Ty3 transposition. Transposition into a target composed of divergent tRNA genes was decreased eightfold. In lhp1 mutants, Ty3 polyproteins were produced at wild-type levels, assembled into virus-like particles (VLPs) and processed efficiently. The amount of cDNA associated with these particles was about half the amount in a wild-type control at early times, but approached the wild-type level after 48 h of induction. Ty3 integration was examined at two genomic tRNA gene families and two plasmid-borne tRNA promoters. Integration was significantly decreased at one of the tRNA gene families, but was only slightly decreased at the second tRNA gene family. These findings suggest that Lhp1p contributes to Ty3 cDNA synthesis, but might also act at a target-specific step, such as integration.
Collapse
Affiliation(s)
- Michael Aye
- Department of Biological Chemistry, University of California, Irvine, CA 92697-1700, USA
| | | |
Collapse
|
22
|
Affiliation(s)
- Suzanne Sandmeyer
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92697-1700, USA.
| |
Collapse
|
23
|
Zhu Y, Dai J, Fuerst PG, Voytas DF. Controlling integration specificity of a yeast retrotransposon. Proc Natl Acad Sci U S A 2003; 100:5891-5. [PMID: 12730380 PMCID: PMC156297 DOI: 10.1073/pnas.1036705100] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Indexed: 11/18/2022] Open
Abstract
Retrotransposons and retroviruses integrate nonrandomly into eukaryotic genomes. For the yeast retrotransposon Ty5, integration preferentially occurs within domains of heterochromatin. Targeting to these locations is determined by interactions between an amino acid sequence motif at the C terminus of Ty5 integrase (IN) called the targeting domain, and the heterochromatin protein Sir4p. Here we show that new Ty5 integration hot spots are created when Sir4p is tethered to ectopic DNA sites. Targeting to sites of tethered Sir4p is abrogated by single amino acid substitutions in either IN or Sir4p that prevent their interaction. Ty5 target specificity can be altered by replacing the IN-targeting domain with other peptide motifs that interact with known protein partners. Integration occurs at high efficiency and in close proximity to DNA sites where the protein partners are tethered. These findings define a mechanism by which retrotransposons shape their host genomes and suggest ways in which retroviral integration can be controlled.
Collapse
Affiliation(s)
- Yunxia Zhu
- Department of Zoology and Genetics, 2208 Molecular Biology Building, Iowa State University, Ames, IA 50014
| | | | | | | |
Collapse
|
24
|
Jourdain S, Acker J, Ducrot C, Sentenac A, Lefebvre O. The tau95 subunit of yeast TFIIIC influences upstream and downstream functions of TFIIIC.DNA complexes. J Biol Chem 2003; 278:10450-7. [PMID: 12533520 DOI: 10.1074/jbc.m213310200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcription factor IIIC (TFIIIC) is organized in two distinct multisubunit domains, tauA and tauB, that are respectively responsible for TFIIIB assembly and stable anchoring of TFIIIC on the B block of tRNA genes. Surprisingly, we found that the removal of tauA by mild proteolysis stabilizes the residual tauB.DNA complexes at high temperatures. Focusing on the well conserved tau95 subunit that belongs to the tauA domain, we found that the tau95-E447K mutation has long distance effects on the stability of TFIIIC.DNA complexes and start site selection. Mutant TFIIIC.DNA complexes presented a shift in their 5' border, generated slow-migrating TFIIIB.DNA complexes upon stripping TFIIIC by heparin or heat treatment, and allowed initiation at downstream sites. In addition, mutant TFIIIC.DNA complexes were highly unstable at high temperatures. Coimmunoprecipitation experiments indicated that tau95 participates in the interconnection of tauA with tauB via its contacts with tau138 and tau91 polypeptides. The results suggest that tau95 serves as a scaffold critical for tauA.DNA spatial configuration and tauB.DNA stability.
Collapse
Affiliation(s)
- Sabine Jourdain
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
25
|
Yieh L, Hatzis H, Kassavetis G, Sandmeyer SB. Mutational analysis of the transcription factor IIIB-DNA target of Ty3 retroelement integration. J Biol Chem 2002; 277:25920-8. [PMID: 11994300 DOI: 10.1074/jbc.m202729200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ty3 retrovirus-like element inserts preferentially at the transcription initiation sites of genes transcribed by RNA polymerase III. The requirements for transcription factor (TF) IIIC and TFIIIB in Ty3 integration into the two initiation sites of the U6 gene carried on pU6LboxB were previously examined. Ty3 integrates at low but detectable frequencies in the presence of TFIIIB subunits Brf1 and TATA-binding protein. Integration increases in the presence of the third subunit, Bdp1. TFIIIC is not essential, but the presence of TFIIIC specifies an orientation of TFIIIB for transcriptional initiation and directs integration to the U6 gene-proximal initiation site. In the current study, recombinant wild type TATA-binding protein, wild type and mutant Brf1, and Bdp1 proteins and highly purified TFIIIC were used to investigate the roles of specific protein domains in Ty3 integration. The amino-terminal half of Brf1, which contains a TFIIB-like repeat, contributed more strongly than the carboxyl-terminal half of Brf1 to Ty3 targeting. Each half of Bdp1 split at amino acid 352 enhanced integration. In the presence of TFIIIB and TFIIIC, the pattern of integration extended downstream by several base pairs compared with the pattern observed in vitro in the absence of TFIIIC and in vivo, suggesting that TFIIIC may not be present on genes targeted by Ty3 in vivo. Mutations in Bdp1 that affect its interaction with TFIIIC resulted in TFIIIC-independent patterns of Ty3 integration. Brf1 zinc ribbon and Bdp1 internal deletion mutants that are competent for polymerase III recruitment but defective in promoter opening were competent for Ty3 integration irrespective of the state of DNA supercoiling. These results extend the similarities between the TFIIIB domains required for transcription and Ty3 integration and also reveal requirements that are specific to transcription.
Collapse
Affiliation(s)
- Lynn Yieh
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-1700, USA
| | | | | | | |
Collapse
|
26
|
Abstract
SINEs and LINEs are short and long interspersed retrotransposable elements, respectively, that invade new genomic sites using RNA intermediates. SINEs and LINEs are found in almost all eukaryotes (although not in Saccharomyces cerevisiae) and together account for at least 34% of the human genome. The noncoding SINEs depend on reverse transcriptase and endonuclease functions encoded by partner LINEs. With the completion of many genome sequences, including our own, the database of SINEs and LINEs has taken a great leap forward. The new data pose new questions that can only be answered by detailed studies of the mechanism of retroposition. Current work ranges from the biochemistry of reverse transcription and integration invitro, target site selection in vivo, nucleocytoplasmic transport of the RNA and ribonucleoprotein intermediates, and mechanisms of genomic turnover. Two particularly exciting new ideas are that SINEs may help cells survive physiological stress, and that the evolution of SINEs and LINEs has been shaped by the forces of RNA interference. Taken together, these studies promise to explain the birth and death of SINEs and LINEs, and the contribution of these repetitive sequence families to the evolution of genomes.
Collapse
Affiliation(s)
- Alan M Weiner
- Department of Biochemistry, HSB J417, University of Washington, Box 357350, Seattle, WA 98195-7350, USA.
| |
Collapse
|
27
|
Bibliography. Current awareness on yeast. Yeast 2002; 19:467-74. [PMID: 11921095 DOI: 10.1002/yea.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|