1
|
Evdokimova A, Kolesnikova T, Mazina MY, Krasnov A, Erokhin M, Chetverina D, Vorobyeva N. Transcriptional induction by ecdysone in Drosophila salivary glands involves an increase in chromatin accessibility and acetylation. Nucleic Acids Res 2025; 53:gkaf284. [PMID: 40239993 PMCID: PMC11997763 DOI: 10.1093/nar/gkaf284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Transcriptional activation by 20-hydroxyecdysone (20E) in Drosophila provides an excellent model for studying tissue-specific responses to steroids. An increase in the 20E concentration regulates the degradation of larval and the proliferation of adult tissues during metamorphosis. To study 20E-dependent transcription, we used the natural system for controlling the 20E concentration-the E23 membrane transporter-which exports 20E from the cell. We artificially expressed E23 in tissues to suppress the first wave of 20E-inducible transcription at metamorphosis. E23 expression revealed a plethora of 20E-dependent genes in salivary glands, while mildly affecting transcription in brain. We described the mechanisms controlling transcriptional activation by 20E in salivary glands. 20E depletion decreased the binding of Pol II and the TFIID subunit, TBP, to the promoters of primary targets, demonstrating the role of 20E in transcription initiation. At target loci, 20E depletion resulted in the malfunctioning of sites co-bound with EcR and CBP/Nejire and enriched for the H3K27Ac mark inherent to active enhancers. At these sites, the 20E concentration was found to control chromatin accessibility and acetylation. We suggest that the activity of these 'active' ecdysone-sensitive elements was responsible for the active status of 20E targets in the salivary glands of wandering larvae.
Collapse
Affiliation(s)
| | - Tatyana D Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | | |
Collapse
|
2
|
Gibbons MD, Fang Y, Spicola AP, Linzer N, Jones SM, Johnson BR, Li L, Xie M, Bungert J. Enhancer-Mediated Formation of Nuclear Transcription Initiation Domains. Int J Mol Sci 2022; 23:ijms23169290. [PMID: 36012554 PMCID: PMC9409229 DOI: 10.3390/ijms23169290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Enhancers in higher eukaryotes and upstream activating sequences (UASs) in yeast have been shown to recruit components of the RNA polymerase II (Pol II) transcription machinery. At least a fraction of Pol II recruited to enhancers in higher eukaryotes initiates transcription and generates enhancer RNA (eRNA). In contrast, UASs in yeast do not recruit transcription factor TFIIH, which is required for transcription initiation. For both yeast and mammalian systems, it was shown that Pol II is transferred from enhancers/UASs to promoters. We propose that there are two modes of Pol II recruitment to enhancers in higher eukaryotes. Pol II complexes that generate eRNAs are recruited via TFIID, similar to mechanisms operating at promoters. This may involve the binding of TFIID to acetylated nucleosomes flanking the enhancer. The resulting eRNA, together with enhancer-bound transcription factors and co-regulators, contributes to the second mode of Pol II recruitment through the formation of a transcription initiation domain. Transient contacts with target genes, governed by proteins and RNA, lead to the transfer of Pol II from enhancers to TFIID-bound promoters.
Collapse
|
3
|
Repression of the Hox gene abd-A by ELAV-mediated Transcriptional Interference. PLoS Genet 2021; 17:e1009843. [PMID: 34780465 PMCID: PMC8629391 DOI: 10.1371/journal.pgen.1009843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Intergenic transcription is a common feature of eukaryotic genomes and performs important and diverse cellular functions. Here, we investigate the iab-8 ncRNA from the Drosophila Bithorax Complex and show that this RNA is able to repress the transcription of genes located at its 3’ end by a sequence-independent, transcriptional interference mechanism. Although this RNA is expressed in the early epidermis and CNS, we find that its repressive activity is limited to the CNS, where, in wild-type embryos, it acts on the Hox gene, abd-A, located immediately downstream of it. The CNS specificity is achieved through a 3’ extension of the transcript, mediated by the neuronal-specific, RNA-binding protein, ELAV. Loss of ELAV activity eliminates the 3’ extension and results in the ectopic activation of abd-A. Thus, a tissue-specific change in the length of a ncRNA is used to generate a precise pattern of gene expression in a higher eukaryote. Although all of the cells making up complex organisms contain the same genetic material, they are nevertheless able to create the diverse tissues of the body. They do this by changing the genes they express. Thus, understanding how genes are controlled in a tissue-specific fashion is one of the primary interests of molecular genetics. Within the bithorax homeotic complex of the fruit fly Drosophila melanogaster, we, and others, previously showed that a >92 kb-long non-coding RNA, called the iab-8 ncRNA, downregulates many important developmental genes, including its genomic downstream neighbor, the homeotic gene abd-A. This downregulation is important as its loss is linked to female sterility. Interestingly, we find that the iab-8 ncRNA regulates abd-A through a mechanism called transcriptional interference, where one gene downregulates a target gene by transcribing over it. In the case of iab-8, this process is limited to the posterior central nervous system, where the iab-8 ncRNA is specifically extended into the abd-A gene by the action of the neuronal-specific RNA binding protein, ELAV. Overall, our work highlights a largely unexplored mechanism by which tissue-specific gene regulation is achieved.
Collapse
|
4
|
Castro Alvarez JJ, Revel M, Cléard F, Pauli D, Karch F, Maeda RK. Repression of the Hox gene abd-A by ELAV-mediated Transcriptional Interference.. [DOI: 10.1101/2021.09.29.462302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
ABSTRACTIntergenic transcription is a common feature of eukaryotic genomes and performs important and diverse cellular functions. Here, we investigate the iab-8 ncRNA from the Drosophila Bithorax Complex and show that this RNA is able to repress the transcription of genes located at its 3’ end by a sequence-independent, transcriptional interference mechanism. Although this RNA is expressed in the early epidermis and CNS, we find that its repressive activity is limited to the CNS, where in wild-type embryos, it acts on the Hox gene, abd-A located immediately downstream of it. The CNS specificity is achieved through a 3’ extension of the transcript, mediated by the neuronal-specific, RNA-binding protein, ELAV. Loss of ELAV activity eliminates the 3’ extension and results in the ectopic activation of abd-A. Thus, a tissue-specific change in the length of a ncRNA is used to generate a precise pattern of gene expression in a higher eukaryote.
Collapse
|
5
|
Reinig J, Ruge F, Howard M, Ringrose L. A theoretical model of Polycomb/Trithorax action unites stable epigenetic memory and dynamic regulation. Nat Commun 2020; 11:4782. [PMID: 32963223 PMCID: PMC7508846 DOI: 10.1038/s41467-020-18507-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb and Trithorax group proteins maintain stable epigenetic memory of gene expression states for some genes, but many targets show highly dynamic regulation. Here we combine experiment and theory to examine the mechanistic basis of these different modes of regulation. We present a mathematical model comprising a Polycomb/Trithorax response element (PRE/TRE) coupled to a promoter and including Drosophila developmental timing. The model accurately recapitulates published studies of PRE/TRE mediated epigenetic memory of both silencing and activation. With minimal parameter changes, the same model can also recapitulate experimental data for a different PRE/TRE that allows dynamic regulation of its target gene. The model predicts that both cell cycle length and PRE/TRE identity are critical for determining whether the system gives stable memory or dynamic regulation. Our work provides a simple unifying framework for a rich repertoire of PRE/TRE functions, and thus provides insights into genome-wide Polycomb/Trithorax regulation. Polycomb (PcG) and Trithorax (TrxG) group regulate several hundred target genes with important roles in development and disease. Here the authors combine experiment and theory to provide evidence that the Polycomb/Trithorax system has the potential for a rich repertoire of regulatory modes beyond simple epigenetic memory.
Collapse
Affiliation(s)
- Jeannette Reinig
- Humboldt Universität zu Berlin, IRI- Lifesciences, Philippstr. 13, 10115, Berlin, Germany
| | - Frank Ruge
- IMBA, Institute of Molecular Biotechnology, Dr. Bohr- Gasse 3, 1030, Vienna, Austria
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Leonie Ringrose
- Humboldt Universität zu Berlin, IRI- Lifesciences, Philippstr. 13, 10115, Berlin, Germany. .,IMBA, Institute of Molecular Biotechnology, Dr. Bohr- Gasse 3, 1030, Vienna, Austria.
| |
Collapse
|
6
|
Fresán U, Rodríguez-Sánchez MA, Reina O, Corces VG, Espinàs ML. Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing. PLoS Genet 2020; 16:e1008962. [PMID: 32750047 PMCID: PMC7428214 DOI: 10.1371/journal.pgen.1008962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Haspin, a highly conserved kinase in eukaryotes, has been shown to be responsible for phosphorylation of histone H3 at threonine 3 (H3T3ph) during mitosis, in mammals and yeast. Here we report that haspin is the kinase that phosphorylates H3T3 in Drosophila melanogaster and it is involved in sister chromatid cohesion during mitosis. Our data reveal that haspin also phosphorylates H3T3 in interphase. H3T3ph localizes in broad silenced domains at heterochromatin and lamin-enriched euchromatic regions. Loss of haspin compromises insulator activity in enhancer-blocking assays and triggers a decrease in nuclear size that is accompanied by changes in nuclear envelope morphology. We show that haspin is a suppressor of position-effect variegation involved in heterochromatin organization. Our results also demonstrate that haspin is necessary for pairing-sensitive silencing and it is required for robust Polycomb-dependent homeotic gene silencing. Haspin associates with the cohesin complex in interphase, mediates Pds5 binding to chromatin and cooperates with Pds5-cohesin to modify Polycomb-dependent homeotic transformations. Therefore, this study uncovers an unanticipated role for haspin kinase in genome organization of interphase cells and demonstrates that haspin is required for homeotic gene regulation.
Collapse
Affiliation(s)
- Ujué Fresán
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
- Institute for Research in Biomedicine IRB, Barcelona, Spain
| | | | - Oscar Reina
- Bioinformatics and Biostatistics Unit, Institute for Research in Biomedicine IRB, Barcelona, Spain
| | - Victor G. Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - M. Lluisa Espinàs
- Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
- Institute for Research in Biomedicine IRB, Barcelona, Spain
| |
Collapse
|
7
|
Alecki C, Chiwara V, Sanz LA, Grau D, Arias Pérez O, Boulier EL, Armache KJ, Chédin F, Francis NJ. RNA-DNA strand exchange by the Drosophila Polycomb complex PRC2. Nat Commun 2020; 11:1781. [PMID: 32286294 PMCID: PMC7156742 DOI: 10.1038/s41467-020-15609-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Polycomb Group (PcG) proteins form memory of transient transcriptional repression that is necessary for development. In Drosophila, DNA elements termed Polycomb Response Elements (PREs) recruit PcG proteins. How PcG activities are targeted to PREs to maintain repressed states only in appropriate developmental contexts has been difficult to elucidate. PcG complexes modify chromatin, but also interact with both RNA and DNA, and RNA is implicated in PcG targeting and function. Here we show that R-loops form at many PREs in Drosophila embryos, and correlate with repressive states. In vitro, both PRC1 and PRC2 can recognize R-loops and open DNA bubbles. Unexpectedly, we find that PRC2 drives formation of RNA-DNA hybrids, the key component of R-loops, from RNA and dsDNA. Our results identify R-loop formation as a feature of Drosophila PREs that can be recognized by PcG complexes, and RNA-DNA strand exchange as a PRC2 activity that could contribute to R-loop formation.
Collapse
Affiliation(s)
- Célia Alecki
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Département de biochimie et médecine moléculaire Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Victoria Chiwara
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Lionel A Sanz
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA, 95616, USA
| | - Daniel Grau
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Osvaldo Arias Pérez
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Natural Sciences and Engineering Postgraduate, Universidad Autonoma Metropolitana, Cuajimalpa, Mexico City, Mexico
| | - Elodie L Boulier
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Karim-Jean Armache
- Skirball Institute of Biomolecular Medicine, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, 1 Shields Avenue, University of California, Davis, Davis, CA, 95616, USA
| | - Nicole J Francis
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Département de biochimie et médecine moléculaire Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
8
|
Lee H, Zhang Z, Krause HM. Long Noncoding RNAs and Repetitive Elements: Junk or Intimate Evolutionary Partners? Trends Genet 2019; 35:892-902. [PMID: 31662190 DOI: 10.1016/j.tig.2019.09.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
Abstract
Our recent ability to sequence entire genomes, along with all of their transcribed RNAs, has led to the surprising finding that only ∼1% of the human genome is used to encode proteins. This finding has led to vigorous debate over the functional importance of the transcribed but untranslated portions of the genome. Currently, scientists tend to assume coding genes are functional until proven not to be, while the opposite is true for noncoding genes. This review takes a new look at the evidence for and against widespread noncoding gene functionality. We focus in particular on long noncoding RNA (noncoding RNAs longer than 200 nucleotides) genes and their 'junk' associates, transposable elements, and satellite repeats. Taken together, the suggestion put forward is that more of this junk DNA may be functional than nonfunctional and that noncoding RNAs and transposable elements act symbiotically to drive evolution.
Collapse
Affiliation(s)
- Hyunmin Lee
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhaolei Zhang
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Henry M Krause
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Roy D, Chakrabarty J, Mallik R, Chaudhuri S. Rice Trithorax factor ULTRAPETALA 1 (OsULT1) specifically binds to “GAGAG” sequence motif present in Polycomb response elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:582-597. [DOI: 10.1016/j.bbagrm.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
|
10
|
Du J, Kirk B, Zeng J, Ma J, Wang Q. Three classes of response elements for human PRC2 and MLL1/2-Trithorax complexes. Nucleic Acids Res 2018; 46:8848-8864. [PMID: 29992232 PMCID: PMC6158500 DOI: 10.1093/nar/gky595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) proteins are essential for maintaining epigenetic memory in both embryonic stem cells and differentiated cells. To date, how they are localized to hundreds of specific target genes within a vertebrate genome had remained elusive. Here, by focusing on short cis-acting DNA elements of single functions, we discovered three classes of response elements in human genome: Polycomb response elements (PREs), Trithorax response elements (TREs) and Polycomb/Trithorax response elements (P/TREs). In particular, the four PREs (PRE14, 29, 39 and 48) are the first set of, to our knowledge, bona fide vertebrate PREs ever discovered, while many previously reported Drosophila or vertebrate PREs are likely P/TREs. We further demonstrated that YY1 and CpG islands are specifically enriched in the four TREs (PRE30, 41, 44 and 55), but not in the PREs. The three classes of response elements as unraveled in this study should guide further global investigation and open new doors for a deeper understanding of PcG and TrxG mechanisms in vertebrates.
Collapse
Affiliation(s)
- Junqing Du
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Brian Kirk
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jia Zeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianpeng Ma
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
11
|
Kaikkonen MU, Adelman K. Emerging Roles of Non-Coding RNA Transcription. Trends Biochem Sci 2018; 43:654-667. [DOI: 10.1016/j.tibs.2018.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/07/2018] [Accepted: 06/03/2018] [Indexed: 12/14/2022]
|
12
|
Long noncoding RNA HOTTIP cooperates with CCCTC-binding factor to coordinate HOXA gene expression. Biochem Biophys Res Commun 2018; 500:852-859. [PMID: 29698677 DOI: 10.1016/j.bbrc.2018.04.173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 01/07/2023]
Abstract
The spatiotemporal control of HOX gene expression is dependent on positional identity and often correlated to their genomic location within each loci. Maintenance of HOX expression patterns is under complex transcriptional and epigenetic regulation, which is not well understood. Here we demonstrate that HOTTIP, a lincRNA transcribed from the 5' edge of the HOXA locus, physically associates with the CCCTC-binding factor (CTCF) that serves as an insulator by organizing HOXA cluster into disjoint domains, to cooperatively maintain the chromatin modifications of HOXA genes and thus coordinate the transcriptional activation of distal HOXA genes in human foreskin fibroblasts. Our results reveal the functional connection of HOTTIP and CTCF, and shed light on lincRNAs in gene activation and CTCF mediated chromatin organization.
Collapse
|
13
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
14
|
|
15
|
The New RNA World: Growing Evidence for Long Noncoding RNA Functionality. Trends Genet 2017; 33:665-676. [DOI: 10.1016/j.tig.2017.08.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
|
16
|
Abstract
The question of how noncoding RNAs are involved in Polycomb group (PcG) and Trithorax group (TrxG) regulation has been on an extraordinary journey over the last three decades. Favored models have risen and fallen, and healthy debates have swept back and forth. The field has recently reached a critical mass of compelling data that throws light on several previously unresolved issues. The time is ripe for a fruitful combination of these findings with two other long-running avenues of research, namely the biochemical properties of the PcG/TrxG system and the application of theoretical mathematical models toward an understanding of the system's regulatory properties. I propose that integrating our current knowledge of noncoding RNA into a quantitative biochemical and theoretical framework for PcG and TrxG regulation has the potential to reconcile several apparently conflicting models and identifies fascinating questions for future research.
Collapse
Affiliation(s)
- Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
17
|
Dorafshan E, Kahn TG, Schwartz YB. Hierarchical recruitment of Polycomb complexes revisited. Nucleus 2017; 8:496-505. [PMID: 28910569 PMCID: PMC5703234 DOI: 10.1080/19491034.2017.1363136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022] Open
Abstract
Polycomb Group (PcG) proteins epigenetically repress key developmental genes and thereby control alternative cell fates. PcG proteins act as complexes that can modify histones and these histone modifications play a role in transmitting the "memory" of the repressed state as cells divide. Here we consider mainstream models that link histone modifications to hierarchical recruitment of PcG complexes and compare them to results of a direct test of interdependence between PcG complexes for recruitment to Drosophila genes. The direct test indicates that PcG complexes do not rely on histone modifications to recognize their target genes but use them to stabilize the interactions within large chromatin domains. It also shows that multiple strategies are used to coordinate the targeting of PcG complexes to different genes, which may make the repression of these genes more or less robust.
Collapse
Affiliation(s)
| | - Tatyana G. Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
18
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Elizar’ev PV, Lomaev DV, Chetverina DA, Georgiev PG, Erokhin MM. Role of Transcriptional Read-Through in PRE Activity in Drosophila melanogaster. Acta Naturae 2016; 8:79-86. [PMID: 27446595 PMCID: PMC4954543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Maintenance of the individual patterns of gene expression in different cell types is required for the differentiation and development of multicellular organisms. Expression of many genes is controlled by Polycomb (PcG) and Trithorax (TrxG) group proteins that act through association with chromatin. PcG/TrxG are assembled on the DNA sequences termed PREs (Polycomb Response Elements), the activity of which can be modulated and switched from repression to activation. In this study, we analyzed the influence of transcriptional read-through on PRE activity switch mediated by the yeast activator GAL4. We show that a transcription terminator inserted between the promoter and PRE doesn't prevent switching of PRE activity from repression to activation. We demonstrate that, independently of PRE orientation, high levels of transcription fail to dislodge PcG/TrxG proteins from PRE in the absence of a terminator. Thus, transcription is not the main factor required for PRE activity switch.
Collapse
Affiliation(s)
- P. V. Elizar’ev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str. 34/5, 119334, Moscow, Russia
| | - D. V. Lomaev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str. 34/5, 119334, Moscow, Russia
| | - D. A. Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str. 34/5, 119334, Moscow, Russia
| | - P. G. Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str. 34/5, 119334, Moscow, Russia
| | - M. M. Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov str. 34/5, 119334, Moscow, Russia
| |
Collapse
|
20
|
De Kumar B, Krumlauf R. HOXs and lincRNAs: Two sides of the same coin. SCIENCE ADVANCES 2016; 2:e1501402. [PMID: 27034976 PMCID: PMC4805430 DOI: 10.1126/sciadv.1501402] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/28/2015] [Indexed: 05/13/2023]
Abstract
The clustered Hox genes play fundamental roles in regulation of axial patterning and elaboration of the basic body plan in animal development. There are common features in the organization and regulatory landscape of Hox clusters associated with their highly conserved functional roles. The presence of transcribed noncoding sequences embedded within the vertebrate Hox clusters is providing insight into a new layer of regulatory information associated with Hox genes.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
21
|
Transcription through Polycomb response elements does not induce a switch from repression to activation. Proc Natl Acad Sci U S A 2015; 112:14755-6. [PMID: 26567151 DOI: 10.1073/pnas.1520102112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements. Proc Natl Acad Sci U S A 2015; 112:14930-5. [PMID: 26504232 DOI: 10.1073/pnas.1515276112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, Polycomb (PcG) and Trithorax (TrxG) group proteins are assembled on Polycomb response elements (PREs) to maintain tissue and stage-specific patterns of gene expression. Critical to coordinating gene expression with the process of differentiation, the activity of PREs can be switched "on" and "off." When on, the PRE imposes a silenced state on the genes in the same domain that is stably inherited through multiple rounds of cell division. When the PRE is switched off, the domain is in a state permissive for gene expression that can be stably inherited. Previous studies have suggested that a burst of transcription through a PRE sequence displaces PcG proteins and provides a universal mechanism for inducing a heritable switch in PRE activity from on to off; however, the evidence favoring this model is indirect. Here, we have directly tested the transcriptional read-through mechanism. Contrary to previous suggestions, we show that transcription through the PRE is not sufficient for inducing an epigenetic switch in PRE activity. In fact, even high levels of continuous transcription through a PRE fails to dislodge the PcG proteins, nor does it remove repressive histone marks. Our results indicate that other mechanisms involving adjacent DNA regulatory elements must be implicated in heritable switch of PRE activity.
Collapse
|
23
|
Hox miRNA regulation within the Drosophila Bithorax complex: Patterning behavior. Mech Dev 2015; 138 Pt 2:151-159. [PMID: 26311219 DOI: 10.1016/j.mod.2015.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/02/2023]
Abstract
The study of Drosophila Hox genes, located in the Antennapedia complex (ANT-C) and Bithorax complex (BX-C), has provided fundamental insights into mechanisms of how the segments of the animal body plan are specified. Notably, even though the analysis of the BX-C formally began over a century ago, surprises continue to emerge regarding its regulation and function. Even simply the gene content of the BX-C has been regularly revised in past years, especially with regard to non-coding RNAs (ncRNAs), including microRNAs. In this perspective, we review the history of studies of non-coding transcription in the BX-C, and highlight recent studies of its miRNAs that provide new insights into their tissue-specific roles in Hox gene regulation. In particular, we have demonstrated unexpected importance of endogenous BX-C miRNAs to restrict the spatial accumulation of Hox proteins and their TALE cofactors in the ventral nerve cord, and link this to aberrant neural differentiation and reproductive behavior. These findings open new directions on studying Hox miRNA function, and we speculate that further understanding of their roles in insect models may provide new leads for studying the enigmatic biological functions of analogous miRNAs located in vertebrate Hox clusters.
Collapse
|
24
|
Abstract
The study of long noncoding RNAs (lncRNAs) is still in its infancy with more putative RNAs identified than those with ascribed functions. Defined as transcripts that are longer than 200 nucleotides without a coding sequence, their numbers are on the rise and may well challenge protein coding transcripts in number and diversity. lncRNAs are often expressed at low levels and their sequences are frequently poorly conserved, making it unclear if they are transcriptional noise or bonafide effectors. Despite these limitations, inroads into their functions are being made and it is clear they make a contribution in regulating all aspects of biology. The early verdict on their activity, however, suggests the majority function as chromatin modifiers. A good proportion show a connection to disease highlighting their importance and the need to determine their function. The focus of this review is on lncRNAs which influence developmental processes which in itself covers a large range of known activities.
Collapse
Affiliation(s)
- Jamila I Horabin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Rm 3300-G, 1115 W. Call St., Tallahassee, FL, 32306-4300, USA,
| |
Collapse
|
25
|
Steffen PA, Ringrose L. What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 2014; 15:340-56. [PMID: 24755934 DOI: 10.1038/nrm3789] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In any biological system with memory, the state of the system depends on its history. Epigenetic memory maintains gene expression states through cell generations without a change in DNA sequence and in the absence of initiating signals. It is immensely powerful in biological systems - it adds long-term stability to gene expression states and increases the robustness of gene regulatory networks. The Polycomb group (PcG) and Trithorax group (TrxG) proteins can confer long-term, mitotically heritable memory by sustaining silent and active gene expression states, respectively. Several recent studies have advanced our understanding of the molecular mechanisms of this epigenetic memory during DNA replication and mitosis.
Collapse
Affiliation(s)
- Philipp A Steffen
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Leonie Ringrose
- Institute of Molecular Biotechnology (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
26
|
Gummalla M, Galetti S, Maeda RK, Karch F. Hox gene regulation in the central nervous system of Drosophila. Front Cell Neurosci 2014; 8:96. [PMID: 24795565 PMCID: PMC4005941 DOI: 10.3389/fncel.2014.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022] Open
Abstract
Hox genes specify the structures that form along the anteroposterior (AP) axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called “posterior dominance,” states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B Hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS). While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92 kb long non-coding RNA (lncRNA) encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA). Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The first mechanism is mediated by a microRNA (mir-iab-8) encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila Hox complexes.
Collapse
Affiliation(s)
- Maheshwar Gummalla
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland ; Institute of Biochemistry, University of Medicine - University of Göttingen Göttingen, Germany
| | - Sandrine Galetti
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| | - François Karch
- Department of Genetics and Evolution, University of Geneva Geneva, Switzerland
| |
Collapse
|
27
|
Schorderet P, Lonfat N, Darbellay F, Tschopp P, Gitto S, Soshnikova N, Duboule D. A genetic approach to the recruitment of PRC2 at the HoxD locus. PLoS Genet 2013; 9:e1003951. [PMID: 24244202 PMCID: PMC3820793 DOI: 10.1371/journal.pgen.1003951] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/27/2013] [Indexed: 01/01/2023] Open
Abstract
Polycomb group (PcG) proteins are essential for the repression of key factors during early development. In Drosophila, the polycomb repressive complexes (PRC) associate with defined polycomb response DNA elements (PREs). In mammals, however, the mechanisms underlying polycomb recruitment at targeted loci are poorly understood. We have used an in vivo approach to identify DNA sequences of importance for the proper recruitment of polycomb proteins at the HoxD locus. We report that various genomic re-arrangements of the gene cluster do not strongly affect PRC2 recruitment and that relatively small polycomb interacting sequences appear necessary and sufficient to confer polycomb recognition and targeting to ectopic loci. In addition, a high GC content, while not sufficient to recruit PRC2, may help its local spreading. We discuss the importance of PRC2 recruitment over Hox gene clusters in embryonic stem cells, for their subsequent coordinated transcriptional activation during development. Hox genes are essential for the proper organization of structures along the developing vertebrate body axis. These genes must be activated at a precise time and their premature transcription is deleterious to the organism. Early on, Hox gene clusters are covered by Polycomb Repressive protein Complexes (PRCs), which help keep these genes silent. However, the mechanism(s) that selectively recruit PRCs to these particular genomic loci remains elusive. We have used a collection of mutant mice carrying a set of deletions inside and outside the HoxD cluster to try and detect the presence of any DNA sequence of particular importance in this mechanism. We conclude that a range of low affinity sequences synergize to recruit PRCs over the gene cluster, which makes this process very robust and resistant to genetic perturbations.
Collapse
Affiliation(s)
- Patrick Schorderet
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Lonfat
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Fabrice Darbellay
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Patrick Tschopp
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Sandra Gitto
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
| | - Natalia Soshnikova
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Denis Duboule
- National Research Center ‘Frontiers in Genetics’, Geneva, Switzerland
- School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, Switzerland
- * E-mail: ,
| |
Collapse
|
28
|
Abstract
RNA transcripts without obvious coding potential are widespread in many creatures, including the fruit fly, Drosophila melanogaster. Several noncoding RNAs have been identified within the Drosophila bithorax complex. These first appear in blastoderm stage embryos, and their expression patterns indicate that they are transcribed only from active domains of the bithorax complex. It has been suggested that these noncoding RNAs have a role in establishing active domains, perhaps by setting the state of Polycomb Response Elements A comprehensive survey across the proximal half of the bithorax complex has now revealed nine distinct noncoding RNA transcripts, including four within the Ultrabithorax transcription unit. At the blastoderm stage, the noncoding transcripts collectively span ∼75% of the 135 kb surveyed. Recombination-mediated cassette exchange was used to invert the promoter of one of the noncoding RNAs, a 23-kb transcript from the bxd domain of the bithorax complex. The resulting animals fail to make the normal bxd noncoding RNA and show no transcription across the bxd Polycomb Response Element in early embryos. The mutant flies look normal; the regulation of the bxd domain appears unaffected. Thus, the bxd noncoding RNA has no apparent function.
Collapse
|
29
|
Dorighi KM, Tamkun JW. The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in Drosophila. Development 2013; 140:4182-92. [PMID: 24004944 DOI: 10.1242/dev.095786] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the Polycomb group of repressors and trithorax group of activators maintain heritable states of transcription by modifying nucleosomal histones or remodeling chromatin. Although tremendous progress has been made toward defining the biochemical activities of Polycomb and trithorax group proteins, much remains to be learned about how they interact with each other and the general transcription machinery to maintain on or off states of gene expression. The trithorax group protein Kismet (KIS) is related to the SWI/SNF and CHD families of chromatin remodeling factors. KIS promotes transcription elongation, facilitates the binding of the trithorax group histone methyltransferases ASH1 and TRX to active genes, and counteracts repressive methylation of histone H3 on lysine 27 (H3K27) by Polycomb group proteins. Here, we sought to clarify the mechanism of action of KIS and how it interacts with ASH1 to antagonize H3K27 methylation in Drosophila. We present evidence that KIS promotes transcription elongation and counteracts Polycomb group repression via distinct mechanisms. A chemical inhibitor of transcription elongation, DRB, had no effect on ASH1 recruitment or H3K27 methylation. Conversely, loss of ASH1 function had no effect on transcription elongation. Mutations in kis cause a global reduction in the di- and tri-methylation of histone H3 on lysine 36 (H3K36) - modifications that antagonize H3K27 methylation in vitro. Furthermore, loss of ASH1 significantly decreases H3K36 dimethylation, providing further evidence that ASH1 is an H3K36 dimethylase in vivo. These and other findings suggest that KIS antagonizes Polycomb group repression by facilitating ASH1-dependent H3K36 dimethylation.
Collapse
Affiliation(s)
- Kristel M Dorighi
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
30
|
RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 2013; 8:e65740. [PMID: 23785447 PMCID: PMC3681981 DOI: 10.1371/journal.pone.0065740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/26/2013] [Indexed: 02/02/2023] Open
Abstract
Background Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated. Principal Findings Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins. Conclusions We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila.
Collapse
|
31
|
|
32
|
Kassis JA, Brown JL. Polycomb group response elements in Drosophila and vertebrates. ADVANCES IN GENETICS 2013; 81:83-118. [PMID: 23419717 DOI: 10.1016/b978-0-12-407677-8.00003-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycomb group genes (PcG) encode a group of about 16 proteins that were first identified in Drosophila as repressors of homeotic genes. PcG proteins are present in all metazoans and are best characterized as transcriptional repressors. In Drosophila, these proteins are known as epigenetic regulators because they remember, but do not establish, the patterned expression state of homeotic genes throughout development. PcG proteins, in general, are not DNA binding proteins, but act in protein complexes to repress transcription at specific target genes. How are PcG proteins recruited to the DNA? In Drosophila, there are specific regulatory DNA elements called Polycomb group response elements (PREs) that bring PcG protein complexes to the DNA. Drosophila PREs are made up of binding sites for a complex array of DNA binding proteins. Functional PRE assays in transgenes have shown that PREs act in the context of other regulatory DNA and PRE activity is highly dependent on genomic context. Drosophila PREs tend to regulate genes with a complex array of regulatory DNA in a cell or tissue-specific fashion and it is the interplay between regulatory DNA that dictates PRE function. In mammals, PcG proteins are more diverse and there are multiple ways to recruit PcG complexes, including RNA-mediated recruitment. In this review, we discuss evidence for PREs in vertebrates and explore similarities and differences between Drosophila and vertebrate PREs.
Collapse
Affiliation(s)
- Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
33
|
[Epigenetics of plant vernalization regulated by non-coding RNAs]. YI CHUAN = HEREDITAS 2012; 34:829-34. [PMID: 22805208 DOI: 10.3724/sp.j.1005.2012.00829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many higher plants must experience a period of winter cold to accomplish the transition from vegetative to reproductive growth. This biological process is called vernalization. Some crops such as wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) produce seeds as edible organs, and therefore special measures of rotation and cultivation are necessary for plants to go through an early vernalization for flower differentiation and development, whereas the other crops such as Chinese cabbage (B rapa ssp. pekinenesis) and cabbage (Brassica napus L.) produce leafy heads as edible organs, and additional practice should be taken to avoid vernalization for a prolonged and fully vegetative growth. Before vernalization, flowering is repressed by the action of a gene called Flowering Locus C (FLC). This paper reviewed the function of non-coding RNAs and some proteins including VRN1, VRN2, and VIN3 in epigenetic regulation of FLC during vernalization.
Collapse
|
34
|
Langlais KK, Brown JL, Kassis JA. Polycomb group proteins bind an engrailed PRE in both the "ON" and "OFF" transcriptional states of engrailed. PLoS One 2012; 7:e48765. [PMID: 23139817 PMCID: PMC3490902 DOI: 10.1371/journal.pone.0048765] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/05/2012] [Indexed: 11/25/2022] Open
Abstract
Polycomb group (PcG) and trithorax Group (trxG) proteins maintain the “OFF” and “ON” transcriptional states of HOX genes and other targets by modulation of chromatin structure. In Drosophila, PcG proteins are bound to DNA fragments called Polycomb group response elements (PREs). The prevalent model holds that PcG proteins bind PREs only in cells where the target gene is “OFF”. Another model posits that transcription through PREs disrupts associated PcG complexes, contributing to the establishment of the “ON” transcriptional state. We tested these two models at the PcG target gene engrailed. engrailed exists in a gene complex with invected, which together have 4 well-characterized PREs. Our data show that these PREs are not transcribed in embryos or larvae. We also examined whether PcG proteins are bound to an engrailed PRE in cells where engrailed is transcribed. By FLAG-tagging PcG proteins and expressing them specifically where engrailed is “ON” or “OFF”, we determined that components of three major PcG protein complexes are present at an engrailed PRE in both the “ON” and “OFF” transcriptional states in larval tissues. These results show that PcG binding per se does not determine the transcriptional state of engrailed.
Collapse
Affiliation(s)
| | | | - Judith A. Kassis
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Cabianca DS, Casa V, Gabellini D. A novel molecular mechanism in human genetic disease: a DNA repeat-derived lncRNA. RNA Biol 2012; 9:1211-7. [PMID: 23047063 DOI: 10.4161/rna.21922] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Two thirds of the human genome is composed of repetitive sequences. Despite their prevalence, DNA repeats are largely ignored. The vast majority of our genome is transcribed to produce non protein-coding RNAs. Among these, long non protein-coding RNAs represent the most prevalent and functionally diverse class. The relevance of the non protein-coding genome to human disease has mainly been studied regarding the altered microRNA expression and function in human cancer. On the contrary, the elucidation of the involvement of long non-coding RNAs in disease is only in its infancy. We have recently found that a chromatin associated, long non protein-coding RNA regulates a Polycomb/Trithorax epigenetic switch at the basis of the repeat associated facioscapulohumeral muscular dystrophy, a common muscle disorder. Based on this, we propose that long non-coding RNAs produced by repetitive sequences contribute in shaping the epigenetic landscape in normal human physiology and in disease.
Collapse
Affiliation(s)
- Daphne S Cabianca
- Dulbecco Telethon Institute and Division of Regenerative Medicine, Stem cells, and Gene therapy, San Raffaele Scientific Institute, Milan, Italy
| | | | | |
Collapse
|
36
|
Abstract
The first genes composing the Polycomb group (PcG) were identified 50 years ago in Drosophila melanogaster as essential developmental functions that regulate the correct segmental expression of homeotic selector genes. In the past two decades, what was initially described as a large family of chromatin-associated proteins involved in the maintenance of transcriptional repression to maintain cellular memory of homeotic genes turned out to be a highly conserved and sophisticated network of epigenetic regulators that play key roles in multiple aspects of cell physiology and identity, including regulation of all developmental genes, cell differentiation, stem and somatic cell reprogramming and response to environmental stimuli. These myriad phenotypes further spread interest for the contribution that PcG proteins revealed in the pathogenesis and progression of cancer and other complex diseases. Recent novel insights have increasingly clarified the molecular regulatory mechanisms at the basis of PcG-mediated epigenetic silencing and opened new visions about PcG functions in cells. In this review, we focus on the multiple modes of action of the PcG complexes and describe their biological roles.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- Dulbecco Telethon Institute, Epigenetics and Genome Reprogramming, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | | |
Collapse
|
37
|
Natoli G, Andrau JC. Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 2012; 46:1-19. [PMID: 22905871 DOI: 10.1146/annurev-genet-110711-155459] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mammalian genomes are extensively transcribed outside the borders of protein-coding genes. Genome-wide studies recently demonstrated that cis-regulatory genomic elements implicated in transcriptional control, such as enhancers and locus-control regions, represent major sites of extragenic noncoding transcription. Enhancer-templated transcripts provide a quantitatively small contribution to the total amount of cellular nonribosomal RNA; nevertheless, the possibility that enhancer transcription and the resulting enhancer RNAs may, in some cases, have functional roles, rather than represent mere transcriptional noise at accessible genomic regions, is supported by an increasing amount of experimental data. In this article we review the current knowledge on enhancer transcription and its functional implications.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), I-20139 Milan, Italy.
| | | |
Collapse
|
38
|
Gummalla M, Maeda RK, Castro Alvarez JJ, Gyurkovics H, Singari S, Edwards KA, Karch F, Bender W. abd-A regulation by the iab-8 noncoding RNA. PLoS Genet 2012; 8:e1002720. [PMID: 22654672 PMCID: PMC3359974 DOI: 10.1371/journal.pgen.1002720] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/03/2012] [Indexed: 12/29/2022] Open
Abstract
The homeotic genes in Drosophila melanogaster are aligned on the chromosome in the order of the body segments that they affect. The genes affecting the more posterior segments repress the more anterior genes. This posterior dominance rule must be qualified in the case of abdominal-A (abd-A) repression by Abdominal-B (Abd-B). Animals lacking Abd-B show ectopic expression of abd-A in the epidermis of the eighth abdominal segment, but not in the central nervous system. Repression in these neuronal cells is accomplished by a 92 kb noncoding RNA. This “iab-8 RNA” produces a micro RNA to repress abd-A, but also has a second, redundant repression mechanism that acts only “in cis.” Transcriptional interference with the abd-A promoter is the most likely mechanism. Although long, noncoding RNAs have been found in many organisms, it has been difficult to assign to them any molecular function. The homeotic gene clusters in the fruit fly, Drosophila melanogaster, contain many such noncoding RNAs. We have characterized one such noncoding RNA, a 92 kb transcription unit from within the bithorax complex. This transcript, called the iab-8 ncRNA, is made in the cells of the central nervous system in the eighth abdominal segment, along with the homeotic transcription factor Abdominal-B. Another homeotic transcription factor, abdominal-A, is repressed in these cells. It has generally been assumed that abdominal-A repression in these cells is mediated by the Abdominal-B protein. However, here we show that it is not Abdominal-B that represses abdominal-A, but the iab-8 ncRNA. This repression is accomplished by two redundant mechanisms; the iab-8 precursor produces a micro RNA, which targets the abdominal-A mRNA, and iab-8 transcription interferes with the abdominal-A promoter, which lies just downstream of the iab-8 ncRNA poly(A) site.
Collapse
Affiliation(s)
- Maheshwar Gummalla
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Robert K. Maeda
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | | | - Swetha Singari
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Kevin A. Edwards
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - François Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- * E-mail: (FK); (WB)
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (FK); (WB)
| |
Collapse
|
39
|
Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D. A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 2012; 149:819-31. [PMID: 22541069 PMCID: PMC3350859 DOI: 10.1016/j.cell.2012.03.035] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/21/2011] [Accepted: 03/22/2012] [Indexed: 02/05/2023]
Abstract
Repetitive sequences account for more than 50% of the human genome. Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disease associated with reduction in the copy number of the D4Z4 repeat mapping to 4q35. By an unknown mechanism, D4Z4 deletion causes an epigenetic switch leading to de-repression of 4q35 genes. Here we show that the Polycomb group of epigenetic repressors targets D4Z4 in healthy subjects and that D4Z4 deletion is associated with reduced Polycomb silencing in FSHD patients. We identify DBE-T, a chromatin-associated noncoding RNA produced selectively in FSHD patients that coordinates de-repression of 4q35 genes. DBE-T recruits the Trithorax group protein Ash1L to the FSHD locus, driving histone H3 lysine 36 dimethylation, chromatin remodeling, and 4q35 gene transcription. This study provides insights into the biological function of repetitive sequences in regulating gene expression and shows how mutations of such elements can influence the progression of a human genetic disease.
Collapse
Affiliation(s)
- Daphne S Cabianca
- Dulbecco Telethon Institute at San Raffaele Scientific Institute, Division of Regenerative Medicine, Stem Cells, and Gene Therapy, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
An S, Song JJ. The coded functions of noncoding RNAs for gene regulation. Mol Cells 2011; 31:491-6. [PMID: 21359682 PMCID: PMC3887622 DOI: 10.1007/s10059-011-1004-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 12/23/2022] Open
Abstract
For eukaryotes, fine tuning of gene expression is necessary to coordinate complex genetic information. Recent studies have shown that noncoding RNAs (ncRNAs) play central roles in this process. For example, ncRNAs participate in multiple diverse functions such as mRNA degradation, epigenetic regulation and alternative splicing. The findings regarding this new player in gene regulation suggest that the mechanism of gene regulation is much more complicated and subtle than previously thought. In this review, new findings concerning the role of ncRNAs in gene regulation are discussed.
Collapse
Affiliation(s)
| | - Ji-Joon Song
- Structural Biology Laboratory of Epigenetics, Department of Biological Sciences, Graduate School of Nanoscience and Technology (World Class University), KI Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| |
Collapse
|
41
|
Okulski H, Druck B, Bhalerao S, Ringrose L. Quantitative analysis of polycomb response elements (PREs) at identical genomic locations distinguishes contributions of PRE sequence and genomic environment. Epigenetics Chromatin 2011; 4:4. [PMID: 21410956 PMCID: PMC3070613 DOI: 10.1186/1756-8935-4-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/16/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Polycomb/Trithorax response elements (PREs) are cis-regulatory elements essential for the regulation of several hundred developmentally important genes. However, the precise sequence requirements for PRE function are not fully understood, and it is also unclear whether these elements all function in a similar manner. Drosophila PRE reporter assays typically rely on random integration by P-element insertion, but PREs are extremely sensitive to genomic position. RESULTS We adapted the ΦC31 site-specific integration tool to enable systematic quantitative comparison of PREs and sequence variants at identical genomic locations. In this adaptation, a miniwhite (mw) reporter in combination with eye-pigment analysis gives a quantitative readout of PRE function. We compared the Hox PRE Frontabdominal-7 (Fab-7) with a PRE from the vestigial (vg) gene at four landing sites. The analysis revealed that the Fab-7 and vg PREs have fundamentally different properties, both in terms of their interaction with the genomic environment at each site and their inherent silencing abilities. Furthermore, we used the ΦC31 tool to examine the effect of deletions and mutations in the vg PRE, identifying a 106 bp region containing a previously predicted motif (GTGT) that is essential for silencing. CONCLUSIONS This analysis showed that different PREs have quantifiably different properties, and that changes in as few as four base pairs have profound effects on PRE function, thus illustrating the power and sensitivity of ΦC31 site-specific integration as a tool for the rapid and quantitative dissection of elements of PRE design.
Collapse
Affiliation(s)
- Helena Okulski
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Birgit Druck
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Roche Austria GmBH, Clinical Operations, Engelhorngasse 3, 1211 Vienna, Austria
| | - Sheetal Bhalerao
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Leonie Ringrose
- IMBA, Institute of Molecular Biotechnology GmBH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
42
|
Soshnikova N. Dynamics of Polycomb and Trithorax activities during development. ACTA ACUST UNITED AC 2011; 91:781-7. [DOI: 10.1002/bdra.20774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 12/17/2022]
|
43
|
Interaction of SET domains with histones and nucleic acid structures in active chromatin. Clin Epigenetics 2011; 2:17-25. [PMID: 22704267 PMCID: PMC3365373 DOI: 10.1007/s13148-010-0015-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/16/2010] [Indexed: 12/28/2022] Open
Abstract
Changes in the normal program of gene expression are the basis for a number of human diseases. Epigenetic control of gene expression is programmed by chromatin modifications—the inheritable “histone code”—the major component of which is histone methylation. This chromatin methylation code of gene activity is created upon cell differentiation and is further controlled by the “SET” (methyltransferase) domain proteins which maintain this histone methylation pattern and preserve it through rounds of cell division. The molecular principles of epigenetic gene maintenance are essential for proper treatment and prevention of disorders and their complications. However, the principles of epigenetic gene programming are not resolved. Here we discuss some evidence of how the SET proteins determine the required states of target genes and maintain the required levels of their activity. We suggest that, along with other recognition pathways, SET domains can directly recognize the nucleosome and nucleic acids intermediates that are specific for active chromatin regions.
Collapse
|
44
|
Beisel C, Paro R. Silencing chromatin: comparing modes and mechanisms. Nat Rev Genet 2011; 12:123-35. [PMID: 21221116 DOI: 10.1038/nrg2932] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent transcriptome analyses show that substantial proportions of eukaryotic genomes can be copied into RNAs, many of which do not encode protein sequences. However, cells have developed mechanisms to control and counteract the high transcriptional activity of RNA polymerases in order to achieve cell-specific gene activity or to prevent the expression of deleterious sequences. Here we compare how two silencing modes - the Polycomb system and heterochromatin - are targeted, established and maintained at different chromosomal locations and how DNA-binding proteins and non-coding RNAs connect these epigenetically stable and heritable structures to the sequence information of the DNA.
Collapse
Affiliation(s)
- Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland
| | | |
Collapse
|
45
|
Enderle D, Beisel C, Stadler MB, Gerstung M, Athri P, Paro R. Polycomb preferentially targets stalled promoters of coding and noncoding transcripts. Genome Res 2010; 21:216-26. [PMID: 21177970 DOI: 10.1101/gr.114348.110] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Polycomb group (PcG) and Trithorax group (TrxG) of proteins are required for stable and heritable maintenance of repressed and active gene expression states. Their antagonistic function on gene control, repression for PcG and activity for TrxG, is mediated by binding to chromatin and subsequent epigenetic modification of target loci. Despite our broad knowledge about composition and enzymatic activities of the protein complexes involved, our understanding still lacks important mechanistic detail and a comprehensive view on target genes. In this study we use an extensive data set of ChIP-seq, RNA-seq, and genome-wide detection of transcription start sites (TSSs) to identify and analyze thousands of binding sites for the PcG proteins and Trithorax from a Drosophila S2 cell line. In addition of finding a preference for stalled promoter regions of annotated genes, we uncover many intergenic PcG binding sites coinciding with nonannotated TSSs. Interestingly, this set includes previously unknown promoters for primary transcripts of microRNA genes, thereby expanding the scope of Polycomb control to noncoding RNAs essential for development, apoptosis, and growth.
Collapse
Affiliation(s)
- Daniel Enderle
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
46
|
Chromosomal organization at the level of gene complexes. Cell Mol Life Sci 2010; 68:977-90. [PMID: 21080026 PMCID: PMC3043239 DOI: 10.1007/s00018-010-0585-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/17/2010] [Accepted: 10/26/2010] [Indexed: 01/10/2023]
Abstract
Metazoan genomes primarily consist of non-coding DNA in comparison to coding regions. Non-coding fraction of the genome contains cis-regulatory elements, which ensure that the genetic code is read properly at the right time and space during development. Regulatory elements and their target genes define functional landscapes within the genome, and some developmentally important genes evolve by keeping the genes involved in specification of common organs/tissues in clusters and are termed gene complex. The clustering of genes involved in a common function may help in robust spatio-temporal gene expression. Gene complexes are often found to be evolutionarily conserved, and the classic example is the hox complex. The evolutionary constraints seen among gene complexes provide an ideal model system to understand cis and trans-regulation of gene function. This review will discuss the various characteristics of gene regulatory modules found within gene complexes and how they can be characterized.
Collapse
|
47
|
Prestel M, Feller C, Straub T, Mitlöhner H, Becker PB. The activation potential of MOF is constrained for dosage compensation. Mol Cell 2010; 38:815-26. [PMID: 20620953 DOI: 10.1016/j.molcel.2010.05.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/12/2010] [Accepted: 04/01/2010] [Indexed: 12/24/2022]
Abstract
The H4K16 acetyltransferase MOF plays a crucial role in dosage compensation in Drosophila but has additional, global functions. We compared the molecular context and effect of MOF in male and female flies, combining chromosome-wide mapping and transcriptome studies with analyses of defined reporter loci in transgenic flies. MOF distributes dynamically between two complexes, the dosage compensation complex and a complex containing MBD-R2, a global facilitator of transcription. These different targeting principles define the distribution of MOF between the X chromosome and autosomes and at transcription units with 5' or 3' enrichment. The male X chromosome differs from all other chromosomes in that H4K16 acetylation levels do not correlate with transcription output. The reconstitution of this phenomenon at a model locus revealed that the activation potential of MOF is constrained in male cells in the context of the DCC to arrive at the 2-fold activation of transcription characteristic of dosage compensation.
Collapse
Affiliation(s)
- Matthias Prestel
- Adolf-Butenandt-Institute and Centre for Integrated Protein Science, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
48
|
Basu A, Atchison ML. CtBP levels control intergenic transcripts, PHO/YY1 DNA binding, and PcG recruitment to DNA. J Cell Biochem 2010; 110:62-9. [PMID: 20082324 DOI: 10.1002/jcb.22487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Carboxy-terminal binding protein (CtBP) is a well-known corepressor of several DNA binding transcription factors in Drosophila as well as in mammals. CtBP is implicated in Polycomb Group (PcG) complex-mediated transcriptional repression because it can bind to some PcG proteins, and mutation of the ctbp gene in flies results in lost PcG protein recruitment to Polycomb Response Elements (PREs) and lost PcG repression. However, the mechanism of reduced PcG DNA binding in CtBP mutant backgrounds is unknown. We show here that in a Drosophila CtBP mutant background, intergenic transcripts are induced across several PRE sequences and this corresponds to reduced DNA binding by PcG proteins Pleiohomeotic (PHO) and Polycomb (Pc), and reduced trimethylation of histone H3 on lysine 27, a hallmark of PcG repression. Restoration of CtBP levels by expression of a CtBP transgene results in repression of intergenic transcripts, restored PcG binding, and elevated trimethylation of H3 on lysine 27. Our results support a model in which CtBP regulates expression of intergenic transcripts that controls DNA binding by PcG proteins and subsequent histone modifications and transcriptional activity.
Collapse
Affiliation(s)
- Arindam Basu
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
49
|
Janssen R, Budd GE. Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda. EvoDevo 2010; 1:4. [PMID: 20849647 PMCID: PMC2938723 DOI: 10.1186/2041-9139-1-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/05/2010] [Indexed: 01/28/2023] Open
Abstract
Antisense transcripts of Ultrabithorax (aUbx) in the millipede Glomeris and the centipede Lithobius are expressed in patterns complementary to that of the Ubx sense transcripts. A similar complementary expression pattern has been described for non-coding RNAs (ncRNAs) of the bithoraxoid (bxd) locus in Drosophila, in which the transcription of bxd ncRNAs represses Ubx via transcriptional interference. We discuss our findings in the context of possibly conserved mechanisms of Ubx regulation in myriapods and the fly. Bicistronic transcription of Ubx and Antennapedia (Antp) has been reported previously for a myriapod and a number of crustaceans. In this paper, we show that Ubx/Antp bicistronic transcripts also occur in Glomeris and an onychophoran, suggesting further conserved mechanisms of Hox gene regulation in arthropods. Myriapod monophyly is supported by the expression of aUbx in all investigated myriapods, whereas in other arthropod classes, including the Onychophora, aUbx is not expressed. Of the two splice variants of Ubx/Antp only one could be isolated from myriapods, representing a possible further synapomorphy of the Myriapoda.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden.
| | | |
Collapse
|
50
|
Gieni RS, Hendzel MJ. Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer. Biochem Cell Biol 2010; 87:711-46. [PMID: 19898523 DOI: 10.1139/o09-057] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic programming is an important facet of biology, controlling gene expression patterns and the choice between developmental pathways. The Polycomb group proteins (PcGs) silence gene expression, allowing cells to both acquire and maintain identity. PcG silencing is important for stemness, X chromosome inactivation (XCI), genomic imprinting, and the abnormally silenced genes in cancers. Stem and cancer cells commonly share gene expression patterns, regulatory mechanisms, and signalling pathways. Many microRNA species have oncogenic or tumor suppressor activity, and disruptions in these networks are common in cancer; however, long non-coding (nc)RNA species are also important. Many of these directly guide PcG deposition and gene silencing at the HOX locus, during XCI, and in examples of genomic imprinting. Since inappropriate HOX expression and loss of genomic imprinting are hallmarks of cancer, disruption of long ncRNA-mediated PcG silencing likely has a role in oncogenesis. Aberrant silencing of coding and non-coding loci is critical for both the genesis and progression of cancers. In addition, PcGs are commonly abnormally overexpressed years prior to cancer pathology, making early PcG targeted therapy an option to reverse tumor formation, someday replacing the blunt instrument of eradication in the cancer therapy arsenal.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G1Z2, Canada
| | | |
Collapse
|