1
|
Lavering ED, Gandhamaneni M, Weeks DL. Intrinsically disordered regions are not sufficient to direct the compartmental localization of nucleolar proteins in the nucleus. PLoS Biol 2023; 21:e3002378. [PMID: 37943867 PMCID: PMC10662738 DOI: 10.1371/journal.pbio.3002378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/21/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023] Open
Abstract
The nucleolus is a non-membrane bound organelle central to ribosome biogenesis. The nucleolus contains a mix of proteins and RNA and has 3 known nucleolar compartments: the fibrillar center (FC), the dense fibrillar component (DFC), and the granular component (GC). The spatial organization of the nucleolus is influenced by the phase separation properties of nucleolar proteins, the presence of RNA, protein modification, and cellular activity. Many nucleolar proteins appear to concentrate within the borders of the compartments. We investigated whether the intrinsically disordered regions from several proteins provided the information needed to establish specific compartment localization using Xenopus laevis oocytes. For the proteins we tested, the disordered regions were not sufficient to direct specific domain localization and appear dispensable with respect to compartmentalization. Among the proteins that colocalize to the DFC are the quartet that comprise the box H/ACA pseudouridylation complex. In contrast to the insufficiency of IDRs to direct compartment localization, we found that the DFC accumulation of 2 box H/ACA proteins, Gar1 and Nhp2, was disrupted by mutations that were previously shown to reduce their ability to join the box H/ACA complex. Using a nanobody to introduce novel binding to a different DFC localized protein, we restored the localization of the mutated forms of Gar1 and Nhp2.
Collapse
Affiliation(s)
- Emily D. Lavering
- Biochemistry and Molecular Biology Department, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| | | | - Daniel L. Weeks
- Biochemistry and Molecular Biology Department, Carver College of Medicine, University of Iowa, Iowa City, United States of America
| |
Collapse
|
2
|
Ding D, Gao R, Xue Q, Luan R, Yang J. Genomic Fingerprint Associated with Familial Idiopathic Pulmonary Fibrosis: A Review. Int J Med Sci 2023; 20:329-345. [PMID: 36860670 PMCID: PMC9969503 DOI: 10.7150/ijms.80358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe interstitial lung disease; although the recent introduction of two anti-fibrosis drugs, pirfenidone and Nidanib, have resulted in a significant reduction in lung function decline, IPF is still not curable. Approximately 2-20% of patients with IPF have a family history of the disease, which is considered the strongest risk factor for idiopathic interstitial pneumonia. However, the genetic predispositions of familial IPF (f-IPF), a particular type of IPF, remain largely unknown. Genetics affect the susceptibility and progression of f-IPF. Genomic markers are increasingly being recognized for their contribution to disease prognosis and drug therapy outcomes. Existing data suggest that genomics may help identify individuals at risk for f-IPF, accurately classify patients, elucidate key pathways involved in disease pathogenesis, and ultimately develop more effective targeted therapies. Since several genetic variants associated with the disease have been found in f-IPF, this review systematically summarizes the latest progress in the gene spectrum of the f-IPF population and the underlying mechanisms of f-IPF. The genetic susceptibility variation related to the disease phenotype is also illustrated. This review aims to improve the understanding of the IPF pathogenesis and facilitate his early detection.
Collapse
Affiliation(s)
- Dongyan Ding
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Rong Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Qianfei Xue
- Hospital of Jilin University, Changchun, China
| | - Rumei Luan
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Junling Yang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Chen X, Tang WJ, Shi JB, Liu MM, Liu XH. Therapeutic strategies for targeting telomerase in cancer. Med Res Rev 2019; 40:532-585. [PMID: 31361345 DOI: 10.1002/med.21626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Telomere and telomerase play important roles in abnormal cell proliferation, metastasis, stem cell maintenance, and immortalization in various cancers. Therefore, designing of drugs targeting telomerase and telomere is of great significance. Over the past two decades, considerable knowledge regarding telomere and telomerase has been accumulated, which provides theoretical support for the design of therapeutic strategies such as telomere elongation. Therefore, the development of telomere-based therapies such as nucleoside analogs, non-nucleoside small molecules, antisense technology, ribozymes, and dominant negative human telomerase reverse transcriptase are being prioritized for eradicating a majority of tumors. While the benefits of telomere-based therapies are obvious, there is a need to address the limitations of various therapeutic strategies to improve the possibility of clinical applications. In this study, current knowledge of telomere and telomerase is discussed, and therapeutic strategies based on recent research are reviewed.
Collapse
Affiliation(s)
- Xing Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Wen-Jian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Ming Ming Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Xin-Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
5
|
Viviescas MA, Cano MIN, Segatto M. Chaperones and Their Role in Telomerase Ribonucleoprotein Biogenesis and Telomere Maintenance. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180713103133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Telomere length maintenance is important for genome stability and cell division. In most
eukaryotes, telomeres are maintained by the telomerase ribonucleoprotein (RNP) complex, minimally
composed of the Telomerase Reverse Transcriptase (TERT) and the telomerase RNA (TER) components.
In addition to TERT and TER, other protein subunits are part of the complex and are involved in
telomerase regulation, assembly, disassembly, and degradation. Among them are some molecular
chaperones such as Hsp90 and its co-chaperone p23 which are found associated with the telomerase
RNP complex in humans, yeast and probably in protozoa. Hsp90 and p23 are necessary for the telomerase
RNP assembly and enzyme activity. In budding yeast, the Hsp90 homolog (Hsp82) is also responsible
for the association and dissociation of telomerase from the telomeric DNA by its direct interaction
with a telomere end-binding protein (Cdc13), responsible for regulating telomerase access to telomeres.
In addition, AAA+ ATPases, such as Pontin and Reptin, which are also considered chaperone-
like proteins, associate with the human telomerase complex by the direct interaction of Pontin with
TERT and dyskerin. They are probably responsible for telomerase RNP assembly since their depletion
impairs the accumulation of the complex. Moreover, various RNA chaperones, are also pivotal in the
assembly and migration of the mature telomerase complex and complex intermediates. In this review,
we will focus on the importance of molecular chaperones for telomerase RNP biogenesis and how they
impact telomere length maintenance and cellular homeostasis.
Collapse
Affiliation(s)
- Maria Alejandra Viviescas
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Marcela Segatto
- Genetics Department, Biosciences Institute, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
6
|
Choque E, Schneider C, Gadal O, Dez C. Turnover of aberrant pre-40S pre-ribosomal particles is initiated by a novel endonucleolytic decay pathway. Nucleic Acids Res 2018; 46:4699-4714. [PMID: 29481617 PMCID: PMC5961177 DOI: 10.1093/nar/gky116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis requires more than 200 trans-acting factors to achieve the correct production of the two mature ribosomal subunits. Here, we have identified Efg1 as a novel, nucleolar ribosome biogenesis factor in Saccharomyces cerevisiae that is directly linked to the surveillance of pre-40S particles. Depletion of Efg1 impairs early pre-rRNA processing, leading to a strong decrease in 18S rRNA and 40S subunit levels and an accumulation of the aberrant 23S rRNA. Using Efg1 as bait, we revealed a novel degradation pathway of the 23S rRNA. Co-immunoprecipitation experiments showed that Efg1 is a component of 90S pre-ribosomes, as it is associated with the 35S pre-rRNA and U3 snoRNA, but has stronger affinity for 23S pre-rRNA and its novel degradation intermediate 11S rRNA. 23S is cleaved at a new site, Q1, within the 18S sequence by the endonuclease Utp24, generating 11S and 17S' rRNA. Both of these cleavage products are targeted for degradation by the TRAMP/exosome complexes. Therefore, the Q1 site defines a novel endonucleolytic cleavage site of ribosomal RNA exclusively dedicated to surveillance of pre-ribosomal particles.
Collapse
Affiliation(s)
- Elodie Choque
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| | - Claudia Schneider
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| | - Christophe Dez
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse Cedex 9, France
| |
Collapse
|
7
|
Stanley SE, Gable DL, Wagner CL, Carlile TM, Hanumanthu VS, Podlevsky JD, Khalil SE, DeZern AE, Rojas-Duran MF, Applegate CD, Alder JK, Parry EM, Gilbert WV, Armanios M. Loss-of-function mutations in the RNA biogenesis factor NAF1 predispose to pulmonary fibrosis-emphysema. Sci Transl Med 2017; 8:351ra107. [PMID: 27510903 DOI: 10.1126/scitranslmed.aaf7837] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease and pulmonary fibrosis have been hypothesized to represent premature aging phenotypes. At times, they cluster in families, but the genetic basis is not understood. We identified rare, frameshift mutations in the gene for nuclear assembly factor 1, NAF1, a box H/ACA RNA biogenesis factor, in pulmonary fibrosis-emphysema patients. The mutations segregated with short telomere length, low telomerase RNA levels, and extrapulmonary manifestations including myelodysplastic syndrome and liver disease. A truncated NAF1 was detected in cells derived from patients, and, in cells in which the frameshift mutation was introduced by genome editing, telomerase RNA levels were reduced. The mutant NAF1 lacked a conserved carboxyl-terminal motif, which we show is required for nuclear localization. To understand the disease mechanism, we used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) to generate Naf1(+/-) mice and found that they had half the levels of telomerase RNA. Other box H/ACA RNA levels were also decreased, but rRNA pseudouridylation, which is guided by snoRNAs, was intact. Moreover, first-generation Naf1(+/-) mice showed no evidence of ribosomal pathology. Our data indicate that disease in NAF1 mutation carriers is telomere-mediated; they show that NAF1 haploinsufficiency selectively disturbs telomere length homeostasis by decreasing the levels of telomerase RNA while sparing rRNA pseudouridylation.
Collapse
Affiliation(s)
- Susan E Stanley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin L Gable
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Christa L Wagner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Thomas M Carlile
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vidya Sagar Hanumanthu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua D Podlevsky
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85277, USA
| | - Sara E Khalil
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amy E DeZern
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Maria F Rojas-Duran
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carolyn D Applegate
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jonathan K Alder
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erin M Parry
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
8
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
9
|
Espinar-Marchena FJ, Babiano R, Cruz J. Placeholder factors in ribosome biogenesis: please, pave my way. MICROBIAL CELL 2017; 4:144-168. [PMID: 28685141 PMCID: PMC5425277 DOI: 10.15698/mic2017.05.572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway.
Collapse
Affiliation(s)
- Francisco J Espinar-Marchena
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Reyes Babiano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| | - Jesús Cruz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, and Departamento de Genética, Universidad de Sevilla, E-41013, Seville, Spain
| |
Collapse
|
10
|
Abstract
Telomerase activity is responsible for the maintenance of chromosome end structures (telomeres) and cancer cell immortality in most human malignancies, making telomerase an attractive therapeutic target. The rationale for targeting components of the telomerase holoenzyme has been strengthened by accumulating evidence indicating that these molecules have extra-telomeric functions in tumour cell survival and proliferation. This Review discusses current knowledge of the biogenesis, structure and multiple functions of telomerase-associated molecules intertwined with recent advances in drug discovery approaches. We also describe the fertile ground available for the pursuit of next-generation small-molecule inhibitors of telomerase.
Collapse
Affiliation(s)
- Greg M Arndt
- Australian Cancer Research Foundation (ACRF) Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Karen L MacKenzie
- Personalised Medicine Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| |
Collapse
|
11
|
Yu YT, Meier UT. RNA-guided isomerization of uridine to pseudouridine--pseudouridylation. RNA Biol 2014; 11:1483-94. [PMID: 25590339 PMCID: PMC4615163 DOI: 10.4161/15476286.2014.972855] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Box H/ACA ribonucleoproteins (RNPs), each consisting of one unique guide RNA and 4 common core proteins, constitute a family of complex enzymes that catalyze, in an RNA-guided manner, the isomerization of uridines to pseudouridines (Ψs) in RNAs, a reaction known as pseudouridylation. Over the years, box H/ACA RNPs have been extensively studied revealing many important aspects of these RNA modifying machines. In this review, we focus on the composition, structure, and biogenesis of H/ACA RNPs. We explain the mechanism of how this enzyme family recognizes and specifies its target uridine in a substrate RNA. We discuss the substrates of box H/ACA RNPs, focusing on rRNA (rRNA) and spliceosomal small nuclear RNA (snRNA). We describe the modification product Ψ and its contribution to RNA function. Finally, we consider possible mechanisms of the bone marrow failure syndrome dyskeratosis congenita and of prostate and other cancers linked to mutations in H/ACA RNPs.
Collapse
Key Words
- DC, dyskeratosis congenita
- H/ACA
- HH, hoyeraal-hreidarsson syndrome
- PIKK, phosphatidylinositol 3-kinase-related kinase
- PUA, pseudouridylase and archaeosine transglycosylase
- RNA modification
- RNA-guided
- RNP, ribonucleoprotein
- SMN, survival of motor neuron protein
- SSD, SHQ1 specific domain
- U, uridine
- X-DC, X-linked dyskeratosis congenita
- dyskeratosis congenita
- prostate cancer
- pseudouridine
- rRNA
- rRNA, ribosomal RNA
- ribonucleoproteins
- sca, small Cajal body
- snRNA, small nuclear RNA
- sno, small nucleolar
- snoRNA
- snoRNA, small nucleolar RNA
- spliceosomal small nuclear RNA
- tRNA, transfer RNA
- ψ, pseudouridine, 5-ribosyluracil
Collapse
MESH Headings
- Dyskeratosis Congenita/genetics
- Dyskeratosis Congenita/metabolism
- Dyskeratosis Congenita/pathology
- Humans
- Isomerism
- Male
- Mutation
- Nucleic Acid Conformation
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Pseudouridine/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Yi-Tao Yu
- University of Rochester Medical Center; Department of Biochemistry and Biophysics; Center for RNA Biology; Rochester, NY USA
| | - U Thomas Meier
- Albert Einstein College of Medicine; Department of Anatomy and Structural Biology; Bronx, NY USA
| |
Collapse
|
12
|
Abstract
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.
Collapse
Affiliation(s)
- Roy Parker
- Department of Molecular and Cellular Biology, University of Arizona and Howard Hughes Medical Institute, Tucson, AZ 85721, USA.
| |
Collapse
|
13
|
Li S, Duan J, Li D, Yang B, Dong M, Ye K. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Genes Dev 2011; 25:2409-21. [PMID: 22085967 DOI: 10.1101/gad.175299.111] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Box H/ACA ribonucleoprotein particles (RNPs) mediate pseudouridine synthesis, ribosome formation, and telomere maintenance. The structure of eukaryotic H/ACA RNPs remains poorly understood. We reconstituted functional Saccharomyces cerevisiae H/ACA RNPs with recombinant proteins Cbf5, Nop10, Gar1, and Nhp2 and a two-hairpin H/ACA RNA; determined the crystal structure of a Cbf5, Nop10, and Gar1 ternary complex at 1.9 Å resolution; and analyzed the structure-function relationship of the yeast complex. Although eukaryotic H/ACA RNAs have a conserved two-hairpin structure, isolated single-hairpin RNAs are also active in guiding pseudouridylation. Nhp2, unlike its archaeal counterpart, is largely dispensable for the activity, reflecting a functional adaptation of eukaryotic H/ACA RNPs to the variable RNA structure that Nhp2 binds. The N-terminal extension of Cbf5, a hot spot for dyskeratosis congenita mutation, forms an extra structural layer on the PUA domain. Gar1 is distinguished from the assembly factor Naf1 by containing a C-terminal extension that controls substrate turnover and the Gar1-Naf1 exchange during H/ACA RNP maturation. Our results reveal significant novel features of eukaryotic H/ACA RNPs.
Collapse
Affiliation(s)
- Shuang Li
- National Institute of Biological Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
14
|
Walbott H, Machado-Pinilla R, Liger D, Blaud M, Réty S, Grozdanov PN, Godin K, van Tilbeurgh H, Varani G, Meier UT, Leulliot N. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic. Genes Dev 2011; 25:2398-408. [PMID: 22085966 DOI: 10.1101/gad.176834.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.
Collapse
Affiliation(s)
- Hélène Walbott
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li S, Duan J, Li D, Ma S, Ye K. Structure of the Shq1-Cbf5-Nop10-Gar1 complex and implications for H/ACA RNP biogenesis and dyskeratosis congenita. EMBO J 2011; 30:5010-20. [PMID: 22117216 DOI: 10.1038/emboj.2011.427] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022] Open
Abstract
Shq1 is a conserved protein required for the biogenesis of eukaryotic H/ACA ribonucleoproteins (RNPs), including human telomerase. We report the structure of the Shq1-specific domain alone and in complex with H/ACA RNP proteins Cbf5, Nop10 and Gar1. The Shq1-specific domain adopts a novel helical fold and primarily contacts the PUA domain and the otherwise disordered C-terminal extension (CTE) of Cbf5. The structure shows that dyskeratosis congenita mutations found in the CTE of human Cbf5 likely interfere with Shq1 binding. However, most mutations in the PUA domain are not located at the Shq1-binding surface and also have little effect on the yeast Cbf5-Shq1 interaction. Shq1 binds Cbf5 independently of the H/ACA RNP proteins Nop10, Gar1 and Nhp2 and the assembly factor Naf1, but shares an overlapping binding surface with H/ACA RNA. Shq1 point mutations that disrupt Cbf5 interaction suppress yeast growth particularly at elevated temperatures. Our results suggest that Shq1 functions as an assembly chaperone that protects the Cbf5 protein complexes from non-specific RNA binding and aggregation before assembly of H/ACA RNA.
Collapse
Affiliation(s)
- Shuang Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
16
|
GRIM-1, a novel growth suppressor, inhibits rRNA maturation by suppressing small nucleolar RNAs. PLoS One 2011; 6:e24082. [PMID: 21931644 PMCID: PMC3169572 DOI: 10.1371/journal.pone.0024082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/29/2011] [Indexed: 01/13/2023] Open
Abstract
We have recently isolated novel IFN-inducible gene, Gene associated with Retinoid-Interferon-induced Mortality-1 (GRIM-1), using a genetic technique. Moderate ectopic expression of GRIM-1 caused growth inhibition and sensitized cells to retinoic acid (RA)/IFN-induced cell death while high expression caused apoptosis. GRIM-1 depletion, using RNAi, conferred a growth advantage. Three protein isoforms (1α, 1β and 1γ) with identical C-termini are produced from GRIM-1 mRNA. We show that GRIM-1 isoforms interact with NAF1 and DKC1, two essential proteins required for box H/ACA sno/sca RNP biogenesis and suppresses box H/ACA RNA levels in mammalian cells by delocalizing NAF1. Suppression of these small RNAs manifests as inefficient rRNA maturation and growth suppression. Interestingly, yeast Shq1p also caused growth suppression in mammalian cells. Consistent with its growth-suppressive property, GRIM-1 expression is lost in a number of human primary prostate tumors. Our observations support a recent study that GRIM-1 might act as a co-tumor suppressor in the prostate.
Collapse
|
17
|
Liang XH, Vickers TA, Guo S, Crooke ST. Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice. Nucleic Acids Res 2011; 39:e13. [PMID: 21062825 PMCID: PMC3035437 DOI: 10.1093/nar/gkq1121] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hundreds of small nuclear non-coding RNAs, including small nucleolar RNAs (snoRNAs), have been identified in different organisms, with important implications in regulating gene expression and in human diseases. However, functionalizing these nuclear RNAs in mammalian cells remains challenging, due to methodological difficulties in depleting these RNAs, especially snoRNAs. Here we report a convenient and efficient approach to deplete snoRNA, small Cajal body RNA (scaRNA) and small nuclear RNA in human and mouse cells by conventional transfection of chemically modified antisense oligonucleotides (ASOs) that promote RNaseH-mediated cleavage of target RNAs. The levels of all seven tested snoRNA/scaRNAs and four snRNAs were reduced by 80-95%, accompanied by impaired endogenous functions of the target RNAs. ASO-targeting is highly specific, without affecting expression of the host genes where snoRNAs are embedded in the introns, nor affecting the levels of snoRNA isoforms with high sequence similarities. At least five snoRNAs could be depleted simultaneously. Importantly, snoRNAs could be dramatically depleted in mice by systematic administration of the ASOs. Together, our findings provide a convenient and efficient approach to characterize nuclear non-coding RNAs in mammalian cells, and to develop antisense drugs against disease-causing non-coding RNAs.
Collapse
Affiliation(s)
- Xue-hai Liang
- Department of Core Antisense Research, ISIS Pharmaceuticals, Inc. 1896 Rutherford Rd. Carlsbad, CA 92008, USA.
| | | | | | | |
Collapse
|
18
|
Kiss T, Fayet-Lebaron E, Jády BE. Box H/ACA small ribonucleoproteins. Mol Cell 2010; 37:597-606. [PMID: 20227365 DOI: 10.1016/j.molcel.2010.01.032] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/06/2010] [Accepted: 01/12/2010] [Indexed: 11/25/2022]
Abstract
Box H/ACA RNAs represent an abundant, evolutionarily conserved class of small noncoding RNAs. All H/ACA RNAs associate with a common set of proteins, and they function as ribonucleoprotein (RNP) enzymes mainly in the site-specific pseudouridylation of ribosomal RNAs (rRNAs) and small nuclear RNAs (snRNAs). Some H/ACA RNPs function in the nucleolytic processing of precursor rRNA (pre-rRNA) and synthesis of telomeric DNA. Thus, H/ACA RNPs are essential for three fundamental cellular processes: protein synthesis, mRNA splicing, and maintenance of genome integrity. Recently, great progress has been made toward understanding of the biogenesis, intracellular trafficking, structure, and function of H/ACA RNPs.
Collapse
Affiliation(s)
- Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109 CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | | | | |
Collapse
|
19
|
Trahan C, Martel C, Dragon F. Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs. Hum Mol Genet 2009; 19:825-36. [PMID: 20008900 DOI: 10.1093/hmg/ddp551] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dyskeratosis congenita (DC) is a rare genetic syndrome that gives rise to a variety of disorders in affected individuals. Remarkably, all causative gene mutations identified to date share a link to telomere/telomerase biology. We found that the most prevalent dyskerin mutation in DC (A353V) did not affect formation of the NAF1-dyskerin-NOP10-NHP2 tetramer that normally assembles with nascent H/ACA RNAs in vivo. However, the A353V mutation slightly reduced pre-RNP assembly with the H/ACA-like domain of human telomerase RNA (hTR). In contrast, NHP2 mutations V126M and Y139H impaired association with NOP10, leading to major pre-RNP assembly defects with all H/ACA RNAs tested, including the H/ACA domain of hTR. Mutation R34W in NOP10 caused no apparent defect in protein tetramer formation, but it severely affected pre-RNP assembly with the H/ACA domain of hTR and a subset of H/ACA RNAs. Surprisingly, H/ACA sno/scaRNAs that encode miRNAs were not affected by the mutation R34W, and they were able to form pre-RNPs with NOP10-R34W. This indicates structural differences between H/ACA RNPs that encode miRNAs and those that do not. Altogether, our results suggest that, in addition to major defects in the telomere/telomerase pathways, some of the disorders occurring in DC may be caused by alteration of most H/ACA RNPs, or by only a subset of them.
Collapse
Affiliation(s)
- Christian Trahan
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada H3C 3P8
| | | | | |
Collapse
|
20
|
Soudet J, Gélugne JP, Belhabich-Baumas K, Caizergues-Ferrer M, Mougin A. Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae. EMBO J 2009; 29:80-92. [PMID: 19893492 DOI: 10.1038/emboj.2009.307] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 09/03/2009] [Indexed: 11/09/2022] Open
Abstract
It is generally assumed that, in Saccharomyces cerevisiae, immature 40S ribosomal subunits are not competent for translation initiation. Here, we show by different approaches that, in wild-type conditions, a portion of pre-40S particles (pre-SSU) associate with translating ribosomal complexes. When cytoplasmic 20S pre-rRNA processing is impaired, as in Rio1p- or Nob1p-depleted cells, a large part of pre-SSUs is associated with translating ribosomes complexes. Loading of pre-40S particles onto mRNAs presumably uses the canonical pathway as translation-initiation factors interact with 20S pre-rRNA. However, translation initiation is not required for 40S ribosomal subunit maturation. We also provide evidence suggesting that cytoplasmic 20S pre-rRNAs that associate with translating complexes are turned over by the no go decay (NGD) pathway, a process known to degrade mRNAs on which ribosomes are stalled. We propose that the cytoplasmic fate of 20S pre-rRNA is determined by the balance between pre-SSU processing kinetics and sensing of ribosome-like particles loaded onto mRNAs by the NGD machinery, which acts as an ultimate ribosome quality check point.
Collapse
Affiliation(s)
- Julien Soudet
- Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
21
|
Grozdanov PN, Roy S, Kittur N, Meier UT. SHQ1 is required prior to NAF1 for assembly of H/ACA small nucleolar and telomerase RNPs. RNA (NEW YORK, N.Y.) 2009; 15:1188-97. [PMID: 19383767 PMCID: PMC2685518 DOI: 10.1261/rna.1532109] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Assembly of H/ACA RNPs in yeast is aided by at least two accessory factors, Naf1p and Shq1p. Although the function of Naf1p and its human ortholog NAF1 has been delineated in detail, that of Shq1p and its putative human ortholog SHQ1 remains obscure. We demonstrate that SHQ1 indeed functions in the biogenesis of human H/ACA RNPs and we dissect its mechanism of action. Like NAF1, SHQ1 binds the major H/ACA core protein and pseudouridine synthase NAP57 (aka dyskerin) but precedes the assembly role of NAF1 at nascent H/ACA RNAs because the interaction of SHQ1 with NAP57 in vivo and in vitro precludes that of NAF1 and of the other H/ACA core proteins that are present at the sites of H/ACA RNA transcription. The N-terminal heat shock protein 20-like CS domain of SHQ1 is dispensable for NAP57 binding. Consistent with its role as an assembly factor, SHQ1 localizes to the nucleoplasm and is excluded from nucleoli and Cajal bodies, the sites of mature H/ACA RNPs. In an in vitro assembly system of functional H/ACA RNPs that is dependent on NAF1, excess recombinant SHQ1 interferes with assembly. Importantly, knockdown of cellular SHQ1 prevents accumulation of a newly synthesized H/ACA reporter RNA and generally reduces the levels of endogenous H/ACA RNAs including telomerase RNA. In summary, the sequential action of SHQ1 and NAF1 is required for functional assembly of H/ACA RNPs in vivo and in vitro. This step-wise process could serve as an efficient means of quality control during H/ACA RNP assembly.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
22
|
Trahan C, Dragon F. Dyskeratosis congenita mutations in the H/ACA domain of human telomerase RNA affect its assembly into a pre-RNP. RNA (NEW YORK, N.Y.) 2009; 15:235-243. [PMID: 19095616 PMCID: PMC2648702 DOI: 10.1261/rna.1354009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/30/2008] [Indexed: 05/27/2023]
Abstract
Dyskeratosis congenita (DC) is an inherited disorder that implicates defects in the biology of telomeres, which are maintained by telomerase, a ribonucleoprotein with reverse transcriptase activity. Like all H/ACA RNAs, the H/ACA domain of nascent human telomerase RNA (hTR) forms a pre-RNP with H/ACA proteins NAF1, dyskerin, NOP10, and NHP2 in vivo. To assess the pre-RNP assembly of hTR mutants that poorly accumulate in vivo, we developed an in vitro system that uses components of human origin. Pre-RNPs were reconstituted with synthetic (32)P-labeled RNAs and (35)S-labeled proteins produced in rabbit reticulocyte lysate, and immunoprecipitations were carried out to analyze RNP formation. We show that human NAF1 cannot bind directly to the H/ACA domain of hTR, and requires the core trimer dyskerin-NOP10-NHP2 to be efficiently incorporated into the pre-RNP. This order of assembly seems common to H/ACA RNAs since it was observed with snoRNA ACA36 and scaRNA U92, which are predicted to guide pseudouridylation of 18S rRNA and U2 snRNA, respectively. However, the processing H/ACA snoRNA U17 did not conform to this rule, as NAF1 alone was able to bind it. We also provide the first evidence that DC-related mutations of hTR C408G and Delta378-451 severely impair pre-RNP assembly. Integrity of boxes H and ACA of hTR are also crucial for pre-RNP assembly, while the CAB box is dispensable. Our results offer new insights into the defects caused by some mutations located in the H/ACA domain of hTR.
Collapse
Affiliation(s)
- Christian Trahan
- Département des Sciences Biologiques and Centre de Recherche BioMed, Université du Québec à Montréal, Canada
| | | |
Collapse
|
23
|
Singh M, Gonzales FA, Cascio D, Heckmann N, Chanfreau G, Feigon J. Structure and functional studies of the CS domain of the essential H/ACA ribonucleoparticle assembly protein SHQ1. J Biol Chem 2009; 284:1906-16. [PMID: 19019820 PMCID: PMC2615527 DOI: 10.1074/jbc.m807337200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/10/2008] [Indexed: 12/19/2022] Open
Abstract
H/ACA ribonucleoprotein particles are essential for ribosomal RNA and telomerase RNA processing and metabolism. Shq1p has been identified as an essential eukaryotic H/ACA small nucleolar (sno) ribonucleoparticle (snoRNP) biogenesis and assembly factor. Shq1p is postulated to be involved in the early biogenesis steps of H/ACA snoRNP complexes, and Shq1p depletion leads to a specific decrease in H/ACA small nucleolar RNA levels and to defects in ribosomal RNA processing. Shq1p contains two predicted domains as follows: an N-terminal CS (named after CHORD-containing proteins and SGT1) or HSP20-like domain, and a C-terminal region of high sequence homology called the Shq1 domain. Here we report the crystal structure and functional studies of the Saccharomyces cerevisiae Shq1p CS domain. The structure consists of a compact anti-parallel beta-sandwich fold that is composed of two beta-sheets containing four and three beta-strands, respectively, and a short alpha-helix. Deletion studies showed that the CS domain is required for the essential functions of Shq1p. Point mutations in residues Phe-6, Gln-10, and Lys-80 destabilize Shq1p in vivo and induce a temperature-sensitive phenotype with depletion of H/ACA small nucleolar RNAs and defects in rRNA processing. Although CS domains are frequently found in co-chaperones of the Hsp90 molecular chaperone, no interaction was detected between the Shq1p CS domain and yeast Hsp90 in vitro. These results show that the CS domain is essential for Shq1p function in H/ACA snoRNP biogenesis in vivo, possibly in an Hsp90-independent manner.
Collapse
MESH Headings
- Crystallography, X-Ray
- HSP90 Heat-Shock Proteins/chemistry
- HSP90 Heat-Shock Proteins/genetics
- HSP90 Heat-Shock Proteins/metabolism
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Point Mutation
- Protein Binding/physiology
- Protein Structure, Secondary/physiology
- Protein Structure, Tertiary/physiology
- RNA Processing, Post-Transcriptional/physiology
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribonucleoproteins, Small Nuclear/biosynthesis
- Ribonucleoproteins, Small Nuclear/genetics
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
24
|
Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae. Mol Cell Biol 2008; 28:3686-99. [PMID: 18378690 DOI: 10.1128/mcb.01115-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.
Collapse
|
25
|
Zhao R, Kakihara Y, Gribun A, Huen J, Yang G, Khanna M, Costanzo M, Brost RL, Boone C, Hughes TR, Yip CM, Houry WA. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. ACTA ACUST UNITED AC 2008; 180:563-78. [PMID: 18268103 PMCID: PMC2234237 DOI: 10.1083/jcb.200709061] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hsp90 is a highly conserved molecular chaperone that is involved in modulating a multitude of cellular processes. In this study, we identify a function for the chaperone in RNA processing and maintenance. This functionality of Hsp90 involves two recently identified interactors of the chaperone: Tah1 and Pih1/Nop17. Tah1 is a small protein containing tetratricopeptide repeats, whereas Pih1 is found to be an unstable protein. Tah1 and Pih1 bind to the essential helicases Rvb1 and Rvb2 to form the R2TP complex, which we demonstrate is required for the correct accumulation of box C/D small nucleolar ribonucleoproteins. Together with the Tah1 cofactor, Hsp90 functions to stabilize Pih1. As a consequence, the chaperone is shown to affect box C/D accumulation and maintenance, especially under stress conditions. Hsp90 and R2TP proteins are also involved in the proper accumulation of box H/ACA small nucleolar RNAs.
Collapse
Affiliation(s)
- Rongmin Zhao
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Goldfeder MB, Oliveira CC. Cwc24p, a novel Saccharomyces cerevisiae nuclear ring finger protein, affects pre-snoRNA U3 splicing. J Biol Chem 2007; 283:2644-53. [PMID: 17974558 DOI: 10.1074/jbc.m707885200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U3 snoRNA is transcribed from two intron-containing genes in yeast, snR17A and snR17B. Although the assembly of the U3 snoRNP has not been precisely determined, at least some of the core box C/D proteins are known to bind pre-U3 co-transcriptionally, thereby affecting splicing and 3'-end processing of this snoRNA. We identified the interaction between the box C/D assembly factor Nop17p and Cwc24p, a novel yeast RING finger protein that had been previously isolated in a complex with the splicing factor Cef1p. Here we show that, consistent with the protein interaction data, Cwc24p localizes to the cell nucleus, and its depletion leads to the accumulation of both U3 pre-snoRNAs. U3 snoRNA is involved in the early cleavages of 35 S pre-rRNA, and the defective splicing of pre-U3 detected in cells depleted of Cwc24p causes the accumulation of the 35 S precursor rRNA. These results led us to the conclusion that Cwc24p is involved in pre-U3 snoRNA splicing, indirectly affecting pre-rRNA processing.
Collapse
Affiliation(s)
- Mauricio B Goldfeder
- Department of Biochemistry, Chemistry Institute, University of São Paulo, 748 Av. Prof. Lineu Prestes, São Paulo, SP, Brazil
| | | |
Collapse
|
27
|
Lermontova I, Schubert V, Börnke F, Macas J, Schubert I. Arabidopsis CBF5 interacts with the H/ACA snoRNP assembly factor NAF1. PLANT MOLECULAR BIOLOGY 2007; 65:615-26. [PMID: 17712600 DOI: 10.1007/s11103-007-9226-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/09/2007] [Indexed: 05/11/2023]
Abstract
The conserved protein CBF5, initially regarded as a centromere binding protein in yeast and higher plants, was later found within nucleoli and in Cajal bodies of yeast and metazoa. There, it is assumed to be involved in posttranscriptional pseudouridinylation of various RNA species that might be important for RNA processing. We found EYFP-labeled CBF5 of A. thaliana to be located within nucleoli and Cajal bodies, but neither at centromeres nor somewhere else on chromosomes. Arabidopsis mutants carrying a homozygous T-DNA insertion at the CBF5 locus were lethal. Yeast two-hybrid and mRNA expression analyses demonstrated that AtCBF5 is co-expressed and interacts with a previously uncharacterized protein containing a conserved NAF1 domain, presumably involved in H/ACA box snoRNP biogenesis. The homologous yeast protein has been shown to contribute to RNA pseudouridinylation. Thus, AtCBF5 might have an essential function in RNA processing rather than being a kinetochore protein.
Collapse
Affiliation(s)
- Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany.
| | | | | | | | | |
Collapse
|
28
|
Gregory LA, Aguissa-Touré AH, Pinaud N, Legrand P, Gleizes PE, Fribourg S. Molecular basis of Diamond-Blackfan anemia: structure and function analysis of RPS19. Nucleic Acids Res 2007; 35:5913-21. [PMID: 17726054 PMCID: PMC2034476 DOI: 10.1093/nar/gkm626] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Diamond–Blackfan anemia (DBA) is a rare congenital disease linked to mutations in the ribosomal protein genes rps19, rps24 and rps17. It belongs to the emerging class of ribosomal disorders. To understand the impact of DBA mutations on RPS19 function, we have solved the crystal structure of RPS19 from Pyrococcus abyssi. The protein forms a five α-helix bundle organized around a central amphipathic α-helix, which corresponds to the DBA mutation hot spot. From the structure, we classify DBA mutations relative to their respective impact on protein folding (class I) or on surface properties (class II). Class II mutations cluster into two conserved basic patches. In vivo analysis in yeast demonstrates an essential role for class II residues in the incorporation into pre-40S ribosomal particles. This data indicate that missense mutations in DBA primarily affect the capacity of the protein to be incorporated into pre-ribosomes, thus blocking maturation of the pre-40S particles.
Collapse
Affiliation(s)
- Lynn A. Gregory
- INSERM U869, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit Pessac, F-33607, Université Victor Segalen, Bordeaux 2, F-33076, Laboratoire de Biologie Moléculaire des eucaryotes (UMR5099) and Institut d’Exploration Fonctionnelle des Génomes (IFR109), CNRS and Université Paul Sabatier, 118 route de Narbonne F-31062 Toulouse and Synchrotron SOLEIL L’Orme des Merisiers, Saint Aubin- BP48, 91192 Gif sur Yvette Cedex, France
| | - Almass-Houd Aguissa-Touré
- INSERM U869, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit Pessac, F-33607, Université Victor Segalen, Bordeaux 2, F-33076, Laboratoire de Biologie Moléculaire des eucaryotes (UMR5099) and Institut d’Exploration Fonctionnelle des Génomes (IFR109), CNRS and Université Paul Sabatier, 118 route de Narbonne F-31062 Toulouse and Synchrotron SOLEIL L’Orme des Merisiers, Saint Aubin- BP48, 91192 Gif sur Yvette Cedex, France
| | - Noël Pinaud
- INSERM U869, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit Pessac, F-33607, Université Victor Segalen, Bordeaux 2, F-33076, Laboratoire de Biologie Moléculaire des eucaryotes (UMR5099) and Institut d’Exploration Fonctionnelle des Génomes (IFR109), CNRS and Université Paul Sabatier, 118 route de Narbonne F-31062 Toulouse and Synchrotron SOLEIL L’Orme des Merisiers, Saint Aubin- BP48, 91192 Gif sur Yvette Cedex, France
| | - Pierre Legrand
- INSERM U869, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit Pessac, F-33607, Université Victor Segalen, Bordeaux 2, F-33076, Laboratoire de Biologie Moléculaire des eucaryotes (UMR5099) and Institut d’Exploration Fonctionnelle des Génomes (IFR109), CNRS and Université Paul Sabatier, 118 route de Narbonne F-31062 Toulouse and Synchrotron SOLEIL L’Orme des Merisiers, Saint Aubin- BP48, 91192 Gif sur Yvette Cedex, France
| | - Pierre-Emmanuel Gleizes
- INSERM U869, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit Pessac, F-33607, Université Victor Segalen, Bordeaux 2, F-33076, Laboratoire de Biologie Moléculaire des eucaryotes (UMR5099) and Institut d’Exploration Fonctionnelle des Génomes (IFR109), CNRS and Université Paul Sabatier, 118 route de Narbonne F-31062 Toulouse and Synchrotron SOLEIL L’Orme des Merisiers, Saint Aubin- BP48, 91192 Gif sur Yvette Cedex, France
- *To whom correspondence should be addressed. 00 33 5 40 00 30 6300 33 5 40 00 30 68 Correspondence may also be addressed to Pierre-Emmanuel Gleizes. Tel/Fax: 00 33 5 61 33 59 26/58 86,
| | - Sébastien Fribourg
- INSERM U869, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit Pessac, F-33607, Université Victor Segalen, Bordeaux 2, F-33076, Laboratoire de Biologie Moléculaire des eucaryotes (UMR5099) and Institut d’Exploration Fonctionnelle des Génomes (IFR109), CNRS and Université Paul Sabatier, 118 route de Narbonne F-31062 Toulouse and Synchrotron SOLEIL L’Orme des Merisiers, Saint Aubin- BP48, 91192 Gif sur Yvette Cedex, France
- *To whom correspondence should be addressed. 00 33 5 40 00 30 6300 33 5 40 00 30 68 Correspondence may also be addressed to Pierre-Emmanuel Gleizes. Tel/Fax: 00 33 5 61 33 59 26/58 86,
| |
Collapse
|
29
|
Terns M, Terns R. Noncoding RNAs of the H/ACA family. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:395-405. [PMID: 17381322 DOI: 10.1101/sqb.2006.71.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The H/ACA RNAs are an abundant family of trans-acting, noncoding RNAs found in eukaryotes and archaea. More than 100 H/ACA RNAs are known to exist in humans. The function of the majority of the identified H/ACA RNAs is to guide sites-pecific pseudouridylation of ribosomal RNA. In eukaryotes, H/ACA RNAs also mediate the processing of pre-rRNA, provide the template for telomere synthesis, and guide pseudouridylation of other classes of target RNAs (e.g., small nuclear RNAs [snRNAs]). Thus, currently, the H/ACA RNAs are known to be integrally involved in the production of both ribosomes and spliceosomes, and in the maintenance of chromosome integrity. In addition, dozens of H/ACA RNAs have been identified for which no function has yet been determined. The H/ACA RNAs select and present substrate molecules via base pairing. All H/ACA RNAs contain conserved sequence elements (box H and box ACA) and assemble with a core set of four proteins to form functional ribonucleoprotein complexes (RNPs). Mutations in key RNA and protein components of H/ACA RNPs result in dyskeratosis congenita, a serious multisystem genetic disease. Impressive progress has been made very recently in understanding the biogenesis, trafficking, and function of H/ACA RNPs.
Collapse
Affiliation(s)
- M Terns
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
30
|
Leulliot N, Godin KS, Hoareau-Aveilla C, Quevillon-Cheruel S, Varani G, Henry Y, Van Tilbeurgh H. The box H/ACA RNP assembly factor Naf1p contains a domain homologous to Gar1p mediating its interaction with Cbf5p. J Mol Biol 2007; 371:1338-53. [PMID: 17612558 DOI: 10.1016/j.jmb.2007.06.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/06/2007] [Accepted: 06/12/2007] [Indexed: 01/10/2023]
Abstract
Naf1 is an essential protein involved in the maturation of box H/ACA ribonucleoproteins, a group of particles required for ribosome biogenesis, modification of spliceosomal small nuclear RNAs and telomere synthesis. Naf1 participates in the assembly of the RNP at transcription sites and in the nuclear trafficking of the complex. The crystal structure of a domain of yeast Naf1p, Naf1Delta1p, reveals a striking structural homology with the core domain of archaeal Gar1, an essential protein component of the mature RNP; it suggests that Naf1p and Gar1p have a common binding site on the enzymatic protein component of the particle, Cbf5p. We propose that Naf1p is a competitive binder for Cbf5p, which is replaced by Gar1p during maturation of the H/ACA particle. The exchange of Naf1p by Gar1p might be prompted by external factors that alter the oligomerisation state of Naf1p and Gar1p. The structural homology with Gar1 suggests that the function of Naf1 involves preventing non-cognate RNAs from being loaded during transport of the particle by inducing a non-productive conformation of Cbf5.
Collapse
Affiliation(s)
- Nicolas Leulliot
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619, Bât 430, Université de Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol 2007; 8:209-20. [PMID: 17318225 DOI: 10.1038/nrm2124] [Citation(s) in RCA: 581] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances have fuelled rapid growth in our appreciation of the tremendous number, diversity and biological importance of non-coding (nc)RNAs. Because ncRNAs typically function as ribonucleoprotein (RNP) complexes and not as naked RNAs, understanding their biogenesis is crucial to comprehending their regulation and function. The small nuclear and small nucleolar RNPs are two well studied classes of ncRNPs with elaborate assembly and trafficking pathways that provide paradigms for understanding the biogenesis of other ncRNPs.
Collapse
MESH Headings
- Animals
- Cell Nucleus/metabolism
- Humans
- Nucleic Acid Conformation
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribonucleoproteins, Small Nucleolar/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- A Gregory Matera
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106-4955, USA.
| | | | | |
Collapse
|
32
|
Reichow SL, Hamma T, Ferré-D'Amaré AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 2007; 35:1452-64. [PMID: 17284456 PMCID: PMC1865073 DOI: 10.1093/nar/gkl1172] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Eukaryotes and archaea use two sets of specialized ribonucleoproteins (RNPs) to carry out sequence-specific methylation and pseudouridylation of RNA, the two most abundant types of modifications of cellular RNAs. In eukaryotes, these protein–RNA complexes localize to the nucleolus and are called small nucleolar RNPs (snoRNPs), while in archaea they are known as small RNPs (sRNP). The C/D class of sno(s)RNPs carries out ribose-2′-O-methylation, while the H/ACA class is responsible for pseudouridylation of their RNA targets. Here, we review the recent advances in the structure, assembly and function of the conserved C/D and H/ACA sno(s)RNPs. Structures of each of the core archaeal sRNP proteins have been determined and their assembly pathways delineated. Furthermore, the recent structure of an H/ACA complex has revealed the organization of a complete sRNP. Combined with current biochemical data, these structures offer insight into the highly homologous eukaryotic snoRNPs.
Collapse
Affiliation(s)
- Steve L. Reichow
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Tomoko Hamma
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Adrian R. Ferré-D'Amaré
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA and Department of Biochemistry, University of WA, Box 357350, Seattle, WA 98195-7350, USA
- *To whom correspondence should be addressed. +(206) 543 1610+(206) 685 8665
| |
Collapse
|
33
|
Rosado IV, Dez C, Lebaron S, Caizergues-Ferrer M, Henry Y, de la Cruz J. Characterization of Saccharomyces cerevisiae Npa2p (Urb2p) reveals a low-molecular-mass complex containing Dbp6p, Npa1p (Urb1p), Nop8p, and Rsa3p involved in early steps of 60S ribosomal subunit biogenesis. Mol Cell Biol 2007; 27:1207-21. [PMID: 17145778 PMCID: PMC1800719 DOI: 10.1128/mcb.01523-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/08/2006] [Accepted: 11/24/2006] [Indexed: 11/20/2022] Open
Abstract
We report the characterization of the yeast Npa2p (Urb2p) protein, which is essential for 60S ribosomal subunit biogenesis. We identified this protein in a synthetic lethal screening with the rsa3 null allele. Rsa3p is a genetic partner of the putative RNA helicase Dbp6p. Mutation or depletion of Npa2p leads to a net deficit in 60S subunits and a decrease in the levels all 27S pre-rRNAs and mature 25S and 5.8S rRNAs. This is likely due to instability of early pre-60S particles. Consistent with a role of Npa2p in 60S subunit biogenesis, green fluorescent protein-tagged Npa2p localizes predominantly to the nucleolus and TAP-tagged Npa2p sediments with large complexes in sucrose gradients and is associated mainly with 27SA(2) pre-rRNA-containing preribosomal particles. In addition, we reveal a genetic synthetic interaction between Npa2p, several factors required for early steps of 60S subunit biogenesis (Dbp6p, Dbp7p, Dbp9p, Npa1p, Nop8p, and Rsa3p), and the 60S protein Rpl3p. Furthermore, coimmunoprecipitation and gel filtration analyses demonstrated that at least Npa2p, Dbp6p, Npa1p, Nop8p, and Rsa3p are present together in a subcomplex of low molecular mass whose integrity is independent of RNA. Our results support the idea that these five factors work in concert during the early steps of 60S subunit biogenesis.
Collapse
Affiliation(s)
- Iván V Rosado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Kittur N, Darzacq X, Roy S, Singer RH, Meier UT. Dynamic association and localization of human H/ACA RNP proteins. RNA (NEW YORK, N.Y.) 2006; 12:2057-62. [PMID: 17135485 PMCID: PMC1664726 DOI: 10.1261/rna.249306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mammalian H/ACA RNPs are essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. To form mature RNA-protein complexes, one H/ACA RNA associates with four core proteins. In the cell, this process is assisted by at least one nuclear assembly factor, NAF1. Here we report several unanticipated dynamic aspects of H/ACA RNP proteins. First, when overexpressed, NAF1 delocalizes to the cytoplasm. However, its nucleocytoplasmic shuttling properties remain unaffected. These observations demonstrate a subtle equilibrium between NAF1 expression levels and the availability of NAF1 nuclear binding sites. Second, although NAF1 is excluded from mature RNPs in nucleoli and Cajal bodies, NAF1 associates with mature H/ACA RNA in cell lysates. This association occurs post-lysis because it is observed even when NAF1 and the H/ACA RNA are expressed in separate cells. This documents a protein-RNP association in cell lysates that is absent from intact cells. Third, in similar experiments, all H/ACA core proteins, except NAP57, exchange with their exogenous counterparts, portraying an unexpected dynamic picture of H/ACA RNPs. Finally, the irreversible association of only NAP57 with H/ACA RNA and the conundrum that only NAP57 is mutated in X-linked dyskeratosis congenita (even though most core proteins are required for maintaining H/ACA RNAs) may be more than a coincidence.
Collapse
Affiliation(s)
- Nupur Kittur
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, New York 10461, USA
| | | | | | | | | |
Collapse
|
35
|
Richard P, Kiss T. Integrating snoRNP assembly with mRNA biogenesis. EMBO Rep 2006; 7:590-2. [PMID: 16741502 PMCID: PMC1479587 DOI: 10.1038/sj.embor.7400715] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/18/2006] [Indexed: 11/08/2022] Open
Affiliation(s)
- Patricia Richard
- Patricia Richard and Tamás Kiss are at the Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique (CNRS), UMR5099, IFR109, 118 Route de Narbonne, 31062 Toulouse, France
| | - Tamás Kiss
- Patricia Richard and Tamás Kiss are at the Laboratoire de Biologie Moléculaire Eucaryote du Centre National de la Recherche Scientifique (CNRS), UMR5099, IFR109, 118 Route de Narbonne, 31062 Toulouse, France
- Tel: +33 56 133 5907; Fax: +33 56 133 5886
| |
Collapse
|
36
|
Hoareau-Aveilla C, Bonoli M, Caizergues-Ferrer M, Henry Y. hNaf1 is required for accumulation of human box H/ACA snoRNPs, scaRNPs, and telomerase. RNA (NEW YORK, N.Y.) 2006; 12:832-40. [PMID: 16601202 PMCID: PMC1440901 DOI: 10.1261/rna.2344106] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The human telomerase ribonucleoprotein particle (RNP) shares with box H/ACA small Cajal body (sca)RNPs and small nucleolar (sno)RNPs the proteins dyskerin, hGar1, hNhp2, and hNop10. How dyskerin, hGar1, hNhp2, and hNop10 assemble with box H/ACA scaRNAs, snoRNAs, and the RNA component of telomerase (hTR) in vivo remains unknown. In yeast, Naf1p interacts with H/ACA snoRNP proteins and may promote assembly of Cbf5p (the yeast ortholog of dyskerin) with nascent pre-snoRNAs. Here we show that the human HsQ96HR8 protein, thereafter termed hNaf1, can functionally replace endogenous Naf1p in yeast. HeLa hNaf1 associates with dyskerin and hNop10 as well as box H/ACA scaRNAs, snoRNAs, and hTR. Reduction of hNaf1 steady-state levels by RNAi significantly lowers accumulation of these components of box H/ACA scaRNP, snoRNP, and telomerase. hNaf1 is found predominantly in numerous discrete foci in the nucleoplasm and fails to accumulate within Cajal bodies or nucleoli. Altogether, these results suggest that hNaf1 intervenes in early assembly steps of human box H/ACA RNPs, including telomerase.
Collapse
Affiliation(s)
- Coralie Hoareau-Aveilla
- Equipe Labellisée Ligue Nationale contre le Cancer, Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 CNRS-Université Paul Sabatier, Toulouse, France, European Union
| | | | | | | |
Collapse
|
37
|
Richard P, Kiss AM, Darzacq X, Kiss T. Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner. Mol Cell Biol 2006; 26:2540-9. [PMID: 16537900 PMCID: PMC1430331 DOI: 10.1128/mcb.26.7.2540-2549.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing from pre-mRNA introns is a widespread mechanism to generate human box C/D and H/ACA snoRNAs. Recent studies revealed that an optimal position relative to the 3' splice site is important for efficient processing of most box C/D snoRNAs and that assembly of box C/D snoRNPs is stimulated by splicing factors likely bound to the branch point region. Here we have investigated the processing of another major class of human intron-encoded RNAs, the box H/ACA snoRNAs. Analysis of 80 H/ACA RNA genes revealed that human H/ACA RNAs possess no preferential localization close to the 3' or 5' splice site. In vivo processing experiments confirmed that H/ACA intronic snoRNAs are processed in a position-independent manner, indicating that there is no synergy between H/ACA RNA processing and splicing. We also showed that recognition of intronic H/ACA snoRNAs and assembly of pre-snoRNPs is an early event that occurs during transcription elongation parallel with pre-mRNA splice site selection. Finally, we found that efficient processing and correct nucleolar localization of the human U64 H/ACA snoRNA requires RNA polymerase II-mediated synthesis of the U64 precursor. This suggests that polymerase II-associated factors direct the efficient assembly and determine the correct subnuclear trafficking of human H/ACA snoRNPs.
Collapse
Affiliation(s)
- Patricia Richard
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | |
Collapse
|
38
|
Darzacq X, Kittur N, Roy S, Shav-Tal Y, Singer RH, Meier UT. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. ACTA ACUST UNITED AC 2006; 173:207-18. [PMID: 16618814 PMCID: PMC2063812 DOI: 10.1083/jcb.200601105] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian H/ACA RNPs are essential for ribosome biogenesis, premessenger RNA splicing, and telomere maintenance. These RNPs consist of four core proteins and one RNA, but it is not known how they assemble. By interrogating the site of H/ACA RNA transcription, we dissected their biogenesis in single cells and delineated the role of the non-core protein NAF1 in the process. NAF1 and all of the core proteins except GAR1 are recruited to the site of transcription. NAF1 binds one of the core proteins, NAP57, and shuttles between nucleus and cytoplasm. Both proteins are essential for stable H/ACA RNA accumulation. NAF1 and GAR1 bind NAP57 competitively, suggesting a sequential interaction. Our analyses indicate that NAF1 binds NAP57 and escorts it to the nascent H/ACA RNA and that GAR1 then replaces NAF1 to yield mature H/ACA RNPs in Cajal bodies and nucleoli.
Collapse
Affiliation(s)
- Xavier Darzacq
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Each of the many different box H/ACA ribonucleoprotein particles (RNPs) present in eukaryotes and archaea consists of four common core proteins and one specific H/ACA small RNA, which bears the sequence elements H (ANANNA) and ACA. Most of the H/ACA RNPs are small nucleolar RNPs (snoRNPs), which are localized in nucleoli, and are one of the two major classes of snoRNPs. Most H/ACA RNPs direct pseudouridine synthesis in pre-rRNA and other RNAs. One H/ACA small nucleolar RNA (snoRNA), vertebrate E1/U17 (snR30 in yeast), is required for pre-rRNA cleavage processing that generates mature 18S rRNA. E1 snoRNA is encoded in introns of protein-coding genes, and the evidence suggests that human E1 RNA undergoes uridine insertional RNA editing. The vertebrate E1 RNA consensus secondary structure shows several features that are absent in other box H/ACA snoRNAs. The available UV-induced RNA-protein crosslinking results suggest that the E1 snoRNP is asymmetrical in vertebrate cells, in contrast to other H/ACA snoRNPs. The vertebrate E1 snoRNP in cells is surprisingly complex: (i) E1 RNA contacts directly and specifically several proteins which do not appear to be any of the H/ACA RNP four core proteins; and (ii) multiple E1 RNA sites are needed for E1 snoRNP formation, E1 RNA stability, and E1 RNA-protein direct interactions.
Collapse
Affiliation(s)
- George L Eliceiri
- Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri 63104-1028, USA.
| |
Collapse
|
40
|
Kiss T, Fayet E, Jády BE, Richard P, Weber M. Biogenesis and intranuclear trafficking of human box C/D and H/ACA RNPs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 71:407-17. [PMID: 17381323 DOI: 10.1101/sqb.2006.71.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Box C/D and H/ACA snoRNAs represent two abundant groups of small noncoding RNAs. The majority of box C/D and H/ACA snoRNAs function as guide RNAs in the site-specific 2'-O-methylation and pseudouridylation of rRNAs, respectively. The box C/D snoRNAs associate with fibrillarin, Nop56, Nop58, and 15.5K/NHPX proteins to form functional snoRNP particles, whereas all box H/ACA snoRNAs form complexes with the dyskerin, Nop10, Nhp2, and Gar1 snoRNP proteins. Recent studies demonstrate that the biogenesis of mammalian snoRNPs is a complex process that requires numerous trans-acting factors. Most vertebrate snoRNAs are posttranscriptionally processed from pre-mRNA introns, and the early steps of snoRNP assembly are physically and functionally coupled with the synthesis or splicing of the host pre-mRNA. The maturing snoRNPs follow a complicated intranuclear trafficking process that is directed by transport factors also involved in nucleocytoplasmic RNA transport. The human telomerase RNA (hTR) carries a box H/ACA RNA domain that shares a common Cajal-body-specific localization element with a subclass of box H/ACA RNAs, which direct pseudouridylation of spliceosomal snRNAs in the Cajal body. However, besides concentrating in Cajal bodies, hTR also accumulates at a small, structurally distinct subset of telomeres during S phase. This suggests that a cell-cycle-dependent, dynamic localization of hTR to telomeres may play an important regulatory role in human telomere synthesis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Coiled Bodies/metabolism
- Humans
- Introns
- Models, Biological
- Nucleic Acid Conformation
- RNA/genetics
- RNA/metabolism
- RNA Polymerase II/metabolism
- RNA Splicing
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins/chemistry
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Ribonucleoproteins, Small Nucleolar/chemistry
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Telomerase/genetics
- Telomerase/metabolism
- Transcription, Genetic
- RNA, Small Untranslated
Collapse
Affiliation(s)
- T Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109, Toulouse, France
| | | | | | | | | |
Collapse
|
41
|
Lebaron S, Froment C, Fromont-Racine M, Rain JC, Monsarrat B, Caizergues-Ferrer M, Henry Y. The splicing ATPase prp43p is a component of multiple preribosomal particles. Mol Cell Biol 2005; 25:9269-82. [PMID: 16227579 PMCID: PMC1265834 DOI: 10.1128/mcb.25.21.9269-9282.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prp43p is a putative helicase of the DEAH family which is required for the release of the lariat intron from the spliceosome. Prp43p could also play a role in ribosome synthesis, since it accumulates in the nucleolus. Consistent with this hypothesis, we find that depletion of Prp43p leads to accumulation of 35S pre-rRNA and strongly reduces levels of all downstream pre-rRNA processing intermediates. As a result, the steady-state levels of mature rRNAs are greatly diminished following Prp43p depletion. We present data arguing that such effects are unlikely to be solely due to splicing defects. Moreover, we demonstrate by a combination of a comprehensive two-hybrid screen, tandem-affinity purification followed by mass spectrometry, and Northern analyses that Prp43p is associated with 90S, pre-60S, and pre-40S ribosomal particles. Prp43p seems preferentially associated with Pfa1p, a novel specific component of pre-40S ribosomal particles. In addition, Prp43p interacts with components of the RNA polymerase I (Pol I) transcription machinery and with mature 18S and 25S rRNAs. Hence, Prp43p might be delivered to nascent 90S ribosomal particles during pre-rRNA transcription and remain associated with preribosomal particles until their final maturation steps in the cytoplasm. Our data also suggest that the ATPase activity of Prp43p is required for early steps of pre-rRNA processing and normal accumulation of mature rRNAs.
Collapse
Affiliation(s)
- Simon Lebaron
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099 CNRS-Université Paul Sabatier, IFR109, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Léger-Silvestre I, Caffrey JM, Dawaliby R, Alvarez-Arias DA, Gas N, Bertolone SJ, Gleizes PE, Ellis SR. Specific Role for Yeast Homologs of the Diamond Blackfan Anemia-associated Rps19 Protein in Ribosome Synthesis. J Biol Chem 2005; 280:38177-85. [PMID: 16159874 DOI: 10.1074/jbc.m506916200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Approximately 25% of cases of Diamond Blackfan anemia, a severe hypoplastic anemia, are linked to heterozygous mutations in the gene encoding ribosomal protein S19 that result in haploinsufficiency for this protein. Here we show that deletion of either of the two genes encoding Rps19 in yeast severely affects the production of 40 S ribosomal subunits. Rps19 is an essential protein that is strictly required for maturation of the 3'-end of 18 S rRNA. Depletion of Rps19 results in the accumulation of aberrant pre-40 S particles retained in the nucleus that fail to associate with pre-ribosomal factors involved in late maturation steps, including Enp1, Tsr1, and Rio2. When introduced in yeast Rps19, amino acid substitutions found in Diamond Blackfan anemia patients induce defects in the processing of the pre-rRNA similar to those observed in cells under-expressing Rps19. These results uncover a pivotal role of Rps19 in the assembly and maturation of the pre-40 S particles and demonstrate for the first time the effect of Diamond Blackfan anemia-associated mutations on the function of Rps19, strongly connecting the pathology to ribosome biogenesis.
Collapse
Affiliation(s)
- Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire des Eucaryotes (UMR5099) and Institut d'Exploration Fonctionnelle des Génomes (IFR109), CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Granato DC, Gonzales FA, Luz JS, Cassiola F, Machado-Santelli GM, Oliveira CC. Nop53p, an essential nucleolar protein that interacts with Nop17p and Nip7p, is required for pre-rRNA processing in Saccharomyces cerevisiae. FEBS J 2005; 272:4450-63. [PMID: 16128814 DOI: 10.1111/j.1742-4658.2005.04861.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form large and intriguingly organized complexes. A novel nucleolar protein, Nop53p, was isolated by using Nop17p as bait in the yeast two-hybrid system. Nop53p also interacts with a second nucleolar protein, Nip7p. A carbon source-conditional strain with the NOP53 coding sequence under the control of the GAL1 promoter did not grow in glucose-containing medium, showing the phenotype of an essential gene. Under nonpermissive conditions, the conditional mutant strain showed rRNA biosynthesis defects, leading to an accumulation of the 27S and 7S pre-rRNAs and depletion of the mature 25S and 5.8S mature rRNAs. Nop53p did not interact with any of the exosome subunits in the yeast two-hybrid system, but its depletion affects the exosome function. In pull-down assays, protein A-tagged Nop53p coprecipitated the 27S and 7S pre-rRNAs, and His-Nop53p also bound directly 5.8S rRNA in vitro, which is consistent with a role for Nop53p in pre-rRNA processing.
Collapse
Affiliation(s)
- Daniela C Granato
- Department of Biochemistry, Chemistry Institute, University of São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Ballarino M, Morlando M, Pagano F, Fatica A, Bozzoni I. The cotranscriptional assembly of snoRNPs controls the biosynthesis of H/ACA snoRNAs in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:5396-403. [PMID: 15964797 PMCID: PMC1156983 DOI: 10.1128/mcb.25.13.5396-5403.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxy-terminal domain (CTD) of RNA polymerase II large subunit acts as a platform to assemble the RNA processing machinery in a controlled way throughout the transcription cycle. In yeast, recent findings revealed a physical connection between phospho-CTD, generated by the Ctk1p kinase, and protein factors having a function in small nucleolar RNA (snoRNA) biogenesis. The snoRNAs represent a large family of polymerase II noncoding transcripts that are associated with highly conserved polypeptides to form stable ribonucleoprotein particles (snoRNPs). In this work, we have studied the biogenesis of the snoRNPs belonging to the box H/ACA class. We report that the assembly factor Naf1p and the core components Cbf5p and Nhp2p are recruited on H/ACA snoRNA genes very early during transcription. We also show that the cotranscriptional recruitment of Naf1p and Cbf5p is Ctk1p dependent and that Ctk1p and Cbf5p are required for preventing the readthrough into the snoRNA downstream genes. All these data suggest that proper cotranscriptional snoRNP assembly controls 3'-end formation of snoRNAs and, consequently, the release of a functional particle.
Collapse
Affiliation(s)
- Monica Ballarino
- Institute Pasteur Fondazione Cenci-Bolognetti, Department of Genetics and Molecular Biology, University La Sapienza, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
45
|
Guo Z, Stiller JW. Comparative genomics and evolution of proteins associated with RNA polymerase II C-terminal domain. Mol Biol Evol 2005; 22:2166-78. [PMID: 16014868 DOI: 10.1093/molbev/msi215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The C-terminal domain (CTD) of the largest subunit of RNA polymerase II provides an anchoring point for a wide variety of proteins involved in mRNA synthesis and processing. Most of what is known about CTD-protein interactions comes from animal and yeast models. The consensus sequence and repetitive structure of the CTD is conserved strongly across a wide range of organisms, implying that the same is true of many of its known functions. In some eukaryotic groups, however, the CTD has been allowed to degenerate, suggesting a comparable lack of essential protein interactions. To date, there has been no comprehensive examination of CTD-related proteins across the eukaryotic domain to determine which of its identified functions are correlated with strong stabilizing selection on CTD structure. Here we report a comparative investigation of genes encoding 50 CTD-associated proteins, identifying putative homologs from 12 completed or nearly completed eukaryotic genomes. The presence of a canonical CTD generally is correlated with the apparent presence and conservation of its known protein partners; however, no clear set of interactions emerges that is invariably linked to conservation of the CTD. General rates of evolution, phylogenetic patterns, and the conservation of modeled tertiary structure of capping enzyme guanylyltransferase (Cgt1) indicate a pattern of coevolution of components of a transcription factory organized around the CTD, presumably driven by common functional constraints. These constraints complicate efforts to determine orthologous gene relationships and can mislead phylogenetic and informatic algorithms.
Collapse
Affiliation(s)
- Zhenhua Guo
- Howell Science Complex N108, Department of Biology, East Carolina University, USA
| | | |
Collapse
|
46
|
Yang PK, Hoareau C, Froment C, Monsarrat B, Henry Y, Chanfreau G. Cotranscriptional recruitment of the pseudouridylsynthetase Cbf5p and of the RNA binding protein Naf1p during H/ACA snoRNP assembly. Mol Cell Biol 2005; 25:3295-304. [PMID: 15798213 PMCID: PMC1069627 DOI: 10.1128/mcb.25.8.3295-3304.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H/ACA small nucleolar ribonucleoprotein particles (snoRNPs) are essential for the maturation and pseudouridylation of the precursor of rRNAs and other stable RNAs. Although the RNA and protein components of these RNPs have been identified, the mechanisms by which they are assembled in vivo are poorly understood. Here we show that the RNA binding protein Naf1p, which is required for H/ACA snoRNPs stability, associates with RNA polymerase II-associated proteins Spt16p, Tfg1p, and Sub1p and with H/ACA snoRNP proteins. Chromatin immunoprecipitation experiments show that Naf1p and the pseudouridylsynthetase Cbf5p cross-link specifically with the chromatin of H/ACA small nucleolar RNA (snoRNA) genes. Naf1p and Cbf5p cross-link predominantly with the 3' end of these genes, in a pattern similar to that observed for transcription elongation factor Spt16p. Cross-linking of Naf1p to H/ACA snoRNA genes requires active transcription and intact H/ACA snoRNA sequences but does not require the RNA polymerase II CTD kinase Ctk1p. These results suggest that Naf1p and Cbf5p are recruited in a cotranscriptional manner during H/ACA snoRNP assembly, possibly by binding to the nascent H/ACA snoRNA transcript during elongation or termination of transcription of H/ACA snoRNA genes.
Collapse
Affiliation(s)
- Pok Kwan Yang
- Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, Box 951569, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
47
|
Meier UT. The many facets of H/ACA ribonucleoproteins. Chromosoma 2005; 114:1-14. [PMID: 15770508 PMCID: PMC4313906 DOI: 10.1007/s00412-005-0333-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
The H/ACA ribonucleoproteins (RNPs) are known as one of the two major classes of small nucleolar RNPs. They predominantly guide the site-directed pseudouridylation of target RNAs, such as ribosomal and spliceosomal small nuclear RNAs. In addition, they process ribosomal RNA and stabilize vertebrate telomerase RNA. Taken together, the function of H/ACA RNPs is essential for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. Every cell contains 100-200 different species of H/ACA RNPs, each consisting of the same four core proteins and one function-specifying H/ACA RNA. Most of these RNPs reside in nucleoli and Cajal bodies and mediate the isomerization of specific uridines to pseudouridines. Catalysis of the reaction is mediated by the putative pseudouridylase NAP57 (dyskerin, Cbf5p). Unexpectedly, mutations in this housekeeping enzyme are the major determinants of the inherited bone marrow failure syndrome dyskeratosis congenita. This review details the many diverse functions of H/ACA RNPs, some yet to be uncovered, with an emphasis on the role of the RNP proteins. The multiple functions of H/ACA RNPs appear to be reflected in the complex phenotype of dyskeratosis congenita.
Collapse
Affiliation(s)
- U Thomas Meier
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
48
|
Beggs JD, Tollervey D. Crosstalk between RNA metabolic pathways: an RNOMICS approach. Nat Rev Mol Cell Biol 2005; 6:423-9. [PMID: 15956981 DOI: 10.1038/nrm1648] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eukaryotic cells contain many different RNA species. Nuclear pre-mRNAs and cytoplasmic mRNAs carry genomic information to the protein synthesis machinery, whereas many stable RNA species have important functional roles. The mature, functional forms of these RNA species are generated by post-transcriptional processing, and evidence has been accumulating that there are functional links between the various processing pathways. This indicates that there are regulatory networks that coordinate different stages of RNA metabolism. This article describes the aims and results, to date, of the European RNOMICS project as an example of an integrated approach to investigate these links.
Collapse
Affiliation(s)
- Jean D Beggs
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
49
|
Gonzales FA, Zanchin NIT, Luz JS, Oliveira CC. Characterization of Saccharomyces cerevisiae Nop17p, a Novel Nop58p-Interacting Protein that is Involved in Pre-rRNA Processing. J Mol Biol 2005; 346:437-55. [PMID: 15670595 DOI: 10.1016/j.jmb.2004.11.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/27/2004] [Accepted: 11/29/2004] [Indexed: 11/18/2022]
Abstract
In eukaryotes, pre-rRNA processing depends on cis-acting elements and on a large number of non-ribosomal trans-acting factors, including endonucleases and exonucleases, RNA helicases, rRNA modifying enzymes and components of snoRNPs. The exosome is a conserved eukaryotic protein complex containing multiple 3'-5' exonucleases, which has been implicated in pre-rRNA, snoRNA and snRNA processing, as well as in mRNA degradation. In order to identify new proteins involved in rRNA processing, we have screened a yeast two-hybrid cDNA library, to isolate proteins interacting with the exosome subunit Rrp43p. In this screen, a novel nucleolar protein, Nop17p, was identified which also interacts with the box C/D snoRNP protein Nop58p. The NOP17 gene is not essential for cell viability but its deletion causes a temperature-sensitive phenotype. Pre-rRNA processing analyses revealed that rRNA formation is affected in the Deltanop17 strain subjected to the non-permissive temperature, although it is not blocked completely. In addition, primer extension analyses of RNA isolated from Nop17p-depleted cells subjected to the non-permissive temperature indicates that the pre-rRNA is undergoing different modification or degradation processes in these cells as compared to the parental strain. Nop17p was recently described in the same complex as Nop58p and, interestingly, its depletion leads to mislocalization of Nop1p, Nop56p, Nop58p and Snu13p, which are the core proteins of the box C/D ribonucleoprotein (snoRNP), indicating that Nop17p function is required either for nucleolar retention or for the proper assembly of the box C/D snoRNP.
Collapse
|
50
|
Henras AK, Capeyrou R, Henry Y, Caizergues-Ferrer M. Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA (NEW YORK, N.Y.) 2004; 10:1704-12. [PMID: 15388873 PMCID: PMC1370658 DOI: 10.1261/rna.7770604] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Box C/D and box H/ACA small ribonucleoprotein particles (sRNPs) are found from archaea to humans, and some of these play key roles during the biogenesis of ribosomes or components of the splicing apparatus. The protein composition of the core of both types of particles is well established and the assembly pathway of box C/D sRNPs has been extensively investigated both in archaeal and eukaryotic systems. In contrast, knowledge concerning the mode of assembly and final structure of box H/ACA sRNPs is much more limited. In the present study, we have investigated the protein/protein interactions taking place between the four protein components of yeast box H/ACA small nucleolar RNPs (snoRNPs), Cbf5p, Gar1p, Nhp2p, and Nop10p. We provide evidence that Cbf5p, Gar1p, and Nop10p can form a complex devoid of Nhp2p and small nucleolar RNA (snoRNA) components of the particles and that Cbf5p and Nop10p can directly bind to each other. We also show that the absence of any component necessary for assembly of box H/ACA snoRNPs inhibits accumulation of Cbf5p, Gar1p, or Nop10p, whereas Nhp2p levels are little affected.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, UMR5099, CNRS and Université Paul Sabatier, IFR109, 118 route de Narbonne, 31062 Toulouse cedex 04, France, European Union
| | | | | | | |
Collapse
|