1
|
Thu YM. Multifaceted roles of SUMO in DNA metabolism. Nucleus 2024; 15:2398450. [PMID: 39287196 PMCID: PMC11409511 DOI: 10.1080/19491034.2024.2398450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Sumoylation, a process in which SUMO (small ubiquitin like modifier) is conjugated to target proteins, emerges as a post-translational modification that mediates protein-protein interactions, protein complex assembly, and localization of target proteins. The coordinated actions of SUMO ligases, proteases, and SUMO-targeted ubiquitin ligases determine the net result of sumoylation. It is well established that sumoylation can somewhat promiscuously target proteins in groups as well as selectively target individual proteins. Through changing protein dynamics, sumoylation orchestrates multi-step processes in chromatin biology. Sumoylation influences various steps of mitosis, DNA replication, DNA damage repair, and pathways protecting chromosome integrity. This review highlights examples of SUMO-regulated nuclear processes to provide mechanistic views of sumoylation in DNA metabolism.
Collapse
Affiliation(s)
- Yee Mon Thu
- Department of Biology, Colby College, Waterville, ME, USA
| |
Collapse
|
2
|
Abou-Ghali M, Lallemand-Breitenbach V. PML Nuclear bodies: the cancer connection and beyond. Nucleus 2024; 15:2321265. [PMID: 38411156 PMCID: PMC10900273 DOI: 10.1080/19491034.2024.2321265] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies, membrane-less organelles in the nucleus, play a crucial role in cellular homeostasis. These dynamic structures result from the assembly of scaffolding PML proteins and various partners. Recent crystal structure analyses revealed essential self-interacting domains, while liquid-liquid phase separation contributes to their formation. PML bodies orchestrate post-translational modifications, particularly stress-induced SUMOylation, impacting target protein functions. Serving as hubs in multiple signaling pathways, they influence cellular processes like senescence. Dysregulation of PML expression contributes to diseases, including cancer, highlighting their significance. Therapeutically, PML bodies are promising targets, exemplified by successful acute promyelocytic leukemia treatment with arsenic trioxide and retinoic acid restoring PML bodies. Understanding their functions illuminates both normal and pathological cellular physiology, guiding potential therapies. This review explores recent advancements in PML body biogenesis, biochemical activity, and their evolving biological roles.
Collapse
Affiliation(s)
- Majdouline Abou-Ghali
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université 11 PSL, Paris, France
- Saint-Louis Research Institute, Paris, France
| | - Valérie Lallemand-Breitenbach
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université 11 PSL, Paris, France
- Saint-Louis Research Institute, Paris, France
| |
Collapse
|
3
|
Ramagoma RB, Makgoo L, Mbita Z. KLHL20 and its role in cell homeostasis: A new perspective and therapeutic potential. Life Sci 2024; 357:123041. [PMID: 39233199 DOI: 10.1016/j.lfs.2024.123041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Ubiquitin ligases are proteins with the ability to trigger non-degradative signaling or proteasomal destruction by attracting substrates and facilitating ubiquitin transfer onto target proteins. Over the years, there has been a continuous discovery of new ubiquitin ligases, and Kelch-like protein 20 (KLHL20) is one of the most recent discoveries that have several biological roles which include its role in ubiquitin ligase activities. KLHL20 binds as a substrate component of ubiquitin ligase Cullin3 (Cul3). Several substrates for ubiquitin ligases (KLHL20 based) have been reported, these include Unc-51 Like Autophagy Activating Kinase 1 (ULK1), promyelocytic leukemia (PML), and Death Associated Protein Kinase 1 (DAPK1). KLHL20 shows multiple cell functions linked to several human diseases through ubiquitination of these substrates. Current literature shows that KLHL20 ubiquitin ligase regulates malignancies in humans and also suggests how important it is to develop regulating agents for tumour-suppressive KLHL20 to prevent tumourigenesis, Recent research has highlighted its potential therapeutic implications in several areas. In oncology, KLHL20's regulatory role in protein degradation pathways suggests that its targeting could offer novel strategies for cancer treatment by modulating the stability of proteins involved in tumour growth and survival. In neurodegenerative diseases, KLHL20's function in maintaining protein homeostasis positions it as a potential target for therapies aimed at managing protein aggregation and cellular stress. Here, we review the functions of KLHL20 during the carcinogenesis process, looking at its role in cancer progression, and regulation of ubiquitination events mediated by KLHL20 in human cancers, as well as its potential therapeutic interventions.
Collapse
Affiliation(s)
- Rolivhuwa Bishop Ramagoma
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa
| | - Lilian Makgoo
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa
| | - Zukile Mbita
- The University of Limpopo, Department of Biochemistry, Microbiology, and Biotechnology, Private Bag x1106, Sovenga 0727, South Africa.
| |
Collapse
|
4
|
Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV Serotypes and Their Applications in Gene Therapy: An Overview. Cells 2023; 12:785. [PMID: 36899921 PMCID: PMC10000783 DOI: 10.3390/cells12050785] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Despite scientific discoveries in the field of gene and cell therapy, some diseases still have no effective treatment. Advances in genetic engineering methods have enabled the development of effective gene therapy methods for various diseases based on adeno-associated viruses (AAVs). Today, many AAV-based gene therapy medications are being investigated in preclinical and clinical trials, and new ones are appearing on the market. In this article, we present a review of AAV discovery, properties, different serotypes, and tropism, and a following detailed explanation of their uses in gene therapy for disease of different organs and systems.
Collapse
Affiliation(s)
- Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Lascorz J, Codina-Fabra J, Reverter D, Torres-Rosell J. SUMO-SIM interactions: From structure to biological functions. Semin Cell Dev Biol 2022; 132:193-202. [PMID: 34840078 DOI: 10.1016/j.semcdb.2021.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Post-translational modification by Small Ubiquitin-like Modifier (SUMO) proteins regulates numerous cellular processes. This modification involves the covalent and reversible attachment of SUMO to target proteins through an isopeptide bond, using a cascade of E1, E2 and E3 SUMOylation enzymes. Most functions of SUMO depend on the establishment of non-covalent protein-protein interactions between SUMOylated substrates and their binding partners. The vast majority of these interactions involve a conserved surface in the SUMO protein and a SUMO interacting motif (SIM), a short stretch of hydrophobic amino acids and an acidic region, in the interactor protein. Despite single SUMO-SIM interactions are relatively weak, they can have a huge impact at different levels, altering the activity, localization and stability of proteins, triggering the formation of macromolecular assemblies or inducing phase separation. Moreover, SUMO-SIM interactions are ubiquitous in most enzymes of the SUMO pathway, and play essential roles in SUMO conjugation and deconjugation. Here, we analyze the role of SUMO-SIM contacts in SUMO enzymes and targets and discuss how this humble interaction participates in SUMOylation reactions and mediates the outcome of this essential post-translational modification.
Collapse
Affiliation(s)
- Jara Lascorz
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Codina-Fabra
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina (IBB) and Dept. de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jordi Torres-Rosell
- Departament de Ciencies Mediques Basiques, Institut de Recerca Biomedica de Lleida, Universitat de Lleida, 25198 Lleida, Spain.
| |
Collapse
|
6
|
Borden K. The search for genetic dark matter and lessons learned from the journey. Biochem Cell Biol 2022; 100:276-281. [DOI: 10.1139/bcb-2022-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review, I describe our scientific journey to unearth the impact of RNA metabolism in cancer using the eukaryotic translation initiation factor eIF4E as an exemplar. This model allowed us to discover new structural, biochemical, and molecular features of RNA processing, and to reveal their substantial impact on cell physiology. This led us to develop proof-of-principle strategies to target these pathways in cancer patients leading to clinical benefit. I discuss the important role that the unexpected plays in research and the necessity of embracing the data even when it clashes with dogma. I also touch on the importance of equity, diversity and inclusion to the success of the scientific enterprise.
Collapse
Affiliation(s)
- Katherine Borden
- University of Montreal, 5622, Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Fonin AV, Silonov SA, Fefilova AS, Stepanenko OV, Gavrilova AA, Petukhov AV, Romanovich AE, Modina AL, Zueva TS, Nedelyaev EM, Pleskach NM, Kuranova ML, Kuznetsova IM, Uversky VN, Turoverov KK. New Evidence of the Importance of Weak Interactions in the Formation of PML-Bodies. Int J Mol Sci 2022; 23:ijms23031613. [PMID: 35163537 PMCID: PMC8835755 DOI: 10.3390/ijms23031613] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
In this work, we performed a comparative study of the formation of PML bodies by full-length PML isoforms and their C-terminal domains in the presence and absence of endogenous PML. Based on the analysis of the distribution of intrinsic disorder predisposition in the amino acid sequences of PML isoforms, regions starting from the amino acid residue 395 (i.e., sequences encoded by exons 4–6) were assigned as the C-terminal domains of these proteins. We demonstrate that each of the full-sized nuclear isoforms of PML is capable of forming nuclear liquid-droplet compartments in the absence of other PML isoforms. These droplets possess dynamic characteristics of the exchange with the nucleoplasm close to those observed in the wild-type cells. Only the C-terminal domains of the PML-II and PML-V isoforms are able to be included in the composition of the endogenous PML bodies, while being partially distributed in the nucleoplasm. The bodies formed by the C-terminal domain of the PML-II isoform are dynamic liquid droplet compartments, regardless of the presence or absence of endogenous PML. The C-terminal domain of PML-V forms dynamic liquid droplet compartments in the knockout cells (PML−/−), but when the C-terminus of the PML-V isoform is inserted into the existing endogenous PML bodies, the molecules of this protein cease to exchange with the nucleoplasm. It was demonstrated that the K490R substitution, which disrupts the PML sumoylation, promotes diffuse distribution of the C-terminal domains of PML-II and PML-V isoforms in endogenous PML knockout HeLa cells, but not in the wild-type cells. These data indicate the ability of the C-terminal domains of the PML-II and PML-V isoforms to form dynamic liquid droplet-like compartments, regardless of the ordered N-terminal RBCC motifs of the PML. This indicates a significant role of the non-specific interactions between the mostly disordered C-terminal domains of PML isoforms for the initiation of liquid–liquid phase separation (LLPS) leading to the formation of PML bodies.
Collapse
Affiliation(s)
- Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
- Correspondence: (A.V.F.); (K.K.T.); Tel.: +7-812-2971957 (K.K.T.); Fax: +7-812-2970341 (K.K.T.)
| | - Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Anna S. Fefilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Anastasia A. Gavrilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Alexey V. Petukhov
- Almazov National Medical Research Centre, Institute of Hematology, 197341 St. Petersburg, Russia;
| | - Anna E. Romanovich
- Resource Center of Molecular and Cell Technologies, St-Petersburg State University Research Park, Universitetskaya Emb. 7–9, 199034 St. Petersburg, Russia;
| | - Anna L. Modina
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Tatiana S. Zueva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Evgeniy M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Nadejda M. Pleskach
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Mirya L. Kuranova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (A.S.F.); (O.V.S.); (A.A.G.); (A.L.M.); (T.S.Z.); (E.M.N.); (N.M.P.); (M.L.K.); (I.M.K.)
- Correspondence: (A.V.F.); (K.K.T.); Tel.: +7-812-2971957 (K.K.T.); Fax: +7-812-2970341 (K.K.T.)
| |
Collapse
|
8
|
Fonin AV, Silonov SA, Shpironok OG, Antifeeva IA, Petukhov AV, Romanovich AE, Kuznetsova IM, Uversky VN, Turoverov KK. The Role of Non-Specific Interactions in Canonical and ALT-Associated PML-Bodies Formation and Dynamics. Int J Mol Sci 2021; 22:ijms22115821. [PMID: 34072343 PMCID: PMC8198325 DOI: 10.3390/ijms22115821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 12/19/2022] Open
Abstract
In this work, we put forward a hypothesis about the decisive role of multivalent nonspecific interactions in the early stages of PML body formation. Our analysis of the PML isoform sequences showed that some of the PML isoforms, primarily PML-II, are prone to phase separation due to their polyampholytic properties and the disordered structure of their C-terminal domains. The similarity of the charge properties of the C-terminal domains of PML-II and PML-VI isoforms made it possible for the first time to detect migration of PML-VI from PML bodies to the periphery of the cell nucleus, similar to the migration of PML-II isoforms. We found a population of “small” (area less than 1 µm2) spherical PML bodies with high dynamics of PML isoforms exchange with nucleoplasm and a low fraction of immobilized proteins, which indicates their liquid state properties. Such structures can act as “seeds” of functionally active PML bodies, providing the necessary concentration of PML isoforms for the formation of intermolecular disulfide bonds between PML monomers. FRAP analysis of larger bodies of toroidal topology showed the existence of an insoluble scaffold in their structure. The hypothesis about the role of nonspecific multiple weak interactions in the formation of PML bodies is further supported by the change in the composition of the scaffold proteins of PML bodies, but not their solidification, under conditions of induction of dimerization of PML isoforms under oxidative stress. Using the colocalization of ALT-associated PML bodies (APBs) with TRF1, we identified APBs and showed the difference in the dynamic properties of APBs and canonical PML bodies.
Collapse
Affiliation(s)
- Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (O.G.S.); (I.A.A.); (I.M.K.)
- Correspondence: (A.V.F.); (V.N.U.); (K.K.T.); Tel.: +7-812-2971957 (K.K.T.); Fax: +7-812-2970341(K.K.T.)
| | - Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (O.G.S.); (I.A.A.); (I.M.K.)
| | - Olesya G. Shpironok
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (O.G.S.); (I.A.A.); (I.M.K.)
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Iuliia A. Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (O.G.S.); (I.A.A.); (I.M.K.)
| | - Alexey V. Petukhov
- Institute of Hematology, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| | - Anna E. Romanovich
- St-Petersburg State University Science Park, Resource Center of Molecular and Cell Technologies, Universitetskaya nab. 7-9, 199034 St. Petersburg, Russia;
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (O.G.S.); (I.A.A.); (I.M.K.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (A.V.F.); (V.N.U.); (K.K.T.); Tel.: +7-812-2971957 (K.K.T.); Fax: +7-812-2970341(K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (S.A.S.); (O.G.S.); (I.A.A.); (I.M.K.)
- Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
- Correspondence: (A.V.F.); (V.N.U.); (K.K.T.); Tel.: +7-812-2971957 (K.K.T.); Fax: +7-812-2970341(K.K.T.)
| |
Collapse
|
9
|
Taniue K, Akimitsu N. Aberrant phase separation and cancer. FEBS J 2021; 289:17-39. [PMID: 33583140 DOI: 10.1111/febs.15765] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 01/10/2023]
Abstract
Eukaryotic cells are intracellularly divided into numerous compartments or organelles, which coordinate specific molecules and biological reactions. Membrane-bound organelles are physically separated by lipid bilayers from the surrounding environment. Biomolecular condensates, also referred to membraneless organelles, are micron-scale cellular compartments that lack membranous enclosures but function to concentrate proteins and RNA molecules, and these are involved in diverse processes. Liquid-liquid phase separation (LLPS) driven by multivalent weak macromolecular interactions is a critical principle for the formation of biomolecular condensates, and a multitude of combinations among multivalent interactions may drive liquid-liquid phase transition (LLPT). Dysregulation of LLPS and LLPT leads to aberrant condensate and amyloid formation, which causes many human diseases, including neurodegeneration and cancer. Here, we describe recent findings regarding abnormal forms of biomolecular condensates and aggregation via aberrant LLPS and LLPT of cancer-related proteins in cancer development driven by mutation and fusion of genes. Moreover, we discuss the regulatory mechanisms by which aberrant LLPS and LLPT occur in cancer and the drug candidates targeting these mechanisms. Further understanding of the molecular events regulating how biomolecular condensates and aggregation form in cancer tissue is critical for the development of therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, Japan.,Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | | |
Collapse
|
10
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
11
|
Stokes S, Almire F, Tatham MH, McFarlane S, Mertens P, Pondeville E, Boutell C. The SUMOylation pathway suppresses arbovirus replication in Aedes aegypti cells. PLoS Pathog 2020; 16:e1009134. [PMID: 33351855 PMCID: PMC7802965 DOI: 10.1371/journal.ppat.1009134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/12/2021] [Accepted: 11/09/2020] [Indexed: 11/25/2022] Open
Abstract
Mosquitoes are responsible for the transmission of many clinically important arboviruses that cause significant levels of annual mortality and socioeconomic health burden worldwide. Deciphering the mechanisms by which mosquitoes modulate arbovirus infection is crucial to understand how viral-host interactions promote vector transmission and human disease. SUMOylation is a post-translational modification that leads to the covalent attachment of the Small Ubiquitin-like MOdifier (SUMO) protein to host factors, which in turn can modulate their stability, interaction networks, sub-cellular localisation, and biochemical function. While the SUMOylation pathway is known to play a key role in the regulation of host immune defences to virus infection in humans, the importance of this pathway during arbovirus infection in mosquito vectors, such as Aedes aegypti (Ae. aegypti), remains unknown. Here we characterise the sequence, structure, biochemical properties, and tissue-specific expression profiles of component proteins of the Ae. aegypti SUMOylation pathway. We demonstrate significant biochemical differences between Ae. aegypti and Homo sapiens SUMOylation pathways and identify cell-type specific patterns of SUMO expression in Ae. aegypti tissues known to support arbovirus replication. Importantly, depletion of core SUMOylation effector proteins (SUMO, Ubc9 and PIAS) in Ae. aegypti cells led to enhanced levels of arbovirus replication from three different families; Zika (Flaviviridae), Semliki Forest (Togaviridae), and Bunyamwera (Bunyaviridae) viruses. Our findings identify an important role for mosquito SUMOylation in the cellular restriction of arboviruses that may directly influence vector competence and transmission of clinically important arboviruses. Half the world’s population is at risk of infection from arboviruses transmitted by mosquitoes. Deciphering the viral-host interactions that influence the outcome of arbovirus infection in mosquitoes is beneficial to the development of future vector control strategies to limit arbovirus transmission and viral emergence within the human population. Similar to humans, mosquitoes possess different immune pathways to limit the replication of arboviruses. While the Small Ubiquitin-like MOdifier (SUMO) pathway is known to play an important role in the regulation of immune defences to viral infection in humans, the influence of this pathway during arbovirus infection in mosquito cells is currently unknown. Here we define the conservation, biochemical activity, and tissue distribution of the core effector proteins of the Aedes aegypti SUMOylation pathway. We show that the mosquito SUMOylation pathway plays a broadly antiviral role against a wide range of clinically important arboviruses, including Zika, Semliki Forest, and Bunyamwera viruses. Our findings identify SUMOylation as an important component of the antiviral response to arbovirus infection in mosquito cells.
Collapse
Affiliation(s)
- Samuel Stokes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Floriane Almire
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Peter Mertens
- The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (EP); (CB)
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
- * E-mail: (EP); (CB)
| |
Collapse
|
12
|
García CC, Vázquez CA, Giovannoni F, Russo CA, Cordo SM, Alaimo A, Damonte EB. Cellular Organelles Reorganization During Zika Virus Infection of Human Cells. Front Microbiol 2020; 11:1558. [PMID: 32774331 PMCID: PMC7381349 DOI: 10.3389/fmicb.2020.01558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is an enveloped positive stranded RNA virus belonging to the genus Flavivirus in the family Flaviviridae that emerged in recent decades causing pandemic outbreaks of human infections occasionally associated with severe neurological disorders in adults and newborns. The intracellular steps of flavivirus multiplication are associated to cellular membranes and their bound organelles leading to an extensive host cell reorganization. Importantly, the association of organelle dysfunction with diseases caused by several human viruses has been widely reported in recent studies. With the aim to increase the knowledge about the impact of ZIKV infection on the host cell functions, the present study was focused on the evaluation of the reorganization of three cell components, promyelocytic leukemia nuclear bodies (PML-NBs), mitochondria, and lipid droplets (LDs). Relevant human cell lines including neural progenitor cells (NPCs), hepatic Huh-7, and retinal pigment epithelial (RPE) cells were infected with the Argentina INEVH116141 ZIKV strain and the organelle alterations were studied by using fluorescent cell imaging analysis. Our results have shown that these three organelles are targeted and structurally modified during ZIKV infection. Considering the nuclear reorganization, the analysis by confocal microscopy of infected cells showed a significantly reduced number of PML-NBs in comparison to uninfected cells. Moreover, a mitochondrial morphodynamic perturbation with an increased fragmentation and the loss of mitochondrial membrane potential was observed in ZIKV infected RPE cells. Regarding lipid structures, a decrease in the number and volume of LDs was observed in ZIKV infected cells. Given the involvement of these organelles in host defense processes, the reported perturbations may be related to enhanced virus replication through protection from innate immunity. The understanding of the cellular remodeling will enable the design of new host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Cybele C García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Cecilia A Vázquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Federico Giovannoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Constanza A Russo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Sandra M Cordo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
13
|
Marijan D, Tse R, Elliott K, Chandhok S, Luo M, Lacroix E, Audas TE. Stress-specific aggregation of proteins in the amyloid bodies. FEBS Lett 2019; 593:3162-3172. [PMID: 31512750 DOI: 10.1002/1873-3468.13597] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022]
Abstract
Physiological amyloid aggregation occurs within the nuclei of stress-treated cells. These structures, termed Amyloid bodies (A-bodies), assemble through the rapid accumulation of proteins into dense membrane-less organelles, which possess the same biophysical properties as plaques observed in many amyloid-based diseases. Here, we demonstrate that A-body proteomic compositions vary significantly between stimuli, as constituent proteins can be sequestered by one or more stressors. Stimulus exposure alone was insufficient to induce aggregation, demonstrating that this pathway is not regulated solely by stress-induced conformational changes of the A-body targets. We propose that different environmental conditions induce the formation of A-body subtypes containing distinct protein residents. This selective immobilization of proteins may have evolved as a finely tuned mechanism for surviving divergent stressors.
Collapse
Affiliation(s)
- Dane Marijan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Ronnie Tse
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Keenan Elliott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sahil Chandhok
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Monica Luo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
14
|
Hsu KS, Kao HY. PML: Regulation and multifaceted function beyond tumor suppression. Cell Biosci 2018; 8:5. [PMID: 29416846 PMCID: PMC5785837 DOI: 10.1186/s13578-018-0204-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 01/15/2023] Open
Abstract
Promyelocytic leukemia protein (PML) was originally identified as a fusion partner of retinoic acid receptor alpha in acute promyelocytic leukemia patients with the (15;17) chromosomal translocation, giving rise to PML–RARα and RARα–PML fusion proteins. A body of evidence indicated that PML possesses tumor suppressing activity by regulating apoptosis, cell cycle, senescence and DNA damage responses. PML is enriched in discrete nuclear substructures in mammalian cells with 0.2–1 μm diameter in size, referred to as alternately Kremer bodies, nuclear domain 10, PML oncogenic domains or PML nuclear bodies (NBs). Dysregulation of PML NB formation results in altered transcriptional regulation, protein modification, apoptosis and cellular senescence. In addition to PML NBs, PML is also present in nucleoplasm and cytoplasmic compartments, including the endoplasmic reticulum and mitochondria-associated membranes. The role of PML in tumor suppression has been extensively studied but increasing evidence indicates that PML also plays versatile roles in stem cell renewal, metabolism, inflammatory responses, neural function, mammary development and angiogenesis. In this review, we will briefly describe the known PML regulation and function and include new findings.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- 1Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA.,Present Address: Tumor Angiogenesis Section, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Hung-Ying Kao
- 1Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA.,The Comprehensive Cancer Center of Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106 USA
| |
Collapse
|
15
|
Piserà A, Campo A, Campo S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J Genet Genomics 2018; 45:13-24. [DOI: 10.1016/j.jgg.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
|
16
|
Zhu W, Hu Z, Liao X, Chen X, Huang W, Zhong Y, Zeng Z. A new mutation site in the AIRE gene causes autoimmune polyendocrine syndrome type 1. Immunogenetics 2017; 69:643-651. [PMID: 28540407 DOI: 10.1007/s00251-017-0995-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/26/2017] [Indexed: 01/07/2023]
Abstract
Autoimmune polyendocrine syndrome type 1 (APS-1, OMIM 2403000) is a rare autosomal recessive disease that is caused by autoimmune regulator (AIRE). The main symptoms of APS-1 are chronic mucocutaneous candidiasis, autoimmune adrenocortical insufficiency (Addison's disease) and hypoparathyroidism. We collected APS-1 cases and analysed them. The AIRE genes of the patient and his family members were sequenced to identify whether the APS-1 patient had an AIRE mutation. We discovered a mutation site (c.206A>C) that had never before been reported in the AIRE gene located in exon 2 of the AIRE gene. This homogyzous mutation caused a substitution of the 69th amino acid of the AIRE protein from glutamine to proline (p.Q69P). A yeast two-hybrid assay, which was used to analyse the homodimerization properties of the mutant AIRE protein, showed that the mutant AIRE protein could not interact with the normal AIRE protein. Flow cytometry and RT-qPCR analyses indicated that the new mutation site could decrease the expression levels of the AIRE, glutamic acid decarboxylase 65 (GAD65) and tryptophan hydroxylase-1 (TPH1) proteins to affect central immune tolerance. In conclusion, our research has shown that the new mutation site (c.206A>C) may influence the homodimerization and expression levels and other aspects of the AIRE protein. It may also impact the expression levels of tissue-restricted antigens (TRAs), leading to a series of autoimmune diseases.
Collapse
Affiliation(s)
- Wufei Zhu
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China.
| | - Zhen Hu
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Xiangyu Liao
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Xing Chen
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Wenrong Huang
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Yu Zhong
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China
| | - Zhaoyang Zeng
- Department of Endocrinology, China Three Gorges University & Yichang Central People's Hospital, Yi Ling Road 181, Yichang, 443003, China.
| |
Collapse
|
17
|
Nandakumar P, Mansouri A, Das S. The Role of ATRX in Glioma Biology. Front Oncol 2017; 7:236. [PMID: 29034211 PMCID: PMC5626857 DOI: 10.3389/fonc.2017.00236] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/14/2017] [Indexed: 02/03/2023] Open
Abstract
The current World Health Organization classification of CNS tumors has made a tremendous leap from past editions by incorporating molecular criteria in addition to the pre-existing histological parameters. The revised version has had a particular impact on the classification of diffuse low-grade gliomas and their high-grade variants. The ATRX status is one of the critical markers that define the molecular classification of gliomas. In this review, we will first provide an overview of the role of ATRX in regular cell biology. Furthermore, the role of ATRX in tumorigenesis, specifically gliomas, is comprehensively elucidated. The possible correlation of ATRX status with other genetic/epigenetic modifications is also presented. We conclude by discussing some of the challenges associated with incorporating ATRX status assessment into routine clinical practice while also exploring opportunities for future diagnostics/therapeutics in gliomas based on ATRX status.
Collapse
Affiliation(s)
- Pravanya Nandakumar
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Alireza Mansouri
- Center for Cancer Research, Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Division of Neuro-Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.,The Arthur and Sonia Labatt Brain Tumour Centre, Hospital for Sick Kids, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
19
|
Lamm CE, Scherer M, Reuter N, Amin B, Stamminger T, Sonnewald U. Human promyelocytic leukemia protein is targeted to distinct subnuclear domains in plant nuclei and colocalizes with nucleolar constituents in a SUMO-dependent manner. FEBS Open Bio 2016; 6:1141-1154. [PMID: 27833854 PMCID: PMC5095151 DOI: 10.1002/2211-5463.12134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic nuclei are subdivided into subnuclear structures. Among the most prominent of these structures are the nucleolus and the PML nuclear bodies (PML‐NBs). PML‐NBs are spherical multiprotein aggregates of varying size localized in the interchromosomal area. PML‐NB formation is dependent on the presence of the promyelocytic leukemia protein (PML) as well as on post‐translational modification of core components by covalent attachment of the small ubiquitin‐like modifier (SUMO). So far, PML‐NBs as well as PML have been described in mammalian cells only, whereas no orthologs are known in the plant kingdom. In order to investigate conserved mechanisms in PML targeting, we expressed human PML (hPML) fused to the GFP in Nicotiana benthamiana. Using confocal laser scanning microscopy and coimmunoprecipitation followed by mass spectrometric analysis, we found the fusion protein in association with nucleolar constituents. Importantly, mutants of hPML, which are no longer SUMOylated, showed altered localizations, implying SUMO‐dependent targeting of hPML in plants as has previously been shown for mammalian cells. Interestingly, in the presence of proteasome inhibitors, hPML could also be found in the nucleolus of mammalian cells suggesting conserved targeting mechanisms of PML across kingdoms. Finally, Solanum tuberosum COP1, a proposed PML‐like protein from plants, was fused to the red fluorescent protein (RFP) and coexpressed with hPML::eGFP. Microscopic analysis confirmed the localization of COP1::RFP in nuclear speckles. However, hPML::eGFP did not colocalize with COP1::RFP. Hence, we conclude that plants do not possess specialized PML‐NBs, but that their functions may be covered by other subnuclear structures like the nucleolus. Database Proteomics data have been deposited to the ProteomeXchange Consortium with the identifier PXD004254.
Collapse
Affiliation(s)
- Christian E Lamm
- Division of Biochemistry Department of Biology Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Myriam Scherer
- Institute for Clinical and Molecular Virology Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Nina Reuter
- Institute for Clinical and Molecular Virology Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Bushra Amin
- Division of Biochemistry Department of Biology Friedrich-Alexander University Erlangen-Nuremberg Germany; Present address: Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology Friedrich-Alexander University Erlangen-Nuremberg Germany
| | - Uwe Sonnewald
- Division of Biochemistry Department of Biology Friedrich-Alexander University Erlangen-Nuremberg Germany
| |
Collapse
|
20
|
Audas TE, Hardy-Smith PW, Penney J, Taylor T, Lu R. Characterization of nuclear foci-targeting of Luman/CREB3 recruitment factor (LRF/CREBRF) and its potential role in inhibition of herpes simplex virus-1 replication. Eur J Cell Biol 2016; 95:611-622. [PMID: 28029379 DOI: 10.1016/j.ejcb.2016.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 01/18/2023] Open
Abstract
The recently identified Luman/CREB3-binding partner LRF (Luman/CREB3 recruitment factor) was shown to localize to discrete sub-nuclear foci. Luman is implicated in herpes simplex virus-1 (HSV-1) latency/reactivation and the unfolded protein response (UPR) pathway; therefore, we sought to characterize the formation of the LRF nuclear foci in the context of cellular signaling and HSV-1 replication. Here, we mapped the nuclear foci-targeting sequence to the central region containing the first leucine zipper (a.a.415-519), and found that the integrity of the whole region appears essential for LRF foci formation. LRF foci integrity was unaffected by inhibition of cellular DNA replication and translation, however, disruption of transcription resulted in altered LRF localization. When compared to other cellular and viral foci LRF co-localized with the nuclear receptor co-activator GRIP1, while the HSV-1 gene products ICP4, ICP27 and VP13/14 disrupted foci formation to varying degrees. Interestingly, cells over-expressing LRF were resistant to productive HSV-1 infection and this resistance was dependent upon protein targeting and an N-terminal transactivation domain. When LRF knockdown cells were subjected to primary infection, HSV-1 gene expression and progeny virus yield were enhanced by ∼3 fold compared to wildtype cells. Taken together, these results indicate that LRF is a key regulator that may act direct or indirectly as a repressor of essential genes required for productive viral infection.
Collapse
Affiliation(s)
- Timothy E Audas
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada
| | - Philip W Hardy-Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jenna Penney
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tiegh Taylor
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
21
|
Stratigi K, Chatzidoukaki O, Garinis GA. DNA damage-induced inflammation and nuclear architecture. Mech Ageing Dev 2016; 165:17-26. [PMID: 27702596 DOI: 10.1016/j.mad.2016.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/20/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
Abstract
Nuclear architecture and the chromatin state affect most-if not all- DNA-dependent transactions, including the ability of cells to sense DNA lesions and restore damaged DNA back to its native form. Recent evidence points to functional links between DNA damage sensors, DNA repair mechanisms and the innate immune responses. The latter raises the question of how such seemingly disparate processes operate within the intrinsically complex nuclear landscape and the chromatin environment. Here, we discuss how DNA damage-induced immune responses operate within chromatin and the distinct sub-nuclear compartments highlighting their relevance to chronic inflammation.
Collapse
Affiliation(s)
- Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - Ourania Chatzidoukaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece; Department of Biology, University of Crete, Vassilika Vouton, GR71409, Heraklion, Crete, Greece.
| |
Collapse
|
22
|
Cornelis G, Souquere S, Vernochet C, Heidmann T, Pierron G. Functional conservation of the lncRNA NEAT1 in the ancestrally diverged marsupial lineage: Evidence for NEAT1 expression and associated paraspeckle assembly during late gestation in the opossum Monodelphis domestica. RNA Biol 2016; 13:826-36. [PMID: 27315396 PMCID: PMC5014006 DOI: 10.1080/15476286.2016.1197482] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are widely expressed and play various roles in cell homeostasis. However, because of their low conservation at the sequence level, recapitulating lncRNA evolutionary history is often challenging. While performing an ultrastructural analysis of viral particles present in uterine glands of gestating opossum females, we serendipitously noticed the presence of numerous structures similar to paraspeckles, nuclear bodies which in human and mouse cells are assembled around an architectural NEAT1/MENϵ/β lncRNA. Here, using an opossum kidney (OK) cell line, we confirmed by immuno-electron microscopy the presence of paraspeckles in marsupials. We then identified the orthologous opossum NEAT1 gene which, although poorly conserved at the sequence level, displays NEAT1 characteristic features such as short and long isoforms expressed from a unique promoter and for the latter an RNase P cleavage site at its 3'-end. Combining tissue-specific qRT-PCR, in situ hybridization at the optical and electron microscopic levels, we show that (i) NEAT1 is paraspeckle-associated in opossum (ii) NEAT1 expression is strongly induced in late gestation in uterine/placental extracts (iii) NEAT1 induction occurs in the uterine gland nuclei in which paraspeckles were detected. Finally, treatment of OK cells with proteasome inhibitors induces paraspeckle assembly, as previously observed in human cells. Altogether, these results demonstrate that paraspeckles are tissue-specific, stress-responding nuclear bodies in marsupials, illustrating their structural and functional continuity over 200 My of evolution throughout the mammalian lineage. In contrast, the rapid evolution of the NEAT1 transcripts highlights the relaxed constraint that, despite functional conservation, is exerted on this lncRNA.
Collapse
Affiliation(s)
| | - Sylvie Souquere
- CNRS-UMR-9196, Institut Gustave Roussy,94805 Villejuif, France
| | | | | | - Gérard Pierron
- CNRS-UMR-9196, Institut Gustave Roussy,94805 Villejuif, France
| |
Collapse
|
23
|
Sawyer IA, Dundr M. Nuclear bodies: Built to boost. J Cell Biol 2016; 213:509-11. [PMID: 27241912 PMCID: PMC4896059 DOI: 10.1083/jcb.201605049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The classic archetypal function of nuclear bodies is to accelerate specific reactions within their crowded space. In this issue, Tatomer et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201504043) provide the first direct evidence that the histone locus body acts to concentrate key factors required for the proper processing of histone pre-mRNAs.
Collapse
Affiliation(s)
- Iain A Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064 Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064
| |
Collapse
|
24
|
Masroori N, Merindol N, Berthoux L. The interferon-induced antiviral protein PML (TRIM19) promotes the restriction and transcriptional silencing of lentiviruses in a context-specific, isoform-specific fashion. Retrovirology 2016; 13:19. [PMID: 27000403 PMCID: PMC4802722 DOI: 10.1186/s12977-016-0253-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 01/09/2023] Open
Abstract
Background The promyelocytic leukemia (PML) protein, a type I interferon (IFN-I)-induced gene product and a member of the tripartite motif (TRIM) family, modulates the transcriptional activity of viruses belonging to various families. Whether PML has an impact on the replication of HIV-1 has not been fully addressed, but recent studies point to its possible involvement in the restriction of HIV-1 in human cells and in the maintenance of transcriptional latency in human cell lines in which HIV-1 is constitutively repressed. We investigated further the restriction of HIV-1 and a related lentivirus, SIVmac, by PML in murine cells and in a lymphocytic human cell line. In particular, we studied the relevance of PML to IFN-I-mediated inhibition and the role of individual human isoforms. Results We demonstrate that both human PML (hPML) and murine PML (mPML) inhibit the early post-entry stages of the replication of HIV-1 and a related lentivirus, SIVmac. In addition, HIV-1 was transcriptionally silenced by mPML and by hPML isoforms I, II, IV and VI in MEFs. This PML-mediated transcriptional repression was attenuated in presence of the histone deacetylase inhibitor SAHA. In contrast, depletion of PML had no effect on HIV-1 gene expression in a human T cell line. PML was found to contribute to the inhibition of HIV-1 by IFN-I. Specifically, IFN-α and IFN-β treatments of MEFs enhanced the PML-dependent inhibition of HIV-1 early replication stages. Conclusions We show that PML can inhibit HIV-1 and other lentiviruses as part of the IFN-I-mediated response. The restriction takes place at two distinct steps, i.e. reverse transcription and transcription, and in an isoform-specific, cellular context-specific fashion. Our results support a model in which PML activates innate immune antilentiviral effectors. These data are relevant to the development of latency reversal-inducing pharmacological agents, since PML was previously proposed as a pharmacological target for such inhibitors. This study also has implications for the development of murine models of HIV-1. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0253-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nasser Masroori
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Natacha Merindol
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Lionel Berthoux
- Laboratory of Retrovirology, Department of Medical Biology and BioMed Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
| |
Collapse
|
25
|
Osborne MJ, Borden KLB. The eukaryotic translation initiation factor eIF4E in the nucleus: taking the road less traveled. Immunol Rev 2015; 263:210-23. [PMID: 25510279 DOI: 10.1111/imr.12240] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The eukaryotic translation initiation factor eIF4E is a potent oncogene. Although eIF4E has traditional roles in translation initiation in the cytoplasm, it is also found in the nucleus, suggesting that it has activities beyond its role in protein synthesis. The road less traveled has been taken to study these nuclear activities and to understand their contribution to the oncogenic potential of eIF4E. The molecular features and biological pathways underpinning eIF4E's nuclear mRNA export are described. New classes of eIF4E regulators have been identified and their relevance to cancer shown. The studies presented here reveal the molecular, biophysical, and structural bases for eIF4E regulation. Finally, recent clinical work targeting eIF4E in acute myeloid leukemia patients with ribavirin is discussed. In summary, these findings provide a novel paradigm for eIF4E function and the molecular basis for targeting it in leukemia patients.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute for Research in Immunology and Cancer & Dept. of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
26
|
SP140L, an Evolutionarily Recent Member of the SP100 Family, Is an Autoantigen in Primary Biliary Cirrhosis. J Immunol Res 2015; 2015:526518. [PMID: 26347895 PMCID: PMC4548144 DOI: 10.1155/2015/526518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 12/21/2022] Open
Abstract
The SP100 family members comprise a set of closely related genes on chromosome 2q37.1. The widely expressed SP100 and the leukocyte-specific proteins SP110 and SP140 have been associated with transcriptional regulation and various human diseases. Here, we have characterized the SP100 family member SP140L. The genome sequence analysis showed the formation of SP140L gene through rearrangements of the two neighboring genes, SP100 and SP140, during the evolution of higher primates. The SP140L expression is interferon-inducible with high transcript levels in B cells and other peripheral blood mononuclear cells. Subcellularly, SP140L colocalizes with SP100 and SP140 in nuclear structures that are devoid of SP110, PML, or p300 proteins. Similarly to SP100 and SP140 protein, we detected serum autoantibodies to SP140L in patients with primary biliary cirrhosis using luciferase immunoprecipitation system and immunoblotting assays. In conclusion, our results show that SP140L is phylogenetically recent member of SP100 proteins and acts as an autoantigen in primary biliary cirrhosis patients.
Collapse
|
27
|
Cellular promyelocytic leukemia protein is an important dengue virus restriction factor. PLoS One 2015; 10:e0125690. [PMID: 25962098 PMCID: PMC4427460 DOI: 10.1371/journal.pone.0125690] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/23/2015] [Indexed: 12/29/2022] Open
Abstract
The intrinsic antiviral defense is based on cellular restriction factors that are constitutively expressed and, thus, active even before a pathogen enters the cell. The promyelocytic leukemia (PML) nuclear bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved in intrinsic antiviral responses against a number of viruses. Accumulating reports have shown the importance of PML as a DNA virus restriction factor and how these pathogens evade this antiviral activity. However, very little information is available regarding the antiviral role of PML against RNA viruses. Dengue virus (DENV) is an RNA emerging mosquito-borne human pathogen affecting millions of individuals each year by causing severe and potentially fatal syndromes. Since no licensed antiviral drug against DENV infection is currently available, it is of great importance to understand the factors mediating intrinsic immunity that may lead to the development of new pharmacological agents that can boost their potency and thereby lead to treatments for this viral disease. In the present study, we investigated the in vitro antiviral role of PML in DENV-2 A549 infected cells.
Collapse
|
28
|
Singh R, Brewer MK, Mashburn CB, Lou D, Bondada V, Graham B, Geddes JW. Calpain 5 is highly expressed in the central nervous system (CNS), carries dual nuclear localization signals, and is associated with nuclear promyelocytic leukemia protein bodies. J Biol Chem 2014; 289:19383-94. [PMID: 24838245 PMCID: PMC4094050 DOI: 10.1074/jbc.m114.575159] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/14/2014] [Indexed: 12/20/2022] Open
Abstract
Calpain 5 (CAPN5) is a non-classical member of the calpain family. It lacks the EF hand motif characteristic of classical calpains but retains catalytic and Ca(2+) binding domains, and it contains a unique C-terminal domain. TRA-3, an ortholog of CAPN5, has been shown to be involved in necrotic cell death in Caenorhabditis elegans. CAPN5 is expressed throughout the CNS, but its expression relative to other calpains and subcellular distribution has not been investigated previously. Based on relative mRNA levels, Capn5 is the second most highly expressed calpain in the rat CNS, with Capn2 mRNA being the most abundant. Unlike classical calpains, CAPN5 is a non-cytosolic protein localized to the nucleus and extra-nuclear locations. CAPN5 possesses two nuclear localization signals (NLS): an N-terminal monopartite NLS and a unique bipartite NLS closer to the C terminus. The C-terminal NLS contains a SUMO-interacting motif that contributes to nuclear localization, and mutation or deletion of both NLS renders CAPN5 exclusively cytosolic. Dual NLS motifs are common among transcription factors. Interestingly, CAPN5 is found in punctate domains associated with promyelocytic leukemia (PML) protein within the nucleus. PML nuclear bodies are implicated in transcriptional regulation, cell differentiation, cellular response to stress, viral defense, apoptosis, and cell senescence as well as protein sequestration, modification, and degradation. The roles of nuclear CAPN5 remain to be determined.
Collapse
Affiliation(s)
- Ranjana Singh
- From the Spinal Cord and Brain Injury Research Center and the Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536
| | | | | | - Dingyuan Lou
- From the Spinal Cord and Brain Injury Research Center and
| | - Vimala Bondada
- From the Spinal Cord and Brain Injury Research Center and
| | | | - James W Geddes
- From the Spinal Cord and Brain Injury Research Center and the Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky 40536
| |
Collapse
|
29
|
Günther T, Schreiner S, Dobner T, Tessmer U, Grundhoff A. Influence of ND10 components on epigenetic determinants of early KSHV latency establishment. PLoS Pathog 2014; 10:e1004274. [PMID: 25033267 PMCID: PMC4102598 DOI: 10.1371/journal.ppat.1004274] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/05/2014] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that acquisition of intricate patterns of activating (H3K4me3, H3K9/K14ac) and repressive (H3K27me3) histone modifications is a hallmark of KSHV latency establishment. The precise molecular mechanisms that shape the latent histone modification landscape, however, remain unknown. Promyelocytic leukemia nuclear bodies (PML-NB), also called nuclear domain 10 (ND10), have emerged as mediators of innate immune responses that can limit viral gene expression via chromatin based mechanisms. Consequently, although ND10 functions thus far have been almost exclusively investigated in models of productive herpesvirus infection, it has been proposed that they also may contribute to the establishment of viral latency. Here, we report the first systematic study of the role of ND10 during KSHV latency establishment, and link alterations in the subcellular distribution of ND10 components to a temporal analysis of histone modification acquisition and host cell gene expression during the early infection phase. Our study demonstrates that KSHV infection results in a transient interferon response that leads to induction of the ND10 components PML and Sp100, but that repression by ND10 bodies is unlikely to contribute to KSHV latency establishment. Instead, we uncover an unexpected role for soluble Sp100 protein, which is efficiently and permanently relocalized from nucleoplasmic and chromatin-associated fractions into the insoluble matrix. We show that LANA expression is sufficient to induce Sp100 relocalization, likely via mediating SUMOylation of Sp100. Furthermore, we demonstrate that depletion of soluble Sp100 occurs precisely when repressive H3K27me3 marks first accumulate on viral genomes, and that knock-down of Sp100 (but not PML or Daxx) facilitates H3K27me3 acquisition. Collectively, our data support a model in which non-ND10 resident Sp100 acts as a negative regulator of polycomb repressive complex-2 (PRC2) recruitment, and suggest that KSHV may actively escape ND10 silencing mechanisms to promote establishment of latent chromatin.
Collapse
Affiliation(s)
- Thomas Günther
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Uwe Tessmer
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
30
|
Xiaofei E, Kowalik TF. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses 2014; 6:2155-85. [PMID: 24859341 PMCID: PMC4036536 DOI: 10.3390/v6052155] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022] Open
Abstract
Viruses use different strategies to overcome the host defense system. Recent studies have shown that viruses can induce DNA damage response (DDR). Many of these viruses use DDR signaling to benefit their replication, while other viruses block or inactivate DDR signaling. This review focuses on the effects of DDR and DNA repair on human cytomegalovirus (HCMV) replication. Here, we review the DDR induced by HCMV infection and its similarities and differences to DDR induced by other viruses. As DDR signaling pathways are critical for the replication of many viruses, blocking these pathways may represent novel therapeutic opportunities for the treatment of certain infectious diseases. Lastly, future perspectives in the field are discussed.
Collapse
Affiliation(s)
- E Xiaofei
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
31
|
Wenger B, Schwegler M, Brunner M, Daniel C, Schmidt M, Fietkau R, Distel LV. PML-nuclear bodies decrease with age and their stress response is impaired in aged individuals. BMC Geriatr 2014; 14:42. [PMID: 24694011 PMCID: PMC3992156 DOI: 10.1186/1471-2318-14-42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/26/2014] [Indexed: 01/26/2023] Open
Abstract
Background Promyelocytic leukemia nuclear bodies (PML-NBs) have been depicted as structures which are involved in processing cell damages and DNA double-strand break repairs. The study was designed to evaluate differences in patients’ PML-NBs response to stress factors like a cancerous disease and ionizing radiation exposure dependent on age. Methods In order to clarify the role of PML-NBs in the aging process, we examined peripheral blood monocytes of 134 cancer patients and 41 healthy individuals between 22 and 92 years of age, both before and after in vitro irradiation. Additionally, we analyzed the samples of the cancer patients after in vivo irradiation. Cells were immunostained and about 1600 cells per individual were analyzed for the presence of PML- and γH2AX foci. Results The number of existing PML-NBs per nucleus declined with age, while the number of γH2AX foci increased with age. There was a non-significant trend that in vivo irradiation increased the number of PML-NBs in cells of young study participants, while in older individuals PML-NBs tended to decrease. It can be assumed that PML-NBs decrease in number during the process of aging. Conclusion The findings suggest that there is a dysfunctional PML-NBs stress response in aged cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Luitpold V Distel
- Department of Radiation Oncology, University Hospitals and Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstraße 27, D-91054 Erlangen, Germany.
| |
Collapse
|
32
|
Nakajima T, Aratani S, Nakazawa M, Hirose T, Fujita H, Nishioka K. Implications of transcriptional coactivator CREB binding protein complexes in rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-003-0258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
34
|
PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1. Blood 2013; 123:261-70. [PMID: 24255919 DOI: 10.1182/blood-2013-02-483289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Promyelocytic leukemia protein (PML) has been implicated as a participant in multiple cellular processes including senescence, apoptosis, proliferation, and differentiation. Studies of PML function in hematopoietic differentiation previously focused principally on its myeloid activities and also indicated that PML is involved in erythroid colony formation. However, the exact role that PML plays in erythropoiesis is essentially unknown. In this report, we found that PML4, a specific PML isoform expressed in erythroid cells, promotes endogenous erythroid genes expression in K562 and primary human erythroid cells. We show that the PML4 effect is GATA binding protein 1 (GATA-1) dependent using GATA-1 knockout/rescued G1E/G1E-ER4 cells. PML4, but not other detected PML isoforms, directly interacts with GATA-1 and can recruit it into PML nuclear bodies. Furthermore, PML4 facilitates GATA-1 trans-activation activity in an interaction-dependent manner. Finally, we present evidence that PML4 enhances GATA-1 occupancy within the globin gene cluster and stimulates cooperation between GATA-1 and its coactivator p300. These results demonstrate that PML4 is an important regulator of GATA-1 and participates in erythroid differention by enhancing GATA-1 trans-activation activity.
Collapse
|
35
|
Khaiboullina SF, Morzunov SP, Boichuk SV, Palotás A, St Jeor S, Lombardi VC, Rizvanov AA. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors. Virology 2013; 443:338-48. [PMID: 23830076 DOI: 10.1016/j.virol.2013.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.
Collapse
|
36
|
Přikrylová T, Pacherník J, Kozubek S, Bártová E. Epigenetics and chromatin plasticity in embryonic stem cells. World J Stem Cells 2013; 5:73-85. [PMID: 23951389 PMCID: PMC3744133 DOI: 10.4252/wjsc.v5.i3.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson's disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.
Collapse
Affiliation(s)
- Terézia Přikrylová
- Terézia Přikrylová, Stanislav Kozubek, Eva Bártová, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
37
|
Abstract
PML nuclear bodies and their associated functions are part of an intrinsic cellular mechanism aimed at maintaining transcriptional control over viral gene expression and preventing replication of invading viruses. To overcome these barriers, many viruses express early nonstructural, multifunctional proteins to support the viral replication cycle or modulate host immune responses. Virion proteins constituting the invading particle are traditionally investigated for their role in transport during entry or egress and in the assembly of new virions. The additional functions of virion proteins have largely been ignored, in contrast to those of their nonstructural counterparts. A number of recent reports suggest that several virion proteins may also play vital roles in gene activation processes, in particular by counteracting intrinsic immune mechanisms mediated by the PML nuclear body-associated cellular factors Daxx, ATRX, and Sp100. These virion proteins share several features with their more potent nonstructural counterparts, and they may serve to bridge the gap in the early phase of an infection until immediate early viral gene expression is established. In this review, we discuss how virion proteins are an integral part of gene regulation among several viral families and to what extent structural proteins of incoming virions may contribute to species barrier, latency, and oncogenesis.
Collapse
|
38
|
Mori F, Tanji K, Toyoshima Y, Sasaki H, Yoshida M, Kakita A, Takahashi H, Wakabayashi K. Valosin-containing protein immunoreactivity in tauopathies, synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease. Neuropathology 2013; 33:637-44. [DOI: 10.1111/neup.12050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/20/2013] [Accepted: 05/27/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Kunikazu Tanji
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | | | - Hidenao Sasaki
- Department of Neurology; Hokkaido University Graduate School of Medicine; Sapporo Japan
| | - Mari Yoshida
- Department of Neuropathology; Aichi Medical University; Nagakute Japan
| | - Akiyoshi Kakita
- Department of Pathological Neuroscience; Center for Bioresource-Based Researches; Brain Research Institute; University of Niigata; Niigata Japan
| | | | - Koichi Wakabayashi
- Department of Neuropathology; Institute of Brain Science; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| |
Collapse
|
39
|
Korb E, Wilkinson CL, Delgado RN, Lovero KL, Finkbeiner S. Arc in the nucleus regulates PML-dependent GluA1 transcription and homeostatic plasticity. Nat Neurosci 2013; 16:874-83. [PMID: 23749147 PMCID: PMC3703835 DOI: 10.1038/nn.3429] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/12/2013] [Indexed: 02/06/2023]
Abstract
The activity-regulated cytoskeletal protein Arc (also known as Arg3.1) is required for long-term memory formation and synaptic plasticity. Arc expression is robustly induced by activity, and Arc protein localizes to both active synapses and the nucleus. Whereas its synaptic function has been examined, it is not clear why or how Arc is localized to the nucleus. We found that murine Arc nuclear expression is regulated by synaptic activity in vivo and in vitro. We identified distinct regions of Arc that control its localization, including a nuclear localization signal, a nuclear retention domain and a nuclear export signal. Arc localization to the nucleus promotes an activity-induced increase in the expression of promyelocytic leukemia nuclear bodies, which decreases GluA1 (also called Gria1) transcription and synaptic strength. We further show that Arc nuclear localization regulates homeostatic plasticity. Thus, Arc mediates the homeostatic response to increased activity by translocating to the nucleus, increasing promyelocytic leukemia protein expression and decreasing GluA1 transcription, ultimately downscaling synaptic strength.
Collapse
Affiliation(s)
- Erica Korb
- Gladstone Institutes of Neurological Disease, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
40
|
Rabellino A, Scaglioni PP. PML Degradation: Multiple Ways to Eliminate PML. Front Oncol 2013; 3:60. [PMID: 23526763 PMCID: PMC3605509 DOI: 10.3389/fonc.2013.00060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/06/2013] [Indexed: 11/26/2022] Open
Abstract
The promyelocytic leukemia tumor suppressor gene (PML) critically regulates several cellular functions that oppose tumorigenesis such as oncogene-induced senescence, apoptosis, the response to DNA damage and to viral infections. PML deficiency occurs commonly in a broad spectrum of human cancers through mechanisms that involve its aberrant ubiquitination and degradation. Furthermore, several viruses encode viral proteins that promote viral replication through degradation of PML. These observations suggest that restoration of PML should lead to potent antitumor effects or antiviral responses. In this review we will summarize the mechanisms involved in PML degradation with the intent to highlight novel therapeutic strategies to trigger PML restoration.
Collapse
Affiliation(s)
- Andrea Rabellino
- Division of Hematology and Oncology, Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
41
|
Aggresome formation by the adenoviral protein E1B55K is not conserved among adenovirus species and is not required for efficient degradation of nuclear substrates. J Virol 2013; 87:4872-81. [PMID: 23408624 DOI: 10.1128/jvi.03272-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Much of the work on the basic molecular biology of human adenoviruses has been carried out on a very limited number of the more than 60 serotypes, primarily the highly related species C viruses adenovirus type 5 (Ad5) and Ad2 and, to some extent, Ad12 of species A. Until recently, it has been widely assumed that insights obtained with these model viruses were representative of all human adenoviruses. Recent studies on the E3 ubiquitin ligase formed by the viral E1B55K and E4orf6 proteins with a cellular Cullin-based complex indicated that although all species form such a functional complex, significant variations exist in terms of complex composition and the substrates that are degraded. In the present report we conducted a comprehensive analysis of the localization of E1B55K products from representatives of six of the seven adenovirus species in the presence and the absence of the corresponding E4orf6 protein. We found that although in some species E1B55K localized in aggresomes, such was not always the case, suggesting that these structures are not necessary for the efficient degradation of substrates. In addition, differences were evident in the localization of E1B55K, although all forms readily associated with PML. Finally, Ad5 E1B55K was seen to localize in close proximity to Rab11, a marker for the endosomal recycling compartment, and both focused at the microtubule organizing center. These findings suggest that E1B55K from some species may employ the transport system utilized by the membrane recycling pathway to assemble aggresomes and the possibility that this structure might then affect recycling of cell surface components.
Collapse
|
42
|
Tamiello C, Kamps MAF, van den Wijngaard A, Verstraeten VLRM, Baaijens FPT, Broers JLV, Bouten CCV. Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 2013; 4:61-73. [PMID: 23324461 PMCID: PMC3585029 DOI: 10.4161/nucl.23388] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Laminopathies, mainly caused by mutations in the LMNA gene, are a group of inherited diseases with a highly variable penetrance; i.e., the disease spectrum in persons with identical LMNA mutations range from symptom-free conditions to severe cardiomyopathy and progeria, leading to early death. LMNA mutations cause nuclear abnormalities and cellular fragility in response to cellular mechanical stress, but the genotype/phenotype correlations in these diseases remain unclear. Consequently, tools such as mutation analysis are not adequate for predicting the course of the disease.
Here, we employ growth substrate stiffness to probe nuclear fragility in cultured dermal fibroblasts from a laminopathy patient with compound progeroid syndrome. We show that culturing of these cells on substrates with stiffness higher than 10 kPa results in malformations and even rupture of the nuclei, while culture on a soft substrate (3 kPa) protects the nuclei from morphological alterations and ruptures. No malformations were seen in healthy control cells at any substrate stiffness. In addition, analysis of the actin cytoskeleton organization in this laminopathy cells demonstrates that the onset of nuclear abnormalities correlates to an increase in cytoskeletal tension.
Together, these data indicate that culturing of these LMNA mutated cells on substrates with a range of different stiffnesses can be used to probe the degree of nuclear fragility. This assay may be useful in predicting patient-specific phenotypic development and in investigations on the underlying mechanisms of nuclear and cellular fragility in laminopathies.
Collapse
Affiliation(s)
- Chiara Tamiello
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
A major goal in cancer and aging research is to discriminate the biochemical modifications that happen locally that could account for the healthiness or malignancy of tissues. Senescence is one general antiproliferative cellular process that acts as a strong barrier for cancer progression, playing a crucial role in aging. Here, we focus on the current methods to assess cellular senescence, discriminating the advantages and disadvantages of several senescence biomarkers.
Collapse
Affiliation(s)
- Bruno Bernardes de Jesus
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid, Spain
| | | |
Collapse
|
44
|
Qin Y, Li Z, Chen Y, Hui H, Sun Y, Yang H, Lu N, Guo Q. III-10, a newly synthesized flavonoid, induced differentiation of human U937 leukemia cells via PKCδ activation. Eur J Pharm Sci 2012; 45:648-56. [DOI: 10.1016/j.ejps.2012.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/22/2011] [Accepted: 01/07/2012] [Indexed: 11/26/2022]
|
45
|
RNA interference-mediated targeting of human cytomegalovirus immediate-early or early gene products inhibits viral replication with differential effects on cellular functions. J Virol 2012; 86:5660-73. [PMID: 22438545 DOI: 10.1128/jvi.06338-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viral drug toxicity, resistance, and an increasing immunosuppressed population warrant continued research into new avenues for limiting diseases associated with human cytomegalovirus (HCMV). In this study, a small interfering RNA (siRNA), siX3, was designed to target coding sequences within shared exon 3 of UL123 and UL122 transcripts encoding IE1 and IE2 immediate-early proteins of HCMV. Pretreatment of cells with siX3 reduced the levels of viral protein expression, DNA replication, and progeny virus production compared to control siRNA. Two siRNAs against UL54 and overlapping transcripts (UL55-57) were compared to siX3 in HCMV infection and were also found to be effective at inhibiting HCMV replication. Further investigation into the effects of the siRNAs on viral replication showed that pretreatment with each of the siRNAs resulted in an inhibition in the formation of mature replication compartments. The ability of these siRNAs to prevent or reduce certain cytopathic effects associated with HCMV infection was also examined. Infected cells pretreated with siX3, but not siUL54, retained promyelocytic leukemia (PML) protein in cellular PML bodies, an essential component of this host intrinsic antiviral defense. DNA damage response proteins, which are localized in nuclear viral replication compartments, were reduced in the siX3- and siUL54-treated cells. siX3, but not siUL54, prevented DNA damage response signaling early after infection. Therapeutic efficacy was demonstrated by treating cells with siRNAs after HCMV replication had commenced. Together, these findings suggest that siRNAs targeting exon 3 of the major IE genes or the UL54-57 transcripts be further studied for their potential development into anti-HCMV therapeutics.
Collapse
|
46
|
Granito A, Muratori P, Quarneti C, Pappas G, Cicola R, Muratori L. Antinuclear antibodies as ancillary markers in primary biliary cirrhosis. Expert Rev Mol Diagn 2012; 12:65-74. [PMID: 22133120 DOI: 10.1586/erm.11.82] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antimitochondrial antibodies are the serological hallmark of primary biliary cirrhosis (PBC). Besides antimitochondrial antibodies, the autoantibody profile of PBC includes antinuclear antibodies (ANA) which are detectable by indirect immunofluorescence in up to 50% of PBC patients. Two immunofluorescence patterns are considered 'PBC-specific': the multiple nuclear dots and rim-like/membranous patterns. The target antigens of the multiple nuclear dots pattern have been identified as Sp100 and promyelocytic leukemia protein, whereas the rim-like/membranous pattern is given by autoantibodies recognizing multiple proteins such as gp210, nucleoporin p62 and the lamin B receptor. Other ANA, especially those already known in the rheumatological setting, such as anticentromere, anti-SSA/Ro and anti-dsDNA antibodies, can be frequently found in PBC, often coexisting in the same patient. In this article, we will report on recent progress in the antigenic characterization of ANA in PBC, their detection with both traditional assays and Western blot/ELISA with molecularly defined nuclear antigens, and we will discuss their clinical significance.
Collapse
Affiliation(s)
- Alessandro Granito
- Department of Clinical Medicine, Alma Mater Studiorum-University of Bologna, S.Orsola-Malpighi Hospital, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Lim JH, Liu Y, Reineke E, Kao HY. Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover. J Biol Chem 2011; 286:44403-11. [PMID: 22033920 DOI: 10.1074/jbc.m111.289512] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promyelocytic leukemia (PML) protein is a tumor suppressor that has an important role in several cellular processes, including apoptosis, viral infection, DNA damage repair, cell cycle regulation, and senescence. PML is an essential component of sub-nuclear structures called PML nuclear bodies (NBs). Our laboratory has previously demonstrated that the peptidyl-prolyl cis-trans isomerase, Pin1, binds and targets PML for degradation in a phosphorylation-dependent manner. To further elucidate the mechanisms underlying Pin1-mediated PML degradation, we aimed to identify one or more factors that promote PML phosphorylation. Here we show that treatment with U0126, an inhibitor of the ERK2 upstream kinases MEK1/2, leads to an increase in PML protein accumulation and an inhibition of the interaction between Pin1 and PML in MDA-MB-231 breast cancer cells. Consistent with this observation, phosphorylated ERK2 partially co-localized with PML NBs. Although U0126 up-regulated exogenous wild-type PML levels, it did not have an effect on the steady-state level of a mutant form of PML that is defective in binding Pin1. In addition, exogenous wild-type, but not Pin1 binding-defective PML protein expression levels were decreased by overexpression of ERK2. In contrast, knockdown of ERK2 by siRNA resulted in an increase in PML protein levels and an increase in the formation of PML NBs. Using phospho-specific antibodies, we identified Ser-403 and Ser-505 as the ERK2 targets that promote Pin1-mediated PML degradation. Finally, we demonstrated that EGF induced activation of ERK and interaction between PML and phosphorylated ERK resulting in a decrease in PML protein levels. Taken together, our results support a model in which Pin1 promotes PML degradation in an ERK2-dependent manner.
Collapse
Affiliation(s)
- Jun Hee Lim
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
48
|
Korb E, Finkbeiner S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 2011; 34:591-8. [PMID: 21963089 DOI: 10.1016/j.tins.2011.08.007] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The activity-regulated cytoskeletal (Arc) gene encodes a protein that is critical for memory consolidation. Arc is one of the most tightly regulated molecules known: neuronal activity controls Arc mRNA induction, trafficking and accumulation, and Arc protein production, localization and stability. Arc regulates synaptic strength through multiple mechanisms and is involved in essentially every known form of synaptic plasticity. It also mediates memory formation and is implicated in multiple neurological diseases. In this review, we will discuss how Arc is regulated and used as a tool to study neuronal activity. We will also attempt to clarify how its molecular functions correspond to its requirement in various forms of plasticity, discuss Arc's role in behavior and disease, and highlight critical unresolved questions.
Collapse
Affiliation(s)
- Erica Korb
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | |
Collapse
|
49
|
Chaoui A, Watanabe Y, Touraine R, Baral V, Goossens M, Pingault V, Bondurand N. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome. Hum Mutat 2011; 32:1436-49. [PMID: 21898658 DOI: 10.1002/humu.21583] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/28/2011] [Indexed: 11/09/2022]
Abstract
Waardenburg syndrome (WS) is a rare disorder characterized by pigmentation defects and sensorineural deafness, classified into four clinical subtypes, WS1-S4. Whereas the absence of additional features characterizes WS2, association with Hirschsprung disease defines WS4. WS is genetically heterogeneous, with six genes already identified, including SOX10. About 50 heterozygous SOX10 mutations have been described in patients presenting with WS2 or WS4, with or without myelination defects of the peripheral and central nervous system (PCWH, Peripheral demyelinating neuropathy-Central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung disease, or PCW, PCWH without HD). The majority are truncating mutations that most often remove the main functional domains of the protein. Only three missense mutations have been thus far reported. In the present study, novel SOX10 missense mutations were found in 11 patients and were examined for effects on SOX10 characteristics and functions. The mutations were associated with various phenotypes, ranging from WS2 to PCWH. All tested mutations were found to be deleterious. Some mutants presented with partial cytoplasmic redistribution, some lost their DNA-binding and/or transactivation capabilities on various tissue-specific target genes. Intriguingly, several mutants were redistributed in nuclear foci. Whether this phenomenon is a cause or a consequence of mutation-associated pathogenicity remains to be determined, but this observation could help to identify new SOX10 modes of action.
Collapse
Affiliation(s)
- Asma Chaoui
- INSERM U955, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Herpes simplex virus immediate-early protein ICP0 is targeted by SIAH-1 for proteasomal degradation. J Virol 2011; 85:7644-57. [PMID: 21632771 DOI: 10.1128/jvi.02207-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus (HSV) immediate-early protein ICP0 is a transcriptional activator with E3 ubiquitin ligase activity that induces the degradation of ND10 proteins, including the promyelocytic leukemia protein (PML) and Sp100. Moreover, ICP0 has a role in the derepression of viral genomes and in the modulation of the host interferon response to virus infection. Here, we report that ICP0 interacts with SIAH-1, a cellular E3 ubiquitin ligase that is involved in multiple cellular pathways and is itself capable of mediating PML degradation. This novel virus-host interaction profoundly stabilized SIAH-1 and recruited this cellular E3 ligase into ICP0-containing nuclear bodies. Moreover, SIAH-1 mediated the polyubiquitination of HSV ICP0 in vitro and in vivo. After infection of SIAH-1 knockdown cells with HSV, higher levels of ICP0 were produced, ICP0 was less ubiquitinated, and the half-life of this multifunctional viral regulatory protein was increased. These results indicate an inhibitory role of SIAH-1 during lytic infection by targeting ICP0 for proteasomal degradation.
Collapse
|