1
|
Bircher JE, Corcoran EE, Lam TT, Trnka MJ, Koleske AJ. Autoinhibition of the GEF activity of cytoskeletal regulatory protein Trio is disrupted in neurodevelopmental disorder-related genetic variants. J Biol Chem 2022; 298:102361. [PMID: 35963430 PMCID: PMC9467883 DOI: 10.1016/j.jbc.2022.102361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
TRIO encodes a cytoskeletal regulatory protein with three catalytic domains-two guanine exchange factor (GEF) domains, GEF1 and GEF2, and a kinase domain-as well as several accessory domains that have not been extensively studied. Function-damaging variants in the TRIO gene are known to be enriched in individuals with neurodevelopmental disorders (NDDs). Disease variants in the GEF1 domain or the nine adjacent spectrin repeats (SRs) are enriched in NDDs, suggesting that dysregulated GEF1 activity is linked to these disorders. We provide evidence here that the Trio SRs interact intramolecularly with the GEF1 domain to inhibit its enzymatic activity. We demonstrate that SRs 6-9 decrease GEF1 catalytic activity both in vitro and in cells and show that NDD-associated variants in the SR8 and GEF1 domains relieve this autoinhibitory constraint. Our results from chemical cross-linking and bio-layer interferometry indicate that the SRs primarily contact the pleckstrin homology region of the GEF1 domain, reducing GEF1 binding to the small GTPase Rac1. Together, our findings reveal a key regulatory mechanism that is commonly disrupted in multiple NDDs and may offer a new target for therapeutic intervention for TRIO-associated NDDs.
Collapse
Affiliation(s)
- Josie E. Bircher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ellen E. Corcoran
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - TuKiet T. Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA,Keck MS & Proteomics Resource, Yale University, New Haven, Connecticut, USA
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, USA
| | - Anthony J. Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA,Department of Neuroscience, Yale University, New Haven, Connecticut, USA,For correspondence: Anthony J. Koleske
| |
Collapse
|
2
|
Bircher JE, Koleske AJ. Trio family proteins as regulators of cell migration and morphogenesis in development and disease - mechanisms and cellular contexts. J Cell Sci 2021; 134:jcs248393. [PMID: 33568469 PMCID: PMC7888718 DOI: 10.1242/jcs.248393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The well-studied members of the Trio family of proteins are Trio and kalirin in vertebrates, UNC-73 in Caenorhabditis elegans and Trio in Drosophila Trio proteins are key regulators of cell morphogenesis and migration, tissue organization, and secretion and protein trafficking in many biological contexts. Recent discoveries have linked Trio and kalirin to human disease, including neurological disorders and cancer. The genes for Trio family proteins encode a series of large multidomain proteins with up to three catalytic activities and multiple scaffolding and protein-protein interaction domains. As such, Trio family proteins engage a wide array of cell surface receptors, substrates and interaction partners to coordinate changes in cytoskeletal regulatory and protein trafficking pathways. We provide a comprehensive review of the specific mechanisms by which Trio family proteins carry out their functions in cells, highlight the biological and cellular contexts in which they occur, and relate how alterations in these functions contribute to human disease.
Collapse
Affiliation(s)
- Josie E Bircher
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| | - Anthony J Koleske
- Department of Molecular Biochemistry and Biophysics, Yale School of Medicine, Yale University, New Haven, CT 06511 USA
| |
Collapse
|
3
|
Walck-Shannon E, Hardin J. Another morphogenetic movement on the map: Charting dorsal intercalation in C. elegans. WORM 2016; 5:e1176664. [PMID: 27385264 DOI: 10.1080/21624054.2016.1176664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/05/2016] [Indexed: 12/26/2022]
Abstract
Dorsal intercalation is a coordinated cell migration event that rearranges hypodermal cells during C. elegans embryogenesis, and that resembles cell intercalation in many systems from flies to mice. Despite its conservation, the molecular mechanisms that govern dorsal intercalation in worms have remained elusive. Here, we comment on our recent publication, Walck-Shannon et al.,(1) which begins to spatially map the molecular requirements for intercalation. First, we provide a historical perspective on the factors that have previously hampered the study of dorsal intercalation. Next, we provide a summary of the molecular pathways identified in Walck-Shannon et al.,(1) pointing out surprises along the way. Finally, we consider the potential conservation of the molecular pathway we described and discuss future questions surrounding dorsal intercalation. Despite the challenges, dorsal intercalation is a process poised to advance our understanding of cell intercalation during morphogenesis throughout the animal kingdom.
Collapse
Affiliation(s)
| | - Jeff Hardin
- Department of Zoology, University of Wisconsin-Madison , Madison, WI, USA
| |
Collapse
|
4
|
GEFs and Rac GTPases control directional specificity of neurite extension along the anterior-posterior axis. Proc Natl Acad Sci U S A 2016; 113:6973-8. [PMID: 27274054 DOI: 10.1073/pnas.1607179113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although previous studies have identified many extracellular guidance molecules and intracellular signaling proteins that regulate axonal outgrowth and extension, most were conducted in the context of unidirectional neurite growth, in which the guidance cues either attract or repel growth cones. Very few studies addressed how intracellular signaling molecules differentially specify bidirectional outgrowth. Here, using the bipolar PLM neurons in Caenorhabditis elegans, we show that the guanine nucleotide exchange factors (GEFs) UNC-73/Trio and TIAM-1 promote anterior and posterior neurite extension, respectively. The Rac subfamily GTPases act downstream of the GEFs; CED-10/Rac1 is activated by TIAM-1, whereas CED-10 and MIG-2/RhoG act redundantly downstream of UNC-73. Moreover, these two pathways antagonize each other and thus regulate the directional bias of neuritogenesis. Our study suggests that directional specificity of neurite extension is conferred through the intracellular activation of distinct GEFs and Rac GTPases.
Collapse
|
5
|
Côte M, Fos C, Canonigo-Balancio AJ, Ley K, Bécart S, Altman A. SLAT promotes TCR-mediated, Rap1-dependent LFA-1 activation and adhesion through interaction of its PH domain with Rap1. J Cell Sci 2015; 128:4341-52. [PMID: 26483383 DOI: 10.1242/jcs.172742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/09/2015] [Indexed: 01/13/2023] Open
Abstract
SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca(2+) signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4(+) T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4(+) T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6(-/-)) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling.
Collapse
Affiliation(s)
- Marjorie Côte
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Camille Fos
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Ann J Canonigo-Balancio
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Walck-Shannon E, Reiner D, Hardin J. Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans. Development 2015; 142:3549-60. [PMID: 26395474 DOI: 10.1242/dev.127597] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/26/2015] [Indexed: 12/24/2022]
Abstract
Cell intercalation is a fundamental, coordinated cell rearrangement process that shapes tissues throughout animal development. Studies of intercalation within epithelia have focused almost exclusively on the localized constriction of specific apical junctions. Another widely deployed yet poorly understood alternative mechanism of epithelial intercalation relies on basolateral protrusive activity. Using the dorsal embryonic epidermis of Caenorhabditis elegans, we have investigated this alternative mechanism using high-resolution live cell microscopy and genetic analysis. We find that as dorsal epidermal cells migrate past one another they produce F-actin-rich protrusions polarized at their extending (medial) edges. These protrusions are controlled by the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, which function redundantly to polarize actin polymerization upstream of the WAVE complex and WASP, respectively. We also identify UNC-73, the C. elegans ortholog of Trio, as a guanine nucleotide exchange factor (GEF) upstream of both CED-10 and MIG-2. Further, we identify a novel polarizing cue, CRML-1, which is the ortholog of human capping Arp2/3 myosin I linker (CARMIL), that localizes to the nonprotrusive lateral edges of dorsal cells. CRML-1 genetically suppresses UNC-73 function and, indirectly, actin polymerization. This network identifies a novel, molecularly conserved cassette that regulates epithelial intercalation via basolateral protrusive activity.
Collapse
Affiliation(s)
- Elise Walck-Shannon
- Graduate Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
| | - David Reiner
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, NC 27514, USA Center for Translational Cancer Research, Institute of Biosciences and Technology and Department of Medical Physiology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | - Jeff Hardin
- Graduate Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA Department of Zoology, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
| |
Collapse
|
7
|
PLR-1, a putative E3 ubiquitin ligase, controls cell polarity and axonal extensions in C. elegans. Dev Biol 2014; 398:44-56. [PMID: 25448694 DOI: 10.1016/j.ydbio.2014.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 10/09/2014] [Accepted: 11/11/2014] [Indexed: 02/02/2023]
Abstract
During embryonic development neurons differentiate and extend axons and dendrites that have to reach their appropriate targets. In Caenorhabditis elegans the AVG neuron is the first neuron to extend an axon during the establishment of the ventral nerve cord, the major longitudinal axon tract in the animal. In genetic screens we isolated alleles of plr-1, which caused polarity reversals of the AVG neuron as well as outgrowth and navigation defects of the AVG axon. In addition plr-1 mutants show outgrowth defects in several other classes of neurons as well as the posterior excretory canals. plr-1 is predicted to encode a transmembrane E3 ubiquitin ligase and is widely expressed in the animal including the AVG neuron and the excretory cell. plr-1 has recently been shown to negatively regulate Wnt signalling by removing Wnt receptors from the cell surface. We observed that mutations in a gene reducing Wnt signalling as well as mutations in unc-53/NAV2 and unc-73/Trio suppress the AVG polarity defects in plr-1 mutants, but not the defects seen in other cells. This places plr-1 in a Wnt regulation pathway, but also suggests that plr-1 has Wnt independent functions and interacts with unc-53 and unc-73 to control cell polarity.
Collapse
|
8
|
Dyer JO, Demarco RS, Lundquist EA. Distinct roles of Rac GTPases and the UNC-73/Trio and PIX-1 Rac GTP exchange factors in neuroblast protrusion and migration in C. elegans. Small GTPases 2014; 1:44-61. [PMID: 21686119 DOI: 10.4161/sgtp.1.1.12991] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022] Open
Abstract
The Rac and Cdc42 GTPases as well as the multiple GTP exchange factors that regulate their activity have been implicated in the pathways that drive actin cytoskeleton reorganization, but the individual contributions of these molecules to cell migration remain unknown. Studies shown here examine the roles of CED-10/Rac, MIG-2/RhoG and CDC-42 in the migration of the QL and QR neuroblasts in C. elegans. CED-10/Rac was found to normally limit protrusion and migration, whereas MIG-2/RhoG was required for protrusion and migration. CED-10/Rac and MIG-2/RhoG also had redundant roles in Q protrusion and migration. Surprisingly, CDC-42 was found to have only weak effects on the protrusion and the migration. We found that a mutation of unc-73/Trio, which encodes a GEF for CED-10/Rac and MIG-2/RhoG, caused protrusions that were thin and filopodia-like, suggesting that UNC-73/Trio is required for robust lamellipodia-like protrusion. A screen of the 19 C. elegans Dbl homology Rho GEF genes revealed that PIX-1 was required for proper Q neuroblast protrusion and migration. Genetic analysis indicated that PIX-1 might act in the CED-10/Rac pathway in parallel to MIG-2/RhoG and that PIX-1 has redundant function with UNC-73/Trio in Q neuroblast protrusion and migration. These results indicate that Rho GTPases and GEFs have both unique and overlapping roles in neuronal migration.
Collapse
Affiliation(s)
- Jamie O Dyer
- Programs in Genetics and Molecular, Cellular and Developmental Biology, Department of Molecular Biosciences; University of Kansas; Lawrence, KS USA
| | | | | |
Collapse
|
9
|
Spatial and molecular cues for cell outgrowth during C. elegans uterine development. Dev Biol 2014; 396:121-35. [PMID: 25281934 DOI: 10.1016/j.ydbio.2014.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 01/04/2023]
Abstract
The Caenorhabditis elegans uterine seam cell (utse) is an H-shaped syncytium that connects the uterus to the body wall. Comprising nine nuclei that move outward in a bidirectional manner, this synctium undergoes remarkable shape change during development. Using cell ablation experiments, we show that three surrounding cell types affect utse development: the uterine toroids, the anchor cell and the sex myoblasts. The presence of the anchor cell (AC) nucleus within the utse is necessary for proper utse development and AC invasion genes fos-1, cdh-3, him-4, egl-43, zmp-1 and mig-10 promote utse cell outgrowth. Two types of uterine lumen epithelial cells, uterine toroid 1 (ut1) and uterine toroid 2 (ut2), mediate proper utse outgrowth and we show roles in utse development for two genes expressed in the uterine toroids: the RASEF ortholog rsef-1 and Trio/unc-73. The SM expressed gene unc-53/NAV regulates utse cell shape; ablation of sex myoblasts (SMs), which generate uterine and vulval muscles, cause defects in utse morphology. Our results clarify the nature of the interactions that exist between utse and surrounding tissue, identify new roles for genes involved in cell outgrowth, and present the utse as a new model system for understanding cell shape change and, putatively, diseases associated with cell shape change.
Collapse
|
10
|
A pre- and co-knockdown of RNAseT enzyme, Eri-1, enhances the efficiency of RNAi induced gene silencing in Caenorhabditis elegans. PLoS One 2014; 9:e87635. [PMID: 24475317 PMCID: PMC3901743 DOI: 10.1371/journal.pone.0087635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/28/2013] [Indexed: 01/08/2023] Open
Abstract
Background The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown. Methodology/Principal Findings Taking a clue from these findings, we went on to screen hypothesis-driven- methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans. Conclusions/Significance Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains.
Collapse
|
11
|
Scheffzek K, Welti S. Pleckstrin homology (PH) like domains - versatile modules in protein-protein interaction platforms. FEBS Lett 2012; 586:2662-73. [PMID: 22728242 DOI: 10.1016/j.febslet.2012.06.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 12/21/2022]
Abstract
The initial reports on pleckstrin homology (PH) domains almost 20 years ago described them as sequence feature of proteins involved in signal transduction processes. Investigated at first along the phospholipid binding properties of a small subset of PH representatives, the PH fold turned out to appear as mediator of phosphotyrosine and polyproline peptide binding to other signaling proteins. While phospholipid binding now seems rather the exception among PH-like domains, protein-protein interactions established as more and more important feature of these modules. In this review we focus on the PH superfold as a versatile protein-protein interaction platform and its three-dimensional integration in an increasing number of available multidomain structures.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division Biological Chemistry, Biocenter, Innsbruck Medical University, Innrain 80/82, A-6020 Innsbruck, Austria.
| | | |
Collapse
|
12
|
Demarco RS, Struckhoff EC, Lundquist EA. The Rac GTP exchange factor TIAM-1 acts with CDC-42 and the guidance receptor UNC-40/DCC in neuronal protrusion and axon guidance. PLoS Genet 2012; 8:e1002665. [PMID: 22570618 PMCID: PMC3343084 DOI: 10.1371/journal.pgen.1002665] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/07/2012] [Indexed: 11/19/2022] Open
Abstract
The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions. Axons extend great distances to make precise synaptic connections in the developing nervous system. Axons are guided to their targets by the growth cone, a dynamic structure at the axon distal tip that senses extracellular cues telling the axon where to go. In response to guidance cues, growth cones alter their shape and motility resulting in outgrowth and turning. The cytoskeleton (actin and microtubules) underlies growth cone motility and guidance. The signaling mechanisms linking guidance receptors to cytoskeletal change remain mysterious. Here, we define a new signaling mechanism downstream of the guidance receptor UNC-40/DCC involving the GTPases CDC-42 and Rac, which have long been known to control growth cone protrusion. We show that CDC-42 and Rac act in a linear pathway in axon guidance; CDC-42 acts upstream of the GTPase regulatory molecule TIAM-1, which is a GTP exchange factor specific for Rac and which activates Rac signaling. We also show that TIAM-1 acts with UNC-40/DCC signaling in protrusion and axon guidance. Our results imply that Rac GTPase function in axon guidance is complex and that distinct GEFs (TIAM-1 and UNC-73/Trio) might control Rac GTPases in different aspects of axon guidance.
Collapse
Affiliation(s)
- Rafael S. Demarco
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Eric C. Struckhoff
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Erik A. Lundquist
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Marcus-Gueret N, Schmidt KL, Stringham EG. Distinct cell guidance pathways controlled by the Rac and Rho GEF domains of UNC-73/TRIO in Caenorhabditis elegans. Genetics 2012; 190:129-42. [PMID: 21996675 PMCID: PMC3249371 DOI: 10.1534/genetics.111.134429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
The cytoskeleton regulator UNC-53/NAV2 is required for both the anterior and posterior outgrowth of several neurons as well as that of the excretory cell while the kinesin-like motor VAB-8 is essential for most posteriorly directed migrations in Caenorhabditis elegans. Null mutations in either unc-53 or vab-8 result in reduced posterior excretory canal outgrowth, while double null mutants display an enhanced canal extension defect, suggesting the genes act in separate pathways to control this posteriorly directed outgrowth. Genetic analysis of putative interactors of UNC-53 or VAB-8, and cell-specific rescue experiments suggest that VAB-8, SAX-3/ROBO, SLT-1/Slit, and EVA-1 are functioning together in the outgrowth of the excretory canals, while UNC-53 appears to function in a parallel pathway with UNC-71/ADAM. The known VAB-8 interactor, the Rac/Rho GEF UNC-73/TRIO operates in both pathways, as isoform specific alleles exhibit enhancement of the phenotype in double-mutant combination with either unc-53 or vab-8. On the basis of these results, we propose a bipartite model for UNC-73/TRIO activity in excretory canal extension: a cell autonomous function that is mediated by the Rho-specific GEF domain of the UNC-73E isoform in conjunction with UNC-53 and UNC-71 and a cell nonautonomous function that is mediated by the Rac-specific GEF domain of the UNC-73B isoform, through partnering with VAB-8 and the receptors SAX-3 and EVA-1.
Collapse
Affiliation(s)
- Nancy Marcus-Gueret
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Kristopher L. Schmidt
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Eve G. Stringham
- Department of Biology, Trinity Western University, Langley, BC V2Y 1Y1, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
14
|
UNC-73/trio RhoGEF-2 activity modulates Caenorhabditis elegans motility through changes in neurotransmitter signaling upstream of the GSA-1/Galphas pathway. Genetics 2011; 189:137-51. [PMID: 21750262 DOI: 10.1534/genetics.111.131227] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rho-family GTPases play regulatory roles in many fundamental cellular processes. Caenorhabditis elegans UNC-73 RhoGEF isoforms function in axon guidance, cell migration, muscle arm extension, phagocytosis, and neurotransmission by activating either Rac or Rho GTPase subfamilies. Multiple differentially expressed UNC-73 isoforms contain a Rac-specific RhoGEF-1 domain, a Rho-specific RhoGEF-2 domain, or both domains. The UNC-73E RhoGEF-2 isoform is activated by the G-protein subunit Gαq and is required for normal rates of locomotion; however, mechanisms of UNC-73 and Rho pathway regulation of locomotion are not clear. To better define UNC-73 function in the regulation of motility we used cell-specific and inducible promoters to examine the temporal and spatial requirements of UNC-73 RhoGEF-2 isoform function in mutant rescue experiments. We found that UNC-73E acts within peptidergic neurons of mature animals to regulate locomotion rate. Although unc-73 RhoGEF-2 mutants have grossly normal synaptic morphology and weak resistance to the acetylcholinesterase inhibitor aldicarb, they are significantly hypersensitive to the acetylcholine receptor agonist levamisole, indicating alterations in acetylcholine neurotransmitter signaling. Consistent with peptidergic neuron function, unc-73 RhoGEF-2 mutants exhibit a decreased level of neuropeptide release from motor neuron dense core vesicles (DCVs). The unc-73 locomotory phenotype is similar to those of rab-2 and unc-31, genes with distinct roles in the DCV-mediated secretory pathway. We observed that constitutively active Gαs pathway mutations, which compensate for DCV-mediated signaling defects, rescue unc-73 RhoGEF-2 and rab-2 lethargic movement phenotypes. Together, these data suggest UNC-73 RhoGEF-2 isoforms are required for proper neurotransmitter signaling and may function in the DCV-mediated neuromodulatory regulation of locomotion rate.
Collapse
|
15
|
Mörck C, Vivekanand V, Jafari G, Pilon M. C. elegans ten-1 is synthetic lethal with mutations in cytoskeleton regulators, and enhances many axon guidance defective mutants. BMC DEVELOPMENTAL BIOLOGY 2010; 10:55. [PMID: 20497576 PMCID: PMC2887410 DOI: 10.1186/1471-213x-10-55] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 05/24/2010] [Indexed: 12/24/2022]
Abstract
BACKGROUND Teneurins are transmembrane proteins that assist morphogenetic processes in many organisms. ten-1 is the C. elegans teneurin homolog with two transcripts, ten-1a and ten-1b, that respectively encode a long (TEN-1L) and short (TEN-1S) form of the protein. We previously isolated a C. elegans mutant where one pharyngeal neuron was frequently misplaced, and now show that it corresponds to a novel allele of ten-1. RESULTS The novel ten-1(et5) allele is a hypomorph since its post-embryonic phenotype is weaker than the null alleles ten-1(ok641) and ten-1(tm651). ten-1 mutants have defects in all pharyngeal neurons that we examined, and in vivo reporters show that only the long form of the ten-1 gene is expressed in the pharynx, specifically in six marginal cells and the M2 neurons. Defects in the pharyngeal M2 neurons were enhanced when the ten-1(ok641) mutation was combined with mutations in the following genes: mig-14, unc-5, unc-51, unc-52 and unc-129. None of the body neurons examined show any defects in the ten-1(ok641) mutant, but genetic interaction studies reveal that ten-1(ok641) is synthetic lethal with sax-3, unc-34 and unc-73, and examination of the hypodermal cells in embryos of the ten-1(ok641) mutant point to a role of ten-1 during hypodermal cell morphogenesis. CONCLUSIONS Our results are consistent with ten-1 normally providing a function complementary to the cytoskeletal remodeling processes that occur in migrating cells or cells undergoing morphogenesis. It is possible that ten-1 influences the composition/distribution of extracellular matrix.
Collapse
Affiliation(s)
- Catarina Mörck
- Department of Cell and Molecular Biology, University of Gothenburg S-405 30 Gothenburg, Sweden
| | | | | | | |
Collapse
|
16
|
Waters JE, Astle MV, Ooms LM, Balamatsias D, Gurung R, Mitchell CA. P-Rex1 - a multidomain protein that regulates neurite differentiation. J Cell Sci 2008; 121:2892-903. [PMID: 18697831 DOI: 10.1242/jcs.030353] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Rac-GEF P-Rex1 promotes membrane ruffling and cell migration in response to Rac activation, but its role in neuritogenesis is unknown. Rac1 promotes neurite differentiation; Rac3, however, may play an opposing role. Here we report that in nerve growth factor (NGF)-differentiated rat PC12 cells, P-Rex1 localised to the distal tips of developing neurites and to the axonal shaft and growth cone of differentiating hippocampal neurons. P-Rex1 expression inhibited NGF-stimulated PC12 neurite differentiation and this was dependent on the Rac-GEF activity of P-Rex1. P-Rex1 inhibition of neurite outgrowth was rescued by low-dose cytochalasin D treatment, which prevents actin polymerisation. P-Rex1 activated Rac3 GTPase activity when coexpressed in PC12 cells. In the absence of NGF stimulation, targeted depletion of P-Rex1 in PC12 cells by RNA interference induced the spontaneous formation of beta-tubulin-enriched projections. Following NGF stimulation, enhanced neurite differentiation, with neurite hyper-elongation correlating with decreased F-actin at the growth cone, was demonstrated in P-Rex1 knockdown cells. Interestingly, P-Rex1-depleted PC12 cells exhibited reduced Rac3 and Rac1 GTPase activity. This study has identified P-Rex1 as a Rac3-GEF in neuronal cells that localises to, and regulates, actin cytoskeletal dynamics at the axonal growth cone to in turn regulate neurite differentiation.
Collapse
Affiliation(s)
- Joanne E Waters
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Díaz-Valencia JD, Almaraz-Barrera MDJ, Jay D, Hernández-Cuevas NA, García E, González-De la Rosa CH, Arias-Romero LE, Hernandez-Rivas R, Rojo-Domínguez A, Guillén N, Vargas M. Novel structural and functional findings of the ehFLN protein from Entamoeba histolytica. ACTA ACUST UNITED AC 2008; 64:880-96. [PMID: 17705278 DOI: 10.1002/cm.20232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ehFLN protein (previously known as EhABP-120) is the first filamin to be identified in the parasitic protozoan Entamoeba histolytica. Filamins are a family of cross-linking actin-binding proteins that organize filamentous actin in networks and stress fibers. It has been reported that filamins of different organisms directly interact with more than 30 cellular proteins and some PPIs. The biochemical consequences of such interactions may have either positive or negative effects on the cross-linking function. Besides, filamins form a link between cytoskeleton and plasma membrane. In this work, the ehFLN protein was biochemically characterized; amoebae filamin was found to associate with both PA and PI(3)P in vitro, new lipid targets for a member of the filamins. By molecular modeling analysis and protein-lipid overlay assays, K-609, 709, and 710 were determined to be essential for the PA-ehFLN1 complex stability. Also, the integrity of the 4th repeat of ehFLN is essential to keep interaction with the PI(3)P. Transfected trophozoites that overexpressed the d100, d50NH(2), and d50COOH regions of ehFLN1 displayed both increased motility and chemotactic response to TYI-S-33 media. Together, these results suggest that short regions of ehFLN are involved in signaling events that, in cooperation with phosphatidic acid, EhPLD2 and EhPI3K, could promote cell motility.
Collapse
Affiliation(s)
- Juan Daniel Díaz-Valencia
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, México, D.F., México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chhatriwala MK, Betts L, Worthylake DK, Sondek J. The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. J Mol Biol 2007; 368:1307-20. [PMID: 17391702 PMCID: PMC1890047 DOI: 10.1016/j.jmb.2007.02.060] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 12/20/2022]
Abstract
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.
Collapse
Affiliation(s)
- Mariya K Chhatriwala
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
19
|
Levy-Strumpf N, Culotti JG. VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nat Neurosci 2007; 10:161-8. [PMID: 17237777 DOI: 10.1038/nn1835] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/20/2006] [Indexed: 02/07/2023]
Abstract
One of the most intriguing features of axons is their ability to pioneer precise paths to their targets. How guidance-cue information is interpreted and integrated to form intricate neuronal networks has not been fully deciphered. Using Caenorhabditis elegans, we show that highly conserved receptors that guide pioneer axons along the dorsoventral axis, such as UNC-40 and SAX-3 (receptors for UNC-6 and SLT-1 guidance cues, respectively), can be co-opted to affect axon and cell migrations along the anterior-posterior axis. We further identify the kinesin-related VAB-8 protein as an upstream regulator of UNC-40, illuminating VAB-8's mechanism of action in determining the polarity of cell and axon migration. Finally, we show that UNC-73 and its target MIG-2 function with VAB-8 as upstream regulators of UNC-40 and that MIG-2 activity specifies UNC-40 subcellular localization. These data are indicative of previously unidentified regulatory roles for VAB-8 and small GTPases, which act together to regulate guidance receptor functions.
Collapse
Affiliation(s)
- Naomi Levy-Strumpf
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
20
|
Baumeister M, Rossman K, Sondek J, Lemmon M. The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Biochem J 2006; 400:563-72. [PMID: 17007612 PMCID: PMC1698603 DOI: 10.1042/bj20061020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dbl family GEFs (guanine nucleotide-exchange factors) for the Rho GTPases almost invariably contain a PH (pleckstrin homology) domain adjacent to their DH (Dbl homology) domain. The DH domain is responsible for GEF activity, and the PH domain plays a regulatory role that remains poorly understood. We demonstrated previously that Dbl family PH domains bind phosphoinositides with low affinity and cannot function as independent membrane targeting modules. In the present study, we show that dimerization of a Dbs (Dbl's big sister) DH/PH domain fragment is sufficient to drive it to the plasma membrane through a mechanism involving PH domain-phosphoinositide interactions. Thus, the Dbs PH domain could play a significant role in membrane targeting if it co-operates with other domains in the protein. We also show that mutations that prevent phosphoinositide binding by the Dbs PH domain significantly impair cellular GEF activity even in chimaeric proteins that are robustly membrane targeted by farnesylation or by the PH domain of phospholipase C-delta1. This finding argues that the Dbs PH domain plays a regulatory role that is independent of its ability to aid membrane targeting. Thus, we suggest that the PH domain plays dual roles, contributing independently to membrane localization of Dbs (as part of a multi-domain interaction) and allosteric regulation of the DH domain.
Collapse
Affiliation(s)
- Mark A. Baumeister
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
- †Graduate Group in Immunology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
| | - Kent L. Rossman
- ‡Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - John Sondek
- §Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - Mark A. Lemmon
- *Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
21
|
Feng H, Ren M, Rubin CS. Conserved Domains Subserve Novel Mechanisms and Functions in DKF-1, a Caenorhabditis elegans Protein Kinase D. J Biol Chem 2006; 281:17815-26. [PMID: 16613842 DOI: 10.1074/jbc.m511898200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase D (PKD) isoforms are effectors in signaling pathways controlled by diacylglycerol. PKDs contain conserved diacylglycerol binding (C1a, C1b), pleckstrin homology (PH), and Ser/Thr kinase domains. However, the properties of conserved domains may vary within the context of distinct PKD polypeptides. Such functional/structural malleability (plasticity) was explored by studying Caenorhabditis elegans D kinase family-1 (DKF-1), a PKD that governs locomotion in vivo. Phorbol ester binding with C1b alone activates classical PKDs by relieving C1-mediated inhibition. In contrast, C1a avidly ligated phorbol 12-myristate 13-acetate (PMA) and anchored DKF-1 at the plasma membrane. C1b bound PMA (moderate affinity) and cooperated with C1a in targeting DKF-1 to membranes. Mutations at a "Pro(11)" position in C1 domains were inactivating; kinase activity was minimal at PMA concentrations that stimulated wild type DKF-1 approximately 10-fold. DKF-1 mutants exhibited unchanged, maximum kinase activity after cells were incubated with high PMA concentrations. Titration in situ revealed that translocation and activation of wild type and mutant DKF-1 were tightly and quantitatively linked at all PMA concentrations. Thus, C1 domains positively regulated phosphotransferase activity by docking DKF-1 with pools of activating lipid. A PH domain inhibits kinase activity in classical PKDs. The DKF-1 PH module neither inhibited catalytic activity nor bound phosphoinositides. Consequently, the PH module is an obligatory, positive regulator of DKF-1 activity that is compromised by mutation of Lys(298) or Trp(396). Phosphorylation of Thr(588) switched on DKF-1 kinase activity. Persistent phosphorylation of Thr(588) (activation loop) promoted ubiquitinylation and proteasome-mediated degradation of DKF-1. Each DKF-1 domain displayed novel properties indicative of functional malleability (plasticity).
Collapse
Affiliation(s)
- Hui Feng
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
22
|
Schiller MR, Chakrabarti K, King GF, Schiller NI, Eipper BA, Maciejewski MW. Regulation of RhoGEF activity by intramolecular and intermolecular SH3 domain interactions. J Biol Chem 2006; 281:18774-86. [PMID: 16644733 DOI: 10.1074/jbc.m512482200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoGEFs are central controllers of small G-proteins in cells and are regulated by several mechanisms. There are at least 22 human RhoGEFs that contain SH3 domains, raising the possibility that, like several other enzymes, SH3 domains control the enzymatic activity of guanine nucleotide exchange factor (GEF) domains through intra- and/or intermolecular interactions. The structure of the N-terminal SH3 domain of Kalirin was solved using NMR spectroscopy, and it folds much like other SH3 domains. However, NMR chemical shift mapping experiments showed that this Kalirin SH3 domain is unique, containing novel cooperative binding site(s) for intramolecular PXXP ligands. Intramolecular Kalirin SH3 domain/ligand interactions, as well as binding of the Kalirin SH3 domain to the adaptor protein Crk, inhibit the GEF activity of Kalirin. This study establishes a novel molecular mechanism whereby intramolecular and intermolecular Kalirin SH3 domain/ligand interactions modulate GEF activity, a regulatory mechanism that is likely used by other RhoGEF family members.
Collapse
Affiliation(s)
- Martin R Schiller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06019-4301, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Díaz-Valencia JD, Almaraz-Barrera MDJ, Arias-Romero LE, Hernandez-Rivas R, Rojo-Domínguez A, Guillén N, Vargas M. The ABP-120 C-end region from Entamoeba histolytica interacts with sulfatide, a new lipid target. Biochem Biophys Res Commun 2005; 338:1527-36. [PMID: 16274663 DOI: 10.1016/j.bbrc.2005.10.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Accepted: 10/20/2005] [Indexed: 10/25/2022]
Abstract
EhABP-120 is the first filamin identified in the parasitic protozoan Entamoeba histolytica. Filamins are a family of cross-linking actin-binding proteins that promote a dynamic orthogonal web. They have been reported to interact directly with more than 30 cellular proteins and some phosphoinositides. The biochemical consequences of these interactions may have either positive or negative effects on the cross-linking function and also form a link between the cytoskeleton and plasma membrane. In this study, the EhABP-120 carboxy-terminal domain (END) was biochemically characterized. This domain was able to associate to 3-sulfate galactosyl ceramide, a new lipid target for a member of the filamin family. Also, the END domain was able to dimerize "in vitro." Molecular modeling analysis showed that the dimeric region is stabilized by a disulfide bond. Electrostatic and docking studies suggest that an electropositive concave pocket at the dimeric END domain interacts simultaneously with several sulfogalactose moieties of the sulfatide.
Collapse
Affiliation(s)
- Juan Daniel Díaz-Valencia
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, DF, Mexico
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Dbl homology (DH) domains are almost always followed immediately by pleckstrin homology (PH) domains in Dbl family proteins, and these DH-PH fragments directly activate GDP-bound Rho GTPases by catalyzing the exchange of GDP for GTP. New crystal structures of the DH-PH domains from leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF) and PDZ-RhoGEF bound to RhoA reveal how DH-PH domains cooperate to specifically activate Rho GTPases.
Collapse
Affiliation(s)
- Kent L Rossman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
25
|
Steven R, Zhang L, Culotti J, Pawson T. The UNC-73/Trio RhoGEF-2 domain is required in separate isoforms for the regulation of pharynx pumping and normal neurotransmission in C. elegans. Genes Dev 2005; 19:2016-29. [PMID: 16140983 PMCID: PMC1199572 DOI: 10.1101/gad.1319905] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/06/2005] [Indexed: 11/24/2022]
Abstract
In both Caenorhabditis elegans and Drosophila, UNC-73/Trio functions in axon guidance by signaling through the Rac GTPase to regulate cytoskeletal rearrangements necessary for growth cone migrations. Here, we show that the complex C. elegans unc-73 gene encodes at least eight differentially expressed UNC-73 intracellular protein isoforms. Previously reported mutations affecting UNC-73 isoforms encoding the Rac-specific RhoGEF-1 domain cause uncoordinated movement, correlating with defects in axon guidance. Mutations in isoforms encoding the Rho-specific RhoGEF-2 domain, which we describe here, result in L1 stage larval lethality with no associated axon guidance defects. Isoform-specific rescue experiments reveal separate functions for the various RhoGEF-2-containing UNC-73 isoforms, which would not likely be discovered by conventional genetic screening. UNC-73 D1 and D2 appear to function redundantly in pharynx muscle to regulate the rate and strength of pharynx pumping, and in the HSN neurons and vulval muscles to control egg laying. Isoforms C1, C2, E, and F act redundantly within the nervous system to regulate the speed of locomotion. The multiple UNC-73 isoforms containing Rac- and Rho-specific RhoGEF domains therefore have distinct physiological functions. In addition to its previously identified role involving RhoGEF-1 in migrating cells and growth cones, our data indicate that UNC-73 signals through RhoGEF-2 to regulate pharynx and vulva musculature and to modulate synaptic neurotransmission.
Collapse
Affiliation(s)
- Robert Steven
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
26
|
Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6:167-80. [PMID: 15688002 DOI: 10.1038/nrm1587] [Citation(s) in RCA: 1354] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to diverse extracellular stimuli, and ultimately regulate numerous cellular responses such as proliferation, differentiation and movement. With 69 distinct homologues, Dbl-related GEFs represent the largest family of direct activators of Rho GTPases in humans, and they activate Rho GTPases within particular spatio-temporal contexts. The failure to do so can have significant consequences and is reflected in the aberrant function of Dbl-family GEFs in some human diseases.
Collapse
Affiliation(s)
- Kent L Rossman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
27
|
Abstract
Our brain serves as a center for cognitive function and neurons within the brain relay and store information about our surroundings and experiences. Modulation of this complex neuronal circuitry allows us to process that information and respond appropriately. Proper development of neurons is therefore vital to the mental health of an individual, and perturbations in their signaling or morphology are likely to result in cognitive impairment. The development of a neuron requires a series of steps that begins with migration from its birth place and initiation of process outgrowth, and ultimately leads to differentiation and the formation of connections that allow it to communicate with appropriate targets. Over the past several years, it has become clear that the Rho family of GTPases and related molecules play an important role in various aspects of neuronal development, including neurite outgrowth and differentiation, axon pathfinding, and dendritic spine formation and maintenance. Given the importance of these molecules in these processes, it is therefore not surprising that mutations in genes encoding a number of regulators and effectors of the Rho GTPases have been associated with human neurological diseases. This review will focus on the role of the Rho GTPases and their associated signaling molecules throughout neuronal development and discuss how perturbations in Rho GTPase signaling may lead to cognitive disorders.
Collapse
Affiliation(s)
- Eve-Ellen Govek
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
28
|
Lee M, Shen B, Schwarzbauer JE, Ahn J, Kwon J. Connections between integrins and Rac GTPase pathways control gonad formation and function in C. elegans. Biochim Biophys Acta Gen Subj 2005; 1723:248-55. [PMID: 15716039 DOI: 10.1016/j.bbagen.2005.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 01/07/2005] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
The integrins are a family of alphabeta heterodimeric transmembrane receptors that link extracellular matrix (ECM) proteins to the cytoskeleton and orchestrate cell behaviors. It's been suggested that integrins interact with Rho family small GTPases, such as Rho and Rac. We took advantage of a C. elegans nematode line expressing HA-betatail, a beta integrin transgene inhibiting the functions of endogenous integrins, to determine the combined effects of reducing PAT-3 beta integrin and Rac pathway activities. Double mutants of HA-betatail and unc-73, a guanine nucleotide exchange factor GEF for MIG-2/Rac, had body wall and vulval muscle abnormalities. On the other hand, HA-betatail combined with mutant CED-5, another Rac interacting protein, showed ovulation defects and sterility. RNA-mediated interference (RNAi) of pat-3 on Rac mutant backgrounds also affected gonad structure and function. These results show a functional link between integrins and Rac signaling in muscles and gonads. Furthermore, data showing distinct phenotypes of HA-betatail with unc-73 versus ced-5 suggest some tissue-specificity in the usage of Rac signaling pathways.
Collapse
Affiliation(s)
- Myeongwoo Lee
- Department of Biology, Baylor University, One Bear Place 97388, Waco, TX 76798, United States.
| | | | | | | | | |
Collapse
|
29
|
Hobert O, Hutter H, Hynes RO. The immunoglobulin superfamily in Caenorhabditis elegans and Drosophila melanogaster. Development 2004; 131:2237-8; author reply 2238-40. [PMID: 15128663 DOI: 10.1242/dev.01183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Worthylake DK, Rossman KL, Sondek J. Crystal Structure of the DH/PH Fragment of Dbs without Bound GTPase. Structure 2004; 12:1078-86. [PMID: 15274927 DOI: 10.1016/j.str.2004.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/17/2022]
Abstract
Dbl proteins are guanine nucleotide exchange factors for Rho GTPases, containing adjacent Dbl homology (DH) and pleckstrin homology (PH) domains. This domain architecture is virtually invariant and typically required for full exchange potential. Several structures of DH/PH fragments bound to GTPases implicate the PH domain in nucleotide exchange. To more fully understand the functional linkage between DH and PH domains, we have determined the crystal structure of the DH/PH fragment of Dbs without bound GTPase. This structure is generally similar to previously determined structures of Dbs bound to GTPases albeit with greater apparent mobility between the DH and PH domains. These comparisons suggest that the DH and PH domains of Dbs are spatially primed for binding GTPases and small alterations in intradomain conformations that may be elicited by subtle biological responses, such as altered phosphoinositide levels, are sufficient to enhance exchange by facilitating interactions between the PH domain and GTPases.
Collapse
Affiliation(s)
- David K Worthylake
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
31
|
Vogel C, Teichmann SA, Chothia C. Looking at the bigger picture. Development 2004. [DOI: 10.1242/dev.01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | - Cyrus Chothia
- MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| |
Collapse
|