1
|
Hu HJ, Deng XW, Li RX, Chen DW, Xue C. Inhibition of protein kinase C activity inhibits osteosarcoma metastasis. Arch Med Sci 2019; 15:1028-1034. [PMID: 31360197 PMCID: PMC6657256 DOI: 10.5114/aoms.2018.79450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/21/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION For some cancers bone is the preferred site for metastasis and involves a cascade involving transition of epithelial cells to mesenchymal cells and subsequent intravasation to the blood and lymph vessels, and finally hematogenous dissemination to perivascular niches of the bone marrow sinusoids. It has been shown that protein kinase C can aid metastasis to bone. Hence, pharmacological inhibition of protein kinase C (PKC) activity is thought of as a potential therapeutic option in bone metastatic lesions. The objective of the current study was to investigate how PKCs exert their effect on bone cancer metastasis and to test the efficacy of pharmacological inhibition of PKC on bone metastasis. MATERIAL AND METHODS The effect of the PKC inhibitor Go6983 on epithelial and mesenchymal cell marker expression in the osteosarcoma cell line DAN was determined by immunoblot and immunofluorescence analysis. The in vivo effect of Go6983 was evaluated with a xenograft model using DAN cells. RESULTS Treatment with transforming growth factor β (TGF-β) led to loss of the epithelial cell marker and gain of mesenchymal cell markers in the osteosarcoma cell line, DAN. This transition occurred concomitantly with PKC activation. TGF-β-mediated PKC activation resulted in activation of ribosomal protein 6 (S6), but not S6K1. Pharmacological inhibition of PKC activation attenuated these effects. In a xenograft model of experimental metastasis, pharmacological inhibition of PKC activation over a period of 4 weeks reduced both tumor burden and metastasis to lungs. CONCLUSIONS Our results indicate that PKC potentiates tumor metastasis to the bone by potentiating translation increase and can be putatively inhibited by pharmacological inhibition.
Collapse
Affiliation(s)
- He-Jun Hu
- Nanchang Hongdu Hospital of Traditional Chinese Medicine, Beijing, China
| | - Xiong-Wei Deng
- Nanchang Hongdu Hospital of Traditional Chinese Medicine, Beijing, China
| | - Run-Xiang Li
- Nanchang Hongdu Hospital of Traditional Chinese Medicine, Beijing, China
| | - De-Wang Chen
- Nanchang Hongdu Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chao Xue
- Chinese General PLA Hospital, Beijing, China
| |
Collapse
|
2
|
Sakaguchi M, Murata H, Yamamoto KI, Ono T, Sakaguchi Y, Motoyama A, Hibino T, Kataoka K, Huh NH. TIRAP, an adaptor protein for TLR2/4, transduces a signal from RAGE phosphorylated upon ligand binding. PLoS One 2011; 6:e23132. [PMID: 21829704 PMCID: PMC3148248 DOI: 10.1371/journal.pone.0023132] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/08/2011] [Indexed: 12/20/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is thought to be involved in the pathogenesis of a broad range of inflammatory, degenerative and hyperproliferative diseases. It binds to diverse ligands and activates multiple intracellular signaling pathways. Despite these pivotal functions, molecular events just downstream of ligand-activated RAGE have been surprisingly unknown. Here we show that the cytoplasmic domain of RAGE is phosphorylated at Ser391 by PKCζ upon binding of ligands. TIRAP and MyD88, which are known to be adaptor proteins for Toll-like receptor-2 and -4 (TLR2/4), bound to the phosphorylated RAGE and transduced a signal to downstream molecules. Blocking of the function of TIRAP and MyD88 largely abrogated intracellular signaling from ligand-activated RAGE. Our findings indicate that functional interaction between RAGE and TLRs coordinately regulates inflammation, immune response and other cellular functions.
Collapse
Affiliation(s)
- Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Ken-ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tomoyuki Ono
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yoshihiko Sakaguchi
- Interdisciplinary Research Organization, University of Miyazaki, Kiyotakecho, Miyazaki, Japan
| | | | | | - Ken Kataoka
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Nam-ho Huh
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- * E-mail:
| |
Collapse
|
3
|
Guo W, Wu S, Wang L, Wang RY, Wei X, Liu J, Fang B. Interruption of RNA processing machinery by a small compound, 1-[(4-chlorophenyl)methyl]-1H-indole-3-carboxaldehyde (oncrasin-1). Mol Cancer Ther 2009; 8:441-8. [PMID: 19208825 DOI: 10.1158/1535-7163.mct-08-0839] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein kinase Ciota (PKCiota) is activated by oncogenic Ras proteins and is required for K-Ras-induced transformation and colonic carcinogenesis in vivo. However, the role of PKCiota in signal transduction and oncogenesis is not clear. We recently identified a small molecule, designated 1-[(4-chlorophenyl)methyl]-1H-indole-3-carboxaldehyde (oncrasin-1), that can selectively kill K-Ras mutant cancer cells and induce abnormal nuclear aggregation of PKCiota in sensitive cells but not in resistant cells. To determine the causes and biological consequences of PKCiota aggregates in the nucleus, we analyzed the effect of oncrasin-1 on proteins involved in DNA repair and RNA processing. Our results showed that oncrasin-1 treatment led to coaggregation of PKCiota and splicing factors into megaspliceosomes but had no obvious effects on the DNA repair molecule Rad51. Moreover, oncrasin-1 treatment suppressed the phosphorylation of the largest subunit of RNA polymerase II and the expression of intronless reporter genes in sensitive cells but not in resistant cells, suggesting that suppression of RNA transcription is a major effect of oncrasin-1 treatment. Studies with cultured cells or with recombinant proteins showed that oncrasin-1 can disrupt the interaction of PKCiota and cyclin-dependent protein kinase 9/cyclin T1 complex, which is known to phosphorylate the largest subunit of RNA polymerase II and is required for RNA transcription. Together, our results suggest that oncrasin-1 suppresses the function of RNA processing machinery and that PKCiota might be involved in the biological function of RNA processing complexes.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Breitkreutz D, Braiman-Wiksman L, Daum N, Denning MF, Tennenbaum T. Protein kinase C family: on the crossroads of cell signaling in skin and tumor epithelium. J Cancer Res Clin Oncol 2007; 133:793-808. [PMID: 17661083 DOI: 10.1007/s00432-007-0280-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 07/03/2007] [Indexed: 12/28/2022]
Abstract
The protein kinase C (PKC) family represents a large group of phospholipid dependent enzymes catalyzing the covalent transfer of phosphate from ATP to serine and threonine residues of proteins. Phosphorylation of the substrate proteins induces a conformational change resulting in modification of their functional properties. The PKC family consists of at least ten members, divided into three subgroups: classical PKCs (alpha, betaI, betaII, gamma), novel PKCs (delta, epsilon, eta, theta), and atypical PKCs (zeta, iota/lambda). The specific cofactor requirements, tissue distribution, and cellular compartmentalization suggest differential functions and fine tuning of specific signaling cascades for each isoform. Thus, specific stimuli can lead to differential responses via isoform specific PKC signaling regulated by their expression, localization, and phosphorylation status in particular biological settings. PKC isoforms are activated by a variety of extracellular signals and, in turn, modify the activities of cellular proteins including receptors, enzymes, cytoskeletal proteins, and transcription factors. Accordingly, the PKC family plays a central role in cellular signal processing. Accumulating data suggest that various PKC isoforms participate in the regulation of cell proliferation, differentiation, survival and death. These findings have enabled identification of abnormalities in PKC isoform function, as they occur in several cancers. Specifically, the initiation of squamous cell carcinoma formation and progression to the malignant phenotype was found to be associated with distinct changes in PKC expression, activation, distribution, and phosphorylation. These studies were recently further extended to transgenic and knockout animals, which allowed a more direct analysis of individual PKC functions. Accordingly, this review is focused on the involvement of PKC in physiology and pathology of the skin.
Collapse
Affiliation(s)
- D Breitkreutz
- Division of Differentiation and Carcinogenesis (A080/A110), German Cancer Research Center (DKFZ), POB 101949, Im Neuenheimer Feld 280, 69009, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
5
|
Tsumura H, Yoshida T, Saito H, Imanaka-Yoshida K, Suzuki N. Cooperation of oncogenic K-ras and p53 deficiency in pleomorphic rhabdomyosarcoma development in adult mice. Oncogene 2006; 25:7673-9. [PMID: 16785989 DOI: 10.1038/sj.onc.1209749] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human rhabdomyosarcomas (RMSs) frequently demonstrate genetic alterations in ras and p53. To investigate their possible involvement in the tumorigenesis, we generated a knock-in mouse line with oncogenic K-ras, conditionally expressed by Cre/LoxP system on a background of p53 alteration. Electroporation of Cre expression vector in skeletal muscle tissues resulted in the generation of tumor in adults with tumor incidences of 100% at 10 weeks and 40% at 15 weeks, in p53(-/-) and p53(-/+) backgrounds, respectively. The tumor histology was pleomorphic RMS with characteristic bizarre giant cells, positive for desmin and alpha-sarcomeric actin and exhibiting remarkable increase in total and phosphorylated extracellular signal-regulated protein kinase (ERK)1 and ERK2. Loss of the wild-type p53 was detected in K-rasG12V-expressed tumors of p53(-/+) mice. Early lesions 3 weeks after electroporation consisted of proliferating populations of myogenic progenitors, including stem cells positive for ScaI antigen, immature cells positive for desmin and neural cell adhesion molecule-positive myotubes. Thus, cooperation of oncogenic K-ras and p53 deficiency resulted in the development of pleomorphic RMS in adult mice, providing a useful mouse model for further detailed studies.
Collapse
Affiliation(s)
- H Tsumura
- Department of Animal Genomics, Functional Genomics Institute, Mie University Life Science Research Center, Tsu, Mie, Japan
| | | | | | | | | |
Collapse
|
6
|
Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DDW, Fedorov YV, Olwin BB. The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. ACTA ACUST UNITED AC 2005; 169:105-16. [PMID: 15824134 PMCID: PMC2171902 DOI: 10.1083/jcb.200408066] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatic stem cells cycle slowly or remain quiescent until required for tissue repair and maintenance. Upon muscle injury, stem cells that lie between the muscle fiber and basal lamina (satellite cells) are activated, proliferate, and eventually differentiate to repair the damaged muscle. Satellite cells in healthy muscle are quiescent, do not express MyoD family transcription factors or cell cycle regulatory genes and are insulated from the surrounding environment. Here, we report that the p38α/β family of mitogen-activated protein kinases (MAPKs) reversibly regulates the quiescent state of the skeletal muscle satellite cell. Inhibition of p38α/β MAPKs (a) promotes exit from the cell cycle, (b) prevents differentiation, and (c) insulates the cell from most external stimuli allowing the satellite cell to maintain a quiescent state. Activation of satellite cells and p38α/β MAPKs occurs concomitantly, providing further support that these MAPKs function as a molecular switch for satellite cell activation.
Collapse
Affiliation(s)
- Nathan C Jones
- Bayer Corporation, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Belcheva MM, Clark AL, Haas PD, Serna JS, Hahn JW, Kiss A, Coscia CJ. Mu and kappa opioid receptors activate ERK/MAPK via different protein kinase C isoforms and secondary messengers in astrocytes. J Biol Chem 2005; 280:27662-9. [PMID: 15944153 PMCID: PMC1400585 DOI: 10.1074/jbc.m502593200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acute mu and kappa opioids activate the ERK/MAPK phosphorylation cascade that represents an integral part of the signaling pathway of growth factors in astrocytes. By this cross-talk, opioids may impact neural development and plasticity among other basic neurobiological processes in vivo. The mu agonist, [D-ala2,mephe4,glyol5]enkephalin (DAMGO), induces a transient stimulation of ERK phosphorylation, whereas kappa agonist, U69,593, engenders sustained ERK activation. Here we demonstrate that acute U69,593 and DAMGO stimulate ERK phosphorylation by utilization of different secondary messengers and protein kinase C (PKC) isoforms upstream of the growth factor pathway. Immortalized astrocytes transfected with either antisense calmodulin (CaM), a mutant mu opioid receptor that binds CaM poorly or a dominant negative mutant of PKCepsilon were used as a model system to study mu signaling. Evidence was gained to implicate CaM and PKCepsilon in DAMGO stimulation of ERK. DAMGO activation of PKCepsilon and/or ERK was insensitive to selective inhibitors of Ca2+ mobilization, but it was blocked upon phospholipase C inhibition. These results suggest a novel mechanism wherein, upon DAMGO binding, CaM is released from the mu receptor and activates phospholipase C. Subsequently, phospholipase C generates diacylglycerides that activate PKCepsilon. In contrast, U69,593 appears to act via phosphoinositide 3-kinase, PKCzeta, and Ca2+ mobilization. These signaling components were implicated based on studies with specific inhibitors and a dominant negative mutant of PKCzeta. Collectively, our findings on acute opioid effects suggest that differences in their mechanism of signaling may contribute to the distinct outcomes on ERK modulation induced by chronic mu and kappa opioids.
Collapse
Affiliation(s)
- Mariana M Belcheva
- E. A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Washington TA, Reecy JM, Thompson RW, Lowe LL, McClung JM, Carson JA. Lactate dehydrogenase expression at the onset of altered loading in rat soleus muscle. J Appl Physiol (1985) 2005; 97:1424-30. [PMID: 15358753 DOI: 10.1152/japplphysiol.00222.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Both functional overload and hindlimb disuse induce significant energy-dependent remodeling of skeletal muscle. Lactate dehydrogenase (LDH), an important enzyme involved in anaerobic glycolysis, catalyzes the interconversion of lactate and pyruvate critical for meeting rapid high-energy demands. The purpose of this study was to determine rat soleus LDH-A and -B isoform expression, mRNA abundance, and enzymatic activity at the onset of increased or decreased loading in the rat soleus muscle. The soleus muscles from male Sprague-Dawley rats were functionally overloaded for up to 3 days by a modified synergist ablation or subjected to disuse by hindlimb suspension for 3 days. LDH mRNA concentration was determined by Northern blotting, LDH protein isoenzyme composition was determined by zymogram analysis, and LDH enzymatic activity was determined spectrophotometrically. LDH-A mRNA abundance increased by 372%, and LDH-B mRNA abundance decreased by 43 and 31% after 24 h and 3 days of functional overload, respectively, compared with that in control rats. LDH protein expression demonstrated a shift by decreasing LDH-B isoforms and increasing LDH-A isoforms. LDH-B activity decreased 80% after 3 days of functional overload. Additionally, LDH-A activity increased by 234% following 3 days of hindlimb suspension. However, neither LDH-A or LDH-B mRNA abundance was affected following 3 days of hindlimb suspension. In summary, the onset of altered loading induced a differential expression of LDH-A and -B in the rat soleus muscle, favoring rapid energy production. Long-term altered loading is associated with myofiber conversion; however, the rapid changes in LDH at the onset of altered loading may be involved in other physiological processes.
Collapse
Affiliation(s)
- Tyrone A Washington
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina 29208, USA
| | | | | | | | | | | |
Collapse
|
9
|
Draeger A, Monastyrskaya K, Burkhard FC, Wobus AM, Moss SE, Babiychuk EB. Membrane segregation and downregulation of raft markers during sarcolemmal differentiation in skeletal muscle cells. Dev Biol 2003; 262:324-34. [PMID: 14550795 DOI: 10.1016/s0012-1606(03)00398-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Muscle contraction implies flexibility in combination with force resistance and requires a high degree of sarcolemmal organization. Smooth muscle cells differentiate largely from mesenchymal precursor cells and gradually assume a highly periodic sarcolemmal organization. Skeletal muscle undergoes an even more striking differentiation programme, leading to cell fusion and alignment into myofibrils. The lipid bilayer of each cell type is further segregated into raft and non-raft microdomains of distinct lipid composition. Considering the extent of developmental rearrangement in skeletal muscle, we investigated sarcolemmal microdomain organization in skeletal and smooth muscle cells. The rafts in both muscle types are characterized by marker proteins belonging to the annexin family which localize to the inner membrane leaflet, as well as glycosyl-phosphatidyl-inositol (GPI)-anchored enzymes attached to the outer leaflet. We demonstrate that the profound structural rearrangements that occur during skeletal muscle maturation coincide with a striking decrease in membrane lipid segregation, downregulation of annexins 2 and 6, and a significant decrease in raft-associated 5'-nucleotidase activity. The relative paucity of lipid rafts in mature skeletal in contrast to smooth muscle suggests that the organization of sarcolemmal microdomains contributes to the muscle-specific differences in stimulatory responses and contractile properties.
Collapse
Affiliation(s)
- A Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
10
|
Wozniak AC, Pilipowicz O, Yablonka-Reuveni Z, Greenway S, Craven S, Scott E, Anderson JE. C-Met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 2003; 51:1437-1445. [PMID: 14566016 PMCID: PMC3957553 DOI: 10.1177/002215540305101104] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 06/18/2003] [Indexed: 11/15/2022] Open
Abstract
Single-fiber cultures can be used to model satellite cell activation in vivo. Although technical deficiencies previously prevented study of stretch-induced events, here we describe a method developed to study satellite cell gene expression by in situ hybridization (ISH) using protocol modifications for fiber adhesion and fixation. The hypothesis that mechanical stretching activates satellite cells was tested. Fiber cultures were established from normal flexor digitorum brevis muscles and plated on FlexCell dishes with a layer of Vitrogen. After 2 hr of stretch in the presence of BrdU, satellite cells on fibers attached to Vitrogen were activated above control levels. In the absence of activating treatments or mechanical stretch, ISH studies showed 0-6 c-Met+ satellite cells per fiber. Time course experiments demonstrated stable quiescence in the absence of stretch and significant peaks in activation after 30 min and 2 hr of stretch. Frequency distributions for unstretched fiber cultures showed a significantly greater number of quiescent c-Met+ satellite cells than were activated by stretching, suggesting that typical activation stimuli did not trigger cycling in the entire c-Met+ population of satellite cells. These methods have a strong potential to further dissect the nature of stretch-induced activation and gene expression among characterized populations of individual quiescent and activated satellite cells.
Collapse
Affiliation(s)
- Ashley C Wozniak
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, 730 William Avenue, Winnipeg, Manitoba R3E 0W3, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 2003; 4:147-58. [PMID: 12957289 DOI: 10.1016/s1535-6108(03)00187-9] [Citation(s) in RCA: 408] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Inactivation of the TSC2 tumor suppressor protein causes tuberous sclerosis complex (TSC), a disease characterized by highly vascular tumors. TSC2 has multiple functions including inhibition of mTOR (mammalian target of Rapamycin). We found that TSC2 regulates VEGF through mTOR-dependent and -independent pathways. TSC2 loss results in the accumulation of HIF-1alpha and increased expression of HIF-responsive genes including VEGF. Wild-type TSC2, but not a disease-associated TSC2 mutant, downregulates HIF. Rapamycin normalizes HIF levels in TSC2(-/-) cells, indicating that TSC2 regulates HIF by inhibiting mTOR. In contrast, Rapamycin only partially downregulates VEGF in this setting, implying an mTOR-independent link between TSC2 loss and VEGF. This pathway may involve chromatin remodeling since the HDAC inhibitor Trichostatin A downregulates VEGF in TSC2(-/-) cells.
Collapse
Affiliation(s)
- James B Brugarolas
- Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|