1
|
Qin K, Lan X, Huang P, Saari MS, Khandros E, Keller CA, Giardine B, Abdulmalik O, Shi J, Hardison RC, Blobel GA. Molecular basis of polycomb group protein-mediated fetal hemoglobin repression. Blood 2023; 141:2756-2770. [PMID: 36893455 PMCID: PMC10273169 DOI: 10.1182/blood.2022019578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA) is a paradigm for developmental gene expression control with relevance to sickle cell disease and β-thalassemia. Polycomb repressive complex (PRC) proteins regulate this switch, and an inhibitor of PRC2 has entered a clinical trial for HbF activation. Yet, how PRC complexes function in this process, their target genes, and relevant subunit composition are unknown. Here, we identified the PRC1 subunit BMI1 as a novel HbF repressor. We uncovered the RNA binding proteins LIN28B, IGF2BP1, and IGF2BP3 genes as direct BMI1 targets, and demonstrate that they account for the entirety of BMI1's effect on HbF regulation. BMI1 functions as part of the canonical PRC1 (cPRC1) subcomplex as revealed by the physical and functional dissection of BMI1 protein partners. Lastly, we demonstrate that BMI1/cPRC1 acts in concert with PRC2 to repress HbF through the same target genes. Our study illuminates how PRC silences HbF, highlighting an epigenetic mechanism involved in hemoglobin switching.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Huang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Megan S. Saari
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Eugene Khandros
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Farrell CM, Goldfarb T, Rangwala SH, Astashyn A, Ermolaeva OD, Hem V, Katz KS, Kodali VK, Ludwig F, Wallin CL, Pruitt KD, Murphy TD. RefSeq Functional Elements as experimentally assayed nongenic reference standards and functional interactions in human and mouse. Genome Res 2022; 32:175-188. [PMID: 34876495 PMCID: PMC8744684 DOI: 10.1101/gr.275819.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic genomes contain many nongenic elements that function in gene regulation, chromosome organization, recombination, repair, or replication, and mutation of those elements can affect genome function and cause disease. Although numerous epigenomic studies provide high coverage of gene regulatory regions, those data are not usually exposed in traditional genome annotation and can be difficult to access and interpret without field-specific expertise. The National Center for Biotechnology Information (NCBI) therefore provides RefSeq Functional Elements (RefSeqFEs), which represent experimentally validated human and mouse nongenic elements derived from the literature. The curated data set is comprised of richly annotated sequence records, descriptive records in the NCBI Gene database, reference genome feature annotation, and activity-based interactions between nongenic regions, target genes, and each other. The data set provides succinct functional details and transparent experimental evidence, leverages data from multiple experimental sources, is readily accessible and adaptable, and uses a flexible data model. The data have multiple uses for basic functional discovery, bioinformatics studies, genetic variant interpretation; as known positive controls for epigenomic data evaluation; and as reference standards for functional interactions. Comparisons to other gene regulatory data sets show that the RefSeqFE data set includes a wider range of feature types representing more areas of biology, but it is comparatively smaller and subject to data selection biases. RefSeqFEs thus provide an alternative and complementary resource for experimentally assayed functional elements, with future data set growth expected.
Collapse
Affiliation(s)
- Catherine M Farrell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Tamara Goldfarb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Sanjida H Rangwala
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Alexander Astashyn
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Olga D Ermolaeva
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Vichet Hem
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Kenneth S Katz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Vamsi K Kodali
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Frank Ludwig
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Craig L Wallin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
3
|
Himadewi P, Wang XQD, Feng F, Gore H, Liu Y, Yu L, Kurita R, Nakamura Y, Pfeifer GP, Liu J, Zhang X. 3'HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression. eLife 2021; 10:e70557. [PMID: 34585664 PMCID: PMC8500713 DOI: 10.7554/elife.70557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in the adult β-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and β-thalassemia. An increase in fetal hemoglobin expression throughout adulthood, a condition named hereditary persistence of fetal hemoglobin (HPFH), has been found to ameliorate hemoglobinopathies. Deletional HPFH occurs through the excision of a significant portion of the 3' end of the β-globin locus, including a CTCF binding site termed 3'HS1. Here, we show that the deletion of this CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene downstream of the locus, which can also be insulated by the inversion of the 3'HS1 CTCF site. This suggests that genetic editing of this binding site can have therapeutic implications to treat hemoglobinopathies.
Collapse
Affiliation(s)
- Pamela Himadewi
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Xue Qing David Wang
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Fan Feng
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Haley Gore
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Yushuai Liu
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Lei Yu
- Cell and Development Biology, University of MichiganAnn ArborUnited States
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross SocietyTokyoJapan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research CenterTsukubaJapan
- Faculty of Medicine, University of TsukubaTsukubaJapan
| | - Gerd P Pfeifer
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| | - Jie Liu
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Xiaotian Zhang
- Center for Epigenetics, Van Andel Research InstituteGrand RapidsUnited States
| |
Collapse
|
4
|
Vermunt MW, Zhang D, Blobel GA. The interdependence of gene-regulatory elements and the 3D genome. J Cell Biol 2019; 218:12-26. [PMID: 30442643 PMCID: PMC6314554 DOI: 10.1083/jcb.201809040] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023] Open
Abstract
Imaging studies, high-resolution chromatin conformation maps, and genome-wide occupancy data of architectural proteins have revealed that genome topology is tightly intertwined with gene expression. Cross-talk between gene-regulatory elements is often organized within insulated neighborhoods, and regulatory cues that induce transcriptional changes can reshape chromatin folding patterns and gene positioning within the nucleus. The cause-consequence relationship of genome architecture and gene expression is intricate, and its molecular mechanisms are under intense investigation. Here, we review the interdependency of transcription and genome organization with emphasis on enhancer-promoter contacts in gene regulation.
Collapse
Affiliation(s)
- Marit W Vermunt
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Di Zhang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
6
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
7
|
Song SH, Kim TY. CTCF, Cohesin, and Chromatin in Human Cancer. Genomics Inform 2017; 15:114-122. [PMID: 29307136 PMCID: PMC5769866 DOI: 10.5808/gi.2017.15.4.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
It is becoming increasingly clear that eukaryotic genomes are subjected to higher-order chromatin organization by the CCCTC-binding factor/cohesin complex. Their dynamic interactions in three dimensions within the nucleus regulate gene transcription by changing the chromatin architecture. Such spatial genomic organization is functionally important for the spatial disposition of chromosomes to control cell fate during development and differentiation. Thus, the dysregulation of proper long-range chromatin interactions may influence the development of tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Sang-Hyun Song
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Tae-You Kim
- Cancer Genomics Research Laboratory, Cancer Research Institute, Seoul National University, Seoul 03080, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
8
|
Scheer S, Zaph C. The Lysine Methyltransferase G9a in Immune Cell Differentiation and Function. Front Immunol 2017; 8:429. [PMID: 28443098 PMCID: PMC5387087 DOI: 10.3389/fimmu.2017.00429] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
G9a (KMT1C, EHMT2) is a lysine methyltransferase (KMT) whose primary function is to di-methylate lysine 9 of histone H3 (H3K9me2). G9a-dependent H3K9me2 is associated with gene silencing and acts primarily through the recruitment of H3K9me2-binding proteins that prevent transcriptional activation. Gene repression via G9a-dependent H3K9me2 is critically required in embryonic stem (ES) cells for the development of cellular lineages by repressing expression of pluripotency factors. In the immune system, lymphoid cells such as T cells and innate lymphoid cells (ILCs) can differentiate from a naïve state into one of several effector lineages that require both activating and repressive mechanisms to maintain the correct gene expression program. Furthermore, the long-term immunity to re-infection is mediated by memory T cells, which also require specific gene expression and repression to maintain a quiescent state. In this review, we examine the molecular machinery of G9a-dependent functions, address the role of G9a in lymphoid cell differentiation and function, and identify potential functions of T cells and ILCs that may be controlled by G9a. Together, this review will highlight the dynamic nature of G9a-dependent H3K9me2 in the immune system and shed light on the nature of repressive epigenetic modifications in cellular lineage choice.
Collapse
Affiliation(s)
- Sebastian Scheer
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Colby Zaph
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
9
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
10
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
11
|
Kim TK, Shiekhattar R. Architectural and Functional Commonalities between Enhancers and Promoters. Cell 2015; 162:948-59. [PMID: 26317464 DOI: 10.1016/j.cell.2015.08.008] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/23/2023]
Abstract
With the explosion of genome-wide studies of regulated transcription, it has become clear that traditional definitions of enhancers and promoters need to be revisited. These control elements can now be characterized in terms of their local and regional architecture, their regulatory components, including histone modifications and associated binding factors, and their functional contribution to transcription. This Review discusses unifying themes between promoters and enhancers in transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
12
|
Fraser J, Williamson I, Bickmore WA, Dostie J. An Overview of Genome Organization and How We Got There: from FISH to Hi-C. Microbiol Mol Biol Rev 2015; 79:347-72. [PMID: 26223848 PMCID: PMC4517094 DOI: 10.1128/mmbr.00006-15] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In humans, nearly two meters of genomic material must be folded to fit inside each micrometer-scale cell nucleus while remaining accessible for gene transcription, DNA replication, and DNA repair. This fact highlights the need for mechanisms governing genome organization during any activity and to maintain the physical organization of chromosomes at all times. Insight into the functions and three-dimensional structures of genomes comes mostly from the application of visual techniques such as fluorescence in situ hybridization (FISH) and molecular approaches including chromosome conformation capture (3C) technologies. Recent developments in both types of approaches now offer the possibility of exploring the folded state of an entire genome and maybe even the identification of how complex molecular machines govern its shape. In this review, we present key methodologies used to study genome organization and discuss what they reveal about chromosome conformation as it relates to transcription regulation across genomic scales in mammals.
Collapse
Affiliation(s)
- James Fraser
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| | - Iain Williamson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Josée Dostie
- Department of Biochemistry, and Goodman Cancer Research Center, McGill University, Montréal, Québec, Canada
| |
Collapse
|
13
|
|
14
|
Abstract
Chromatin, once thought to serve only as a means to package DNA, is now recognized as a major regulator of gene activity. As a result of the wide range of methods used to describe the numerous levels of chromatin organization, the terminology that has emerged to describe these organizational states is often imprecise and sometimes misleading. In this review, we discuss our current understanding of chromatin architecture and propose terms to describe the various biochemical and structural states of chromatin.
Collapse
Affiliation(s)
- Liron Even-Faitelson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | | | - Zahra Baghestani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - David P Bazett-Jones
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
15
|
Milon B, Sun Y, Chang W, Creasy T, Mahurkar A, Shetty A, Nurminsky D, Nurminskaya M. Map of open and closed chromatin domains in Drosophila genome. BMC Genomics 2014; 15:988. [PMID: 25407537 PMCID: PMC4289254 DOI: 10.1186/1471-2164-15-988] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification. RESULTS We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin "states", individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse "exceptions" from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin. CONCLUSIONS These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dmitry Nurminsky
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 108 N, Greene St,, Baltimore, MD 21201, USA.
| | | |
Collapse
|
16
|
Zhang W, Zhang T, Wu Y, Jiang J. Open Chromatin in Plant Genomes. Cytogenet Genome Res 2014; 143:18-27. [DOI: 10.1159/000362827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Cadiz-Rivera B, Fromm G, de Vries C, Fields J, McGrath KE, Fiering S, Bulger M. The chromatin "landscape" of a murine adult β-globin gene is unaffected by deletion of either the gene promoter or a downstream enhancer. PLoS One 2014; 9:e92947. [PMID: 24817273 PMCID: PMC4015891 DOI: 10.1371/journal.pone.0092947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/27/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the complex tissue- and developmental-specific expression of genes within the β-globin cluster is known to be subject to control by the gene promoters, by a locus control region (LCR) located upstream of the cluster, and by sequence elements located across the intergenic regions. Despite extensive investigation, however, the complement of sequences that is required for normal regulation of chromatin structure and gene expression within the cluster is not fully defined. To further elucidate regulation of the adult β-globin genes, we investigate the effects of two deletions engineered within the endogenous murine β-globin locus. First, we find that deletion of the β2-globin gene promoter, while eliminating β2-globin gene expression, results in no additional effects on chromatin structure or gene expression within the cluster. Notably, our observations are not consistent with competition among the β-globin genes for LCR activity. Second, we characterize a novel enhancer located 3′ of the β2-globin gene, but find that deletion of this sequence has no effect whatsoever on gene expression or chromatin structure. This observation highlights the difficulty in assigning function to enhancer sequences identified by the chromatin “landscape” or even by functional assays.
Collapse
Affiliation(s)
- Brenda Cadiz-Rivera
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - George Fromm
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
- National Institute for Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, United States of America
| | - Christina de Vries
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - Jennifer Fields
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Kathleen E. McGrath
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
| | - Steven Fiering
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Michael Bulger
- Department of Pediatrics, University of Rochester Medical Center and Center for Pediatric Biomedical Research, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Phillips-Cremins JE, Corces VG. Chromatin insulators: linking genome organization to cellular function. Mol Cell 2013; 50:461-74. [PMID: 23706817 DOI: 10.1016/j.molcel.2013.04.018] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A growing body of evidence suggests that insulators have a primary role in orchestrating the topological arrangement of higher-order chromatin architecture. Insulator-mediated long-range interactions can influence the epigenetic status of the genome and, in certain contexts, may have important effects on gene expression. Here we discuss higher-order chromatin organization as a unifying mechanism for diverse insulator actions across the genome.
Collapse
|
19
|
Shu H, Gruissem W, Hennig L. Measuring Arabidopsis chromatin accessibility using DNase I-polymerase chain reaction and DNase I-chip assays. PLANT PHYSIOLOGY 2013; 162:1794-801. [PMID: 23739687 PMCID: PMC3729761 DOI: 10.1104/pp.113.220400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA accessibility is an important layer of regulation of DNA-dependent processes. Methods that measure DNA accessibility at local and genome-wide scales have facilitated a rapid increase in the knowledge of chromatin architecture in animal and yeast systems. In contrast, much less is known about chromatin organization in plants. We developed a robust DNase I-polymerase chain reaction (PCR) protocol for the model plant Arabidopsis (Arabidopsis thaliana). DNA accessibility is probed by digesting nuclei with a gradient of DNase I followed by locus-specific PCR. The reduction in PCR product formation along the gradient of increasing DNase I concentrations is used to determine the accessibility of the chromatin DNA. We explain a strategy to calculate the decay constant of such signal reduction as a function of increasing DNase I concentration. This allows describing DNA accessibility using a single variable: the decay constant. We also used the protocol together with AGRONOMICS1 DNA tiling microarrays to establish genome-wide DNase I sensitivity landscapes.
Collapse
|
20
|
Holwerda SJB, de Laat W. CTCF: the protein, the binding partners, the binding sites and their chromatin loops. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120369. [PMID: 23650640 PMCID: PMC3682731 DOI: 10.1098/rstb.2012.0369] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CTCF has it all. The transcription factor binds to tens of thousands of genomic sites, some tissue-specific, others ultra-conserved. It can act as a transcriptional activator, repressor and insulator, and it can pause transcription. CTCF binds at chromatin domain boundaries, at enhancers and gene promoters, and inside gene bodies. It can attract many other transcription factors to chromatin, including tissue-specific transcriptional activators, repressors, cohesin and RNA polymerase II, and it forms chromatin loops. Yet, or perhaps therefore, CTCF's exact function at a given genomic site is unpredictable. It appears to be determined by the associated transcription factors, by the location of the binding site relative to the transcriptional start site of a gene, and by the site's engagement in chromatin loops with other CTCF-binding sites, enhancers or gene promoters. Here, we will discuss genome-wide features of CTCF binding events, as well as locus-specific functions of this remarkable transcription factor.
Collapse
Affiliation(s)
| | - Wouter de Laat
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
21
|
Abstract
Insights into the evolution of hemoglobins and their genes are an abundant source of ideas regarding hemoglobin function and regulation of globin gene expression. This article presents the multiple genes and gene families encoding human globins, summarizes major events in the evolution of the hemoglobin gene clusters, and discusses how these studies provide insights into regulation of globin genes. Although the genes in and around the α-like globin gene complex are relatively stable, the β-like globin gene clusters are more dynamic, showing evidence of transposition to a new locus and frequent lineage-specific expansions and deletions. The cis-regulatory modules controlling levels and timing of gene expression are a mix of conserved and lineage-specific DNA, perhaps reflecting evolutionary constraint on core regulatory functions shared broadly in mammals and adaptive fine-tuning in different orders of mammals.
Collapse
Affiliation(s)
- Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institute of Genome Sciences, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Ulianov SV, Gavrilov AA, Razin SV. Spatial organization of the chicken beta-globin gene domain in erythroid cells of embryonic and adult lineages. Epigenetics Chromatin 2012; 5:16. [PMID: 22958419 PMCID: PMC3502096 DOI: 10.1186/1756-8935-5-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/16/2012] [Indexed: 12/31/2022] Open
Abstract
Background The β-globin gene domains of vertebrate animals constitute popular models for studying the regulation of eukaryotic gene transcription. It has previously been shown that in the mouse the developmental switching of globin gene expression correlates with the reconfiguration of an active chromatin hub (ACH), a complex of promoters of transcribed genes with distant regulatory elements. Although it is likely that observations made in the mouse β-globin gene domain are also relevant for this locus in other species, the validity of this supposition still lacks direct experimental evidence. Here, we have studied the spatial organization of the chicken β-globin gene domain. This domain is of particular interest because it represents the perfect example of the so-called ‘strong’ tissue-specific gene domain flanked by insulators, which delimit the area of preferential sensitivity to DNase I in erythroid cells. Results Using chromosome conformation capture (3C), we have compared the spatial configuration of the β-globin gene domain in chicken red blood cells (RBCs) expressing embryonic (3-day-old RBCs) and adult (9-day-old RBCs) β-globin genes. In contrast to observations made in the mouse model, we found that in the chicken, the early embryonic β-globin gene, Ε, did not interact with the locus control region in RBCs of embryonic lineage (3-day RBCs), where this gene is actively transcribed. In contrast to the mouse model, a strong interaction of the promoter of another embryonic β-globin gene, ρ, with the promoter of the adult β-globin gene, βA, was observed in RBCs from both 3-day and 9-day chicken embryos. Finally, we have demonstrated that insulators flanking the chicken β-globin gene domain from the upstream and from the downstream interact with each other, which places the area characterized by lineage-specific sensitivity to DNase I in a separate chromatin loop. Conclusions Taken together, our results strongly support the ACH model but show that within a domain of tissue-specific genes, the active status of a promoter does not necessarily correlate with the recruitment of this promoter to the ACH.
Collapse
Affiliation(s)
- Sergey V Ulianov
- Institute of Gene Biology of the Russian Academy of Sciences, 34/5 Vavilov str,, 119334, Moscow, Russia.
| | | | | |
Collapse
|
23
|
Steilmann C, Paradowska A, Bartkuhn M, Vieweg M, Schuppe HC, Bergmann M, Kliesch S, Weidner W, Steger K. Presence of histone H3 acetylated at lysine 9 in male germ cells and its distribution pattern in the genome of human spermatozoa. Reprod Fertil Dev 2012; 23:997-1011. [PMID: 22127005 DOI: 10.1071/rd10197] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 05/04/2011] [Indexed: 12/28/2022] Open
Abstract
During spermatogenesis, approximately 85% of histones are replaced by protamines. The remaining histones have been proposed to carry essential marks for the establishment of epigenetic information in the offspring. The aim of the present study was to analyse the expression pattern of histone H3 acetylated at lysine 9 (H3K9ac) during normal and impaired spermatogenesis and the binding pattern of H3K9ac to selected genes within ejaculates. Testicular biopsies, as well as semen samples, were used for immunohistochemistry. Chromatin immunoprecipitation was performed with ejaculated sperm chromatin. HeLa cells and prostate tissue served as controls. Binding of selected genes was evaluated by semiquantitative and real-time polymerase chain reaction. Immunohistochemistry of H3K9ac demonstrated positive signals in spermatogonia, spermatocytes, elongating spermatids and ejaculated spermatozoa of fertile and infertile men. H3K9ac was associated with gene promoters (CRAT, G6PD, MCF2L), exons (SOX2, GAPDH, STK11IP, FLNA, PLXNA3, SH3GLB2, CTSD) and intergenic regions (TH) in fertile men and revealed shifts of the distribution pattern in ejaculated spermatozoa of infertile men. In conclusion, H3K9ac is present in male germ cells and may play a role during the development of human spermatozoa. In addition, H3K9ac is associated with specific regions of the sperm genome defining an epigenetic code that may influence gene expression directly after fertilisation.
Collapse
Affiliation(s)
- C Steilmann
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Rudolf Buchheim Str. 7, 35385 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nikolaev LG, Akopov SB, Didych DA, Sverdlov ED. Vertebrate Protein CTCF and its Multiple Roles in a Large-Scale Regulation of Genome Activity. Curr Genomics 2011; 10:294-302. [PMID: 20119526 PMCID: PMC2729993 DOI: 10.2174/138920209788921038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 06/15/2009] [Accepted: 06/18/2009] [Indexed: 11/24/2022] Open
Abstract
The CTCF transcription factor is an 11 zinc fingers multifunctional protein that uses different zinc finger combinations to recognize and bind different sites within DNA. CTCF is thought to participate in various gene regulatory networks including transcription activation and repression, formation of independently functioning chromatin domains and regulation of imprinting. Sequencing of human and other genomes opened up a possibility to ascertain the genomic distribution of CTCF binding sites and to identify CTCF-dependent cis-regulatory elements, including insulators. In the review, we summarized recent data on genomic distribution of CTCF binding sites in the human and other genomes within a framework of the loop domain hypothesis of large-scale regulation of the genome activity. We also tried to formulate possible lines of studies on a variety of CTCF functions which probably depend on its ability to specifically bind DNA, interact with other proteins and form di- and multimers. These three fundamental properties allow CTCF to serve as a transcription factor, an insulator and a constitutive dispersed genome-wide demarcation tool able to recruit various factors that emerge in response to diverse external and internal signals, and thus to exert its signal-specific function(s).
Collapse
Affiliation(s)
- L G Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, 117997, Moscow, Russia
| | | | | | | |
Collapse
|
25
|
Abstract
In eukaryotes, all DNA-templated reactions occur in the context of chromatin. Nucleosome packaging inherently restricts DNA accessibility for regulatory proteins but also provides an opportunity to regulate DNA-based processes through modulating nucleosome positions and local chromatin structure. Recent advances in genome-scale methods are yielding increasingly detailed profiles of the genomic distribution of nucleosomes, their modifications and their modifiers. The picture now emerging is one in which the dynamic control of genome accessibility is governed by contributions from DNA sequence, ATP-dependent chromatin remodelling and nucleosome modifications. Here we discuss the interplay of these processes by reviewing our current understanding of how chromatin access contributes to the regulation of transcription, replication and repair.
Collapse
|
26
|
Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol 2011; 31:3298-311. [PMID: 21670149 DOI: 10.1128/mcb.05310-11] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors TR2 and TR4 (TR2/TR4) were previously shown to bind in vitro to direct repeat elements in the mouse and human embryonic and fetal β-type globin gene promoters and to play critical roles in the silencing of these genes. By chromatin immunoprecipitation (ChIP) we show that, in adult erythroid cells, TR2/TR4 bind to the embryonic β-type globin promoters but not to the adult β-globin promoter. We purified protein complexes containing biotin-tagged TR2/TR4 from adult erythroid cells and identified DNMT1, NuRD, and LSD1/CoREST repressor complexes, as well as HDAC3 and TIF1β, all known to confer epigenetic gene silencing, as potential corepressors of TR2/TR4. Coimmunoprecipitation assays of endogenous abundance proteins indicated that TR2/TR4 complexes consist of at least four distinct molecular species. In ChIP assays we found that, in undifferentiated murine adult erythroid cells, many of these corepressors associate with both the embryonic and the adult β-type globin promoters but, upon terminal differentiation, they specifically dissociate only from the adult β-globin promoter concomitant with its activation but remain bound to the silenced embryonic globin gene promoters. These data suggest that TR2/TR4 recruit an array of transcriptional corepressors to elicit adult stage-specific silencing of the embryonic β-type globin genes through coordinated epigenetic chromatin modifications.
Collapse
|
27
|
A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo. Blood 2011; 117:4600-8. [PMID: 21378272 DOI: 10.1182/blood-2010-12-325357] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A transient erythromyeloid wave of definitive hematopoietic progenitors (erythroid/myeloid progenitors [EMPs]) emerges in the yolk sac beginning at embryonic day 8.25 (E8.25) and colonizes the liver by E10.5, before adult-repopulating hematopoietic stem cells. At E11.5, we observe all maturational stages of erythroid precursors in the liver and the first definitive erythrocytes in the circulation. These early fetal liver erythroblasts express predominantly adult β-globins and the definitive erythroid-specific transcriptional modifiers c-myb, Sox6, and Bcl11A. Surprisingly, they also express low levels of "embryonic" βH1-, but not εy-, globin transcripts. Consistent with these results, RNA polymerase and highly modified histones are found associated with βH1- and adult globin, but not εy-globin, genes. E11.5 definitive proerythroblasts from mice transgenic for the human β-globin locus, like human fetal erythroblasts, express predominately human γ-, low β-, and no ε-globin transcripts. Significantly, E9.5 yolk sac-derived EMPs cultured in vitro have similar murine and human transgenic globin expression patterns. Later liver proerythroblasts express low levels of γ-globin, while adult marrow proerythroblasts express only β-globin transcripts. We conclude that yolk sac-derived EMPs, the first of 2 origins of definitive erythropoiesis, express a unique pattern of globin genes as they generate the first definitive erythrocytes in the liver of the mammalian embryo.
Collapse
|
28
|
Amouyal M. Gene insulation. Part II: natural strategies in vertebrates. Biochem Cell Biol 2011; 88:885-98. [PMID: 21102651 DOI: 10.1139/o10-111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The way a gene is insulated from its genomic environment in vertebrates is not basically different from what is observed in yeast and Drosophila (preceding article in this issue). If the formation of a looped chromatin domain, whether generated by attachment to the nuclear matrix or not, has become a classic way to confine an enhancer to a specific genomic domain and to coordinate, sequentially or simultaneously, gene expression in a given program, its role has been extended to new networks of genes or regulators within the same gene. A wider definition of the bases of the chromatin loops (nonchromosomal nuclear structures or genomic interacting elements) is also available. However, whereas insulation in Drosophila is due to a variety of proteins, in vertebrates insulators are still practically limited to CTCF (the CCCTC-binding factor), which appears in all cases to be the linchpin of an architecture that structures the assembly of DNA-protein interactions for gene regulation. As in yeast and Drosophila, the economy of means is the rule and the same unexpected diversion of known transcription elements (active or poised RNA polymerases, TFIIIC elements out of tRNA genes, permanent histone replacement) is observed, with variants peculiar to CTCF. Thus, besides structuring DNA looping, CTCF is a barrier to DNA methylation or interferes with all sorts of transcription processes, such as that generating heterochromatin.
Collapse
|
29
|
An embryonic stage-specific enhancer within the murine β-globin locus mediates domain-wide histone hyperacetylation. Blood 2011; 117:5207-14. [PMID: 21321362 DOI: 10.1182/blood-2010-08-302018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian nuclei, a select number of tissue-specific gene loci exhibit broadly distributed patterns of histone modifications, such as histone hyperacetylation, that are normally associated with active gene promoters. Previously, we characterized such hyperacetylated domains within mammalian β-globin gene loci, and determined that within the murine locus, neither the β-globin locus control region nor the gene promoters were required for domain formation. Here, we identify a developmentally specific erythroid enhancer, hypersensitive site-embryonic 1 (HS-E1), located within the embryonic β-globin domain in mouse, which is homologous to a region located downstream of the human embryonic ε-globin gene. This sequence exhibits nuclease hypersensitivity in primitive erythroid cells and acts as an enhancer in gain-of-function assays. Deletion of HS-E1 from the endogenous murine β-globin locus results in significant decrease in the expression of the embryonic β-globin genes and loss of the domain-wide pattern of histone hyperacetylation. The data suggest that HS-E1 is an enhancer that is uniquely required for β-like globin expression in primitive erythroid cells, and that it defines a novel class of enhancer that works in part by domain-wide modulation of chromatin structure.
Collapse
|
30
|
Itaya K, Chayahara K, Hirai T, Minbuta T, Uchikawa T, Tanaka T, Masaki S, Kuroda K, Ono M. DT40 knock-out and knock-in studies determine the regions necessary and sufficient for transcription and epigenetic conversion of the chicken Ig-β gene. Genes Cells 2011; 16:291-303. [PMID: 21294817 DOI: 10.1111/j.1365-2443.2011.01486.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chicken Ig-β locus is organized by three cell-type-specific genes and two ubiquitously expressed genes. B-cell-specific DNase I hypersensitive sites (DHS) in that locus, including three present inside the flanking gene, were grouped into six regions and deleted. The deletions decreased Ig-β mRNA content to <0.1% of that of normal DT40 cells and converted epigenetic parameters such as histone modifications, CG methylation and DNase I hypersensitivity into inactive states. Knocked-in DHS regions into knock-out cells reactivated both transcription of the Ig-β gene and epigenetic parameters. Thus, the collaboration of the scattered regulatory regions was essential and sufficient not only for B-cell-specific transcription of the Ig-β gene, but also for the conversion of epigenetic parameters. On the basis of the knock-in studies, we determined the regions involved in the conversion and maintenance of the epigenetic parameters. These scattered regulatory regions were limited in vicinity such as in an intron of the gene, in the intergenic regions and in the introns of a flanking gene.
Collapse
Affiliation(s)
- Kakeru Itaya
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dean A. In the loop: long range chromatin interactions and gene regulation. Brief Funct Genomics 2011; 10:3-10. [PMID: 21258045 DOI: 10.1093/bfgp/elq033] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Enhancers, silencer and insulators are DNA elements that play central roles in regulation of the genome that are crucial for development and differentiation. In metazoans, these elements are often separated from target genes by distances that can reach 100 Kb. How regulation can be accomplished over long distances has long been intriguing. Current data indicate that although the mechanisms by which these diverse regulatory elements affect gene transcription may vary, an underlying feature is the establishment of close contacts or chromatin loops. With the generalization of this principle, new questions emerge, such as how the close contacts are formed and stabilized and, importantly, how they contribute to the regulation of transcriptional output at target genes. This review will concentrate on examples where a functional role and a mechanistic understanding has been explored for loops formed between genes and their regulatory elements or among the elements themselves.
Collapse
Affiliation(s)
- Ann Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Building 50, Room 3154, 50 South Drive, MSC 8028, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010; 19:698-711. [PMID: 21074720 DOI: 10.1016/j.devcel.2010.10.005] [Citation(s) in RCA: 428] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Appropriate patterns of DNA methylation and histone modifications are required to assure cell identity, and their deregulation can contribute to human diseases, such as cancer. Our aim here is to provide an overview of how epigenetic factors, including genomic DNA methylation, histone modifications, and microRNA regulation, contribute to normal development, paying special attention to their role in regulating tissue-specific genes. In addition, we summarize how these epigenetic patterns go awry during human cancer development. The possibility of "resetting" the abnormal cancer epigenome by applying pharmacological or genetic strategies is also discussed.
Collapse
Affiliation(s)
- María Berdasco
- Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Catalonia, Spain
| | | |
Collapse
|
33
|
Abstract
Genomes exist in vivo as complex physical structures, and their functional output (i.e. the gene expression profile of a cell) is related to their spatial organization inside the nucleus as well as to local chromatin status. Chromatin modifications and chromosome conformation are distinct in different tissues and cell types, which corresponds closely with the diversity in gene-expression patterns found in different tissues of the body. The biological processes and mechanisms driving these general correlations are currently the topic of intense study. An emerging theme is that genome compartmentalization - both along the linear length of chromosomes, and in three dimensions by the spatial colocalization of chromatin domains and genomic loci from across the genome - is a crucial parameter in regulating genome expression. In this Commentary, we propose that a full understanding of genome regulation requires integrating three different types of data: first, one-dimensional data regarding the state of local chromatin - such as patterns of protein binding along chromosomes; second, three-dimensional data that describe the population-averaged folding of chromatin inside cells and; third, single-cell observations of three-dimensional spatial colocalization of genetic loci and trans factors that reveal information about their dynamics and frequency of colocalization.
Collapse
Affiliation(s)
- Natalia Naumova
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605-0103, USA
| | - Job Dekker
- Program in Gene Function and Expression and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605-0103, USA
| |
Collapse
|
34
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
35
|
Solovieff N, Milton JN, Hartley SW, Sherva R, Sebastiani P, Dworkis DA, Klings ES, Farrer LA, Garrett ME, Ashley-Koch A, Telen MJ, Fucharoen S, Ha SY, Li CK, Chui DHK, Baldwin CT, Steinberg MH. Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5' olfactory receptor gene cluster. Blood 2010; 115:1815-22. [PMID: 20018918 PMCID: PMC2832816 DOI: 10.1182/blood-2009-08-239517] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/18/2009] [Indexed: 11/20/2022] Open
Abstract
In a genome-wide association study of 848 blacks with sickle cell anemia, we identified single nucleotide polymorphisms (SNPs) associated with fetal hemoglobin concentration. The most significant SNPs in a discovery sample were tested in a replication set of 305 blacks with sickle cell anemia and in subjects with hemoglobin E or beta thalassemia trait from Thailand and Hong Kong. A novel region on chromosome 11 containing olfactory receptor genes OR51B5 and OR51B6 was identified by 6 SNPs (lowest P = 4.7E-08) and validated in the replication set. An additional olfactory receptor gene, OR51B2, was identified by a novel SNP set enrichment analysis. Genome-wide association studies also validated a previously identified SNP (rs766432) in BCL11A, a gene known to affect fetal hemoglobin levels (P = 2.6E-21) and in Thailand and Hong Kong subjects. Elements within the olfactory receptor gene cluster might play a regulatory role in gamma-globin gene expression.
Collapse
MESH Headings
- Adolescent
- Adult
- Black or African American/genetics
- Anemia, Sickle Cell/blood
- Anemia, Sickle Cell/genetics
- Carrier Proteins/genetics
- Child
- Child, Preschool
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, X/genetics
- Female
- Fetal Hemoglobin/genetics
- Fetal Hemoglobin/metabolism
- Genome-Wide Association Study
- Hemoglobin E/genetics
- Hong Kong
- Humans
- Male
- Multigene Family
- Nuclear Proteins/genetics
- Polymorphism, Single Nucleotide
- Receptors, Odorant/genetics
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins
- Thailand
- Young Adult
- beta-Thalassemia/genetics
Collapse
Affiliation(s)
- Nadia Solovieff
- Department of Biostatistics, Boston University School of Public Health, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hou C, Dale R, Dean A. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc Natl Acad Sci U S A 2010; 107:3651-6. [PMID: 20133600 PMCID: PMC2840441 DOI: 10.1073/pnas.0912087107] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CTCF sites are abundant in the genomes of diverse species but their function is enigmatic. We used chromosome conformation capture to determine long-range interactions among CTCF/cohesin sites over 2 Mb on human chromosome 11 encompassing the beta-globin locus and flanking olfactory receptor genes. Although CTCF occupies these sites in both erythroid K562 cells and fibroblast 293T cells, the long-range interaction frequencies among the sites are highly cell type specific, revealing a more densely clustered organization in the absence of globin gene activity. Both CTCF and cohesins are required for the cell-type-specific chromatin conformation. Furthermore, loss of the organizational loops in K562 cells through reduction of CTCF with shRNA results in acquisition of repressive histone marks in the globin locus and reduces globin gene expression whereas silent flanking olfactory receptor genes are unaffected. These results support a genome-wide role for CTCF/cohesin sites through loop formation that both influences transcription and contributes to cell-type-specific chromatin organization and function.
Collapse
Affiliation(s)
- Chunhui Hou
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ryan Dale
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
Fromm G, Bulger M. A spectrum of gene regulatory phenomena at mammalian beta-globin gene loci. Biochem Cell Biol 2010; 87:781-90. [PMID: 19898527 DOI: 10.1139/o09-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The beta-globin gene cluster in mammals, consisting of a set of erythroid-specific, developmentally activated, and (or) silenced genes, has long presented a model system for the investigation of gene regulation. As the number and complexity of models of gene activation and repression have expanded, so too has the complexity of phenomena associated with the regulation of the beta-globin genes. Models for expression from within the locus must account for local (promoter-proximal), distal (enhancer-mediated), and domain-wide components of the regulatory pathways that proceed through mammalian development and erythroid differentiation. In this review, we provide an overview of transcriptional activation, silencing, chromatin structure, and the function of distal regulatory elements involved in the normal developmental regulation of beta-globin gene expression.
Collapse
Affiliation(s)
- George Fromm
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
38
|
H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 2010; 115:2028-37. [PMID: 20068219 DOI: 10.1182/blood-2009-07-236059] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Histone modifications play an important role in the process of transcription. However, in contrast to lysine methylation, the role of arginine methylation in chromatin structure and transcription has been underexplored. The globin genes are regulated by a highly organized chromatin structure that juxtaposes the locus control region (LCR) with downstream globin genes. We report here that the targeted recruitment of asymmetric dimethyl H4R3 catalyzed by PRMT1 (protein arginine methyltransferase 1) facilitates histone H3 acetylation on Lys9/Lys14. Dimethyl H4R3 provides a binding surface for P300/CBP-associated factor (PCAF) and directly enhances histone H3 acetylation in vitro. We show that these active modifications are essential for efficient interactions between the LCR and the beta(maj)-promoter as well as transcription of the beta-globin gene. Furthermore, knockdown (KD) of PRMT1 by RNA interference in erythroid progenitor cells prevents histone acetylation, enhancer and promoter interaction, and recruitment of transcription complexes to the active beta-globin promoter. Reintroducing rat PRMT1 into the PRMT1 KD MEL cells rescues PRMT1 binding, beta-globin transcription, and erythroid differentiation. Taken together, our data suggest that PRMT1-mediated dimethyl H4R3 facilitates histone acetylation and enhancer/promoter communications, which lead to the efficient recruitment of transcription preinitiation complexes to active promoters.
Collapse
|
39
|
Lee HY, Johnson KD, Fujiwara T, Boyer ME, Kim SI, Bresnick EH. Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor. Mol Cell 2009; 36:984-995. [PMID: 20064464 PMCID: PMC2807411 DOI: 10.1016/j.molcel.2009.11.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 06/20/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022]
Abstract
GATA factors establish transcriptional networks that control fundamental developmental processes. Whereas the regulator of hematopoiesis GATA-1 is subject to multiple posttranslational modifications, how these modifications influence GATA-1 function at endogenous loci is unknown. We demonstrate that sumoylation of GATA-1 K137 promotes transcriptional activation only at target genes requiring the coregulator Friend of GATA-1 (FOG-1). A mutation of GATA-1 V205G that disrupts FOG-1 binding and K137 mutations yielded similar phenotypes, although sumoylation was FOG-1 independent, and FOG-1 binding did not require sumoylation. Both mutations dysregulated GATA-1 chromatin occupancy at select sites, FOG-1-dependent gene expression, and were rescued by tethering SUMO-1. While FOG-1- and SUMO-1-dependent genes migrated away from the nuclear periphery upon erythroid maturation, FOG-1- and SUMO-1-independent genes persisted at the periphery. These results illustrate a mechanism that controls trans-acting factor function in a locus-specific manner, and differentially regulated members of the target gene ensemble reside in distinct subnuclear compartments.
Collapse
Affiliation(s)
- Hsiang-Ying Lee
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Kirby D. Johnson
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Tohru Fujiwara
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Meghan E. Boyer
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, 385 Medical Sciences Center, Madison, WI 53706
| |
Collapse
|
40
|
Yao H, Hwang JW, Moscat J, Diaz-Meco MT, Leitges M, Kishore N, Li X, Rahman I. Protein kinase C zeta mediates cigarette smoke/aldehyde- and lipopolysaccharide-induced lung inflammation and histone modifications. J Biol Chem 2009; 285:5405-16. [PMID: 20007975 DOI: 10.1074/jbc.m109.041418] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atypical protein kinase C (PKC) zeta is an important regulator of inflammation through activation of the nuclear factor-kappaB (NF-kappaB) pathway. Chromatin remodeling on pro-inflammatory genes plays a pivotal role in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced abnormal lung inflammation. However, the signaling mechanism whereby chromatin remodeling occurs in CS- and LPS-induced lung inflammation is not known. We hypothesized that PKCzeta is an important regulator of chromatin remodeling, and down-regulation of PKCzeta ameliorates lung inflammation by CS and LPS exposures. We determined the role and molecular mechanism of PKCzeta in abnormal lung inflammatory response to CS and LPS exposures in PKCzeta-deficient (PKCzeta(-/-)) and wild-type mice. Lung inflammatory response was decreased in PKCzeta(-/-) mice compared with WT mice exposed to CS and LPS. Moreover, inhibition of PKCzeta by a specific pharmacological PKCzeta inhibitor attenuated CS extract-, reactive aldehydes (present in CS)-, and LPS-mediated pro-inflammatory mediator release from macrophages. The mechanism underlying these findings is associated with decreased RelA/p65 phosphorylation (Ser(311)) and translocation of the RelA/p65 subunit of NF-kappaB into the nucleus. Furthermore, CS/reactive aldehydes and LPS exposures led to activation and translocation of PKCzeta into the nucleus where it forms a complex with CREB-binding protein (CBP) and acetylated RelA/p65 causing histone phosphorylation and acetylation on promoters of pro-inflammatory genes. Taken together, these data suggest that PKCzeta plays an important role in CS/aldehyde- and LPS-induced lung inflammation through acetylation of RelA/p65 and histone modifications via CBP. These data provide new insights into the molecular mechanisms underlying the pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dual role for the methyltransferase G9a in the maintenance of beta-globin gene transcription in adult erythroid cells. Proc Natl Acad Sci U S A 2009; 106:18303-8. [PMID: 19822740 DOI: 10.1073/pnas.0906769106] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using a proteomics screen, we have identified the methyltransferase G9a as an interacting partner of the hematopoietic activator NF-E2. We show that G9a is recruited to the beta-globin locus in a NF-E2-dependent manner and spreads over the entire locus. While G9a is often regarded as a corepressor, knocking down this protein in differentiating adult erythroid cells leads to repression of the adult beta(maj) globin gene and aberrant reactivation of the embryonic beta-like globin gene E(y). While in adult cells G9a maintains E(y) in a repressed state via dimethylation of histone H3 at lysines 9 and 27, it activates beta(maj) transcription in a methyltransferase-independent manner. Interestingly, the demethylase UTX is recruited to the beta(maj) (but not the E(y)) promoter where it antagonizes G9a-dependent H3K27 dimethylation. Collectively, these results reveal a dual role for G9a in maintaining proper expression (both repression and activation) of the beta-globin genes in differentiating adult erythroid cells.
Collapse
|
42
|
Histone hyperacetylation within the beta-globin locus is context-dependent and precedes high-level gene expression. Blood 2009; 114:3479-88. [PMID: 19690338 DOI: 10.1182/blood-2009-03-210690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Active gene promoters are associated with covalent histone modifications, such as hyperacetylation, which can modulate chromatin structure and stabilize binding of transcription factors that recognize these modifications. At the beta-globin locus and several other loci, however, histone hyperacetylation extends beyond the promoter, over tens of kilobases; we term such patterns of histone modifications "hyperacetylated domains." Little is known of either the mechanism by which these domains form or their function. Here, we show that domain formation within the murine beta-globin locus occurs before either high-level gene expression or erythroid commitment. Analysis of beta-globin alleles harboring deletions of promoters or the locus control region demonstrates that these sequences are not required for domain formation, suggesting the existence of additional regulatory sequences within the locus. Deletion of embryonic globin gene promoters, however, resulted in the formation of a hyperacetylated domain over these genes in definitive erythroid cells, where they are otherwise inactive. Finally, sequences within beta-globin domains exhibit hyperacetylation in a context-dependent manner, and domains are maintained when transcriptional elongation is inhibited. These data narrow the range of possible mechanisms by which hyperacetylated domains form.
Collapse
|
43
|
Hsu M, Richardson CA, Olivier E, Bouhassira EE, Lowrey CH, Fiering S. Complex developmental patterns of histone modifications associated with the human beta-globin switch in primary cells. Exp Hematol 2009; 37:799-806.e4. [PMID: 19460472 PMCID: PMC2748252 DOI: 10.1016/j.exphem.2009.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/02/2009] [Accepted: 04/20/2009] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The regulation of the beta-globin switch remains undetermined, and understanding this mechanism has important benefits for clinical and basic science. Histone modifications regulate gene expression and this study determines the presence of three important histone modifications across the beta-globin locus in erythroblasts with different beta-like globin-expression profiles. Understanding the chromatin associated with weak gamma gene expression in bone marrow cells is an important objective, with the goal of ultimately inducing postnatal expression of weak gamma-globin to cure beta-hemoglobinopathies. MATERIALS AND METHODS These studies use uncultured primary fetal and bone marrow erythroblasts and human embryonic stem cell-derived primitive-like erythroblasts. Chromatin immunoprecipitation with antibodies against modified histones reveals DNA associated with such histones. Precipitated DNA is quantitated by real-time polymerase chain reaction for 40 sites across the locus. RESULTS Distribution of histone modifications differs at each developmental stage. The most highly expressed genes at each stage are embedded within large domains of modifications associated with expression (acetylated histone H3 [H3ac] and dimethyl lysine 4 of histone H3 [H3K4me2]). Moderately expressed genes have H3ac and H3K4me2 in the immediate area around the gene. Dimethyl lysine 9 of histone H3 (H3K9me2), a mark associated with gene suppression, is present at the epsilon and gamma genes in bone marrow cells, suggesting active suppression of these genes. CONCLUSION This study reveals complex patterns of histone modifications associated with highly expressed, moderately expressed, and unexpressed genes. Activation of gamma postnatally will likely require extensive modification of the histones in a large domain around the gamma genes.
Collapse
Affiliation(s)
- Mei Hsu
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire
| | - Christine A. Richardson
- Department of Medicine, Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire
| | - Emmanuel Olivier
- Einstein Center for Human Embryonic Stem Cell Research, Department of Medicine, Hematology and Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Eric E. Bouhassira
- Einstein Center for Human Embryonic Stem Cell Research, Department of Medicine, Hematology and Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Christopher H. Lowrey
- Department of Medicine, Department of Pharmacology and Toxicology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire
| | - Steven Fiering
- Department of Microbiology and Immunology, and Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire
| |
Collapse
|
44
|
Abstract
CTCF is a highly conserved zinc finger protein implicated in diverse regulatory functions, including transcriptional activation/repression, insulation, imprinting, and X chromosome inactivation. Here we re-evaluate data supporting these roles in the context of mechanistic insights provided by recent genome-wide studies and highlight evidence for CTCF-mediated intra- and interchromosomal contacts at several developmentally regulated genomic loci. These analyses support a primary role for CTCF in the global organization of chromatin architecture and suggest that CTCF may be a heritable component of an epigenetic system regulating the interplay between DNA methylation, higher-order chromatin structure, and lineage-specific gene expression.
Collapse
|
45
|
Choi JC, Holtz R, Murphy SP. Histone deacetylases inhibit IFN-gamma-inducible gene expression in mouse trophoblast cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:6307-15. [PMID: 19414784 DOI: 10.4049/jimmunol.0802454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophoblast cells are the first cells to differentiate from the developing mammalian embryo, and they subsequently form the blastocyst-derived component of the placenta. IFN-gamma plays critical roles in activating innate and adaptive immunity, as well as apoptosis. In mice, IFN-gamma is produced in the pregnant uterus, and is essential for formation of the decidual layer of the placenta and remodeling of the uterine vasculature. Responses of mouse trophoblast cells to IFN-gamma appear to be selective, for IFN-gamma activates MHC class I expression and enhances phagocytosis, but fails to activate either MHC class II expression or apoptosis in these cells. To investigate the molecular basis for the selective IFN-gamma responsiveness of mouse trophoblast cells, IFN-gamma-inducible gene expression was examined in the trophoblast cell lines SM9 and M-11, trophoblast stem cells, and trophoblast stem cell-derived giant cells. IFN-gamma-inducible expression of multiple genes, including IFN regulatory factor-1 (IRF-1), was significantly reduced in trophoblast cells compared with fibroblast cells. Decreased IRF-1 mRNA expression in trophoblast cells was due to a reduced rate of IRF-1 transcription relative to fibroblast cells. However, no impairment of STAT-1 tyrosine phosphorylation or DNA-binding capacity was observed in IFN-gamma-treated mouse trophoblast cells. Importantly, histone deacetylase (HDAC) inhibitors significantly enhanced IFN-gamma-inducible gene expression in trophoblast cells, but not fibroblasts. Our collective studies demonstrate that IFN-gamma-inducible gene expression is repressed in mouse trophoblast cells by HDACs. We propose that HDAC-mediated inhibition of IFN-gamma-inducible gene expression in mouse trophoblast cells may contribute to successful pregnancy by preventing activation of IFN-gamma responses that might otherwise facilitate the destruction of the placenta.
Collapse
|
46
|
Hu Y, Kireev I, Plutz M, Ashourian N, Belmont AS. Large-scale chromatin structure of inducible genes: transcription on a condensed, linear template. ACTA ACUST UNITED AC 2009; 185:87-100. [PMID: 19349581 PMCID: PMC2700507 DOI: 10.1083/jcb.200809196] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structure of interphase chromosomes, and in particular the changes in large-scale chromatin structure accompanying transcriptional activation, remain poorly characterized. Here we use light microscopy and in vivo immunogold labeling to directly visualize the interphase chromosome conformation of 1-2 Mbp chromatin domains formed by multi-copy BAC transgenes containing 130-220 kb of genomic DNA surrounding the DHFR, Hsp70, or MT gene loci. We demonstrate near-endogenous transcription levels in the context of large-scale chromatin fibers compacted nonuniformly well above the 30-nm chromatin fiber. An approximately 1.5-3-fold extension of these large-scale chromatin fibers accompanies transcriptional induction and active genes remain mobile. Heat shock-induced Hsp70 transgenes associate with the exterior of nuclear speckles, with Hsp70 transcripts accumulating within the speckle. Live-cell imaging reveals distinct dynamic events, with Hsp70 transgenes associating with adjacent speckles, nucleating new speckles, or moving to preexisting speckles. Our results call for reexamination of classical models of interphase chromosome organization.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
47
|
Expression of Pit-1 in nonsomatotrope cell lines induces human growth hormone locus control region histone modification and hGH-N transcription. J Mol Biol 2009; 390:26-44. [PMID: 19427323 DOI: 10.1016/j.jmb.2009.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
The POU domain transcription factor Pit-1 is expressed in somatotropes, lactotropes, and thyrotropes of the anterior pituitary. Pit-1 is essential for the establishment of these lineages during development and regulates the expression of genes encoding the peptide hormones secreted by each cell type, including the growth hormone gene expressed in somatotropes. In contrast to rodent growth hormone loci, the human growth hormone (hGH) locus is regulated by a distal locus control region (LCR), which is required in cis for the proper expression of the hGH gene cluster in transgenic mice. The hGH LCR mediates a domain of histone acetylation targeted to the hGH locus that is associated with distal hGH-N activation, and the discrete determinants of this activity coincide with DNaseI hypersensitive site (HS) I of the LCR. The identification of three in vitro Pit-1 binding sites within the HS-I region suggested a model in which Pit-1 binding at HS-I initiates the chromatin modification mechanism associated with hGH LCR activity. To test this hypothesis directly and to determine whether Pit-1 expression is sufficient to confer hGH locus histone acetylation and activate hGH-N transcription from an inactive locus, we expressed Pit-1 in nonpituitary cell types. We show that Pit-1 expression established a domain of histone hyperacetylation at the LCR and hGH-N promoter in these cells similar to that observed in pituitary chromatin. This was accompanied by the activation of hGH-N transcription and an increase in intergenic and CD79b transcripts proximal to HS-I. These effects were coincident with Pit-1 occupancy at HS-I and the hGH-N promoter and were observed irrespective of the basal histone modification status of HS-I in the heterologous cell line. These findings are consistent with a role for Pit-1 as an initiating factor in hGH locus activation during somatotrope ontogeny, acting through binding sites at HS-I of the hGH LCR.
Collapse
|
48
|
Kim SI, Bultman SJ, Kiefer CM, Dean A, Bresnick EH. BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci U S A 2009; 106:2259-2264. [PMID: 19171905 PMCID: PMC2650142 DOI: 10.1073/pnas.0806420106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Indexed: 11/18/2022] Open
Abstract
The dynamic packaging of DNA into chromatin is a fundamental step in the control of diverse nuclear processes. Whereas certain transcription factors and chromosomal components promote the formation of higher-order chromatin loops, the co-regulator machinery mediating loop assembly and disassembly is unknown. Using mice bearing a hypomorphic allele of the BRG1 chromatin remodeler, we demonstrate that the Brg1 mutation abrogated a cell type-specific loop between the beta-globin locus control region and the downstream beta major promoter, despite trans-acting factor occupancy at both sites. By contrast, distinct loops were insensitive to the Brg1 mutation. Molecular analysis with a conditional allele of GATA-1, a key regulator of hematopoiesis, in a novel cell-based system provided additional evidence that BRG1 functions early in chromatin domain activation to mediate looping. Although the paradigm in which chromatin remodelers induce nucleosome structural transitions is well established, our results demonstrating an essential role of BRG1 in the genesis of specific chromatin loops expands the repertoire of their functions.
Collapse
Affiliation(s)
- Shin-Il Kim
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599; and
| | - Christine M. Kiefer
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD 20892
| | - Emery H. Bresnick
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706
| |
Collapse
|
49
|
Abstract
The mammalian beta-globin locus is a multigene locus containing several globin genes and a number of regulatory elements. During development, the expression of the genes changes in a process called "switching." The most important regulatory element in the locus is the locus control region (LCR) upstream of the globin genes that is essential for high-level expression of these genes. The discovery of the LCR initially raised the question how this element could exert its effect on the downstream globin genes. The question was solved by the finding that the LCR and activate globin genes are in physical contact, forming a chromatin structure named the active chromatin hub (ACH). Here we discuss the significance of ACH formation, provide an overview of the proteins implicated in chromatin looping at the beta-globin locus, and evaluate the relationship between nuclear organization and beta-globin gene expression.
Collapse
Affiliation(s)
- Daan Noordermeer
- Department of Cell Biology and Genetics, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | |
Collapse
|
50
|
Muro EM, McCann JA, Rudnicki MA, Andrade-Navarro MA. Use of SNP-arrays for ChIP assays: computational aspects. Methods Mol Biol 2009; 567:145-154. [PMID: 19588091 DOI: 10.1007/978-1-60327-414-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The simultaneous genotyping of thousands of single nucleotide polymorphisms (SNPs) in a genome using SNP-Arrays is a very important tool that is revolutionizing genetics and molecular biology. We expanded the utility of this technique by using it following chromatin immunoprecipitation (ChIP) to assess the multiple genomic locations protected by a protein complex recognized by an antibody. The power of this technique is illustrated through an analysis of the changes in histone H4 acetylation, a marker of open chromatin and transcriptionally active genomic regions, which occur during differentiation of human myoblasts into myotubes. The findings have been validated by the observation of a significant correlation between the detected histone modifications and the expression of the nearby genes, as measured by DNA expression microarrays. This chapter focuses on the computational analysis of the data.
Collapse
Affiliation(s)
- Enrique M Muro
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|