1
|
Lentini G, Querqui A, Giuliani A, Verna R, Bizzarri M. Inositol and PIP2/PIP3 Ratio: At the Crossroad of the Biodynamic Interface Between Cells and Their Microenvironment. Biomolecules 2025; 15:451. [PMID: 40149987 PMCID: PMC11940430 DOI: 10.3390/biom15030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Plasma membrane plays a pivotal role in orchestrating motility and invasive processes, as well as mitosis and genome expression. Indeed, specialized regions of the plasma membrane enriched in phosphoinositides-namely PIP2 and PIP3-can accommodate the requirements of the dynamic interface, which mediates the interplay between cells and their microenvironment. The fine-tuned balance between the two phosphoinositides is instrumental in regulating cytoskeleton organization, motility, ion channel activation, and membrane traffic. The balanced expression of PIP2/PIP3 fulfills these functions by activating pathways through several transporter and receptor proteins. These dynamic interactions modulate the interplay with the extracellular environment by decreasing/increasing their exposure on the cell surface. In this way, lipid structures can rapidly either dismiss or recruit specific proteins, eventually favoring their cooperation with membrane receptors and ion channels. Particularly, exposure of proteins can be managed through the internalization of plasma membrane segments, while receptor signaling can be desensitized by their removal from the cell surface. Notably, the equilibrium between PIP2 and PIP3 is largely dependent on inositol availability, as inositol addition enhances PIP2 content while reducing PIP3 via PI3K inhibition. Pharmacological modulation of PIP2/PIP3 balance promises to be an interesting target in different clinical settings.
Collapse
Affiliation(s)
- Guglielmo Lentini
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Alessandro Querqui
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Roberto Verna
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| | - Mariano Bizzarri
- Space Biomedicine Laboratory, Department of Experimental Medicine, University Sapienza, 00161 Rome, Italy; (A.Q.); (R.V.)
| |
Collapse
|
2
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
3
|
Wada T, Miyazawa Y, Ikurumi M, Fuse K, Okekawa A, Onogi Y, Saito S, Tsuneki H, Sasaoka T. A transdermal treatment with MC903 ameliorates diet-induced obesity by reducing visceral fat and increasing myofiber thickness and energy consumption in mice. Nutr Metab (Lond) 2023; 20:10. [PMID: 36774476 PMCID: PMC9921322 DOI: 10.1186/s12986-023-00732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/07/2023] [Indexed: 02/13/2023] Open
Abstract
AIM MC903 is a synthetic derivative of vitamin D3 that has been designed to diminish its impact on calcium metabolism and is clinically used as a transdermal reagent for psoriasis. Animal studies showed that an oral or intraperitoneal vitamin D3 treatment prevented the development of obesity. In contrast, the bioavailability of orally administered vitamin D3 is reported to be low in obese patients. In the current study, we aimed to investigate the impact of a transdermal treatment with MC903 in established obese mice. We further studied the underlying mechanisms of MC903-mediated metabolic improvement. MATERIALS AND METHODS Male C57BL/6 J mice were fed standard chow or a 60% high-fat diet (HFD) for 7 weeks, and a transdermal treatment with MC903 on the ear auricle was initiated thereafter. The metabolic profiles of mice were analyzed during 4 weeks of treatment, and mice were dissected for histological and gene expression analyses. The direct impacts of MC903 and vitamin D3 were investigated using 3T3-L1 adipocytes and C2C12 myotubes in vitro. RESULTS HFD-fed mice showed significant increases in body and epididymal white adipose tissue (eWAT) weights with enlarged adipocytes. They exhibited glucose intolerance, decreased oxygen consumption, and chronic inflammation in eWAT. The transdermal treatment with MC903 significantly ameliorated these metabolic abnormalities in HFD-fed mice without affecting food consumption. In accordance with enhanced energy metabolism, myofiber diameters and the expression of uncoupling protein 3 (UCP3) in the gastrocnemius and soleus muscle were significantly increased in MC903-treated HFD mice. In addition, vitamin D3 and MC903 both suppressed adipogenic differentiation and enhanced lipolysis in 3T3-L1 adipocytes, and increased UCP3 expression in cultured C2C12 myotubes. Furthermore, MC903 increased oxygen consumption and UCP3 knockdown significantly decreased them in C2C12 myotubes. CONCLUSIONS A transdermal treatment with MC903 increased myofiber diameter and energy metabolism and decreased visceral fat accumulation, thereby improving obesity and glucose intolerance in mice.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yuichiro Miyazawa
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Misa Ikurumi
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Kento Fuse
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Akira Okekawa
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Yasuhiro Onogi
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan ,grid.267346.20000 0001 2171 836XResearch Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- grid.267346.20000 0001 2171 836XDepartment of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Hiroshi Tsuneki
- grid.267346.20000 0001 2171 836XDepartment of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Integrative Pharmacology, University of Toyama, Toyama, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
4
|
Al Duhaidahawi D, Hasan SA, Al Zubaidy HFS. Flavonoids in the Treatment of Diabetes: Clinical Outcomes and Mechanism to Ameliorate Blood Glucose Levels. Curr Diabetes Rev 2021; 17:e120720188794. [PMID: 33290200 DOI: 10.2174/1573399817666201207200346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND For thousands of years, natural food products have been used as a medicine for treating diseases that affect the human body, including diabetes mellitus (DM). Lately, several investigations have been performed on the flavonoid derivatives of plant origin, and their biological activity has been extensively studied. METHODS Given our need to know more mechanisms for treating DM, we performed a thorough research review on treating diabetes mellitus based on flavonoids, their therapeutic potential, and biological action. RESULTS Flavonoids reduce complications in addition to their vital role as effective supplements for preventing diabetes mellitus by regulating glucose metabolism, lipid profile, liver enzyme activity, a protein kinase inhibitor, PPAR, and AMPK with NF-κB. CONCLUSION The articles that we reviewed showed the positive role of flavonoids, which in a certain way reduce diabetes, but their side effects still need to be studied further.This review is focused on describing the different types of dietary flavonoids along with their mechanisms of reducing blood glucose and enhancing insulin sensitivity, as well as their side effects.
Collapse
Affiliation(s)
- Dunya Al Duhaidahawi
- Faculty of Pharmacy, Department of Pharmacognacy, University of Kufa, AL-Najaf, Iraq
| | - Samer A Hasan
- Pharmacognacy, Pharmacy, University of Kufa, AL-Najaf, Iraq
| | | |
Collapse
|
5
|
Wong CY, Al-Salami H, Dass CR. C2C12 cell model: its role in understanding of insulin resistance at the molecular level and pharmaceutical development at the preclinical stage. J Pharm Pharmacol 2020; 72:1667-1693. [PMID: 32812252 DOI: 10.1111/jphp.13359] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The myoblast cell line, C2C12, has been utilised extensively in vitro as an examination model in understanding metabolic disease progression. Although it is indispensable in both preclinical and pharmaceutical research, a comprehensive review of its use in the investigation of insulin resistance progression and pharmaceutical development is not available. KEY FINDINGS C2C12 is a well-documented model, which can facilitate our understanding in glucose metabolism, insulin signalling mechanism, insulin resistance, oxidative stress, reactive oxygen species and glucose transporters at cellular and molecular levels. With the aid of the C2C12 model, recent studies revealed that insulin resistance has close relationship with various metabolic diseases in terms of disease progression, pathogenesis and therapeutic management. A holistic, safe and effective disease management is highly of interest. Therefore, significant efforts have been paid to explore novel drug compounds and natural herbs that can elicit therapeutic effects in the targeted sites at both cellular (e.g. mitochondria, glucose transporter) and molecular level (e.g. genes, signalling pathway). SUMMARY The use of C2C12 myoblast cell line is meaningful in pharmaceutical and biomedical research due to their expression of GLUT-4 and other features that are representative to human skeletal muscle cells. With the use of the C2C12 cell model, the impact of drug delivery systems (nanoparticles and quantum dots) on skeletal muscle, as well as the relationship between exercise, pancreatic β-cells and endothelial cells, was discovered.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia.,Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia.,Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
6
|
Yuan X, Ding L, Diao J, Wen S, Xu C, Zhou L, Du A. PolyMet-HA nanocomplexs regulates glucose uptake by inhibiting SHIP2 activity. J Biomater Appl 2020; 35:849-856. [PMID: 32741295 DOI: 10.1177/0885328220947343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metformin, the first-line drug to treat type 2 diabetes, inhibits mitochondrial glycerolphosphate dehydrogenase in the liver to suppress gluconeogenesis. The major adverse effects caused by metformin were lactic acidosis and gastrointestinal discomfort. Therefore, there is need to develop a strategy with excellent permeability and appropriate retention effects.In this study, we synthesized a simple and biocompatible PolyMetformin (denoted as PolyMet) through conjugation of PEI1.8K with dicyandiamide, and then formed PolyMet-hyaluronic acid (HA) nanocomplexs by electrostatic self-assembly of the polycationic PolyMet and polyanionic hyaluronic acid (HA). Similar to metformin, the PolyMet-HA nanocomplexs could reduce the catalytic activity of the recombinant SHIP2 phosphatase domain in vitro. In SHIP2-overexpressing myotubes, PolyMet-HA nanocomplexes ameliorated glucose uptake by downregulating glucose transporter 4 endocytosis. PolyMet-HA nanocomplexes also could restore Akt signaling and protect the podocyte from apoptosis induced by SHIP2 overexpression. In essence, the PolyMet-HA nanocomplexes act similarly to metformin and increase glucose uptake, and maybe have a potential role in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Xinlu Yuan
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Ling Ding
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Jianjun Diao
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Song Wen
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Chenglin Xu
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Ligang Zhou
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Anqing Du
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| |
Collapse
|
7
|
Berg ME, Naams JB, Hautala LC, Tolvanen TA, Ahonen JP, Lehtonen S, Wähälä K. Novel Sulfonanilide Inhibitors of SHIP2 Enhance Glucose Uptake into Cultured Myotubes. ACS OMEGA 2020; 5:1430-1438. [PMID: 32010815 PMCID: PMC6990439 DOI: 10.1021/acsomega.9b02944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/30/2019] [Indexed: 05/14/2023]
Abstract
A series of substituted sulfonanilide analogs were prepared and evaluated as novel potent inhibitors of SH2 domain-containing inositol polyphosphate 5'-phosphatase 2 (SHIP2). SHIP2 has been shown to be a new attractive target for the treatment of insulin resistance in type 2 diabetes mellitus (T2D), which can lead to life-threatening diabetic kidney disease (DKD). Amongst the synthesized compounds, the two most promising candidates, 10 and 11, inhibited SHIP2 significantly. Additionally, these compounds induced Akt activation in a dose-dependent manner, increased the presence of glucose transporter 4 at the plasma membrane, and enhanced glucose uptake in cultured myotubes in vitro at lower concentrations than metformin, the most widely used antidiabetic drug. These results show that the novel SHIP2 inhibitors have insulin sensitizing capacity and provide prototypes for further drug development for T2D and DKD.
Collapse
Affiliation(s)
- Mika E.
A. Berg
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Jette-Britt Naams
- Research
Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, 00014 Finland
| | - Laura C. Hautala
- Research
Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, 00014 Finland
| | - Tuomas A. Tolvanen
- Department
of Pathology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Jari P. Ahonen
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Sanna Lehtonen
- Research
Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Haartmaninkatu 3, Helsinki, 00014 Finland
- Department
of Pathology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
| | - Kristiina Wähälä
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
- Department
of Biochemistry and Developmental Biology, University of Helsinki, Haartmaninkatu 3, 00014 Helsinki, Finland
- E-mail: . Phone: +358504487502
| |
Collapse
|
8
|
Lehtonen S. SHIPping out diabetes-Metformin, an old friend among new SHIP2 inhibitors. Acta Physiol (Oxf) 2020; 228:e13349. [PMID: 31342643 PMCID: PMC6916339 DOI: 10.1111/apha.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
SHIP2 (Src homology 2 domain‐containing inositol 5′‐phosphatase 2) belongs to the family of 5′‐phosphatases. It regulates the phosphoinositide 3‐kinase (PI3K)‐mediated insulin signalling cascade by dephosphorylating the 5′‐position of PtdIns(3,4,5)P3 to generate PtdIns(3,4)P2, suppressing the activity of the pathway. SHIP2 mouse models and genetic studies in human propose that increased expression or activity of SHIP2 contributes to the pathogenesis of the metabolic syndrome, hypertension and type 2 diabetes. This has raised great interest to identify SHIP2 inhibitors that could be used to design new treatments for metabolic diseases. This review summarizes the central mechanisms associated with the development of diabetic kidney disease, including the role of insulin resistance, and then moves on to describe the function of SHIP2 as a regulator of metabolism in mouse models. Finally, the identification of SHIP2 inhibitors and their effects on metabolic processes in vitro and in vivo are outlined. One of the newly identified SHIP2 inhibitors is metformin, the first‐line medication prescribed to patients with type 2 diabetes, further boosting the attraction of SHIP2 as a treatment target to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Department of Pathology and Research Program for Clinical and Molecular Metabolism, Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
9
|
Su KJ, Yu YL. Downregulation of SHIP2 by Hepatitis B Virus X Promotes the Metastasis and Chemoresistance of Hepatocellular Carcinoma through SKP2. Cancers (Basel) 2019; 11:cancers11081065. [PMID: 31357665 PMCID: PMC6721294 DOI: 10.3390/cancers11081065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV)-encoded X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). The protein SH2 domain containing inositol 5-phosphatase 2 (SHIP2) belongs to the family of enzymes that dephosphorylate the 5 position of PI(3,4,5)P3 to produce PI(3,4)P2. Expression of SHIP2 has been associated with several cancers including HCC. However, its role in the development of HBV-related HCC remains elusive. In this study, we performed tissue microarray analysis using 49 cases of HCC to explore SHIP2 expression changes and found that SHIP2 was downregulated in HBV-positive HCC. In addition, S-phase kinase-associated protein 2 (SKP2), a component of the E3 ubiquitin–ligase complex, was increased in HCC cell lines that overexpressed HBx, which also showed a notable accumulation of polyubiquitinated SHIP2. Moreover, HCC cells with silenced SHIP2 had increased expression of mesenchymal markers, which promotes cell migration, enhances glucose uptake, and leads to resistance to the chemotherapy drug (5-Fluorouracil, 5-FU). Taken together, our results demonstrate that HBx downregulates SHIP2 through SKP2 and suggest a potential role for SHIP2 in HBx-mediated HCC migration.
Collapse
Affiliation(s)
- Kuo-Jung Su
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yung-Luen Yu
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
- Drug Development Center, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
10
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Fafilek B, Balek L, Bosakova MK, Varecha M, Nita A, Gregor T, Gudernova I, Krenova J, Ghosh S, Piskacek M, Jonatova L, Cernohorsky NH, Zieba JT, Kostas M, Haugsten EM, Wesche J, Erneux C, Trantirek L, Krakow D, Krejci P. The inositol phosphatase SHIP2 enables sustained ERK activation downstream of FGF receptors by recruiting Src kinases. Sci Signal 2018; 11:11/548/eaap8608. [PMID: 30228226 DOI: 10.1126/scisignal.aap8608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sustained activation of extracellular signal-regulated kinase (ERK) drives pathologies caused by mutations in fibroblast growth factor receptors (FGFRs). We previously identified the inositol phosphatase SHIP2 (also known as INPPL1) as an FGFR-interacting protein and a target of the tyrosine kinase activities of FGFR1, FGFR3, and FGFR4. We report that loss of SHIP2 converted FGF-mediated sustained ERK activation into a transient signal and rescued cell phenotypes triggered by pathologic FGFR-ERK signaling. Mutant forms of SHIP2 lacking phosphoinositide phosphatase activity still associated with FGFRs and did not prevent FGF-induced sustained ERK activation, demonstrating that the adaptor rather than the catalytic activity of SHIP2 was required. SHIP2 recruited Src family kinases to the FGFRs, which promoted FGFR-mediated phosphorylation and assembly of protein complexes that relayed signaling to ERK. SHIP2 interacted with FGFRs, was phosphorylated by active FGFRs, and promoted FGFR-ERK signaling at the level of phosphorylation of the adaptor FRS2 and recruitment of the tyrosine phosphatase PTPN11. Thus, SHIP2 is an essential component of canonical FGF-FGFR signal transduction and a potential therapeutic target in FGFR-related disorders.
Collapse
Affiliation(s)
- Bohumil Fafilek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Lukas Balek
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Michaela Kunova Bosakova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Miroslav Varecha
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Tomas Gregor
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Jitka Krenova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Somadri Ghosh
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lucie Jonatova
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | | | - Jennifer T Zieba
- Department of Orthopedic Surgery, University of California Los Angeles, CA 90095, USA
| | - Michal Kostas
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Ellen Margrethe Haugsten
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Jørgen Wesche
- Department of Tumor Biology, Institute for Cancer Research, Norwegian Radium Hospital, 0379 Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| | - Christophe Erneux
- Institut de Recherche Interdisciplinaire en Biologie Humaine et moléculaire, Université Libre de Bruxelles, 1070 Bruxelles, Belgium
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopedic Surgery, University of California Los Angeles, CA 90095, USA.,Department of Human Genetics, University of California Los Angeles, CA 90095, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic. .,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 60200 Brno, Czech Republic
| |
Collapse
|
12
|
Rodriguez-Martinez A, Ayala R, Posma JM, Neves AL, Gauguier D, Nicholson JK, Dumas ME. MetaboSignal: a network-based approach for topological analysis of metabotype regulation via metabolic and signaling pathways. Bioinformatics 2018; 33:773-775. [PMID: 28011775 PMCID: PMC5408820 DOI: 10.1093/bioinformatics/btw697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022] Open
Abstract
Summary MetaboSignal is an R package that allows merging metabolic and signaling pathways reported in the Kyoto Encyclopaedia of Genes and Genomes (KEGG). It is a network-based approach designed to navigate through topological relationships between genes (signaling- or metabolic-genes) and metabolites, representing a powerful tool to investigate the genetic landscape of metabolic phenotypes. Availability and Implementation MetaboSignal is available from Bioconductor: https://bioconductor.org/packages/MetaboSignal/ Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrea Rodriguez-Martinez
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - Rafael Ayala
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - Joram M Posma
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - Ana L Neves
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - Dominique Gauguier
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK.,Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERMUMR_S 1138, Cordeliers Research Centre, 75006 Paris, France
| | - Jeremy K Nicholson
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - Marc-Emmanuel Dumas
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
13
|
Dahlman I, Belarbi Y, Laurencikiene J, Pettersson AM, Arner P, Kulyté A. Comprehensive functional screening of miRNAs involved in fat cell insulin sensitivity among women. Am J Physiol Endocrinol Metab 2017; 312:E482-E494. [PMID: 28270439 DOI: 10.1152/ajpendo.00251.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 01/12/2023]
Abstract
The key pathological link between obesity and type 2 diabetes is insulin resistance, but the molecular mechanisms are not entirely identified. micro-RNAs (miRNA) are dysregulated in obesity and may contribute to insulin resistance. Our objective was to detect and functionally investigate miRNAs linked to insulin sensitivity in human subcutaneous white adipose tissue (scWAT). Subjects were selected based on the insulin-stimulated lipogenesis response of subcutaneous adipocytes. Global miRNA profiling was performed in abdominal scWAT of 18 obese insulin-resistance (OIR), 21 obese insulin-sensitive (OIS), and 9 lean women. miRNAs demonstrating differential expression between OIR and OIS women were overexpressed in human in vitro-differentiated adipocytes followed by assessment of lipogenesis and identification of miRNA targets by measuring mRNA/protein expression and 3'-untranslated region analysis. Eleven miRNAs displayed differential expression between OIR and OIS states. Overexpression of miR-143-3p and miR-652-3p increased insulin-stimulated lipogenesis in human in vitro differentiated adipocytes and directly or indirectly affected several genes/proteins involved in insulin signaling at transcriptional or posttranscriptional levels. Adipose expression of miR-143-3p and miR-652-3p was positively associated with insulin-stimulated lipogenesis in scWAT independent of body mass index. In conclusion, miR-143-3p and miR-652-3p are linked to scWAT insulin resistance independent of obesity and influence insulin-stimulated lipogenesis by interacting at different steps with insulin-signaling pathways.
Collapse
Affiliation(s)
- Ingrid Dahlman
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Yasmina Belarbi
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jurga Laurencikiene
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Annie M Pettersson
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Agné Kulyté
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Zhang SX, Duan LH, He SJ, Zhuang GF, Yu X. Phosphatidylinositol 3,4-bisphosphate regulates neurite initiation and dendrite morphogenesis via actin aggregation. Cell Res 2017; 27:253-273. [PMID: 28106075 DOI: 10.1038/cr.2017.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/24/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Neurite initiation is critical for neuronal morphogenesis and early neural circuit development. Recent studies showed that local actin aggregation underneath the cell membrane determined the site of neurite initiation. An immediately arising question is what signaling mechanism initiated actin aggregation. Here we demonstrate that local clustering of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), a phospholipid with relatively few known signaling functions, is necessary and sufficient for aggregating actin and promoting neuritogenesis. In contrast, the related and more extensively studied phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol (3,4,5)-trisphosphate (PIP3) molecules did not have such functions. Specifically, we showed that beads coated with PI(3,4)P2 promoted actin aggregation and neurite initiation, while pharmacological interference with PI(3,4)P2 synthesis inhibited both processes. PI(3,4)P2 clustering occurred even when actin aggregation was pharmacologically blocked, demonstrating that PI(3,4)P2 functioned as the upstream signaling molecule. Two enzymes critical for PI(3,4)P2 generation, namely, SH2 domain-containing inositol 5-phosphatase and class II phosphoinositide 3-kinase α, were complementarily and non-redundantly required for actin aggregation and neuritogenesis, as well as for subsequent dendritogenesis. Finally, we demonstrate that neural Wiskott-Aldrich syndrome protein and the Arp2/3 complex functioned downstream of PI(3,4)P2 to mediate neuritogenesis and dendritogenesis. Together, our results identify PI(3,4)P2 as an important signaling molecule during early development and demonstrate its critical role in regulating actin aggregation and neuritogenesis.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Hui Duan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun-Ji He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gui-Feng Zhuang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Morin-Doré L, Blondin P, Vigneault C, Grand FX, Labrecque R, Sirard MA. Transcriptomic evaluation of bovine blastocysts obtained from peri-pubertal oocyte donors. Theriogenology 2017; 93:111-123. [PMID: 28257859 DOI: 10.1016/j.theriogenology.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022]
Abstract
Assisted reproduction technologies (ART) and high selection pressure in the dairy industry are leading towards the use of younger females for reproduction, thereby reducing the interval between generations. This situation may have a negative impact on embryo quality, thus reducing the success rate of the procedures. This study aimed to document the effects of oocyte donor age on embryo quality, at the transcriptomic level, in order to characterize the effects of using young females for reproduction purpose. Young Holstein heifers (n = 10) were used at three different ages for ovarian stimulation protocols and oocyte collections (at 8, 11 and 14 months). All of the oocytes were fertilized in vitro with the semen of one adult bull, generating three lots of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used for the assessment of gene expression patterns at the blastocyst stage. Embryos from animals at 8 vs 14 months and at 11 vs 14 months were used for microarray hybridization. Validation was done by performing RT-qPCR on seven candidate genes. Age-related contrast analysis (8 vs 14 mo and 11 vs 14 mo) identified 242 differentially expressed genes (DEGs) for the first contrast, and 296 for the second. The analysis of the molecular and biological functions of the DEGs suggests a metabolic cause to explain the differences that are observed between embryos from immature and adult subjects. The mTOR and PPAR signaling pathways, as well as the NRF2-mediated oxidative stress response pathways were among the gene expression pathways affected by donor age. In conclusion, the main differences between embryos produced at peri-pubertal ages are related to metabolic conditions resulting in a higher impact of in vitro conditions on blastocyts from younger heifers.
Collapse
Affiliation(s)
- Léonie Morin-Doré
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada
| | | | | | | | | | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada.
| |
Collapse
|
16
|
Awad A, Gassama-Diagne A. PI3K/SHIP2/PTEN pathway in cell polarity and hepatitis C virus pathogenesis. World J Hepatol 2017; 9:18-29. [PMID: 28105255 PMCID: PMC5220268 DOI: 10.4254/wjh.v9.i1.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/10/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infects hepatocytes, polarized cells in the liver. Chronic HCV infection often leads to steatosis, fibrosis, cirrhosis and hepatocellular carcinoma, and it has been identified as the leading cause of liver transplantation worldwide. The HCV replication cycle is dependent on lipid metabolism and particularly an accumulation of lipid droplets in host cells. Phosphoinositides (PIs) are minor phospholipids enriched in different membranes and their levels are tightly regulated by specific PI kinases and phosphatases. PIs are implicated in a vast array of cellular responses that are central to morphogenesis, such as cytoskeletal changes, cytokinesis and the recruitment of downstream effectors to govern mechanisms involved in polarization and lumen formation. Important reviews of the literature identified phosphatidylinositol (PtdIns) 4-kinases, and their lipid products PtdIns(4)P, as critical regulators of the HCV life cycle. SH2-containing inositol polyphosphate 5-phosphatase (SHIP2), phosphoinositide 3-kinase (PI3K) and their lipid products PtdIns(3,4)P2 and PtdIns(3,4,5)P3, respectively, play an important role in the cell membrane and are key to the establishment of apicobasal polarity and lumen formation. In this review, we will focus on these new functions of PI3K and SHIP2, and their deregulation by HCV, causing a disruption of apicobasal polarity, actin organization and extracellular matrix assembly. Finally we will highlight the involvement of this pathway in the event of insulin resistance and nonalcoholic fatty liver disease related to HCV infection.
Collapse
|
17
|
Kam TI, Park H, Gwon Y, Song S, Kim SH, Moon SW, Jo DG, Jung YK. FcγRIIb-SHIP2 axis links Aβ to tau pathology by disrupting phosphoinositide metabolism in Alzheimer's disease model. eLife 2016; 5. [PMID: 27834631 PMCID: PMC5106215 DOI: 10.7554/elife.18691] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/17/2016] [Indexed: 02/02/2023] Open
Abstract
Amyloid-β (Aβ)-containing extracellular plaques and hyperphosphorylated tau-loaded intracellular neurofibrillary tangles are neuropathological hallmarks of Alzheimer's disease (AD). Although Aβ exerts neuropathogenic activity through tau, the mechanistic link between Aβ and tau pathology remains unknown. Here, we showed that the FcγRIIb-SHIP2 axis is critical in Aβ1-42-induced tau pathology. Fcgr2b knockout or antagonistic FcγRIIb antibody inhibited Aβ1-42-induced tau hyperphosphorylation and rescued memory impairments in AD mouse models. FcγRIIb phosphorylation at Tyr273 was found in AD brains, in neuronal cells exposed to Aβ1-42, and recruited SHIP2 to form a protein complex. Consequently, treatment with Aβ1-42 increased PtdIns(3,4)P2 levels from PtdIns(3,4,5)P3 to mediate tau hyperphosphorylation. Further, we found that targeting SHIP2 expression by lentiviral siRNA in 3xTg-AD mice or pharmacological inhibition of SHIP2 potently rescued tau hyperphosphorylation and memory impairments. Thus, we concluded that the FcγRIIb-SHIP2 axis links Aβ neurotoxicity to tau pathology by dysregulating PtdIns(3,4)P2 metabolism, providing insight into therapeutic potential against AD.
Collapse
Affiliation(s)
- Tae-In Kam
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hyejin Park
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Youngdae Gwon
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Sungmin Song
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Seo-Hyun Kim
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Seo Won Moon
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Yong-Keun Jung
- Global Research Laboratory, School of Biological Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
18
|
Kachko I, Traitel T, Goldbart R, Silbert L, Katz M, Bashan N, Jelinek R, Rudich A, Kost J. Polymeric carrier-mediated intracellular delivery of phosphatidylinositol-3,4,5-trisphosphate to overcome insulin resistance. J Drug Target 2016; 23:698-709. [PMID: 26453165 DOI: 10.3109/1061186x.2015.1052076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Phosphatidylinositol-3,4,5-trisphosphate (PIP3) is a major lipid second messenger in insulin-mediated signalling towards the metabolic actions of this hormone in muscle and fat. PURPOSE Assessing the intracellular transport of exogenous PIP3 attached to a polymeric carrier in an attempt to overcome cellular insulin resistance. METHODS Artificial chromatic bio-mimetic membrane vesicles composed of dimyristoylphosphatidylcholine and polydiacetylene were applied to screen the polymeric carriers. PIP3 cellular localization and bio-activity was assessed by fluorescent and live-cell microscopy in L6 muscle cells and in 3T3-L1 adipocytes. RESULTS AND DISCUSSION We demonstrate that a specific-branched polyethylenimine (PEI-25, 25 kDa) carrier forms complexes with PIP3 that interact with the bio-mimetic membrane vesicles in a manner predictive of their interaction with cells: In L6 muscle cells, PEI-25/fluorescent-PIP3 complexes are retarded at the cell perimeter. PEI-25/PIP3 complexes retain their bio-activity, engaging signalling steps downstream of PIP3, even in muscle cells rendered insulin resistant by exposure to high glucose/high insulin. CONCLUSIONS Inducing insulin actions by intracellular PIP3 delivery (PEI-25/PIP3 complexes) in some forms of insulin-resistant cells provides the first proof-of-principle for the potential therapeutic use of PIP3 in a "second-messenger agonist" approach. In addition, utilization of an artificial bio-mimetic membrane platform to screen for highly efficient PIP3 delivery predicts biological function in cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Assaf Rudich
- c Department of Clinical Biochemistry , and.,d The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | | |
Collapse
|
19
|
Gorgani-Firuzjaee S, Meshkani R. SH2 domain-containing inositol 5-phosphatase (SHIP2) inhibition ameliorates high glucose-induced de-novo lipogenesis and VLDL production through regulating AMPK/mTOR/SREBP1 pathway and ROS production in HepG2 cells. Free Radic Biol Med 2015; 89:679-89. [PMID: 26456051 DOI: 10.1016/j.freeradbiomed.2015.10.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/25/2022]
Abstract
Hepatic de-novo lipogenesis and production of triglyceride rich very low density lipoprotein (VLDL) is increased in the state of insulin resistance, however, the role of a negative regulator of the insulin signaling pathway, the SH2 domain-containing inositol 5-phosphatase (SHIP2) in this process, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to metabolic dyslipidemia using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to high glucose (33 mM). The results showed that high glucose induced SHIP2 mRNA and protein levels in HepG2 cells. Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) ameliorated high glucose-induced de-novo lipogenesis and secretion of apoB containing lipoprotein in HepG2 cells, as demonstrated by a reduction in both secreted apoB and MTP expression, and decreased triglyceride levels and the expression of lipogenic genes such as SREBP1c, FAS and ACC. Overexpression of the SHIP2-DN decreased high glucose-induced apoB containing lipoproteins secretion via reduction in ROS generation, JNK phosphorylation and Akt activation. Furthermore, using the specific inhibitor and activator, it was found that the AMPK/mTOR/SREBP1 is the signaling pathway that mediates the effects of SHIP2 modulation on hepatic de-novo lipogenesis. Taken together, these findings suggest that SHIP2 is an important regulator of hepatic lipogenesis and lipoprotein secretion in insulin resistance state.
Collapse
Affiliation(s)
- Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R Iran.
| |
Collapse
|
20
|
Bradley RM, Marvyn PM, Aristizabal Henao JJ, Mardian EB, George S, Aucoin MG, Stark KD, Duncan RE. Acylglycerophosphate acyltransferase 4 (AGPAT4) is a mitochondrial lysophosphatidic acid acyltransferase that regulates brain phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol levels. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1566-76. [DOI: 10.1016/j.bbalip.2015.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
|
21
|
SH2 domain-containing inositol 5-phosphatase (SHIP2) regulates de-novo lipogenesis and secretion of apoB100 containing lipoproteins in HepG2 cells. Biochem Biophys Res Commun 2015; 464:1028-1033. [PMID: 26188518 DOI: 10.1016/j.bbrc.2015.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/11/2015] [Indexed: 11/22/2022]
Abstract
Hepatic de-novo lipogenesis and production of triglyceride rich VLDL are regulated via the phosphoinositide 3-kinase cascade, however, the role of a negative regulator of this pathway, the SH2 domain-containing inositol 5-phosphatase (SHIP2) in this process, remains unknown. In the present study, we investigated the molecular link between SHIP2 expression and metabolic dyslipidemia using overexpression or suppression of SHIP2 gene in HepG2 cells. The results showed that overexpression of the wild type SHIP2 gene (SHIP2-WT) led to a higher total lipid content (28%) compared to control, whereas overexpression of the dominant negative SHIP2 gene (SHIP2-DN) reduced total lipid content in oleate treated cells by 40%. Overexpression of SHIP2-WT also led to a significant increase in both secretion of apoB100 containing lipoproteins and de-novo lipogenesis, as demonstrated by an enhancement in secreted apoB100 and MTP expression, increased intra and extracellular triglyceride levels and enhanced expression of lipogenic genes such as SREBP1c, FAS and ACC. On the other hand, overexpression of the SHIP2-DN gene prevented oleate-induced de-novo lipogenesis and secretion of apoB100 containing lipoproteins in HepG2 cells. Collectively, these findings suggest that SHIP2 expression level is a key determinant of hepatic lipogenesis and lipoprotein secretion, and its inhibition could be considered as a potential target for treatment of dyslipidemia.
Collapse
|
22
|
Gorgani-Firuzjaee S, Adeli K, Meshkani R. Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells. Biochem Biophys Res Commun 2015; 464:441-6. [PMID: 26123392 DOI: 10.1016/j.bbrc.2015.06.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
The serine-threonine kinase Akt regulates proliferation and survival by phosphorylating a network of protein substrates; however, the role of a negative regulator of the Akt pathway, the SH2-domain-containing inositol 5-phosphatase (SHIP2) in apoptosis of the hepatocytes, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to apoptosis using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to palmitate (0.5 mM). Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) significantly reduced palmitate-induced apoptosis in HepG2 cells, as these cells had increased cell viability, decreased apoptotic cell death and reduced the activity of caspase-3, cytochrome c and poly (ADP-ribose) polymerase. Overexpression of the wild-type SHIP2 gene led to a massive apoptosis in HepG2 cells. The protection from palmitate-induced apoptosis by SHIP2 inhibition was accompanied by a decrease in the generation of reactive oxygen species (ROS). In addition, SHIP2 inhibition was accompanied by an increased Akt and FOXO-1 phosphorylation, whereas overexpression of the wild-type SHIP2 gene had the opposite effects. Taken together, these findings suggest that SHIP2 expression level is an important determinant of hepatic lipoapotosis and its inhibition can potentially be a target in treatment of hepatic lipoapoptosis in diabetic patients.
Collapse
Affiliation(s)
- Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Khosrow Adeli
- Division of Clinical Biochemistry, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
23
|
Bridges D, Saltiel AR. Phosphoinositides: Key modulators of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:857-66. [PMID: 25463477 DOI: 10.1016/j.bbalip.2014.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P₃levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Dave Bridges
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Hsu F, Mao Y. The structure of phosphoinositide phosphatases: Insights into substrate specificity and catalysis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:698-710. [PMID: 25264170 DOI: 10.1016/j.bbalip.2014.09.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/10/2014] [Accepted: 09/17/2014] [Indexed: 12/17/2022]
Abstract
Phosphoinositides (PIs) are a group of key signaling and structural lipid molecules involved in a myriad of cellular processes. PI phosphatases, together with PI kinases, are responsible for the conversion of PIs between distinctive phosphorylation states. PI phosphatases are a large collection of enzymes that are evolved from at least two disparate ancestors. One group is distantly related to endonucleases, which apply divalent metal ions for phosphoryl transfer. The other group is related to protein tyrosine phosphatases, which contain a highly conserved active site motif Cys-X5-Arg (CX5R). In this review, we focus on structural insights to illustrate current understandings of the molecular mechanisms of each PI phosphatase family, with emphasis on their structural basis for substrate specificity determinants and catalytic mechanisms. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Stahelin RV, Scott JL, Frick CT. Cellular and molecular interactions of phosphoinositides and peripheral proteins. Chem Phys Lipids 2014; 182:3-18. [PMID: 24556335 DOI: 10.1016/j.chemphyslip.2014.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022]
Abstract
Anionic lipids act as signals for the recruitment of proteins containing cationic clusters to biological membranes. A family of anionic lipids known as the phosphoinositides (PIPs) are low in abundance, yet play a critical role in recruitment of peripheral proteins to the membrane interface. PIPs are mono-, bis-, or trisphosphorylated derivatives of phosphatidylinositol (PI) yielding seven species with different structure and anionic charge. The differential spatial distribution and temporal appearance of PIPs is key to their role in communicating information to target proteins. Selective recognition of PIPs came into play with the discovery that the substrate of protein kinase C termed pleckstrin possessed the first PIP binding region termed the pleckstrin homology (PH) domain. Since the discovery of the PH domain, more than ten PIP binding domains have been identified including PH, ENTH, FYVE, PX, and C2 domains. Representative examples of each of these domains have been thoroughly characterized to understand how they coordinate PIP headgroups in membranes, translocate to specific membrane docking sites in the cell, and function to regulate the activity of their full-length proteins. In addition, a number of novel mechanisms of PIP-mediated membrane association have emerged, such as coincidence detection-specificity for two distinct lipid headgroups. Other PIP-binding domains may also harbor selectivity for a membrane physical property such as charge or membrane curvature. This review summarizes the current understanding of the cellular distribution of PIPs and their molecular interaction with peripheral proteins.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States.
| | - Jordan L Scott
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States; Mike and Josie Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Cary T Frick
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
26
|
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev 2013; 34:795-824. [PMID: 24302498 DOI: 10.1002/med.21305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds.
Collapse
Affiliation(s)
- Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244.,Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA 13210.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| |
Collapse
|
27
|
Oriente F, Cabaro S, Liotti A, Longo M, Parrillo L, Pagano TB, Raciti GA, Penkov D, Paciello O, Miele C, Formisano P, Blasi F, Beguinot F. PREP1 deficiency downregulates hepatic lipogenesis and attenuates steatohepatitis in mice. Diabetologia 2013; 56:2713-22. [PMID: 24052111 DOI: 10.1007/s00125-013-3053-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/26/2013] [Indexed: 01/07/2023]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate the function of Prep1 (also known as Pknox1) in hepatic lipogenesis. METHODS The hepatic lipogenesis pathway was evaluated by real-time RT-PCR and Western blot. Biochemical variables were assessed using a clinical chemistry analyser. RESULTS Serum triacylglycerols and liver expression of fatty acid synthase (FAS) were significantly decreased in Prep1 hypomorphic heterozygous (Prep1 (i/+) ) mice compared with their non-hypomorphic littermates. Upstream FAS expression, phosphorylation of protein kinase C (PKC)ζ, liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) increased in Prep1 (i/+) mice, while protein and mRNA levels of the lipid phosphatase inhibitor of PKCζ, SH2-containing inositol 5'-phosphatase 2 (SHIP2), was more than 60% reduced. Consistent with these findings, HepG2 cells transfected with Prep1 cDNA exhibited increased triacylglycerol accumulation and FAS expression, with strongly reduced PKCζ, LKB1, AMPK and ACC phosphorylation. Further experiments revealed the presence of both Prep1 and its major partner Pbx1 at the Ship2 (also known as Inppl1) promoter. PBX-regulating protein 1 (PREP1) and pre-B cell leukaemia transcription factor 1 (PBX1) enhanced Ship2 transcription. The PREP1HR mutant, which is unable to bind PBX1, exhibited no effect on Ship2 function, indicating transcriptional activation of Ship2 by the PREP1/PBX1 complex. Treatment with a methionine- and choline-deficient diet (MCDD) induced steatosis in both Prep1 (i/+) and non-hypomorphic control mice. However, alanine aminotransferase increase, intracellular triacylglycerol content and histological evidence of liver steatosis, inflammation and necrosis were significantly less evident in Prep1 (i/+) mice, indicating that Prep1 silencing protects mice from MCDD-induced steatohepatitis. CONCLUSIONS/INTERPRETATION Our results indicate that Prep1 silencing reduces lipotoxicity by increasing PKCζ/LKB1/AMPK/ACC signalling, while levels of PREP1 expression may determine the risk of steatohepatitis and its progression.
Collapse
Affiliation(s)
- Francesco Oriente
- Department of Translational Medical Sciences, 'Federico II' University of Naples and Institute of Experimental Endocrinology and Oncology, National Council of Research, Via Pansini 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Safavi M, Foroumadi A, Abdollahi M. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin Drug Discov 2013; 8:1339-63. [DOI: 10.1517/17460441.2013.837883] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Abstract
Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | | |
Collapse
|
30
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
31
|
Variants of insulin-signaling inhibitor genes in type 2 diabetes and related metabolic abnormalities. Int J Genomics 2013; 2013:376454. [PMID: 23762820 PMCID: PMC3674720 DOI: 10.1155/2013/376454] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/23/2013] [Indexed: 02/08/2023] Open
Abstract
Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.
Collapse
|
32
|
Bertelli DF, Coope A, Caricilli AM, Prada PO, Saad MJ, Velloso LA, Araujo EP. Inhibition of 72 kDa inositol polyphosphate 5-phosphatase E improves insulin signal transduction in diet-induced obesity. J Endocrinol 2013; 217:131-40. [PMID: 23349329 DOI: 10.1530/joe-12-0562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 72 kDa inositol polyphosphate 5-phosphatase E (72k-5ptase) controls signal transduction through the catalytic dephosphorylation of the 5-position of membrane-bound phosphoinositides. The reduction of 72k-5ptase expression in the hypothalamus results in improved hypothalamic insulin signal transduction and reduction of food intake and body mass. Here, we evaluated the tissue distribution and the impact of obesity on the expression of 72k-5ptase in peripheral tissues of experimental animals. In addition, insulin signal transduction and action were determined in an animal model of obesity and insulin resistance treated with an antisense (AS) oligonucleotide that reduces 72k-5ptase expression. In lean Wistar rats, 72k-5ptase mRNA and protein are found in highest levels in heart, skeletal muscle, and white adipose tissue. In three distinct models of obesity, Wistar rats, Swiss mice fed on high-fat diet, and leptin-deficient ob/ob mice, the expression of 72k-5ptase is increased in skeletal muscle and adipose tissue. The treatment of obese Wistar rats with an anti-72k-5ptase AS oligonucleotide results in significant reduction of 72k-5ptase catalytic activity, which is accompanied by reduced food intake and body mass and improved insulin signal transduction and action as determined by immunoblotting and clamp studies respectively. 72k-5ptase expression is increased in obesity and its AS inhibition resulted in a significant improvement in insulin signal transduction and restoration of glucose homeostasis.
Collapse
Affiliation(s)
- Daniela F Bertelli
- Laboratory of Cell Signaling, Department of Internal Medicine, Faculty of Applied Sciences and Department of Nursing, University of Campinas, DCM-FCM, UNICAMP, 13084-970, Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
33
|
Cilostazol ameliorates systemic insulin resistance in diabetic db/db mice by suppressing chronic inflammation in adipose tissue via modulation of both adipocyte and macrophage functions. Eur J Pharmacol 2013; 707:120-9. [DOI: 10.1016/j.ejphar.2013.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/08/2013] [Accepted: 03/13/2013] [Indexed: 11/19/2022]
|
34
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
35
|
Ichihara Y, Wada T, Soeda Y, Ishii Y, Sasahara M, Tsuneki H, Sasaoka T. SH2-containing inositol 5'-phosphatase 2 selectively impairs hypothalamic insulin signalling and regulation of food intake in mice. J Neuroendocrinol 2013; 25:372-82. [PMID: 23286299 DOI: 10.1111/jne.12014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/30/2012] [Accepted: 12/20/2012] [Indexed: 12/20/2022]
Abstract
SH2-containing inositol 5'-phosphatase 2 (SHIP2) is a lipid phosphatase that negatively regulates the metabolic signalling of insulin in peripheral tissues; however, the expression of SHIP2 in the hypothalamus and its functional roles are largely unknown. In the present study, immunohistochemical analysis demonstrated that SHIP2 protein exists in neuronal cells expressing neuropeptide Y and pro-opiomelanocortin in the arcuate nucleus of the hypothalamus in C57BL/6J mice. Interestingly, the expression levels of SHIP2 in the hypothalamus were elevated in aged C57BL/6J mice and diabetic db/db mice. To clarify the significance of the increased expression of SHIP2 in the hypothalamus, we examined the central effects of insulin and leptin in transgenic mice overexpressing SHIP2 (SHIP2-Tg). Accumulation of phosphatidylinositol (3,4,5)-trisphosphate and phosphorylation of Akt in the hypothalamus, induced by i.c.v. injection of insulin, were attenuated in SHIP2-Tg compared to wild-type mice, whereas leptin-induced phosphorylation of signal transducer and activator of transcription 3 in the hypothalamus was comparable between them. The suppression of food intake after i.c.v. administration of insulin (but not leptin) was attenuated consistently in SHIP2-Tg. In addition, SHIP2-Tg showed increased food consumption after starvation and become heavier with visceral fat accumulation than wild-type mice, despite normal levels of oxygen consumption and spontaneous movement. These results suggest that SHIP2 contributes to the regulation of food intake mainly via the attenuation of insulin signalling in the hypothalamus of mice.
Collapse
Affiliation(s)
- Y Ichihara
- Department of Clinical Pharmacology, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Ichihara Y, Fujimura R, Tsuneki H, Wada T, Okamoto K, Gouda H, Hirono S, Sugimoto K, Matsuya Y, Sasaoka T, Toyooka N. Rational design and synthesis of 4-substituted 2-pyridin-2-ylamides with inhibitory effects on SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2). Eur J Med Chem 2013; 62:649-60. [PMID: 23434638 DOI: 10.1016/j.ejmech.2013.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/03/2013] [Accepted: 01/11/2013] [Indexed: 01/23/2023]
Abstract
Novel 4-substituted 2-pyridin-2-ylamides were developed using in-silico ligand-based drug design (LBDD) in an attempt to identify inhibitors of SH2-containing 5'-inositol phosphatase 2 (SHIP2), which is implicated in insulin-resistant type 2 diabetes. Among the compounds synthesized, N-[4-(4-chlorobenzyloxy)pyridin-2-yl]-2-(2,6-difluorophenyl)- acetamide (CPDA, 4a) was identified as a potent SHIP2 inhibitor. CPDA was found to enhance in vitro insulin signaling through the Akt pathway more efficiently than the previously reported SHIP2 inhibitor AS1949490, and ameliorated abnormal glucose metabolism in diabetic (db/db) mice.
Collapse
Affiliation(s)
- Yoshinori Ichihara
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, Al Hasani H, Chadt A, Wenzel K, Koch S, Fielitz J, Kleber C, Faust K, Mai K, Spies CD, Luft FC, Boschmann M, Spranger J, Spuler S. Critical illness myopathy and GLUT4: significance of insulin and muscle contraction. Am J Respir Crit Care Med 2012; 187:387-96. [PMID: 23239154 DOI: 10.1164/rccm.201209-1649oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Critical illness myopathy (CIM) has no known cause and no treatment. Immobilization and impaired glucose metabolism are implicated. OBJECTIVES We assessed signal transduction in skeletal muscle of patients at risk for CIM. We also investigated the effects of evoked muscle contraction. METHODS In a prospective observational and interventional pilot study, we screened 874 mechanically ventilated patients with a sepsis-related organ-failure assessment score greater than or equal to 8 for 3 consecutive days in the first 5 days of intensive care unit stay. Thirty patients at risk for CIM underwent euglycemic-hyperinsulinemic clamp, muscle microdialysis studies, and muscle biopsies. Control subjects were healthy. In five additional patients at risk for CIM, we performed corresponding analyses after 12-day, daily, unilateral electrical muscle stimulation with the contralateral leg as control. MEASUREMENTS AND MAIN RESULTS We performed successive muscle biopsies and assessed systemic insulin sensitivity and signal transduction pathways of glucose utilization at the mRNA and protein level and glucose transporter-4 (GLUT4) localization in skeletal muscle tissue. Skeletal muscle GLUT4 was trapped at perinuclear spaces, most pronounced in patients with CIM, but resided at the sarcolemma in control subjects. Glucose metabolism was not stimulated during euglycemic-hyperinsulinergic clamp. Insulin signal transduction was competent up to p-Akt activation; however, p-adenosine monophosphate-activated protein kinase (p-AMPK) was not detectable in CIM muscle. Electrical muscle stimulation increased p-AMPK, repositioned GLUT4, locally improved glucose metabolism, and prevented type-2 fiber atrophy. CONCLUSIONS Insufficient GLUT4 translocation results in decreased glucose supply in patients with CIM. Failed AMPK activation is involved. Evoked muscle contraction may prevent muscle-specific AMPK failure, restore GLUT4 disposition, and diminish protein breakdown. Clinical trial registered with http://www.controlled-trials.com (registration number ISRCTN77569430).
Collapse
Affiliation(s)
- Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hyvönen ME, Ihalmo P, Forsblom C, Thorn L, Sandholm N, Lehtonen S, Groop PH. INPPL1 is associated with the metabolic syndrome in men with Type 1 diabetes, but not with diabetic nephropathy. Diabet Med 2012; 29:1589-95. [PMID: 22486725 DOI: 10.1111/j.1464-5491.2012.03668.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS The metabolic syndrome is a frequent phenomenon in people with Type 1 diabetes and is associated with diabetic nephropathy. The aim of this study was to investigate if the INPPL1 (inositol polyphosphate phosphatase-like 1) gene encoding lipid phosphatase SHIP2 is associated with the metabolic syndrome and diabetic nephropathy in Finnish people with Type 1 diabetes. METHODS Participants were selected from the FinnDiane study for this cross-sectional study. The individuals were divided into controls without the metabolic syndrome (n = 1074) and cases with the metabolic syndrome (n = 1328), or into groups based upon their albumin excretion rate. Nine single-nucleotide polymorphisms covering the INPPL1 gene +/- 20 kb were genotyped. The associations between the single-nucleotide polymorphisms and outcome variables were analysed with the χ(2) test and logistic regression. RESULTS Two INPPL1 single-nucleotide polymorphisms, rs2276048 (silent mutation) and rs2276047 (intronic), were associated with the metabolic syndrome in men with odds ratios of 0.23 (95% CI 0.11-0.45, P = 2.1 × 10(-5) ), and 0.37 (0.21-0.65, P = 0.001), adjusted for age, duration of diabetes and history of smoking. When both sexes were included, these associations were less significant. No association between the genotyped single-nucleotide polymorphisms and diabetic nephropathy was observed. CONCLUSIONS INPPL1 gene variants may contribute to susceptibility to the metabolic syndrome in men with Type 1 diabetes, but not to diabetic nephropathy.
Collapse
Affiliation(s)
- M E Hyvönen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
39
|
Accardi G, Caruso C, Colonna-Romano G, Camarda C, Monastero R, Candore G. Can Alzheimer disease be a form of type 3 diabetes? Rejuvenation Res 2012; 15:217-21. [PMID: 22533436 DOI: 10.1089/rej.2011.1289] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Alzheimer disease (AD) and metabolic syndrome are two highly prevalent pathological conditions of Western society due to incorrect diet, lifestyle, and vascular risk factors. Recent data have suggested metabolic syndrome as an independent risk factor for AD and pre-AD syndrome. Furthermore, biological plausibility for this relationship has been framed within the "metabolic cognitive syndrome" concept. Due to the increasing aging of populations, prevalence of AD in Western industrialized countries will rise in the near future. Thus, new knowledge in the area of molecular biology and epigenetics will probably help to make an early molecular diagnosis of dementia. An association between metabolic syndrome and specific single-nucleotide polymorphisms (SNPs) in the gene INPPL1, encoding for SHIP2, a SH2 domain-containing inositol 5-phosphatase involved in insulin signaling, has been described. According to recent data suggesting that Type 2 diabetes represents an independent risk factor for AD and pre-AD, preliminary results of a case-control study performed to test the putative association between three SNPs in the SHIP2 gene and AD show a trend toward association of these SNPs with AD.
Collapse
Affiliation(s)
- Giulia Accardi
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Dubois E, Jacoby M, Blockmans M, Pernot E, Schiffmann SN, Foukas LC, Henquin JC, Vanhaesebroeck B, Erneux C, Schurmans S. Developmental defects and rescue from glucose intolerance of a catalytically-inactive novel Ship2 mutant mouse. Cell Signal 2012; 24:1971-80. [PMID: 22750293 DOI: 10.1016/j.cellsig.2012.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/11/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022]
Abstract
The function of the phosphoinositide 5-phosphatase Ship2 was investigated in a new mouse model expressing a germline catalytically-inactive Ship2(∆/∆) mutant protein. Ship2(∆/∆) mice were viable with defects in somatic growth and in development of muscle, adipose tissue and female genital tract. Lipid metabolism and insulin secretion were also affected in these mice, but glucose tolerance, insulin sensitivity and insulin-induced PKB phosphorylation were not. We expected that the expression of the catalytically inactive Ship2 protein in PI 3'-kinase-defective p110α(D933A/+) mice would counterbalance the phenotypes of parental mice by restoring normal PKB signaling but, for most of the parameters tested, this was not the case. Indeed, often, the Ship2(∆/∆) phenotype had a dominant effect over the p110α(D933A/+) phenotype and, sometimes, there was a surprising additive effect of both mutations. p110α(D933A/+)Ship2(∆/∆) mice still displayed a reduced PKB phosphorylation in response to insulin, compared to wild type mice yet had a normal glucose tolerance and insulin sensitivity, like the Ship2(∆/∆) mice. Together, our results suggest that the Ship2(∆/∆) phenotype is not dependent on an overstimulated class I PI 3-kinase-PKB signaling pathway and thus, indirectly, that it may be more dependent on the lack of Ship2-produced phosphatidylinositol 3,4-bisphosphate and derived phosphoinositides.
Collapse
Affiliation(s)
- Eléonore Dubois
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fukami T, Sun X, Li T, Desai M, Ross MG. Mechanism of programmed obesity in intrauterine fetal growth restricted offspring: paradoxically enhanced appetite stimulation in fed and fasting states. Reprod Sci 2012; 19:423-30. [PMID: 22344733 DOI: 10.1177/1933719111424448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have shown that intrauterine fetal growth restriction (IUGR) newborn rats exhibit hyperphagia, reduced satiety, and adult obesity. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a principal metabolic regulator that specifically regulates appetite in the hypothalamic arcuate nucleus (ARC). In response to fasting, upregulated AMPK activity increases the expression of orexigenic (neuropeptide Y [NPY] and agouti-related protein [AgRP]) and decreases anorexigenic (proopiomelanocortin [POMC]) peptides. We hypothesized that IUGR offspring would exhibit upregulated hypothalamic AMPK, contributing to hyperphagia and obesity. We determined AMPK activity and appetite-modulating peptides (NPY and POMC) during fasting and fed conditions in the ARC of adult IUGR and control females. Pregnant rats were fed ad libitum diet (control) or were 50% food restricted from gestation day 10 to 21 to produce IUGR newborns. At 10 months of age, hypothalamic ARC was dissected from fasted (48 hours) and fed control and IUGR females. Arcuate nucleus messenger RNA ([mRNA] NPY, AgRP, and POMC) and protein expression (total and phosphorylated AMPK, Akt) was determined by quantitative reverse transcriptase-polymerase chain reaction and Western Blot, respectively. In the fed state, IUGR adult females demonstrated evidence of persistent appetite stimulation with significantly upregulated phospho (Thr(172))-AMPKα/AMPK (1.3-fold), NPY/AgRP (2.3/1.8-fold) and decreased pAkt/Akt (0.6-fold) and POMC (0.7-fold) as compared to fed controls. In controls though not IUGR adult females, fasting significantly increased pAMPK/AMPK, NPY, and AgRP and decreased pAkt/Akt and POMC. Despite obesity, fed IUGR adult females exhibit upregulated AMPK activity and appetite stimulatory factors, similar to that exhibited by fasting controls. These results suggest that an enhanced appetite drive in both fed and fasting states contributes to hyperphagia and obesity in IUGR offspring.
Collapse
Affiliation(s)
- Tatsuya Fukami
- Department of Obstetrics & Gynecology, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The protein kinase C (PKC) family of enzymes regulates cell physiology through phosphorylation of serine and threonine residues of many proteins in most cell types. Here we identify PKC-β1 and PKC-γ as isoforms that are essential for rod photoreceptor differentiation in mouse retinas. Using ex vivo retinal explants, we found that phorbol ester 12-myristate 13-acetate and insulin-like growth factor 1 (IGF1) induced rod differentiation, as defined by opsin or Crx expression, in a PKC-dependent manner days ahead of rod development in untreated explants. PKC-β1 and PKC-γ were colocalized with proliferating cell nuclear antigen (PCNA)- and STAT3-positive progenitors through the later differentiation period. Pharmacological or genetic inhibition of either isoform resulted in a partial reduction in the appearance of rods, whereas removing both isoforms resulted in their complete absence. Furthermore, a significant decline of STAT3 tyrosine phosphorylation was observed by activation of PKC, while inhibition of PKC resulted in an increase of phosphorylated STAT3 along with a delayed cell cycle exit of progenitors with prolonged PCNA expression. In adult retinas, IGF1 activates PI-3 kinase (PI3K), but in neonatal retinas its action is identical to the action of an PI3K inhibitor. These data unveil a novel signaling cascade that coordinates and regulates rod differentiation through specific PKC isoforms in mammals.
Collapse
|
43
|
Ijuin T, Takenawa T. Regulation of insulin signaling and glucose transporter 4 (GLUT4) exocytosis by phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase, skeletal muscle, and kidney enriched inositol polyphosphate phosphatase (SKIP). J Biol Chem 2012; 287:6991-9. [PMID: 22247557 DOI: 10.1074/jbc.m111.335539] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The glucose transporter 4 (GLUT4) is responsible for glucose uptake in the skeletal muscle. Insulin-induced translocation of GLUT4 to the plasma membrane requires phosphatidylinositol 3-kinase activation-mediated generation of phosphatidylinositol 3,4,5-trisphosphate PIP(3) and subsequent activation of Akt. Previous studies suggested that skeletal muscle and kidney enriched inositol polyphosphate phosphatase (SKIP) has negative effects on the regulation of insulin signaling in the skeletal muscle cells. Here, we compared its effects on insulin signaling by selective inhibition of SKIP, SHIP2, and phosphatase and tensin homologue on chromosome 10 (PTEN) by short interfering RNA in the C2C12 myoblast cells. Suppression of SKIP significantly increased the insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate levels and Akt phosphorylation. Furthermore, silencing of SKIP, but not of PTEN, increased the insulin-dependent recruitment of GLUT4 vesicles to the plasma membrane. Taken together, these results imply that SKIP negatively regulates insulin signaling and glucose uptake by inhibiting GLUT4 docking and/or fusion to the plasma membrane.
Collapse
Affiliation(s)
- Takeshi Ijuin
- Department of Lipid Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Kobe 650-0017, Japan
| | | |
Collapse
|
44
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
45
|
Abstract
Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
46
|
The inositol Inpp5k 5-phosphatase affects osmoregulation through the vasopressin-aquaporin 2 pathway in the collecting system. Pflugers Arch 2011; 462:871-83. [DOI: 10.1007/s00424-011-1028-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 01/15/2023]
|
47
|
Xiong Q, Chai J, Deng C, Jiang S, Li X, Suo X, Zhang N, Yang Q, Liu Y, Zheng R, Chen M. Molecular characterization, expression pattern, and association analysis with carcass traits of the porcine SHIP2 gene. Mol Cell Biochem 2011; 360:225-33. [DOI: 10.1007/s11010-011-1060-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
|
48
|
Condé C, Gloire G, Piette J. Enzymatic and non-enzymatic activities of SHIP-1 in signal transduction and cancer. Biochem Pharmacol 2011; 82:1320-34. [PMID: 21672530 DOI: 10.1016/j.bcp.2011.05.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/27/2011] [Indexed: 12/29/2022]
Abstract
PI3K cascade is a central signaling pathway regulating cell proliferation, growth, differentiation, and survival. Tight regulation of the PI3K signaling pathway is necessary to avoid aberrant cell proliferation and cancer development. Together with SHIP-1, the inositol phosphatases PTEN and SHIP-2 are the gatekeepers of this pathway. In this review, we will focus on SHIP-1 functions. Negative regulation of immune cell activation by SHIP-1 is well characterized. Besides its catalytic activity, SHIP-1 also displays non-enzymatic activity playing role in several immune pathways. Indeed, SHIP-1 exhibits several domains that mediate protein-protein interaction. This review emphasizes the negative regulation of immune cell activation by SHIP-1 that is mediated by its protein-protein interaction.
Collapse
Affiliation(s)
- Claude Condé
- Laboratory of Virology & Immunology, GIGA-Research B34, University of Liège, B-4000 Liège, Belgium
| | | | | |
Collapse
|
49
|
Wada T, Hoshino M, Kimura Y, Ojima M, Nakano T, Koya D, Tsuneki H, Sasaoka T. Both type I and II IFN induce insulin resistance by inducing different isoforms of SOCS expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2011; 300:E1112-23. [PMID: 21386060 DOI: 10.1152/ajpendo.00370.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although elevation of the blood glucose level is a causal adverse effect of treatment with interferon (IFN), the precise underlying molecular mechanism is largely unknown. We examined the effects of type I and type II IFN (IFN-β and IFN-γ) on insulin-induced metabolic signaling leading to glucose uptake in 3T3-L1 adipocytes. IFN-β suppressed insulin-induced tyrosine phosphorylation of IRS-1 without affecting its expression, whereas IFN-γ reduced both the protein level and tyrosine phosphorylation. Although both IFNs stimulated phosphorylation of STAT1 (at Tyr(701)) and STAT3 (at Tyr(705)) after treatment for 30 min, subsequent properties of induction of the SOCS isoform were different. IFN-β preferentially induced SOCS1 rather than SOCS3, whereas IFN-γ strongly induced SOCS3 expression alone. In addition, adenovirus-mediated overexpression of either SOCS1 or SOCS3 inhibited insulin-induced tyrosine phosphorylation of IRS-1, whereas the reduction of IRS-1 protein was observed only in SOCS3-expressed cells. Notably, IFN-β-induced SOCS1 expression and suppression of insulin-induced tyrosine phosphorylation of IRS-1 were attenuated by siRNA-mediated knockdown of STAT1. In contrast, adenovirus-mediated expression of a dominant-negative STAT3 (F-STAT3) attenuated IFN-γ-induced SOCS3 expression, reduction of IRS-1 protein, and suppression of insulin-induced glucose uptake but did not have any effect on the IFN-β-mediated SOCS1 expression and inhibition of insulin-induced glucose uptake. Interestingly, pretreatment of IFN-γ with IL-6 synergistically suppressed insulin signaling, even when IL-6 alone had no significant effect. These results indicate that type I and type II IFN induce insulin resistance by inducing distinct SOCS isoforms, and IL-6 synergistically augments IFN-γ-induced insulin resistance by potentiating STAT3-mediated SOCS3 induction in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, Sugitani, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hyvönen ME, Saurus P, Wasik A, Heikkilä E, Havana M, Trokovic R, Saleem M, Holthöfer H, Lehtonen S. Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Mol Cell Endocrinol 2010; 328:70-9. [PMID: 20654688 DOI: 10.1016/j.mce.2010.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/24/2010] [Accepted: 07/12/2010] [Indexed: 11/15/2022]
Abstract
Podocyte injury plays an important role in the development of diabetic nephropathy. Podocytes are insulin-responsive and can develop insulin resistance, but the mechanisms are unknown. To study the role of CD2-associated protein (CD2AP) in podocyte injury, we performed a yeast two-hybrid screening on a glomerular library, and found that CD2AP bound to SH2-domain-containing inositol polyphosphate 5-phosphatase 2 (SHIP2), a negative regulator of insulin signalling. SHIP2 interacts with CD2AP in glomeruli and is expressed in podocytes, where it translocates to plasma membrane after insulin stimulation. Overexpression of SHIP2 in cultured podocytes reduces Akt activation in response to insulin, and promotes apoptosis. SHIP2 is upregulated in glomeruli of insulin resistant obese Zucker rats. These results indicate that SHIP2 downregulates insulin signalling in podocytes. The upregulation of SHIP2 in Zucker rat glomeruli prior to the age of onset of proteinuria suggests a possible role for SHIP2 in the development of podocyte injury.
Collapse
Affiliation(s)
- Mervi E Hyvönen
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|