1
|
Sha L, Zhao Y, Li S, Wei D, Tao Y, Wang Y. Insights to Ang/Tie signaling pathway: another rosy dawn for treating retinal and choroidal vascular diseases. J Transl Med 2024; 22:898. [PMID: 39367441 PMCID: PMC11451039 DOI: 10.1186/s12967-024-05441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/27/2024] [Indexed: 10/06/2024] Open
Abstract
Retinal neurovascular unit (NVU) is a multi-cellular structure that consists of the functional coupling between neural tissue and vascular system. Disrupted NVU will result in the occurrence of retinal and choroidal vascular diseases, which are characterized by the development of neovascularization, increased vascular permeability, and inflammation. This pathological entity mainly includes neovascular age-related macular degeneration (neovascular-AMD), diabetic retinopathy (DR) retinal vein occlusion (RVO), and retinopathy of prematurity (ROP). Emerging evidences suggest that the angopoietin/tyrosine kinase with immunoglobulin and epidermal growth factor homology domains (Ang/Tie) signaling pathway is essential for the development of retinal and choroidal vascular. Tie receptors and their downstream pathways play a key role in modulating the vascular development, vascular stability, remodeling and angiogenesis. Angiopoietin 1 (Ang1) is a natural agonist of Tie2 receptor, which can promote vascular stability. On the other hand, angiopoietin 2 (Ang2) is an antagonist of Tie2 receptor that causes vascular instability. Currently, agents targeting the Ang/Tie signaling pathway have been used to inhibit neovascularization and vascular leakage in neovascular-AMD and DR animal models. Particularly, the AKB-9778 and Faricimab have shown promising efficacy in improving visual acuity in patients with neovascular-AMD and DR. These experimental and clinical evidences suggest that activation of Ang/Tie signaling pathway can inhibit the vascular permeability, neovascularization, thereby maintaining the normal function and structure of NVU. This review seeks to introduce the versatile functions and elucidate the modulatory mechanisms of Ang/Tie signaling pathway. Recent pharmacologic therapies targeting this pathway are also elaborated and summarized. Further translation of these findings may afford a new therapeutic strategy from bench to bedside.
Collapse
Affiliation(s)
- Lulu Sha
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yameng Zhao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Dong Wei
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Yange Wang
- Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Shin J, Ahn SH, Oh DJ. Pseudomonas aeruginosa N-3-Oxododecanoyl Homoserine Lactone Disrupts Endothelial Integrity by Activating the Angiopoietin-Tie System. Cell Biochem Biophys 2024; 82:1555-1566. [PMID: 38762714 DOI: 10.1007/s12013-024-01307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
The activation of the angiopoietin (Angpt)-Tie system is linked to endothelial dysfunction during sepsis. Bacterial quorum-sensing molecules function as pathogen-associated molecular patterns. However, their impact on the endothelium and the Angpt-Tie system remains unclear. Therefore, this study investigated whether treatment with N-3-oxododecanoyl homoserine lactone (3OC12-HSL), a quorum-sensing molecule derived from Pseudomonas aeruginosa, impaired endothelial function in human umbilical vein endothelial cells. 3OC12-HSL treatment impaired tube formation even at sublethal concentrations, and immunocytochemistry analysis revealed that it seemed to reduce vascular endothelial-cadherin expression at the cell-cell interface. Upon assessing the mRNA expression patterns of genes associated with the Angpt-Tie axis, the expressions of Angpt2, Forkhead box protein O1, Tie1, and vascular endothelial growth factor 2 were found to be upregulated in the 3OC12-HSL-treated cells. Moreover, western blot analysis revealed that 3OC12-HSL treatment increased Angpt2 expression. A co-immunoprecipitation assay was conducted to assess the effect of 3OC12-HSL on the IQ motif containing GTPase activating protein 1 (IQGAP1) and Rac1 complex and the interaction between these proteins was consistently maintained regardless of 3OC12-HSL treatment. Next, recombinant human (rh)-Angpt1 was added to assess whether it modulated the effects of 3OC12-HSL treatment. rh-Angpt1 addition increased cellular viability, improved endothelial function, and reversed the overall patterns of mRNA and protein expression in endothelial cells treated with 3OC12-HSL. Additionally, it was related to the increased expression of phospho-Akt and the IQGAP1 and Rac1 complex. Collectively, our findings indicated that 3OC12-HSL from Pseudomonas aeruginosa can impair endothelial integrity via the activation of the Angpt-Tie axis, which appeared to be reversed by rh-Angpt1 treatment.
Collapse
Affiliation(s)
- Jungho Shin
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Sun Hee Ahn
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Dong-Jin Oh
- Department of Internal Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, South Korea.
| |
Collapse
|
3
|
Brouillard P, Murtomäki A, Leppänen VM, Hyytiäinen M, Mestre S, Potier L, Boon LM, Revencu N, Greene A, Anisimov A, Salo MH, Hinttala R, Eklund L, Quéré I, Alitalo K, Vikkula M. Loss-of-function mutations of the TIE1 receptor tyrosine kinase cause late-onset primary lymphedema. J Clin Invest 2024; 134:e173586. [PMID: 38820174 PMCID: PMC11245153 DOI: 10.1172/jci173586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/24/2024] [Indexed: 06/02/2024] Open
Abstract
Primary lymphedema (PL), characterized by tissue swelling, fat accumulation, and fibrosis, results from defects in lymphatic vessels or valves caused by mutations in genes involved in development, maturation, and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodeling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability, and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR/Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2/TIE1 pathway in lymphatic function.
Collapse
Affiliation(s)
- Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Aino Murtomäki
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sandrine Mestre
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Lucas Potier
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M. Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, University of Louvain, VASCERN-VASCA Reference Centre, Brussels, Belgium
| | - Nicole Revencu
- Center for Human Genetics, Cliniques Universitaires Saint-Luc, University of Louvain, Brussels, Belgium
| | - Arin Greene
- Department of Plastic and Oral Surgery, Lymphedema Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrey Anisimov
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miia H. Salo
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Reetta Hinttala
- Biocenter Oulu, Research Unit of Clinical Medicine and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Isabelle Quéré
- Department of Vascular Medicine, Centre de Référence des Maladies Lymphatiques et Vasculaires Rares, Inserm IDESP, CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
- WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
4
|
Sato-Nishiuchi R, Doiguchi M, Morooka N, Sekiguchi K. Polydom/SVEP1 binds to Tie1 and promotes migration of lymphatic endothelial cells. J Cell Biol 2023; 222:e202208047. [PMID: 37338522 PMCID: PMC10281526 DOI: 10.1083/jcb.202208047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Polydom is an extracellular matrix protein involved in lymphatic vessel development. Polydom-deficient mice die immediately after birth due to defects in lymphatic vessel remodeling, but the mechanism involved is poorly understood. Here, we report that Polydom directly binds to Tie1, an orphan receptor in the Angiopoietin-Tie axis, and facilitates migration of lymphatic endothelial cells (LECs) in a Tie1-dependent manner. Polydom-induced LEC migration is diminished by PI3K inhibitors but not by an ERK inhibitor, suggesting that the PI3K/Akt signaling pathway is involved in Polydom-induced LEC migration. In line with this possibility, Akt phosphorylation in LECs is enhanced by Polydom although no significant Tie1 phosphorylation is induced by Polydom. LECs also exhibited nuclear exclusion of Foxo1, a signaling event downstream of Akt activation, which was impaired in Polydom-deficient mice. These findings indicate that Polydom is a physiological ligand for Tie1 and participates in lymphatic vessel development through activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| | - Masamichi Doiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| | - Nanami Morooka
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University , Suita, Japan
| |
Collapse
|
5
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
6
|
Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, Zhang Y, Stritt S, Liaqat I, Stanczuk L, Alderfer L, Sun Z, Kapiainen E, Singh A, Sultan I, Lantta A, Leppänen VM, Eklund L, He Y, Augustin HG, Vaahtomeri K, Saharinen P, Mäkinen T, Alitalo K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell surface expression. J Clin Invest 2022; 132:155478. [PMID: 35763346 PMCID: PMC9337826 DOI: 10.1172/jci155478] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C–induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110α subunit or with small-molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C–induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.
Collapse
Affiliation(s)
- Emilia A Korhonen
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Aino Murtomäki
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Anne Pink
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Yan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Inam Liaqat
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Lukas Stanczuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Laura Alderfer
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Zhiliang Sun
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Emmi Kapiainen
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Ibrahim Sultan
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Anni Lantta
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Lauri Eklund
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Yulong He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | - Kari Vaahtomeri
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Roudi R, Beikzadeh B, Roviello G, D'angelo A, Hadizadeh M. Identification of hub genes, modules and biological pathways associated with lung adenocarcinoma: A system biology approach. GENE REPORTS 2022; 27:101638. [DOI: 10.1016/j.genrep.2022.101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Meltzer M, Eliash N, Azoulay Z, Hadad U, Papo N. In vitro inhibition of cancer angiogenesis and migration by a nanobody that targets the orphan receptor Tie1. Cell Mol Life Sci 2022; 79:312. [PMID: 35604495 PMCID: PMC11072481 DOI: 10.1007/s00018-022-04336-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
The human signaling molecules Tie1 and Tie2 receptor tyrosine kinases (RTKs) play important pathophysiological roles in many diseases, including different cancers. The activity of Tie1 is mediated mainly through the downstream angiopoietin-1 (Ang1)-dependent activation of Tie2, rendering both Tie 1 and the Tie1/Tie2/Ang1 axis attractive putative targets for therapeutic intervention. However, the development of inhibitors that target Tie1 and an understanding of their effect on Tie2 and on the Tie1/Tie2/Ang1 axis remain unfulfilled tasks, due, largely, to the facts that Tie1 is an orphan receptor and is difficult to produce and use in the quantities required for immune antibody library screens. In a search for a selective inhibitor of this orphan receptor, we sought to exploit the advantages (e.g., small size that allows binding to hidden epitopes) of non-immune nanobodies and to simultaneously overcome their limitations (i.e., low expression and stability). We thus performed expression, stability, and affinity screens of yeast-surface-displayed naïve and predesigned synthetic (non-immune) nanobody libraries against the Tie1 extracellular domain. The screens yielded a nanobody with high expression and good affinity and specificity for Tie1, thereby yielding preferential binding for Tie1 over Tie2. The stability, selectivity, potency, and therapeutic potential of this synthetic nanobody were profiled using in vitro and cell-based assays. The nanobody triggered Tie1-dependent inhibition of RTK (Tie2, Akt, and Fak) phosphorylation and angiogenesis in endothelial cells, as well as suppression of human glioblastoma cell viability and migration. This study opens the way to developing nanobodies as therapeutics for different cancers associated with Tie1 activation.
Collapse
Affiliation(s)
- May Meltzer
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Noam Eliash
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Ziv Azoulay
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, 1 Ben-Gurion Avenue, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
9
|
Song X, Yu Y, Leng Y, Ma L, Mu J, Wang Z, Xu Y, Zhu H, Qiu X, Li P, Li J, Wang D. Expanding tubular microvessels on stiff substrates with endothelial cells and pericytes from the same adult tissue. J Tissue Eng 2022; 13:20417314221125310. [PMID: 36171979 PMCID: PMC9511303 DOI: 10.1177/20417314221125310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022] Open
Abstract
Endothelial cells (ECs) usually form a monolayer on two-dimensional (2D) stiff substrates and a tubular structure with soft hydrogels. The coculture models using ECs and pericytes derived from different adult tissues or pluripotent stem cells cannot mimic tissue-specific microvessels due to vascular heterogeneity. Our study established a method for expanding tubular microvessels on 2D stiff substrates with ECs and pericytes from the same adult tissue. We isolated microvessels from adult rat subcutaneous soft connective tissue and cultured them in the custom-made tubular microvascular growth medium on 2D stiff substrates (TGM2D). TGM2D promoted adult microvessel growth for at least 4 weeks and maintained a tubular morphology, contrary to the EC monolayer in the commercial medium EGM2MV. Transcriptomic analysis showed that TGM2D upregulated angiogenesis and vascular morphogenesis while suppressing oxidation and lipid metabolic pathways. Our method can be applied to other organs for expanding organ-specific microvessels for tissue engineering.
Collapse
Affiliation(s)
- Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yali Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yu Leng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Jie Mu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Pharmacy, Medical College, and Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, Qingdao, China
| | - Zihan Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
10
|
Sen S, Hallee L, Lam CK. The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases. J Pers Med 2021; 11:jpm11121294. [PMID: 34945766 PMCID: PMC8703931 DOI: 10.3390/jpm11121294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Heart diseases are some of the most common and pressing threats to human health worldwide. The American Heart Association and the National Institute of Health jointly work to annually update data on cardiac diseases. In 2018, 126.9 million Americans were reported as having some form of cardiac disorder, with an estimated direct and indirect total cost of USD 363.4 billion. This necessitates developing therapeutic interventions for heart diseases to improve human life expectancy and economic relief. In this review, we look into gamma-secretase as a potential therapeutic target for cardiac diseases. Gamma-secretase, an aspartyl protease enzyme, is responsible for the cleavage and activation of a number of substrates that are relevant to normal cardiac development and function as found in mutation studies. Some of these substrates are involved in downstream signaling processes and crosstalk with pathways relevant to heart diseases. Most of the substrates and signaling events we explored were found to be potentially beneficial to maintain cardiac function in diseased conditions. This review presents an updated overview of the current knowledge on gamma-secretase processing of cardiac-relevant substrates and seeks to understand if the modulation of gamma-secretase activity would be beneficial to combat cardiac diseases.
Collapse
Affiliation(s)
- Sujoita Sen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Logan Hallee
- Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA;
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Correspondence: ; Tel.: +1-302-831-3165
| |
Collapse
|
11
|
Khanani AM, Russell MW, Aziz AA, Danzig CJ, Weng CY, Eichenbaum DA, Singh RP. Angiopoietins as Potential Targets in Management of Retinal Disease. Clin Ophthalmol 2021; 15:3747-3755. [PMID: 34511878 PMCID: PMC8427682 DOI: 10.2147/opth.s231801] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
The Ang/Tie2 pathway complements VEGF-mediated activity in retinal vascular diseases such as DME, AMD, and RVO by decreasing vascular integrity, increasing neovascularization, and increasing inflammatory signaling. Faricimab is a bispecific antibody that has been developed as an inhibitor of both VEGF and Ang2 that has shown positive results in phase I, II and III trials. Recent Year 1 data from phase III clinical trials YOSEMITE, RHINE, TENAYA, and LUCERNE have confirmed the efficacy, safety, durability, and superiority of faricimab in patients with DME and nAMD. Faricimab, if approved, may significantly decrease treatment burden in patients with retinal vascular diseases to a greater extent than would current standard of care anti-VEGF injections.
Collapse
Affiliation(s)
- Arshad M Khanani
- Sierra Eye Associates, Reno, NV, USA
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Matthew W Russell
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aamir A Aziz
- Sierra Eye Associates, Reno, NV, USA
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Carl J Danzig
- Rand Eye Institute, Deerfield, FLA, USA
- Florida Atlantic University, Charles E. Schmidt College of Medicine, Boca Raton, FL, USA
| | | | - David A Eichenbaum
- Retina Vitreous Associates of Florida, St Petersburg, FLA, USA
- University of South Florida Morsani College of Medicine, Tampa, FLA, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
12
|
Zhang Y, Kontos CD, Annex BH, Popel AS. A systems biology model of junctional localization and downstream signaling of the Ang-Tie signaling pathway. NPJ Syst Biol Appl 2021; 7:34. [PMID: 34417472 PMCID: PMC8379279 DOI: 10.1038/s41540-021-00194-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/04/2021] [Indexed: 01/20/2023] Open
Abstract
The Ang–Tie signaling pathway is an important vascular signaling pathway regulating vascular growth and stability. Dysregulation in the pathway is associated with vascular dysfunction and numerous diseases that involve abnormal vascular permeability and endothelial cell inflammation. The understanding of the molecular mechanisms of the Ang–Tie pathway has been limited due to the complex reaction network formed by the ligands, receptors, and molecular regulatory mechanisms. In this study, we developed a mechanistic computational model of the Ang–Tie signaling pathway validated against experimental data. The model captures and reproduces the experimentally observed junctional localization and downstream signaling of the Ang–Tie signaling axis, as well as the time-dependent role of receptor Tie1. The model predicts that Tie1 modulates Tie2’s response to the context-dependent agonist Ang2 by junctional interactions. Furthermore, modulation of Tie1’s junctional localization, inhibition of Tie2 extracellular domain cleavage, and inhibition of VE-PTP are identified as potential molecular strategies for potentiating Ang2’s agonistic activity and rescuing Tie2 signaling in inflammatory endothelial cells.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Christopher D Kontos
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Brian H Annex
- Department of Medicine and the Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
13
|
Li M, Qi Z, Zhang J, Zhu K, Wang Y. Effect and Mechanism of Si-Miao-Yong-An on Vasa Vasorum Remodeling in ApoE -/- Mice with Atherosclerosis Vulnerable Plague. Front Pharmacol 2021; 12:634611. [PMID: 33935723 PMCID: PMC8080061 DOI: 10.3389/fphar.2021.634611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/26/2021] [Indexed: 01/20/2023] Open
Abstract
Objective: To observe the effect of Si-Miao-Yong-An (SMYA) on atherosclerosis (AS) vulnerable plaques, and to further explore the mechanism by vasa vasorum (VV) angiogenesis and maturation as an entry point. Methods: SPF-class healthy male ApoE−/− mice were randomized into model group, simvastatin group and SMYA group, and C57BL/6 mice were used as the control group. After 8 weeks of intervention, the pathological morphology of plaque was observed by HE staining; the VV density in plaque and aortic adventitia were observed by immunohistochemistry; VV maturation was measured by double-labelling immunofluorescence; the critical proteins of HIF-1α-Apelin/APJ and Ang-1/Tie signal pathways were detected by western blotting. Results: SMYA decreased the plaque area and the ratio of plaque to lumen area; increased the minimum thickness of fibrous cap and its effect was greater than simvastatin. SMYA suppressed the VV neovascularization; promoted smooth muscle cells recruitment and VV maturation, which maintained plaque stability; its effect was obviously superior to simvastatin. SMYA deceased the expression of HIF-1α, Apelin, APJ, Phospho-MEK1/2 (Ser217/221), Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204), Phospho-p70 S6 Kinase (Thr421/Ser424), Ang-2 and Tie-2; it also increased the expression of Ang-1, Phospho-Akt (Ser473), Phospho-FOXO1 (Ser256) and Survivin. Conclusions: SMYA can decrease the AS plaque area in ApoE−/− mice, suppress the VV neovascularization and promote the VV maturation, and stabilize AS vulnerable plaque. The mechanism could be regulating the HIF-1α-Apelin/APJ and Ang-1/Tie signal pathways.
Collapse
Affiliation(s)
- Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongwen Qi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ke Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yueyao Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Lambrou GI, Adamaki M, Hatziagapiou K, Vlahopoulos S. Gene Expression and Resistance to Glucocorticoid-Induced Apoptosis in Acute Lymphoblastic Leukemia: A Brief Review and Update. Curr Drug Res Rev 2021; 12:131-149. [PMID: 32077838 DOI: 10.2174/2589977512666200220122650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/29/2019] [Accepted: 01/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Resistance to glucocorticoid (GC)-induced apoptosis in Acute Lymphoblastic Leukemia (ALL), is considered one of the major prognostic factors for the disease. Prednisolone is a corticosteroid and one of the most important agents in the treatment of acute lymphoblastic leukemia. The mechanics of GC resistance are largely unknown and intense ongoing research focuses on this topic. AIM The aim of the present study is to review some aspects of GC resistance in ALL, and in particular of Prednisolone, with emphasis on previous and present knowledge on gene expression and signaling pathways playing a role in the phenomenon. METHODS An electronic literature search was conducted by the authors from 1994 to June 2019. Original articles and systematic reviews selected, and the titles and abstracts of papers screened to determine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. RESULTS Identification of gene targets responsible for glucocorticoid resistance may allow discovery of drugs, which in combination with glucocorticoids may increase the effectiveness of anti-leukemia therapies. The inherent plasticity of clinically evolving cancer justifies approaches to characterize and prevent undesirable activation of early oncogenic pathways. CONCLUSION Study of the pattern of intracellular signal pathway activation by anticancer drugs can lead to development of efficient treatment strategies by reducing detrimental secondary effects.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Athens, Greece
| |
Collapse
|
15
|
Nguyen QD, Heier JS, Do DV, Mirando AC, Pandey NB, Sheng H, Heah T. The Tie2 signaling pathway in retinal vascular diseases: a novel therapeutic target in the eye. Int J Retina Vitreous 2020; 6:48. [PMID: 33072401 PMCID: PMC7557096 DOI: 10.1186/s40942-020-00250-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Retinal vascular diseases such as neovascular age-related macular degeneration, diabetic retinopathy and/or diabetic macular edema, and retinal vein occlusion with macular edema—share several key pathophysiologic aspects including neovascularization, vascular permeability, and inflammation. The role of vascular endothelial growth factor (VEGF) in these processes, and the therapeutic benefits of VEGF inhibition, have been well characterized. Anti-VEGF therapy is highly effective for many patients but is not uniformly effective in all patients and imposes a significant treatment burden. More recently, the role of the Tie2 signaling pathway in the pathophysiology of retinal vascular diseases has been investigated, and the Tie2 pathway represents a novel therapeutic target for these conditions. Areas covered The index review describes the Tie2 pathway and its complementary role to the VEGF pathway in the angiogenesis cascade and will summarize studies of molecules in development to therapeutically modulate the Tie2 pathway in retinal vascular diseases. Conclusions Activation of the Tie2 pathway leads to downstream signaling that promotes vascular health and stability and decreases vascular permeability and inflammation. AXT107 is a collagen IV–derived synthetic peptide with a dual mechanism of action that involves suppression of VEGF signaling and activation of the Tie2 pathway; these actions are accomplished by AXT107 binding to and disrupting different integrin, leading to blockade of the VEGF receptor and rearrangement of cellular Tie2 rendering it susceptible to Ang2 agonism. Other Tie2 agonist compounds are also in development, including faricimab and razuprotafib. Tie2 activation only modestly impacts angiogenesis on its own but significantly potentiates VEGF suppression. Co-regulation of the VEGF and Tie2 signaling pathways has the potential to improve functional and structural outcomes in eyes with retinal vascular diseases.
Collapse
Affiliation(s)
- Quan Dong Nguyen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA 94303 USA
| | | | - Diana V Do
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, 2370 Watson Court, Suite 200, Palo Alto, CA 94303 USA
| | | | | | - Huan Sheng
- AsclepiX Therapeutics, Baltimore, MD USA
| | | |
Collapse
|
16
|
Zhang X, Ishibashi M, Kitatani K, Shigeta S, Tokunaga H, Toyoshima M, Shimada M, Yaegashi N. Potential of Tyrosine Kinase Receptor TIE-1 as Novel Therapeutic Target in High-PI3K-Expressing Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061705. [PMID: 32604863 PMCID: PMC7352248 DOI: 10.3390/cancers12061705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
Tyrosine kinase receptor TIE-1 plays a critical role in angiogenesis and blood-vessel stability. In recent years, increased TIE-1 expression has been observed in many types of cancers; however, the biological significance and underlying mechanisms remain unknown. Thus, in the present study, we investigated the tumor biological functions of TIE-1 in ovarian cancer. The treatment of SKOV3 ovarian-cancer cells with siRNA against TIE-1 decreased the expression of key molecules in the PI3K/Akt signaling pathway, such as p110α and phospho-Akt, suggesting that TIE-1 is related to the PI3K/Akt pathway. Furthermore, the knockdown of TIE-1 significantly decreased cell proliferation in high-PI3K-expressing cell lines (SKOV3, CAOV3) but not low-PI3K-expressing cell lines (TOV112D, A2780). These results suggested that inhibition of TIE-1 decreases cell growth in high-PI3K-expressing cells. Moreover, in low-PI3K-expressing TOV112D ovarian-cancer cells, TIE-1 overexpression induced PI3K upregulation and promoted a PI3K-mediated cell proliferative phenotype. Mechanistically, TIE-1 participates in cell growth and proliferation by regulating the PI3K/Akt signaling pathway. Taken together, our findings strongly implicate TIE-1 as a novel therapeutic target in high-PI3K-expressing ovarian-cancer cells.
Collapse
Affiliation(s)
- Xuewei Zhang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 119077, Singapore
- Correspondence: ; Tel.: +81-022-717-7251; Fax: +81-022-717-7258
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 572-8508, Japan;
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| | - Hideki Tokunaga
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| | - Masafumi Toyoshima
- Department of Obstetrics and Gynecology, Japanese Red Cross Ishinomaki Hospital, Ishinomaki 986-8522, Japan;
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai 980-8577, Japan; (X.Z.); (S.S.); (H.T.); (M.S.); (N.Y.)
| |
Collapse
|
17
|
García-Aranda M, Redondo M. Targeting Protein Kinases to Enhance the Response to anti-PD-1/PD-L1 Immunotherapy. Int J Mol Sci 2019; 20:E2296. [PMID: 31075880 PMCID: PMC6540309 DOI: 10.3390/ijms20092296] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
The interaction between programmed cell death protein (PD-1) and its ligand (PD-L1) is one of the main pathways used by some tumors to escape the immune response. In recent years, immunotherapies based on the use of antibodies against PD-1/PD-L1 have been postulated as a great promise for cancer treatment, increasing total survival compared to standard therapy in different tumors. Despite the hopefulness of these results, a significant percentage of patients do not respond to such therapy or will end up evolving toward a progressive disease. Besides their role in PD-L1 expression, altered protein kinases in tumor cells can limit the effectiveness of PD-1/PD-L1 blocking therapies at different levels. In this review, we describe the role of kinases that appear most frequently altered in tumor cells and that can be an impediment for the success of immunotherapies as well as the potential utility of protein kinase inhibitors to enhance the response to such treatments.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, Hospital Costa del Sol. Autovía A7, km 187. Marbella, 29603 Málaga, Spain.
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain.
| | - Maximino Redondo
- Research Unit, Hospital Costa del Sol. Autovía A7, km 187. Marbella, 29603 Málaga, Spain.
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain.
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Campus Universitario de Teatinos, 29010 Málaga, Spain.
| |
Collapse
|
18
|
Ishibashi M, Toyoshima M, Zhang X, Hasegawa-Minato J, Shigeta S, Usui T, Kemp CJ, Grandori C, Kitatani K, Yaegashi N. Tyrosine kinase receptor TIE-1 mediates platinum resistance by promoting nucleotide excision repair in ovarian cancer. Sci Rep 2018; 8:13207. [PMID: 30181600 PMCID: PMC6123490 DOI: 10.1038/s41598-018-31069-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
Platinum resistance is one of the most challenging problems in ovarian cancer treatment. High-throughput functional siRNA screening identified tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE-1) as a gene that confers cells resistant to cisplatin. Conversely enforced over-expression of TIE-1 was validated to decrease cisplatin sensitivity in multiple ovarian cancer cell lines and up-regulation of TIE-1 was correlated with poor prognosis and cisplatin resistance in patients with ovarian cancer. Mechanistically, TIE-1 up-regulates the nucleotide excision repair (NER) system mediated by xeroderma pigmentosum complementation group C (XPC), thereby leading to decreased susceptibility to cisplatin-induced cell death without affecting cisplatin uptake and excretion. Importantly potentiation of therapeutic efficacy by TIE-1 inhibition was selective to DNA-adduct-type chemotherapeutic platinum reagents. Therefore, TIE-1 is suggested to promote XPC-dependent NER, rendering ovarian cancer cells resistant to platinum. Accompanied with novel findings, TIE-1 could represent as a novel therapeutic target for platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masafumi Toyoshima
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Xuewei Zhang
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Hasegawa-Minato
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Toshinori Usui
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Christopher J Kemp
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Kazuyuki Kitatani
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Tohoku Medical Megabank Organization, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Neyagawa, Japan.
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
Leligdowicz A, Richard-Greenblatt M, Wright J, Crowley VM, Kain KC. Endothelial Activation: The Ang/Tie Axis in Sepsis. Front Immunol 2018; 9:838. [PMID: 29740443 PMCID: PMC5928262 DOI: 10.3389/fimmu.2018.00838] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang)/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Melissa Richard-Greenblatt
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Julie Wright
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Valerie M Crowley
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug Discov 2017; 16:635-661. [PMID: 28529319 DOI: 10.1038/nrd.2016.278] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endothelial angiopoietin (ANG)-TIE growth factor receptor pathway regulates vascular permeability and pathological vascular remodelling during inflammation, tumour angiogenesis and metastasis. Drugs that target the ANG-TIE pathway are in clinical development for oncological and ophthalmological applications. The aim is to complement current vascular endothelial growth factor (VEGF)-based anti-angiogenic therapies in cancer, wet age-related macular degeneration and macular oedema. The unique function of the ANG-TIE pathway in vascular stabilization also renders this pathway an attractive target in sepsis, organ transplantation, atherosclerosis and vascular complications of diabetes. This Review covers key aspects of the function of the ANG-TIE pathway in vascular disease and describes the recent development of novel therapeutics that target this pathway.
Collapse
Affiliation(s)
- Pipsa Saharinen
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Aapistie 5A, University of Oulu, 90220 Oulu, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, FI-00014 Helsinki, Finland
| |
Collapse
|
21
|
Barker KR, Lu Z, Kim H, Zheng Y, Chen J, Conroy AL, Hawkes M, Cheng HS, Njock MS, Fish JE, Harlan JM, López JA, Liles WC, Kain KC. miR-155 Modifies Inflammation, Endothelial Activation and Blood-Brain Barrier Dysfunction in Cerebral Malaria. Mol Med 2017; 23:24-33. [PMID: 28182191 DOI: 10.2119/molmed.2016.00139] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
miR-155 has been shown to participate in host response to infection and neuro-inflammation via negative regulation of blood-brain-barrier (BBB) integrity and T cell function. We hypothesized that miR-155 may contribute to the pathogenesis of cerebral malaria (CM). To test this hypothesis, we used a genetic approach to modulate miR-155 expression in an experimental model of cerebral malaria (ECM). In addition, an engineered endothelialized microvessel system and serum samples from Ugandan children with CM were used to examine an anti-miR-155 as a potential adjunctive therapeutic for severe malaria. Despite higher parasitemia, survival was significantly improved in miR-155-/- mice vs. wild-type littermate mice in ECM. Improved survival was associated with preservation of BBB integrity and reduced endothelial activation, despite increased levels of pro-inflammatory cytokines. Pre-treatment with antagomir-155 reduced vascular leak induced by human CM sera in an ex vivo endothelial microvessel model. These data provide evidence supporting a mechanistic role for miR-155 in host response to malaria via regulation of endothelial activation, microvascular leak and BBB dysfunction in CM.
Collapse
Affiliation(s)
- Kevin Richard Barker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Ziyue Lu
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Hani Kim
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Center of Cardiovascular Biology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Michael Hawkes
- Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Henry S Cheng
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - John M Harlan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jose A López
- Bloodworks Northwest Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| |
Collapse
|
22
|
Mueller SB, Kontos CD. Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling. J Clin Invest 2016; 126:3188-91. [PMID: 27548526 DOI: 10.1172/jci89963] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiopoietin-1/Tie2 (ANG1/Tie2) signaling is well documented as regulating angiogenesis and vessel maturation. This pathway is complicated by involvement of the orphan receptor Tie1, which has been implicated as both a positive and negative regulator of ANG1/Tie2 signaling, and ANG2, which can serve as both a Tie2 agonist and antagonist, depending on the context. Two papers in this issue of the JCI provide new insight into this complicated pathway. Korhonen et al. reveal that Tie1 acts to modulate the effects of ANG1 and ANG2 on Tie2 in vitro and in vivo. Kim et al. demonstrate that ANG2 acts as a Tie2 agonist in non-pathological conditions, whereas in the setting of inflammation, ANG2 functions as a Tie2 antagonist and promotes vascular dysfunction. Both studies indicate that inflammation promotes cleavage of the ectodomain of Tie1 and that this cleavage event corresponds with the switch of ANG2 from a Tie2 agonist to an antagonist. The results of these studies lay the groundwork for future strategies to therapeutically exploit this pathway in diseases characterized by adverse vascular remodeling and increased permeability.
Collapse
|
23
|
Korhonen EA, Lampinen A, Giri H, Anisimov A, Kim M, Allen B, Fang S, D'Amico G, Sipilä TJ, Lohela M, Strandin T, Vaheri A, Ylä-Herttuala S, Koh GY, McDonald DM, Alitalo K, Saharinen P. Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest 2016; 126:3495-510. [PMID: 27548530 DOI: 10.1172/jci84923] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 06/24/2016] [Indexed: 12/11/2022] Open
Abstract
The angiopoietin/Tie (ANG/Tie) receptor system controls developmental and tumor angiogenesis, inflammatory vascular remodeling, and vessel leakage. ANG1 is a Tie2 agonist that promotes vascular stabilization in inflammation and sepsis, whereas ANG2 is a context-dependent Tie2 agonist or antagonist. A limited understanding of ANG signaling mechanisms and the orphan receptor Tie1 has hindered development of ANG/Tie-targeted therapeutics. Here, we determined that both ANG1 and ANG2 binding to Tie2 increases Tie1-Tie2 interactions in a β1 integrin-dependent manner and that Tie1 regulates ANG-induced Tie2 trafficking in endothelial cells. Endothelial Tie1 was essential for the agonist activity of ANG1 and autocrine ANG2. Deletion of endothelial Tie1 in mice reduced Tie2 phosphorylation and downstream Akt activation, increased FOXO1 nuclear localization and transcriptional activation, and prevented ANG1- and ANG2-induced capillary-to-venous remodeling. However, in acute endotoxemia, the Tie1 ectodomain that is responsible for interaction with Tie2 was rapidly cleaved, ANG1 agonist activity was decreased, and autocrine ANG2 agonist activity was lost, which led to suppression of Tie2 signaling. Tie1 cleavage also occurred in patients with hantavirus infection. These results support a model in which Tie1 directly interacts with Tie2 to promote ANG-induced vascular responses under noninflammatory conditions, whereas in inflammation, Tie1 cleavage contributes to loss of ANG2 agonist activity and vascular stability.
Collapse
|
24
|
Ebrahim HY, El Sayed KA. Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds. Mar Drugs 2016; 14:md14030057. [PMID: 26978377 PMCID: PMC4820311 DOI: 10.3390/md14030057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/27/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis through selective modulation of linked protein kinases is a valid strategy to discover novel effective tumor growth and metastasis inhibitors. An in-house marine natural products mini-library, which comprises diverse MNP entities, was submitted to the Lilly’s Open Innovation Drug Discovery platform. Accepted structures were subjected to in vitro screening to discover mechanistically novel angiogenesis inhibitors. Active hits were subjected to additional angiogenesis-targeted kinase profiling. Some natural and semisynthetic MNPs, including multiple members of the macrolide latrunculins, the macrocyclic oxaquinolizidine alkaloid araguspongine C, and the sesquiterpene quinone puupehenone, showed promising results in primary and secondary angiogenesis screening modules. These hits inhibited vascular endothelial growth factor (VEGF)-mediated endothelial tube-like formation, with minimal cytotoxicity at relevant doses. Secondary kinase profiling identified six target protein kinases, all involved in angiogenesis signaling pathways. Molecular modeling and docking experiments aided the understanding of molecular binding interactions, identification of pharmacophoric epitopes, and deriving structure-activity relationships of active hits. Marine natural products are prolific resources for the discovery of chemically and mechanistically unique selective antiangiogenic scaffolds.
Collapse
Affiliation(s)
- Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
25
|
Reinardy JL, Corey DM, Golzio C, Mueller SB, Katsanis N, Kontos CD. Phosphorylation of Threonine 794 on Tie1 by Rac1/PAK1 Reveals a Novel Angiogenesis Regulatory Pathway. PLoS One 2015; 10:e0139614. [PMID: 26436659 PMCID: PMC4593579 DOI: 10.1371/journal.pone.0139614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/14/2015] [Indexed: 01/04/2023] Open
Abstract
The endothelial receptor tyrosine kinase (RTK) Tie1 was discovered over 20 years ago, yet its precise function and mode of action remain enigmatic. To shed light on Tie1’s role in endothelial cell biology, we investigated a potential threonine phosphorylation site within the juxtamembrane domain of Tie1. Expression of a non-phosphorylatable mutant of this site (T794A) in zebrafish (Danio rerio) significantly disrupted vascular development, resulting in fish with stunted and poorly branched intersomitic vessels. Similarly, T794A-expressing human umbilical vein endothelial cells formed significantly shorter tubes with fewer branches in three-dimensional Matrigel cultures. However, mutation of T794 did not alter Tie1 or Tie2 tyrosine phosphorylation or downstream signaling in any detectable way, suggesting that T794 phosphorylation may regulate a Tie1 function independent of its RTK properties. Although T794 is within a consensus Akt phosphorylation site, we were unable to identify a physiological activator of Akt that could induce T794 phosphorylation, suggesting that Akt is not the physiological Tie1-T794 kinase. However, the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1), which is required for angiogenesis and capillary morphogenesis, was found to associate with phospho-T794 but not the non-phosphorylatable T794A mutant. Pharmacological activation of Rac1 induced downstream activation of p21-activated kinase (PAK1) and T794 phosphorylation in vitro, and inhibition of PAK1 abrogated T794 phosphorylation. Our results provide the first demonstration of a signaling pathway mediated by Tie1 in endothelial cells, and they suggest that a novel feedback loop involving Rac1/PAK1 mediated phosphorylation of Tie1 on T794 is required for proper angiogenesis.
Collapse
Affiliation(s)
- Jessica L. Reinardy
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel M. Corey
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christelle Golzio
- Center for Human Disease Modeling, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sarah B. Mueller
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christopher D. Kontos
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke University School of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Mechanisms of Vessel Pruning and Regression. Dev Cell 2015; 34:5-17. [PMID: 26151903 DOI: 10.1016/j.devcel.2015.06.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 01/27/2023]
Abstract
The field of angiogenesis research has primarily focused on the mechanisms of sprouting angiogenesis. Yet vascular networks formed by vessel sprouting subsequently undergo extensive vascular remodeling to form a functional and mature vasculature. This "trimming" includes distinct processes of vascular pruning, the regression of selected vascular branches. In some situations complete vascular networks may undergo physiological regression. Vessel regression is an understudied yet emerging field of research. This review summarizes the state-of-the-art of vessel pruning and regression with a focus on the cellular processes and the molecular regulators of vessel maintenance and regression.
Collapse
|
27
|
Savant S, La Porta S, Budnik A, Busch K, Hu J, Tisch N, Korn C, Valls AF, Benest AV, Terhardt D, Qu X, Adams RH, Baldwin HS, Ruiz de Almodóvar C, Rodewald HR, Augustin HG. The Orphan Receptor Tie1 Controls Angiogenesis and Vascular Remodeling by Differentially Regulating Tie2 in Tip and Stalk Cells. Cell Rep 2015; 12:1761-73. [PMID: 26344773 PMCID: PMC6309948 DOI: 10.1016/j.celrep.2015.08.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/20/2015] [Accepted: 08/07/2015] [Indexed: 01/13/2023] Open
Abstract
Tie1 is a mechanistically poorly characterized endothelial cell (EC)-specific orphan receptor. Yet, Tie1 deletion is embryonic lethal and Tie1 has been implicated in critical vascular pathologies, including atherosclerosis and tumor angiogenesis. Here, we show that Tie1 does not function independently but exerts context-dependent effects on the related receptor Tie2. Tie1 was identified as an EC activation marker that is expressed during angiogenesis by a subset of angiogenic tip and remodeling stalk cells and downregulated in the adult quiescent vasculature. Functionally, Tie1 expression by angiogenic EC contributes to shaping the tip cell phenotype by negatively regulating Tie2 surface presentation. In contrast, Tie1 acts in remodeling stalk cells cooperatively to sustain Tie2 signaling. Collectively, our data support an interactive model of Tie1 and Tie2 function, in which dynamically regulated Tie1 versus Tie2 expression determines the net positive or negative effect of Tie1 on Tie2 signaling.
Collapse
Affiliation(s)
- Soniya Savant
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Silvia La Porta
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Annika Budnik
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Junhao Hu
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Nathalie Tisch
- Biochemistry Center BZH, Heidelberg University, 69120 Heidelberg, Germany
| | - Claudia Korn
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Aida Freire Valls
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Andrew V Benest
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Dorothee Terhardt
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany
| | - Xianghu Qu
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, 48145 Münster, Germany; Faculty of Medicine, University of Münster, 48145 Münster, Germany
| | - H Scott Baldwin
- Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), 69120 Heidelberg, Germany; Department of Vascular Biology and Tumor Angiogenesis (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Abstract
The endothelial TIE1 and TIE2 receptor tyrosine kinases form a distinct subfamily characterized by their unique extracellular domains. Together with the angiopoietin growth factors (ANGPT1, ANGPT2, ANGPT4, also abbreviated as ANG), the TIE receptors form an endothelial specific signaling pathway with important functions in the regulation of lymphatic and cardiovascular development and vascular homeostasis. Angiopoietins exist in multimeric forms that activate the TIE receptors via unique mechanism. In endothelial cell–cell contacts, angiopoietins induce the formation of homomeric in trans TIE receptor complexes extending across the cell junctions, whereas matrix-bound angiopoietin-1 (ANG1) activates the TIE receptors in a cis configuration. In comparison to the vascular endothelial growth factor receptors, the TIE receptors undergo little ubiquitin-mediated degradation after activation, whereas TIE2 signaling is negatively regulated by the vascular endothelial protein tyrosine phosphatase, VE-PTP. ANG1 activation of TIE2 supports vascular stabilization, whereas angiopoietin-2 (ANG2), a context-dependent weak TIE2 agonist/antagonist, promotes pathological tumor angiogenesis, vascular permeability, and inflammation. Recently, ANG2 has been found to mediate some of its vascular destabilizing and angiogenic functions via integrin signalling. The circulating levels of ANG2 are increased in cancer, and in several human diseases associated with inflammation and vascular leak, for example, in sepsis. Blocking of ANG2 has emerged as a potential novel therapeutic strategy for these diseases. In addition, preclinical results demonstrate that genetic TIE1 deletion in mice inhibits the vascularization and growth of tumor isografts and protects from atherosclerosis, with little effect on normal vascular homeostasis in adult mice. The ability of the ANG-TIE pathway to control vessel stability and angiogenesis makes it an interesting vascular target for the treatment of the various diseases.
Collapse
|
29
|
Qu X, Zhou B, Scott Baldwin H. Tie1 is required for lymphatic valve and collecting vessel development. Dev Biol 2015; 399:117-128. [PMID: 25576926 DOI: 10.1016/j.ydbio.2014.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022]
Abstract
Tie1 is a receptor tyrosine kinase with broad expression in embryonic endothelium. Reduction of Tie1 levels in mouse embryos with a hypomorphic Tie1 allele resulted in abnormal lymphatic patterning and architecture, decreased lymphatic draining efficiency, and ultimately, embryonic demise. Here we report that Tie1 is present uniformly throughout the lymphatics and from late embryonic/early postnatal stages, becomes more restricted to lymphatic valve regions. To investigate later events of lymphatic development, we employed Cre-loxP recombination utilizing a floxed Tie1 allele and an Nfatc1Cre line, to provide loxP excision predominantly in lymphatic endothelium and developing valves. Interestingly, unlike the early prenatal defects previously described by ubiquitous endothelial deletion, excision of Tie1 with Nfatc1Cre resulted in abnormal lymphatic defects in postnatal mice and was characterized by agenesis of lymphatic valves and a deficiency of collecting lymphatic vessels. Attenuation of Tie1 signaling in lymphatic endothelium prevented initiation of lymphatic valve specification by Prox1 high expression lymphatic endothelial cells that is associated with the onset of turbulent flow in the lymphatic circulation. Our findings reveal a fundamental role for Tie1 signaling during lymphatic vessel remodeling and valve morphogenesis and implicate it as a candidate gene involved in primary lymphedema.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, NY 10461, USA
| | - H Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Development Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
30
|
Molnar MZ, Kümpers P, Kielstein JT, Schiffer M, Czira ME, Ujszaszi A, Kovesdy CP, Mucsi I. Circulating Angiopoietin-2 levels predict mortality in kidney transplant recipients: a 4-year prospective case-cohort study. Transpl Int 2014; 27:541-52. [PMID: 24628855 DOI: 10.1111/tri.12293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/31/2013] [Accepted: 02/24/2014] [Indexed: 12/16/2022]
Abstract
Angiopoietin 2 (Angpt2) impairs endothelial function by preventing angiopoietin 1 from binding to their common endothelial-specific receptor Tie2. Here, we examined whether circulating Angpt2 predicts outcome in kidney transplant recipients. For this case-cohort study, we selected 130 kidney transplant recipients who had died or returned to dialysis within the first 2 years of follow-up of our cohort study, as well as 130 age- and gender-matched kidney transplant recipients without an event (controls) from a total of 993 kidney transplant recipients. The total of 260 selected patients were followed in median 4 years. Serum Angpt2 at baseline was measured using an in-house immunoluminometric assay. Median Angpt2 concentrations were significantly higher in patients who died [median (interquartile range--IQR) 3.6 (2.8-5.9) ng/ml] as compared to patients who did not die during the study period [2.8 (2.1-4.1) ng/ml; P < 0.001]. Ln (natural log) Angpt2 levels correlated positively with C-reactive protein levels (r = 0.315, P < 0.001) and the Charlson Comorbidity Index (r = 0.188, P = 0.002) and were inversely associated with eGFR (r = -0.301, P < 0.001) hemoglobin (r = -0.269, P < 0.001), and serum albumin concentrations (r = -0.382, P < 0.001). On multivariate analyses, baseline Angpt2 levels independently predicted all-cause mortality (multivariable-adjusted hazard ratio associated with one natural log unit higher Angpt2 level: 1.70 (95% confidence interval: 1.10-2.61)). In our analysis, circulating Angpt2 was an independent predictor of all-cause mortality in stable, prevalent kidney transplant recipients.
Collapse
Affiliation(s)
- Miklos Z Molnar
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA, USA; Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Barton WA, Dalton AC, Seegar TCM, Himanen JP, Nikolov DB. Tie2 and Eph receptor tyrosine kinase activation and signaling. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a009142. [PMID: 24478383 DOI: 10.1101/cshperspect.a009142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition.
Collapse
Affiliation(s)
- William A Barton
- Department of Biochemistry and Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | | | |
Collapse
|
32
|
Krishnamoorthy S, Liu Z, Hong A, Zhu R, Chen H, Li T, Zhou X, Gao X. A Novel Phosphopeptide Microarray Based Interactome Map in Breast Cancer Cells Reveals Phosphoprotein-GRB2 Cell Signaling Networks. PLoS One 2013; 8:e67634. [PMID: 23826330 PMCID: PMC3694890 DOI: 10.1371/journal.pone.0067634] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 05/21/2013] [Indexed: 11/23/2022] Open
Abstract
The architecture of cellular proteins connected to form signaling pathways in response to internal and external cues is much more complex than a group of simple protein-protein interactions. Post translational modifications on proteins (e.g., phosphorylation of serine, threonine and tyrosine residues on proteins) initiate many downstream signaling events leading to protein-protein interactions and subsequent activation of signaling cascades leading to cell proliferation, cell differentiation and cell death. As evidenced by a rapidly expanding mass spectrometry database demonstrating protein phosphorylation at specific motifs, there is currently a large gap in understanding the functional significance of phosphoproteins with respect to their specific protein connections in the signaling cascades. A comprehensive map that interconnects phospho-motifs in pathways will enable identification of nodal protein interactions that are sensitive signatures indicating a disease phenotype from the physiological hemostasis and provide clues into control of disease. Using a novel phosphopeptide microarray technology, we have mapped endogenous tyrosine-phosphoproteome interaction networks in breast cancer cells mediated by signaling adaptor protein GRB2, which transduces cellular responses downstream of several RTKs through the Ras-ERK signaling cascade. We have identified several previously reported motif specific interactions and novel interactions. The peptide microarray data indicate that various phospho-motifs on a single protein are differentially regulated in various cell types and shows global downregulation of phosphoprotein interactions specifically in cells with metastatic potential. The study has revealed novel phosphoprotein mediated signaling networks, which warrants further detailed analysis of the nodes of protein-protein interaction to uncover their biomarker or therapeutic potential.
Collapse
Affiliation(s)
- Srinivasan Krishnamoorthy
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail: (SK); (XG)
| | - Zhonghua Liu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Ailing Hong
- LC Sciences, Houston, Texas, United States of America
| | - Ruijuan Zhu
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Haosi Chen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Tongbin Li
- LC Sciences, Houston, Texas, United States of America
| | | | - Xiaolian Gao
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail: (SK); (XG)
| |
Collapse
|
33
|
Graupera M, Potente M. Regulation of angiogenesis by PI3K signaling networks. Exp Cell Res 2013; 319:1348-55. [PMID: 23500680 DOI: 10.1016/j.yexcr.2013.02.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/24/2013] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are an evolutionary conserved family of lipid kinases that control cell growth, metabolism and survival. By generating lipid second messengers that interact with specialized lipid-binding domains found in a wide spectrum of signaling molecules, PI3Ks instigate signaling through a network of downstream effector pathways. Genetic studies in zebrafish and mice revealed the critical importance of intact PI3K signaling in the endothelium and provided first insights into how individual PI3K isoforms are utilized to control vascular development and function. Here, we review the myriad roles of PI3Ks in the endothelium and the mechanisms through which they couple environmental signals with specific steps of angiogenic vessel growth.
Collapse
Affiliation(s)
- Mariona Graupera
- Vascular Signalling Lab, Angiogenesis Unit, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 3a planta-Gran Via de l'Hospitalet, 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | | |
Collapse
|
34
|
Niesvizky R, Mark TM, Ward M, Jayabalan DS, Pearse RN, Manco M, Stern J, Christos PJ, Mathews L, Shore TB, Zafar F, Pekle K, Xiang Z, Ely S, Skerret D, Chen-Kiang S, Coleman M, Lane ME. Overcoming the response plateau in multiple myeloma: a novel bortezomib-based strategy for secondary induction and high-yield CD34+ stem cell mobilization. Clin Cancer Res 2013; 19:1534-46. [PMID: 23357980 DOI: 10.1158/1078-0432.ccr-12-1429] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE This phase II study evaluated bortezomib-based secondary induction and stem cell mobilization in 38 transplant-eligible patients with myeloma who had an incomplete and stalled response to, or had relapsed after, previous immunomodulatory drug-based induction. EXPERIMENTAL DESIGN Patients received up to six 21-day cycles of bortezomib plus dexamethasone, with added liposomal doxorubicin for patients not achieving partial response or better by cycle 2 or very good partial response or better (≥VGPR) by cycle 4 (DoVeD), followed by bortezomib, high-dose cyclophosphamide, and filgrastim mobilization. Gene expression/signaling pathway analyses were conducted in purified CD34+ cells after bortezomib-based mobilization and compared against patients who received only filgrastim ± cyclophosphamide. Plasma samples were similarly analyzed for quantification of associated protein markers. RESULTS The response rate to DoVeD relative to the pre-DoVeD baseline was 61%, including 39% ≥ VGPR. Deeper responses were achieved in 10 of 27 patients who received bortezomib-based mobilization; postmobilization response rate was 96%, including 48% ≥ VGPR, relative to the pre-DoVeD baseline. Median CD34+ cell yield was 23.2 × 10(6) cells/kg (median of 1 apheresis session). After a median follow-up of 46.6 months, median progression-free survival was 47.1 months from DoVeD initiation; 5-year overall survival rate was 76.4%. Grade ≥ 3 adverse events included thrombocytopenia (13%), hand-foot syndrome (11%), peripheral neuropathy (8%), and neutropenia (5%). Bortezomib-based mobilization was associated with modulated expression of genes involved in stem cell migration. CONCLUSION Bortezomib-based secondary induction and mobilization could represent an alternative strategy for elimination of tumor burden in immunomodulatory drug-resistant patients that does not impact stem cell yield.
Collapse
Affiliation(s)
- Ruben Niesvizky
- Center of Excellence for Lymphoma and Myeloma, Division of Hematology and Medical Oncology, Weill Cornell Medical College and New York Presbyterian Hospital, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
McClung JM, McCord TJ, Keum S, Johnson S, Annex BH, Marchuk DA, Kontos CD. Skeletal muscle-specific genetic determinants contribute to the differential strain-dependent effects of hindlimb ischemia in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2156-69. [PMID: 22445571 DOI: 10.1016/j.ajpath.2012.01.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/02/2012] [Accepted: 01/13/2012] [Indexed: 01/15/2023]
Abstract
Genetics plays an important role in determining peripheral arterial disease (PAD) pathology, which causes a spectrum of clinical disorders that range from clinically silent reductions in blood flow to limb-threatening ischemia. The cell-type specificity of PAD pathology, however, has received little attention. To determine whether strain-dependent differences in skeletal muscle cells might account for the differential responses to ischemia observed in C57BL/6 and BALB/c mice, endothelial and skeletal muscle cells were subjected to hypoxia and nutrient deprivation (HND) in vitro, to mimic ischemia. Muscle cells were more susceptible to HND than were endothelial cells. In vivo, C57BL/6 and BALB/c mice displayed strain-specific differences in myofiber responses after hindlimb ischemia, with significantly greater myofiber atrophy, greater apoptosis, and attenuated myogenic regulatory gene expression and stress-responsive signaling in BALB/c mice. Strain-specific deficits were recapitulated in vitro in primary muscle cells from both strains after HND. Muscle cells from BALB/c mice congenic for the C57BL/6 Lsq-1 quantitative trait locus were protected from HND-induced atrophy, and gene expression of vascular growth factors and their receptors was significantly greater in C57BL/6 primary muscle cells. Our results indicate that the previously identified specific genetic locus regulating strain-dependent collateral vessel density has a nonvascular or muscle cell-autonomous role involving both the myogenic program and traditional vascular growth factor receptor expression.
Collapse
Affiliation(s)
- Joseph M McClung
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Woo KV, Qu X, Babaev VR, Linton MF, Guzman RJ, Fazio S, Baldwin HS. Tie1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner. J Clin Invest 2011; 121:1624-35. [PMID: 21383501 DOI: 10.1172/jci42040] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 01/12/2011] [Indexed: 01/11/2023] Open
Abstract
Although the response of endothelial cells to the disturbed blood flow in the vicinity of atherosclerotic lesions is known to be distinct from that elicited by nonatherogenic laminar flow, the mechanisms involved are poorly understood. Our initial studies confirmed that expression of the endothelial receptor tyrosine kinase Tie1 was evident at regions of atherogenic flow in mature animals. We therefore hypothesized that Tie1 plays a role in the endothelial response to atherogenic shear stress. Consistent with this, we found that Tie1+/- mice bred to the apoE-deficient background displayed a 35% reduction in atherosclerosis relative to Tie1+/+;Apoe-/- mice. Since deletion of Tie1 results in embryonic lethality secondary to vascular dysfunction, we used conditional and inducible mutagenesis to study the effect of endothelial-specific Tie1 attenuation on atherogenesis in Apoe-/- mice and found a dose-dependent decrease in atherosclerotic lesions. Analysis of primary aortic endothelial cells indicated that atheroprotective laminar flow decreased Tie1 expression in vitro. Attenuation of Tie1 was associated with an increase in eNOS expression and Tie2 phosphorylation. In addition, Tie1 attenuation increased IkBα expression while decreasing ICAM levels. In summary, we have found that shear stress conditions that modulate atherogenic events also regulate Tie1 expression. Therefore, Tie1 may play a novel proinflammatory role in atherosclerosis.
Collapse
Affiliation(s)
- Kel Vin Woo
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0439, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Valdés G, Corthorn J. Review: The angiogenic and vasodilatory utero-placental network. Placenta 2011; 32 Suppl 2:S170-5. [DOI: 10.1016/j.placenta.2011.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/31/2010] [Accepted: 01/11/2011] [Indexed: 01/23/2023]
|
38
|
|
39
|
Abstract
Reactive oxygen species (ROS) have been implicated in many intra- and intercellular processes. High levels of ROS are generated as part of the innate immunity in the respiratory burst of phagocytic cells. Low levels of ROS, however, are generated in a highly controlled manner by various cell types to act as second messengers in redox-sensitive pathways. A NADPH oxidase has been initially described as the respiratory burst enzyme in neutrophils. Stimulation of this complex enzyme system requires specific signaling cascades linking it to membrane-receptor activation. Subsequently, a family of NADPH oxidases has been identified in various nonphagocytic cells. They mainly differ in containing one out of seven homologous catalytic core proteins termed NOX1 to NOX5 and DUOX1 or 2. NADPH oxidase activity is controlled by regulatory subunits, including the NOX regulators p47phox and p67phox, their homologs NOXO1 and NOXA1, or the DUOX1 or 2 regulators DUOXA1 and 2. In addition, the GTPase Rac modulates activity of several of these enzymes. Recently, additional proteins have been identified that seem to have a regulatory function on NADPH oxidase activity under certain conditions. We will thus summarize molecular pathways linking activation of different membrane-bound receptors with increased ROS production of NADPH oxidases.
Collapse
Affiliation(s)
- Andreas Petry
- Experimental Pediatric Cardiology, Technical University Munich, Munich, Germany
| | | | | |
Collapse
|
40
|
Lysiak JJ, Kavoussi PK, Ellati RT, Steers WD, Annex BH. Angiogenesis Therapy for the Treatment of Erectile Dysfunction. J Sex Med 2010; 7:2554-63. [DOI: 10.1111/j.1743-6109.2010.01830.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Malik NM, Jin P, Raatz Y, Sumariwalla PF, Kiriakidis S, Shepard M, Feldmann M, Paleolog EM. Regulation of the angiopoietin-Tie ligand-receptor system with a novel splice variant of Tie1 reduces the severity of murine arthritis. Rheumatology (Oxford) 2010; 49:1828-39. [PMID: 20547659 DOI: 10.1093/rheumatology/keq163] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES To determine the function of the angiopoietin (Ang)-Tie ligand-receptor system, and to assess the effect of Tie1-751, a naturally occurring extracellular domain of the Tie1 receptor derived by alternative splicing, in an in vivo model of RA. METHODS In the murine CIA model, expression of endogenous Ang1, Ang2, Tie1 and Tie2 in whole paws was analysed by quantitative RT-PCR. To assess the effect of inhibition of the Ang-Tie axis, Tie1-751 was expressed and fused to the Fc fragment of human IgG1. The effect of Tie1-751-Fc on human umbilical vein endothelial cell (HUVEC) cytoprotection and migration in response to Ang1, either alone or in combination with VEGF, was investigated. Furthermore, an in vitro angiogenesis assay was used to determine the effect of Tie1-751-Fc on Ang1-mediated angiogenesis. Finally, Tie1-751-Fc was administered in CIA, and the effects on clinical disease and joint architecture of hind foot specimens were determined. RESULTS Gene expression levels of Ang1, Ang2, and receptors Tie1 and Tie2 in whole paws were significantly increased during the progression of arthritis. Tie1-751-Fc significantly inhibited HUVEC cytoprotection and migration in response to Ang1 alone, or Ang1 in combination with VEGF. Tie1-751-Fc also significantly inhibited angiogenesis induced by a combination of Ang1 plus VEGF. Finally, Tie1-751-Fc, when administered intra-peritoneally to arthritic mice, reduced clinical signs of arthritis, damage to joint architecture and infiltration of blood vessels into the synovium. CONCLUSIONS Our data demonstrate that the Ang-Tie ligand-receptor system is dysregulated in CIA. Tie1-751, a novel splice variant of the Tie1 receptor, inhibits Ang1/VEGF signalling, suggesting that Ang inhibition may be of therapeutic benefit in inflammatory arthritis.
Collapse
Affiliation(s)
- Nasser M Malik
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, Arthritis Research Campaign Building, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nabors LB, Fiveash JB, Markert JM, Kekan MS, Gillespie GY, Huang Z, Johnson MJ, Meleth S, Kuo H, Gladson CL, Fathallah-Shaykh HM. A phase 1 trial of ABT-510 concurrent with standard chemoradiation for patients with newly diagnosed glioblastoma. ACTA ACUST UNITED AC 2010; 67:313-9. [PMID: 20212229 DOI: 10.1001/archneurol.2010.16] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To determine the maximum tolerated dose of ABT-510, a thrombospondin-1 mimetic drug with antiangiogenic properties, when used concurrently with temozolomide and radiotherapy in patients with newly diagnosed glioblastoma. DESIGN Phase 1 dose-escalation clinical trial. SETTING Comprehensive Cancer Center, University of Alabama at Birmingham. Patients A total of 23 patients with newly diagnosed, histologically verified glioblastoma enrolled between April 2005 and January 2007. INTERVENTIONS Four cohorts of 3 patients each received subcutaneous ABT-510 injection at doses of 20, 50, 100, or 200 mg/d. The maximum cohort was expanded to 14 patients to obtain additional safety and gene expression data. The treatment plan included 10 weeks of induction phase (temozolomide and radiotherapy with ABT-510 for 6 weeks plus ABT-510 monotherapy for 4 weeks) followed by a maintenance phase of ABT-510 and monthly temozolomide. MAIN OUTCOME MEASURES Patients were monitored with brain magnetic resonance imaging and laboratory testing for dose-limiting toxicities, defined as grades 3 or 4 nonhematological toxicities and grade 4 hematological toxicities. Therapy was discontinued if 14 maintenance cycles were completed, disease progression occurred, or if the patient requested withdrawal. Disease progression, survival statistics, and gene expression arrays were analyzed. RESULTS There were no grade 3 or 4 dose-limiting toxicity events that appeared related to ABT-510 for the dose range of 20 to 200 mg/d. A maximum tolerated dose was not defined. Most adverse events were mild, and injection-site reactions. The median time to tumor progression was 45.9 weeks, and the median overall survival time was 64.4 weeks. Gene expression analysis using TaqMan low-density arrays identified angiogenic genes that were differentially expressed in the brains of controls compared with patients with newly diagnosed glioblastoma, and identified FGF-1 and TIE-1 as being downregulated in patients who had better clinical outcomes. CONCLUSIONS ABT-510, at subcutaneous doses up to 200 mg/d, is tolerated well with concurrent temozolomide and radiotherapy in patients with newly diagnosed glioblastoma, and low-density arrays provide a useful method of exploring gene expression profiles.
Collapse
Affiliation(s)
- Louis B Nabors
- Neuro-oncology Program, University of Alabama at Birmingham, 510 20th St S, FOT 1020, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Qu X, Tompkins K, Batts LE, Puri M, Baldwin HS, Baldwin S. Abnormal embryonic lymphatic vessel development in Tie1 hypomorphic mice. Development 2010; 137:1285-95. [PMID: 20223757 DOI: 10.1242/dev.043380] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tie1 is an endothelial receptor tyrosine kinase that is essential for development and maintenance of the vascular system; however, the role of Tie1 in development of the lymphatic vasculature is unknown. To address this question, we first documented that Tie1 is expressed at the earliest stages of lymphangiogenesis in Prox1-positive venous lymphatic endothelial cell (LEC) progenitors. LEC Tie1 expression is maintained throughout embryonic development and persists in postnatal mice. We then generated two lines of Tie1 mutant mice: a hypomorphic allele, which has reduced expression of Tie1, and a conditional allele. Reduction of Tie1 levels resulted in abnormal lymphatic patterning and in dilated and disorganized lymphatic vessels in all tissues examined and in impaired lymphatic drainage in embryonic skin. Homozygous hypomorphic mice also exhibited abnormally dilated jugular lymphatic vessels due to increased production of Prox1-positive LECs during initial lymphangiogenesis, indicating that Tie1 is required for the early stages of normal lymphangiogenesis. During later stages of lymphatic development, we observed an increase in LEC apoptosis in the hypomorphic embryos after mid-gestation that was associated with abnormal regression of the lymphatic vasculature. Therefore, Tie1 is required for early LEC proliferation and subsequent survival of developing LECs. The severity of the phenotypes observed correlated with the expression levels of Tie1, confirming a dosage dependence for Tie1 in LEC integrity and survival. No defects were observed in the arterial or venous vasculature. These results suggest that the developing lymphatic vasculature is particularly sensitive to alterations in Tie1 expression.
Collapse
Affiliation(s)
- Xianghu Qu
- Division of Pediatric Cardiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
44
|
Stephens NA, Gallagher IJ, Rooyackers O, Skipworth RJ, Tan BH, Marstrand T, Ross JA, Guttridge DC, Lundell L, Fearon KC, Timmons JA. Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia. Genome Med 2010; 2:1. [PMID: 20193046 PMCID: PMC2829926 DOI: 10.1186/gm122] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 12/09/2009] [Accepted: 01/15/2010] [Indexed: 01/17/2023] Open
Abstract
Background Cancer cachexia is a multi-organ tissue wasting syndrome that contributes to morbidity and mortality in many cancer patients. Skeletal muscle loss represents an established key feature yet there is no molecular understanding of the disease process. In fact, the postulated molecular regulators of cancer cachexia originate largely from pre-clinical models and it is unclear how these translate to the clinical environment. Methods Rectus abdominis muscle biopsies were obtained from 65 upper gastrointestinal (UGI) cancer patients during open surgery and RNA profiling was performed on a subset of this cohort (n = 21) using the Affymetrix U133+2 platform. Quantitative analysis revealed a gene signature, which underwent technical validation and independent confirmation in a separate clinical cohort. Results Quantitative significance analysis of microarrays produced an 83-gene signature that was able to identify patients with greater than 5% weight loss, while this molecular profile was unrelated to markers of systemic inflammation. Selected genes correlating with weight loss were validated using quantitative real-time PCR and independently studied as general cachexia biomarkers in diaphragm and vastus lateralis from a second cohort (n = 13; UGI cancer patients). CaMKIIβ correlated positively with weight loss in all muscle groups and CaMKII protein levels were elevated in rectus abdominis. TIE1 was also positively associated with weight loss in both rectus abdominis and vastus lateralis muscle groups while other biomarkers demonstrated tissue-specific expression patterns. Candidates selected from the pre-clinical literature, including FOXO protein and ubiquitin E3 ligases, were not related to weight loss in this human clinical study. Furthermore, promoter analysis identified that the 83 weight loss-associated genes had fewer FOXO binding sites than expected by chance. Conclusion We were able to discover and validate new molecular biomarkers of human cancer cachexia. The exercise activated genes CaMKIIβ and TIE1 related positively to weight-loss across muscle groups, indicating that this cachexia signature is not simply due to patient inactivity. Indeed, excessive CaMKIIβ activation is a potential mechanism for reduced muscle protein synthesis. Our genomics analysis also supports the view that the available preclinical models do not accurately reflect the molecular characteristics of human muscle from cancer cachexia patients.
Collapse
Affiliation(s)
- Nathan A Stephens
- Department of Clinical and Surgical Sciences (Surgery), School of Clinical Sciences and Community Health, University of Edinburgh, EH16 4SB, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The expansion of the synovial lining of joints in rheumatoid arthritis (RA) necessitates an increase in the vascular supply to the synovium, to cope with the increased requirement for oxygen and nutrients. New blood vessel formation -'angiogenesis'- is recognized as a key event in the formation and maintenance of the pannus in RA, suggesting that targeting blood vessels in RA may be an effective future therapeutic strategy. Although many pro-angiogenic factors have been demonstrated to be expressed in RA synovium, vascular endothelial growth factor (VEGF) has been demonstrated to a have a central involvement in the angiogenic process in RA. Nevertheless, it is unclear whether angiogenesis - whether driven by VEGF and/or other factors - should be considered as a 'cause' or 'consequence' of disease. This ongoing 'chicken vs. egg' debate is difficult, as even the success of angiogenesis inhibition in models of RA does not provide a direct answer to the question. This review will focus on the role of the vasculature in RA, and the contribution of different angiogenic factors in promoting disease. Although no data regarding the effectiveness of anti-angiogenic therapy in RA have been reported to date, the blockade of angiogenesis nevertheless looks to be a promising therapeutic avenue.
Collapse
Affiliation(s)
- Ewa M Paleolog
- Kennedy Institute of Rheumatology and Division of Surgery, Oncology, Reproductive Biology and Anaesthetics, Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College, London, UK.
| |
Collapse
|
46
|
Angiopoietins in arterial hypertension: a mechanism of adaptation or a target for treatment? J Hypertens 2009; 27:1524-6. [DOI: 10.1097/hjh.0b013e32832dd5c4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Morisada T, Kubota Y, Urano T, Suda T, Oike Y. Angiopoietins and Angiopoietin-Like Proteins in Angiogenesis. ACTA ACUST UNITED AC 2009; 13:71-9. [PMID: 16728326 DOI: 10.1080/10623320600697989] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Vascular network formation requires several endothelial cell growth factors. These factors have a potent angiogenic effect, and their precise coordination is essential for vascular development. Among them, angiopoietins function through the Tie2 receptor, whose signaling is critical to regulate vascular stabilization and remodeling. It has been reported that the angiopoietin/Tie2 signal is involved in survival and migration of endothelial cells and regulates vascular remodeling and maintenance of vascular integrity. More recent studies demonstrate that angiopoietin/Tie2 signaling is also required for lymphangiogenesis. The authors and several other groups have identified six angiopoietin-like proteins (Angptls) containing a coiled-coil domain and a fibrinogen-like domain, both of which are characteristic of angiopoietins. Interestingly, Angptls also function in angiogenesis through regulating survival and migration of endothelial cells, although Angptls do not bind the angiopoietin receptor Tie2. Currently, Angptls are orphan ligands, but they have been reported to have pleiotropic effects not only on vascular cells but also on metabolism and tumor biology. Here, the authors review current findings relating to the roles of angiopoietins and Angptls in vascular biology and discuss molecular mechanisms relevant to these factors and angiogenesis.
Collapse
Affiliation(s)
- Tohru Morisada
- Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 2009; 10:165-77. [PMID: 19234476 DOI: 10.1038/nrm2639] [Citation(s) in RCA: 1049] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Angiogenesis, the growth of blood vessels, is a fundamental biological process that controls embryonic development and is also involved in numerous life-threatening human diseases. Much work in the field of angiogenesis research has centred on the vascular endothelial growth factor (VEGF)-VEGF receptor system. The Tie receptors and their angiopoietin (Ang) ligands have been identified as the second vascular tissue-specific receptor Tyr kinase system. Ang-Tie signalling is essential during embryonic vessel assembly and maturation, and functions as a key regulator of adult vascular homeostasis. The structural characteristics and the spatio-temporal regulation of the expression of receptors and ligands provide unique insights into the functions of this vascular signalling system.
Collapse
|
49
|
Milner CS, Hansen TM, Singh H, Brindle NP. Roles of the receptor tyrosine kinases Tie1 and Tie2 in mediating the effects of angiopoietin-1 on endothelial permeability and apoptosis. Microvasc Res 2009; 77:187-91. [DOI: 10.1016/j.mvr.2008.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/04/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
50
|
Jin P, Zhang J, Sumariwalla PF, Ni I, Jorgensen B, Crawford D, Phillips S, Feldmann M, Shepard HM, Paleolog EM. Novel splice variants derived from the receptor tyrosine kinase superfamily are potential therapeutics for rheumatoid arthritis. Arthritis Res Ther 2008; 10:R73. [PMID: 18593464 PMCID: PMC2575619 DOI: 10.1186/ar2447] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/25/2008] [Accepted: 07/01/2008] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Despite the advent of biological therapies for the treatment of rheumatoid arthritis, there is a compelling need to develop alternative therapeutic targets for nonresponders to existing treatments. Soluble receptors occur naturally in vivo, such as the splice variant of the cell surface receptor for vascular endothelial growth factor (VEGF)--a key regulator of angiogenesis in rheumatoid arthritis. Bioinformatics analyses predict that the majority of human genes undergo alternative splicing, generating proteins--many of which may have regulatory functions. The objective of the present study was to identify alternative splice variants (ASV) from cell surface receptor genes, and to determine whether the novel proteins encoded exert therapeutic activity in an in vivo model of arthritis. METHODS To identify novel splice variants, we performed RT-PCR using an mRNA pool representing major human tissue types and tumors. Novel ASV were identified by alignment of each cloned sequence to its respective genomic sequence in comparison with full-length transcripts. To test whether these ASV have biologic activity, we characterized a subset of them for ligand binding, and for efficacy in an animal model of arthritis. The in vivo study was accomplished using adenoviruses expressing secreted ASV. RESULTS We cloned 60 novel human ASV from 21 genes, encoding cell surface receptors--many of which are known to be important in the regulation of angiogenesis. The ASV were characterized by exon extension, intron retention and alternative exon utilization. Efficient expression and secretion of selected ASV--corresponding to VEGF receptor type 1, VEGF receptor type 2, VEGF receptor type 3, angiopoietin receptor Tie1, Met (receptor for hepatocyte growth factor), colony-stimulating factor 1 receptor, platelet-derived growth factor receptor beta, fibroblast growth factor receptor 1, Kit, and RAGE--was demonstrated, together with binding to their cognate ligands. Importantly, ASV derived from VEGF receptor type 1 and Tie1, and to a lesser extent from VEGF receptor type 2 and fibroblast growth factor receptor 1, reduced clinical signs of arthritis in vivo. The reduction was paralleled by decreased joint inflammation and destruction. CONCLUSION The present study shows that unique ASV derived from receptors that play key roles in angiogenesis--namely, VEGF receptor type 1 and, for the first time, Tie1--can markedly reduce arthritis severity. More broadly, our results demonstrate that ASV are a source of novel proteins with therapeutic potential in diseases in which angiogenesis and cellular hyperplasia play a central role, such as rheumatoid arthritis.
Collapse
MESH Headings
- Angiopoietin-1/metabolism
- Animals
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Humans
- Mice
- Mice, Inbred DBA
- Neovascularization, Physiologic/physiology
- Protein Binding/physiology
- Protein Isoforms/metabolism
- Protein Isoforms/therapeutic use
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor Protein-Tyrosine Kinases/therapeutic use
- Receptor, TIE-1/metabolism
- Receptor, TIE-1/therapeutic use
- Severity of Illness Index
- Umbilical Veins/cytology
- Umbilical Veins/metabolism
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Vascular Endothelial Growth Factor Receptor-1/therapeutic use
Collapse
Affiliation(s)
- Pei Jin
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | - Juan Zhang
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | - Percy F Sumariwalla
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | - Irene Ni
- Receptor BioLogix, Inc., Palo Alto, CA 94303, USA
| | | | - Damian Crawford
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | | | - Marc Feldmann
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| | | | - Ewa M Paleolog
- Kennedy Institute of Rheumatology, Faculty of Medicine, Imperial College London, London W6 8LH, UK
| |
Collapse
|