1
|
Song D, Lim SH, Kim Y, Lee H, Kim T, Lim H, Min DS, Han G. Development and Evaluation of Indole-Based Phospholipase D Inhibitors for Lung Cancer Immunotherapy. J Med Chem 2025; 68:5170-5189. [PMID: 39405365 PMCID: PMC11913021 DOI: 10.1021/acs.jmedchem.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This study explored novel immunomodulatory approaches for cancer treatment, with a specific focus on lung cancer, the leading cause of cancer-related deaths worldwide. We synthesized indole-based phospholipase D (PLD) inhibitors with various substituents to improve anticancer efficacy. Through structure-activity relationship studies, the key compound was identified that significantly inhibiting PLD, suppressing cell growth, viability, and migration in vitro, while inducing apoptosis of lung cancer cells. In silico docking studies confirmed its binding to the PLD1 active site, highlighting the role of specific residues in inhibiting PLD1 activity. The inhibitor modulated oncogenic pathways and immune evasion in lung cancer cells, showing potential for immunotherapy. In vivo experiments in a mouse model showed tumor reduction and immune response alteration. Combining these inhibitors with gemcitabine, an anticancer drug, synergistically enhanced inhibition of lung cancer cell apoptosis and proliferation. This research offers new insights into PLD inhibitor as potential cancer therapeutics.
Collapse
Affiliation(s)
- Doona Song
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Hun Lim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Yeji Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyesung Lee
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Taehyun Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Hocheol Lim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
| | - Gyoonhee Han
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Department of Pharmacy, Yonsei University, Incheon 21983, Republic of Korea
- Postech Biotech Center, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Korea 37673
| |
Collapse
|
2
|
Inhibition of phospholipase D1 induces immunogenic cell death and potentiates cancer immunotherapy in colorectal cancer. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1563-1576. [PMID: 36131027 PMCID: PMC9535023 DOI: 10.1038/s12276-022-00853-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022]
Abstract
Phospholipase D (PLD) is a potential therapeutic target against cancer. However, the contribution of PLD inhibition to the antitumor response remains unknown. We developed a potent and selective PLD1 inhibitor based on computer-aided drug design. The inhibitor enhanced apoptosis in colorectal cancer (CRC) cells but not in normal colonic cells, and in vitro cardiotoxicity was not observed. The inhibitor downregulated the Wnt/β-catenin signaling pathway and reduced the migration, invasion, and self-renewal capacity of CRC cells. In cancer, therapeutic engagement of immunogenic cell death (ICD) leads to more effective responses by eliciting the antitumor immunity of T cells. The CRC cells treated with the inhibitor showed hallmarks of ICD, including downregulation of “do not eat-me” signals (CD24, CD47, programmed cell death ligand 1 [PD-L1]), upregulation of “eat-me” signal (calreticulin), release of high-mobility group Box 1, and ATP. PLD1 inhibition subsequently enhanced the phagocytosis of cancer cells by macrophages through the surface expression of costimulatory molecules; as a result, the cancer cells were more susceptible to cytotoxic T-cell-mediated killing. Moreover, PLD1 inhibition attenuated colitis-associated CRC and orthotopically injected tumors, probably by controlling multiple pathways, including Wnt signaling, phagocytosis checkpoints, and immune signaling. Furthermore, combination therapy with a PLD1 inhibitor and an anti-PD-L1 antibody further enhanced tumor regression via immune activation in the tumor environment. Collectively, in this study, PLD1 was identified as a critical regulator of the tumor microenvironment in colorectal cancer, suggesting the potential of PLD1 inhibitors for cancer immunotherapy based on ICD and immune activation. PLD1 inhibitors may act as promising immune modulators in antitumor treatment via ICD. A novel drug that can inhibit an enzyme involved in colorectal cancer progression shows promise in trials on mouse models. The phospholipase D1 (PLD1) enzyme reinforces a critical signaling pathway that promotes cancer progression and drug resistance. Using computer-aided drug design, South Korean researchers led by Do Sik Min and Gyoonhee Han at Yonsei University in Incheon and Seoul, respectively, have developed a drug that specifically binds to and inhibits PLD1. In trials, the researchers observed downregulation of PLD1’s associated signaling pathway, and reductions in the ability of colorectal cancer cells to migrate, invade and replicate. The drug suppressed the cancer cells’ “don’t-eat-me” signals and upregulated “eat-me” signals, triggering improved responses from the immune system. The drug was even more effective when used in combination with an immunotherapy agent.
Collapse
|
3
|
Barber CN, Goldschmidt HL, Lilley B, Bygrave AM, Johnson RC, Huganir RL, Zack DJ, Raben DM. Differential expression patterns of phospholipase D isoforms 1 and 2 in the mammalian brain and retina. J Lipid Res 2022; 63:100247. [PMID: 35764123 PMCID: PMC9305353 DOI: 10.1016/j.jlr.2022.100247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 01/16/2023] Open
Abstract
Phosphatidic acid is a key signaling molecule heavily implicated in exocytosis due to its protein-binding partners and propensity to induce negative membrane curvature. One phosphatidic acid-producing enzyme, phospholipase D (PLD), has also been implicated in neurotransmission. Unfortunately, due to the unreliability of reagents, there has been confusion in the literature regarding the expression of PLD isoforms in the mammalian brain which has hampered our understanding of their functional roles in neurons. To address this, we generated epitope-tagged PLD1 and PLD2 knockin mice using CRISPR/Cas9. Using these mice, we show that PLD1 and PLD2 are both localized at synapses by adulthood, with PLD2 expression being considerably higher in glial cells and PLD1 expression predominating in neurons. Interestingly, we observed that only PLD1 is expressed in the mouse retina, where it is found in the synaptic plexiform layers. These data provide critical information regarding the localization and potential role of PLDs in the central nervous system.
Collapse
Affiliation(s)
- Casey N Barber
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hana L Goldschmidt
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexei M Bygrave
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard C Johnson
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard L Huganir
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Ramaiah MJ, Kumar KR. mTOR-Rictor-EGFR axis in oncogenesis and diagnosis of glioblastoma multiforme. Mol Biol Rep 2021; 48:4813-4835. [PMID: 34132942 DOI: 10.1007/s11033-021-06462-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is one of the aggressive brain cancers with patients having less survival period upto 12-15 months. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase, belongs to the phosphatidylinositol 3-kinases (PI3K) pathway and is involved in various cellular processes of cancer cells. Cancer metabolism is regulated by mTOR and its components. mTOR forms two complexes as mTORC1 and mTORC2. Studies have identified the key component of the mTORC2 complex, Rapamycin-insensitive companion of mammalian target of rapamycin (Rictor) plays a prominent role in the regulation of cancer cell proliferation and metabolism. Apart, growth factor receptor signaling such as epidermal growth factor signaling mediated by epidermal growth factor receptor (EGFR) regulates cancer-related processes. In EGFR signaling various other signaling cascades such as phosphatidyl-inositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR pathway) and Ras/Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular-signal-regulated kinase (ERK) -dependent signaling cross-talk each other. From various studies about GBM, it is very well established that Rictor and EGFR mediated signaling pathways majorly playing a pivotal role in chemoresistance and tumor aggressiveness. Recent studies have shown that non-coding RNAs such as microRNAs (miRs) and long non-coding RNAs (lncRNAs) regulate the EGFR and Rictor and sensitize the cells towards chemotherapeutic agents. Thus, understanding of microRNA mediated regulation of EGFR and Rictor will help in cancer prevention and management as well as a future therapy.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India.
| | - K Rohil Kumar
- Functional Genomics and Disease Biology Laboratory, School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613401, Tamil Nadu, India
| |
Collapse
|
5
|
Kim MK, Hwang WC, Min DS. Pleckstrin homology domain of phospholipase D2 is a negative regulator of focal adhesion kinase. BMB Rep 2021. [PMID: 32843133 PMCID: PMC7907743 DOI: 10.5483/bmbrep.2021.54.2.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.
Collapse
Affiliation(s)
- Mi Kyoung Kim
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| | - Won Chan Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
6
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Dowdy T, Zhang L, Celiku O, Movva S, Lita A, Ruiz-Rodado V, Gilbert MR, Larion M. Sphingolipid Pathway as a Source of Vulnerability in IDH1 mut Glioma. Cancers (Basel) 2020; 12:E2910. [PMID: 33050528 PMCID: PMC7601159 DOI: 10.3390/cancers12102910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
In addition to providing integrity to cellular structure, the various classes of lipids participate in a multitude of functions including secondary messengers, receptor stimulation, lymphocyte trafficking, inflammation, angiogenesis, cell migration, proliferation, necrosis and apoptosis, thus highlighting the importance of understanding their role in the tumor phenotype. In the context of IDH1mut glioma, investigations focused on metabolic alterations involving lipidomics' present potential to uncover novel vulnerabilities. Herein, a detailed lipidomic analysis of the sphingolipid metabolism was conducted in patient-derived IDH1mut glioma cell lines, as well as model systems, with the of identifying points of metabolic vulnerability. We probed the effect of decreasing D-2HG levels on the sphingolipid pathway, by treating these cell lines with an IDH1mut inhibitor, AGI5198. The results revealed that N,N-dimethylsphingosine (NDMS), sphingosine C17 and sphinganine C18 were significantly downregulated, while sphingosine-1-phosphate (S1P) was significantly upregulated in glioma cultures following suppression of IDH1mut activity. We exploited the pathway using a small-scale, rational drug screen and identified a combination that was lethal to IDHmut cells. Our work revealed that further addition of N,N-dimethylsphingosine in combination with sphingosine C17 triggered a dose-dependent biostatic and apoptotic response in a panel of IDH1mut glioma cell lines specifically, while it had little effect on the IDHWT cells probed here. To our knowledge, this is the first study that shows how altering the sphingolipid pathway in IDH1mut gliomas elucidates susceptibility that can arrest proliferation and initiate subsequent cellular death.
Collapse
Affiliation(s)
- Tyrone Dowdy
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Lumin Zhang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Orieta Celiku
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Sriya Movva
- George Washington School of Medicine and Health Sciences, Washington, DC 20052, USA;
| | - Adrian Lita
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Mark R. Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA; (T.D.); (L.Z.); (O.C.); (A.L.); (V.R.-R.); (M.R.G.)
| |
Collapse
|
8
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
9
|
Klier M, Gorressen S, Urbahn MA, Barbosa D, Ouwens M, Fischer JW, Elvers M. Enzymatic Activity Is Not Required for Phospholipase D Mediated TNF-α Regulation and Myocardial Healing. Front Physiol 2018; 9:1698. [PMID: 30555342 PMCID: PMC6281985 DOI: 10.3389/fphys.2018.01698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Phospholipase D1 is a regulator of tumor necrosis factor-α expression and release upon LPS-induced sepsis and following myocardial infarction (MI). Lack of PLD1 leads to a reduced TNF-α mediated inflammatory response and to enhanced infarct size with declined cardiac function 21 days after ischemia reperfusion (I/R) injury. Deficiency of both PLD isoforms PLD1 and PLD2 as well as pharmacological inhibition of the enzymatic activity of PLD with the PLD inhibitor FIPI protected mice from arterial thrombosis and ischemic brain infarction. Here we treated mice with the PLD inhibitor FIPI to analyze if pharmacological inhibition of PLD after myocardial ischemia protects mice from cardiac damage. Inhibition of PLD with FIPI leads to reduced migration of inflammatory cells into the infarct border zone 24 h after experimental MI in mice, providing first evidence for immune cell migration to be dependent on the enzymatic activity of PLD. In contrast to PLD1 deficient mice, TNF-α plasma level was not altered after FIPI treatment of mice. Consequently, infarct size and left ventricular (LV) function were comparable between FIPI-treated and control mice 21 days post MI. Moreover, cell survival 24 h post I/R was not altered upon FIPI treatment. Our results indicate that the enzymatic activity of PLD is not responsible for PLD mediated TNF-α signaling and myocardial healing after I/R injury in mice. Furthermore, reduced TNF-α plasma levels in PLD1 deficient mice might be responsible for increased infarct size and impaired cardiac function 21 days post MI.
Collapse
Affiliation(s)
- Meike Klier
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - Simone Gorressen
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - Marc-Andre Urbahn
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - David Barbosa
- German Diabetes Center, Institute for Clinical Biochemistry and Pathobiochemistry, Düsseldorf, Germany
| | - Margriet Ouwens
- German Diabetes Center, Institute for Clinical Biochemistry and Pathobiochemistry, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Jens W Fischer
- Institute for Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Experimental Vascular Medicine, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| |
Collapse
|
10
|
Egea-Jimenez AL, Zimmermann P. Phospholipase D and phosphatidic acid in the biogenesis and cargo loading of extracellular vesicles. J Lipid Res 2018; 59:1554-1560. [PMID: 29853529 DOI: 10.1194/jlr.r083964] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/09/2018] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles released by viable cells (exosomes and microvesicles) have emerged as important organelles supporting cell-cell communication. Because of their potential therapeutic significance, important efforts are being made toward characterizing the contents of these vesicles and the mechanisms that govern their biogenesis. It has been recently demonstrated that the lipid modifying enzyme, phospholipase D (PLD)2, is involved in exosome production and acts downstream of the small GTPase, ARF6. This review aims to recapitulate our current knowledge of the role of PLD2 and its product, phosphatidic acid, in the biogenesis of exosomes and to propose hypotheses for further investigation of a possible central role of these molecules in the biology of these organelles.
Collapse
Affiliation(s)
- Antonio Luis Egea-Jimenez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe labellisée LIGUE 2018, Aix-Marseille Université, Marseille F-13284, France and Inserm U1068, Institut Paoli-Calmettes, and CNRS UMR7258, Marseille F-13009, France
| | - Pascale Zimmermann
- Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe labellisée LIGUE 2018, Aix-Marseille Université, Marseille F-13284, France and Inserm U1068, Institut Paoli-Calmettes, and CNRS UMR7258, Marseille F-13009, France; Department of Human Genetics, University of Leuven, B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Klier M, Gowert NS, Jäckel S, Reinhardt C, Elvers M. Phospholipase D1 is a regulator of platelet-mediated inflammation. Cell Signal 2017; 38:171-181. [PMID: 28711718 DOI: 10.1016/j.cellsig.2017.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/29/2017] [Accepted: 07/10/2017] [Indexed: 01/01/2023]
Abstract
Glycoprotein (GP)Ib is not only required for stable thrombus formation but for platelet-mediated inflammatory responses. Phospholipase (PL)D1 is essential for GPIb-dependent aggregate formation under high shear conditions while nothing is known about PLD1-induced regulation of GPIb in platelet-mediated inflammation and the underlying mechanisms. This study aimed to investigate the relevance of PLD1 for platelet-mediated endothelial and leukocyte recruitment and activation in vitro and in vivo. Pld1-/- platelets showed strongly reduced adhesion to TNFα stimulated endothelial cells (ECs) under high shear conditions ex vivo. Normal cytoskeletal reorganization of Pld1-/- platelets but reduced integrin activation after adhesion to inflamed ECs confirmed that defective integrin activation is responsible for reduced platelet adhesion to ECs. This, together with significantly reduced CD40L expression on platelets led to reduced chemotactic and adhesive properties of ECs in vitro. Under flow conditions, recruitment of leukocytes to collagen-adherent platelets was reduced. Under inflammatory conditions in vivo, reduced platelet and leukocyte recruitment and arrest to the injured carotid artery was observed in Pld1-/- mice. In a second in vivo model of venous thrombosis, platelet adhesion to activated endothelial cells was reduced while leukocyte recruitment was attenuated in PLD1 deficient mice. Mechanistically, PLD1 modulates PLCγ2 phosphorylation and integrin activation via Src kinases without affecting vWF binding to GPIb. Thus, PLD1 is important for GPIb-induced inflammatory processes of platelets and might be a promising target to reduce platelet-mediated inflammation.
Collapse
Affiliation(s)
- Meike Klier
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - Nina Sarah Gowert
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - Sven Jäckel
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Christoph Reinhardt
- German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany.; Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany.
| |
Collapse
|
12
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
13
|
Markwell SM, Weed SA. Tumor and stromal-based contributions to head and neck squamous cell carcinoma invasion. Cancers (Basel) 2015; 7:382-406. [PMID: 25734659 PMCID: PMC4381264 DOI: 10.3390/cancers7010382] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at advanced stages with evident loco-regional and/or distal metastases. The prevalence of metastatic lesions directly correlates with poor patient outcome, resulting in high patient mortality rates following metastatic development. The progression to metastatic disease requires changes not only in the carcinoma cells, but also in the surrounding stromal cells and tumor microenvironment. Within the microenvironment, acellular contributions from the surrounding extracellular matrix, along with contributions from various infiltrating immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit metastatic spread through therapeutic intervention have failed to show patient benefit in clinic trails. The goal of this review is highlight the complexity of invasion-promoting interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor and stromal cells in order to assist future therapeutic development and patient treatment.
Collapse
Affiliation(s)
- Steven M Markwell
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA.
| | - Scott A Weed
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
14
|
Bruntz RC, Lindsley CW, Brown HA. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol Rev 2014; 66:1033-79. [PMID: 25244928 PMCID: PMC4180337 DOI: 10.1124/pr.114.009217] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions.
Collapse
Affiliation(s)
- Ronald C Bruntz
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - Craig W Lindsley
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| | - H Alex Brown
- Department of Pharmacology (R.C.B., C.W.L., H.A.B.) and Vanderbilt Center for Neuroscience Drug Discovery (C.W.L.), Vanderbilt University Medical Center; Department of Chemistry, Vanderbilt Institute of Chemical Biology (C.W.L., H.A.B.); Vanderbilt Specialized Chemistry for Accelerated Probe Development (C.W.L.); and Department of Biochemistry, Vanderbilt-Ingram Cancer Center (H.A.B.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
15
|
Bruntz RC, Taylor HE, Lindsley CW, Brown HA. Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. J Biol Chem 2013; 289:600-16. [PMID: 24257753 DOI: 10.1074/jbc.m113.532978] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The lack of innovative drug targets for glioblastoma multiforme (GBM) limits patient survival to approximately 1 year following diagnosis. The pro-survival kinase Akt provides an ideal target for the treatment of GBM as Akt signaling is frequently activated in this cancer type. However, the central role of Akt in physiological processes limits its potential as a therapeutic target. In this report, we show that the lipid-metabolizing enzyme phospholipaseD(PLD) is a novel regulator of Akt inGBM.Studies using a combination of small molecule PLD inhibitors and siRNA knockdowns establish phosphatidic acid, the product of the PLD reaction, as an essential component for the membrane recruitment and activation of Akt. Inhibition of PLD enzymatic activity and subsequent Akt activation decreases GBM cell viability by specifically inhibiting autophagic flux. We propose a mechanism whereby phosphorylation of beclin1 by Akt prevents binding of Rubicon (RUN domain cysteine-rich domain containing beclin1-interacting protein), an interaction known to inhibit autophagic flux. These findings provide a novel framework through which Akt inhibition can be achieved without directly targeting the kinase.
Collapse
|
16
|
Zachos NC, Lee LJ, Kovbasnjuk O, Li X, Donowitz M. PLC-γ directly binds activated c-Src, which is necessary for carbachol-mediated inhibition of NHE3 activity in Caco-2/BBe cells. Am J Physiol Cell Physiol 2013; 305:C266-75. [PMID: 23703528 DOI: 10.1152/ajpcell.00277.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated levels of intracellular Ca(2+) ([Ca(2+)]i) inhibit Na(+)/H(+) exchanger 3 (NHE3) activity in the intact intestine. We previously demonstrated that PLC-γ directly binds NHE3, an interaction that is necessary for [Ca(2+)]i inhibition of NHE3 activity, and that PLC-γ Src homology 2 (SH2) domains may scaffold Ca(2+) signaling proteins necessary for regulation of NHE3 activity. [Ca(2+)]i regulation of NHE3 activity is also c-Src dependent; however, the mechanism by which c-Src is involved is undetermined. We hypothesized that the SH2 domains of PLC-γ might link c-Src to NHE3-containing complexes to mediate [Ca(2+)]i inhibition of NHE3 activity. In Caco-2/BBe cells, carbachol (CCh) decreased NHE3 activity by ∼40%, an effect abolished with the c-Src inhibitor PP2. CCh treatment increased the amount of active c-Src as early as 1 min through increased Y(416) phosphorylation. Coimmunoprecipitation demonstrated that c-Src associated with PLC-γ, but not NHE3, under basal conditions, an interaction that increased rapidly after CCh treatment and occurred before the dissociation of PLC-γ and NHE3 that occurred 10 min after CCh treatment. Finally, direct binding to c-Src only occurred through the PLC-γ SH2 domains, an interaction that was prevented by blocking the PLC-γ SH2 domain. This study demonstrated that c-Src 1) activity is necessary for [Ca(2+)]i inhibition of NHE3 activity, 2) activation occurs rapidly (∼1 min) after CCh treatment, 3) directly binds PLC-γ SH2 domains and associates dynamically with PLC-γ under elevated [Ca(2+)]i conditions, and 4) does not directly bind NHE3. Under elevated [Ca(2+)]i conditions, PLC-γ scaffolds c-Src into NHE3-containing multiprotein complexes before dissociation of PLC-γ from NHE3 and subsequent endocytosis of NHE3.
Collapse
Affiliation(s)
- Nicholas C Zachos
- Department of Medicine/Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
17
|
Phospholipase D1 has a pivotal role in interleukin-1β-driven chronic autoimmune arthritis through regulation of NF-κB, hypoxia-inducible factor 1α, and FoxO3a. Mol Cell Biol 2013; 33:2760-72. [PMID: 23689131 DOI: 10.1128/mcb.01519-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-1β (IL-1β) is a potent proinflammatory and immunoregulatory cytokine playing an important role in the progression of rheumatoid arthritis (RA). However, the signaling network of IL-1β in synoviocytes from RA patients is still poorly understood. Here, we show for the first time that phospholipase D1 (PLD1), but not PLD2, is selectively upregulated in IL-1β-stimulated synoviocytes, as well as synovium, from RA patients. IL-1β enhanced the binding of NF-κB and ATF-2 to the PLD1 promoter, thereby enhancing PLD1 expression. PLD1 inhibition abolished the IL-1β-induced expression of proinflammatory mediators and angiogenic factors by suppressing the binding of NF-κB or hypoxia-inducible factor 1α to the promoter of its target genes, as well as IL-1β-induced proliferation or migration. However, suppression of PLD1 activity promoted cell cycle arrest via transactivation of FoxO3a. Furthermore, PLD1 inhibitor significantly suppressed joint inflammation and destruction in IL-1 receptor antagonist-deficient (IL-1Ra(-/-)) mice, a model of spontaneous arthritis. Taken together, these results suggest that the abnormal upregulation of PLD1 may contribute to the pathogenesis of IL-1β-induced chronic arthritis and that a selective PLD1 inhibitor might provide a potential therapeutic molecule for the treatment of chronic inflammatory autoimmune disorders.
Collapse
|
18
|
Jang YH, Min DS. The hydrophobic amino acids involved in the interdomain association of phospholipase D1 regulate the shuttling of phospholipase D1 from vesicular organelles into the nucleus. Exp Mol Med 2013; 44:571-7. [PMID: 22824913 PMCID: PMC3490078 DOI: 10.3858/emm.2012.44.10.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger, phosphatidic acid. PLD is localized in most cellular organelles, where it is likely to play different roles in signal transduction. PLD1 is primarily localized in vesicular structures such as endosomes, lysosomes and autophagosomes. However, the factors defining its localization are less clear. In this study, we found that four hydrophobic residues present in the N-terminal HKD catalytic motif of PLD1, which is involved in intramolecular association, are responsible for vesicular localization. Site-directed mutagenesis of the residues dramatically disrupted vesicular localization of PLD1. Interestingly, the hydrophobic residues of PLD1 are also involved in the interruption of its nuclear localization. Mutation of the residues increased the association of PLD1 with importin-β, which is known to mediate nuclear importation, and induced the localization of PLD1 from vesicles into the nucleus. Taken together, these data suggest that the hydrophobic amino acids involved in the interdomain association of PLD1 are required for vesicular localization and disturbance of its nuclear localization.
Collapse
Affiliation(s)
- Young Hoon Jang
- Department of Molecular Biology College of Natural Science Pusan National University Busan 609-735, Korea
| | | |
Collapse
|
19
|
Huang C, Bruggeman LA, Hydo LM, Miller RT. Shear stress induces cell apoptosis via a c-Src-phospholipase D-mTOR signaling pathway in cultured podocytes. Exp Cell Res 2012; 318:1075-85. [PMID: 22472346 DOI: 10.1016/j.yexcr.2012.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 02/06/2023]
Abstract
The glomerular capillary wall, composed of endothelial cells, the glomerular basement membrane and the podocytes, is continually subjected to hemodynamic force arising from tractional stress due to blood pressure and shear stress due to blood flow. Exposure of glomeruli to abnormal hemodynamic force such as hyperfiltration is associated with glomerular injury and progressive renal disease, and the conversion of mechanical stimuli to chemical signals in the regulation of the process is poorly understood in podocytes. By examining DNA fragmentation, apoptotic nuclear changes and cytochrome c release, we found that shear stress induced cell apoptosis in cultured podocytes. Meanwhile, podocytes exposed to shear stress also stimulated c-Src phosphorylation, phospholipase D (PLD) activation and mammalian target of rapamycin (mTOR) signaling. Using the antibodies against c-Src, PLD(1), and PLD(2) to perform reciprocal co-immunoprecipitations and in vitro PLD activity assay, our data indicated that c-Src interacted with and activated PLD(1) but not PLD(2). The inhibition of shear stress-induced c-Src phosphorylation by PP(2) (a specific inhibitor of c-Src kinase) resulted in reduced PLD activity. Phosphatidic acid, produced by shear stress-induced PLD activation, stimulated mTOR signaling, and caused podocyte hypertrophy and apoptosis.
Collapse
Affiliation(s)
- Chunfa Huang
- Louis Stokes Cleveland Veteran Affairs Medical Center, Case Western Reserve University, USA.
| | | | | | | |
Collapse
|
20
|
Jang JH, Lee CS, Hwang D, Ryu SH. Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 2011; 51:71-81. [PMID: 22212660 DOI: 10.1016/j.plipres.2011.12.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phospholipase D (PLD) is a phosphatidyl choline (PC)-hydrolyzing enzyme that generates phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling. Through interactions with signaling molecules, both PLD and PA can mediate a variety of cellular functions, such as, growth/proliferation, vesicle trafficking, cytoskeleton modulation, development, and morphogenesis. Therefore, systemic approaches for investigating PLD networks including interrelationship between PLD and PA and theirs binding partners, such as proteins and lipids, can enhance fundamental knowledge of roles of PLD and PA in diverse biological processes. In this review, we summarize previously reported protein-protein and protein-lipid interactions of PLD and PA and their binding partners. In addition, we describe the functional roles played by PLD and PA in these interactions, and provide PLD network that summarizes these interactions. The PLD network suggests that PLD and PA could act as a decision maker and/or as a coordinator of signal dynamics. This viewpoint provides a turning point for understanding the roles of PLD-PA as a dynamic signaling hub.
Collapse
Affiliation(s)
- Jin-Hyeok Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungbook 790-784, South Korea
| | | | | | | |
Collapse
|
21
|
Gomez-Cambronero J. The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 2011; 23:1885-95. [PMID: 21740967 PMCID: PMC3204931 DOI: 10.1016/j.cellsig.2011.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/21/2011] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) catalyzes the conversion of the membrane phospholipid phosphatidylcholine to choline and phosphatidic acid (PA). PLD's mission in the cell is two-fold: phospholipid turnover with maintenance of the structural integrity of cellular/intracellular membranes and cell signaling through PA and its metabolites. Precisely, through its product of the reaction, PA, PLD has been implicated in a variety of physiological cellular functions, such as intracellular protein trafficking, cytoskeletal dynamics, chemotaxis of leukocytes and cell proliferation. The catalytic (HKD) and regulatory (PH and PX) domains were studied in detail in the PLD1 isoform, but PLD2 was traditionally studied in lesser detail and much less was known about its regulation. Our laboratory has been focusing on the study of PLD2 regulation in mammalian cells. Over the past few years, we have reported, in regards to the catalytic action of PLD, that PA is a chemoattractant agent that binds to and signals inside the cell through the ribosomal S6 kinases (S6K). Regarding the regulatory domains of PLD2, we have reported the discovery of the PLD2 interaction with Grb2 via Y169 in the PX domain, and further association to Sos, which results in an increase of de novo DNA synthesis and an interaction (also with Grb2) via the adjacent residue Y179, leading to the regulation of cell ruffling, chemotaxis and phagocytosis of leukocytes. We also present the complex regulation by tyrosine phosphorylation by epidermal growth factor receptor (EGF-R), Janus Kinase 3 (JAK3) and Src and the role of phosphatases. Recently, there is evidence supporting a new level of regulation of PLD2 at the PH domain, by the discovery of CRIB domains and a Rac2-PLD2 interaction that leads to a dual (positive and negative) effect on its enzymatic activity. Lastly, we review the surprising finding of PLD2 acting as a GEF. A phospholipase such as PLD that exists already in the cell membrane that acts directly on Rac allows a quick response of the cell without intermediary signaling molecules. This provides only the latest level of PLD2 regulation in a field that promises newer and exciting advances in the next few years.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA.
| |
Collapse
|
22
|
Jang YH, Min DS. Intermolecular association between caspase-mediated cleavage fragments of phospholipase D1 protects against apoptosis. Int J Biochem Cell Biol 2011; 44:358-65. [PMID: 22108201 DOI: 10.1016/j.biocel.2011.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/24/2011] [Accepted: 11/07/2011] [Indexed: 11/17/2022]
Abstract
Phospholipase D plays an anti-apoptotic role but little is known about dynamics of phospholipase D turnover during apoptosis. We have recently identified phospholipase D1 as a new substrate of caspases which generates the N-terminal and C-terminal fragment of phospholipase D1. In the present study, we tried to investigate whether association of the caspase cleavage fragments may be involved in regulation of apoptosis. Ectopically expressed C-terminal fragment, but not N-terminal fragment of phospholipase D1, is exclusively imported into the nucleus via a nuclear localization sequence; however, endogenous C-terminal fragment of phospholipase D1 from etoposide-induced apoptotic cells and Alzheimer's disease brain tissues with active caspase-3, was localized in the cytosolic fraction as well as the nuclear fraction. Intermolecular association between the two fragments of phospholipase D1 through hydrophobic residues within the catalytic motif inhibited nuclear localization of C-terminal fragment of phospholipase D1, and two catalytic motif and nuclear localization sequence regulated nuclocytoplasmic shuttling of phospholipase D1. Moreover, hydrophobic residues involved in the intermolecular association are also required for both its enzymatic activity and anti-apoptotic function. Taken together, we demonstrate that interdomain association and dissociation of phospholipase D1 might provide new insights into modulation of apoptosis.
Collapse
Affiliation(s)
- Young Hoon Jang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 609-735, Republic of Korea
| | | |
Collapse
|
23
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
24
|
Jeon H, Kwak D, Noh J, Lee MN, Lee CS, Suh PG, Ryu SH. Phospholipase D2 induces stress fiber formation through mediating nucleotide exchange for RhoA. Cell Signal 2011; 23:1320-6. [PMID: 21440060 DOI: 10.1016/j.cellsig.2011.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/15/2011] [Indexed: 12/23/2022]
Abstract
Phospholipase D (PLD) is involved in diverse cellular processes including cell movement, adhesion, and vesicle trafficking through cytoskeletal rearrangements. However, the mechanism by which PLD induces cytoskeletal reorganization is still not fully understood. Here, we describe a new link to cytoskeletal changes that is mediated by PLD2 through direct nucleotide exchange on RhoA. We found that PLD2 induces RhoA activation independent of its lipase activity. PLD2 directly interacted with RhoA, and the PX domain of PLD2 specifically recognized nucleotide-free RhoA. Finally, we found that the PX domain of PLD2 has guanine nucleotide-exchange factor (GEF) activity for RhoA in vitro. In addition, we verified that overexpression of the PLD2-PX domain induces RhoA activation, thereby provoking stress fiber formation. Together, our findings suggest that PLD2 functions as an upstream regulator of RhoA, which enables us to understand how PLD2 regulates cytoskeletal reorganization in a lipase activity-independent manner.
Collapse
Affiliation(s)
- Hyeona Jeon
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Kang DW, Min G, Park DY, Hong KW, Min DS. Rebamipide-induced downregulation of phospholipase D inhibits inflammation and proliferation in gastric cancer cells. Exp Mol Med 2011; 42:555-64. [PMID: 20625243 DOI: 10.3858/emm.2010.42.8.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Rebamipide a gastroprotective drug, is clinically used for the treatment of gastric ulcers and gastritis, but its actions on gastric cancer are not clearly understood. Phospholipase D (PLD) is overexpressed in various types of cancer tissues and has been implicated as a critical factor in inflammation and carcinogenesis. However, whether rebamipide is involved in the regulation of PLD in gastric cancer cells is not known. In this study, we showed that rebamipide significantly suppressed the expression of both PLD1 and PLD2 at a transcriptional level in AGS and MKN-1 gastric cancer cells. Downregulation of PLD expression by rebamipide inhibited its enzymatic activity. In addition, rebamipide inhibited the transactivation of nuclear factor kappa B (NFkappaB), which increased PLD1 expression. Rebamipide or PLD knockdown significantly suppressed the expression of genes involved in inflammation and proliferation and inhibited the proliferation of gastric cancer cells. In conclusion, rebamipide-induced downregulation of PLD may contribute to the inhibition of inflammation and proliferation in gastric cancer.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Korea
| | | | | | | | | |
Collapse
|
26
|
Kang DW, Park MH, Lee YJ, Kim HS, Lindsley CW, Alex Brown H, Min DS. Autoregulation of phospholipase D activity is coupled to selective induction of phospholipase D1 expression to promote invasion of breast cancer cells. Int J Cancer 2011; 128:805-816. [PMID: 20473892 DOI: 10.1002/ijc.25402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Phospholipase D (PLD) is an important signaling enzyme implicated in the control of many biological processes, including cell proliferation and survival. Despite the importance of the duration and amplitude of PLD signaling in carcinogenesis, mechanisms that regulate PLD expression remain poorly understood. In our study, we define the regulatory components of the machinery that specifies selective PLD1 induction via signals propagated through PLD activity. We demonstrate for the first time that establishment of a positive feedback loop that is dependent on enzymatic activity originating from both PLD1 and PLD2 isozymes enhances selective expression of PLD1, but not PLD2. Phosphatidic acid, the product of PLD activity, leads to an increase in the Ras-ERK/PI3K-NFκB signaling cascade and enhances binding of NFκB to the PLD1 promoter, consequently inducing selective PLD1 expression in SK-BR3 breast cancer cells. Moreover, selective PLD inhibitor suppressed epidermal growth factor-induced matrix metalloproteinase upregulation and invasion by inhibiting PLD1 expression. In conclusion, we propose that autoregulation of PLD activity might be coupled to induction of PLD1 expression, and thereby play a role in carcinogenesis.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Busan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Faugaret D, Chouinard FC, Harbour D, El azreq MA, Bourgoin SG. An essential role for phospholipase D in the recruitment of vesicle amine transport protein-1 to membranes in human neutrophils. Biochem Pharmacol 2011; 81:144-56. [PMID: 20858461 DOI: 10.1016/j.bcp.2010.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022]
Abstract
Although phosphatidic acid (PA) regulates a wide variety of physiological processes, its targets remain poorly characterized in human neutrophils. By co-sedimentation with PA-containing vesicles we identified several PA-binding proteins including vesicle amine transport protein-1 (VAT-1), Annexin A3 (ANXA3), Rac2, Cdc42 and RhoG in neutrophil cytosol. Except for ANXA3, protein binding to PA-containing liposomes was calcium-independent. Cdc42 and RhoG preferentially interacted with PA whereas VAT-1 bound to PA or phosphatidylserine with the same affinity. VAT-1 translocated to neutrophil membranes upon N-formyl-methionyl-leucyl-phenylalanine (fMLF) stimulation. Inhibition of fMLF-induced PLD activity with the Src kinase inhibitor PP2, the selective inhibitor of PLD FIPI, or of PA formation with primary alcohols reduced VAT-1 translocation. In contrast, inhibition of PA hydrolysis with propranolol enhanced fMLF-mediated VAT-1 recruitment to membranes. PMA also redistributed VAT-1 to membranes in a PKC- and PLD-dependent manner. Though fMLF and PMA increased VAT-1 phosphorylation, different kinases appear to be involved. Cell fractionation revealed that a pool of VAT-1 was co-localized with primary, secondary and tertiary granules and plasma membrane markers in resting neutrophils. Stimulation with fMLF enhanced VAT-1 co-localization with CD32a, a plasma membrane marker. Confocal microscopy revealed that VAT-1 decorates granular structures at the cell periphery and double labeling with VAT-1/lactoferrin antibodies showed a partial co-localization with secondary granules in control and fMLF-stimulated cells. Characterization of these putative PA-binding proteins constitutes another step forward for a better understanding of the role of PLD-derived PA in neutrophil physiology.
Collapse
Affiliation(s)
- Delphine Faugaret
- Centre de Recherche en Rhumatologie et Immunologie, Centre de recherche du CHUQ-CHUL et Faculté de Médecine de l'Université Laval, 2705 Boulevard Laurier, local T1-49, Québec, QC, G1V 4G2, Canada.
| | | | | | | | | |
Collapse
|
28
|
Jang YH, Min DS. Nuclear localization of phospholipase D1 mediates the activation of nuclear protein kinase C(alpha) and extracellular signal-regulated kinase signaling pathways. J Biol Chem 2010; 286:4680-9. [PMID: 21113078 DOI: 10.1074/jbc.m110.162602] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies highlight the existence of a nuclear lipid metabolism related to cellular proliferation. However, the importance of nuclear phosphatidylcholine (PC) metabolism is poorly understood. Therefore, we were interested in nuclear PC as a source of second messengers and, particularly, nuclear localization of PC-specific phospholipase D (PLD). In the present study we have identified the nuclear localization sequence (NLS) of PLD1 whose mutation abolished its nuclear import. Recently, we reported that caspase-mediated cleavage of PLD1 generates the N-terminal fragment (NF-PLD1) and C-terminal fragment (CF-PLD1). Here we show that CF-PLD1 but not NF-PLD1, is exclusively imported into the nucleus via its functional NLS, whereas only some portions of intact PLD1 were localized into the nucleus. The NLS of intact PLD1 or CF-PLD1 is required for interaction with importin-β, which is known to mediate nuclear import. The amount of intact PLD1 or CF-PLD1 translocated into nucleus is correlated with its binding affinity with importin-β. Ultimately, nuclear localization of intact PLD1 but not CF-PLD1 mediates the activation of nuclear protein kinase Cα and extracellular signal-regulated kinase signaling pathways. Taken together, we propose that nuclear localization of PLD1 via the NLS and its interaction with importin-β may provide new insights on the functional role of nuclear PLD1 signaling.
Collapse
Affiliation(s)
- Young Hoon Jang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| | | |
Collapse
|
29
|
Positive feedback regulation between phospholipase D and Wnt signaling promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. PLoS One 2010; 5:e12109. [PMID: 20711340 PMCID: PMC2920823 DOI: 10.1371/journal.pone.0012109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 07/05/2010] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aberrant activation of the canonical Wnt/beta-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Phopholipase D (PLD) has been implicated in progression of colorectal carcinoma However, an understanding of the targets and regulation of this important pathway remains incomplete and besides, relationship between Wnt signaling and PLD is not known. METHODOLOGY/PRINCIPAL FINDINGS Here, we demonstrate that PLD isozymes, PLD1 and PLD2 are direct targets and positive feedback regulators of the Wnt/beta-catenin signaling. Wnt3a and Wnt mimetics significantly enhanced the expression of PLDs at a transcriptional level in HCT116 colorectal cancer cells, whereas silencing of beta-catenin gene expression or utilization of a dominant negative form of T cell factor-4 (TCF-4) inhibited expression of PLDs. Moreover, both PLD1 and PLD2 were highly induced in colon, liver and stomach tissues of mice after injection of LiCl, a Wnt mimetic. Wnt3a stimulated formation of the beta-catenin/TCF complexes to two functional TCF-4-binding elements within the PLD2 promoter as assessed by chromatin immunoprecipitation assay. Suppressing PLD using gene silencing or selective inhibitor blocked the ability of beta-catenin to transcriptionally activate PLD and other Wnt target genes by preventing formation of the beta-catenin/TCF-4 complex, whereas tactics to elevate intracellular levels of phosphatidic acid, the product of PLD activity, enhanced these effects. Here we show that PLD is necessary for Wnt3a-driven invasion and anchorage-independent growth of colon cancer cells. CONCLUSION/SIGNIFICANCE PLD isozyme acts as a novel transcriptional target and positive feedback regulator of Wnt signaling, and then promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. We propose that therapeutic interventions targeting PLD may confer a clinical benefit in Wnt/beta-catenin-driven malignancies.
Collapse
|
30
|
The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Mol Cell Biol 2010; 30:4492-506. [PMID: 20647543 DOI: 10.1128/mcb.00229-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the molecular mechanisms that underlie chemotaxis of macrophages and cell migration of fibroblasts, cells that are essential during the body's innate immune response and during wound repair, respectively. Silencing of phospholipase D1 (PLD1) and PLD2 reduced cell migration (both chemokinesis and chemotaxis) by approximately 60% and >80%, respectively; this migration was restored by cell transfection with PLD2 constructs refractory to small interfering RNA (siRNA). Cells overexpressing active phospholipase D1 (PLD1) but, mostly, active PLD2 exhibited cell migration capabilities that were elevated over those elicited by chemoattractants alone. The mechanism for this enhancement is complex. It involves two pathways: one that is dependent on the activity of the lipase (and signals through its product, phosphatidic acid [PA]) and another that involves protein-protein interactions. The first is evidenced by partial abrogation of chemotaxis with lipase activity-defective constructs (PLD2-K758R) and by n-butanol treatment of cells. The second is evidenced by PLD association with the growth factor receptor-bound protein 2 (Grb2) through residue Y(169), located within a Src homology 2 (SH2) consensus site. The association Grb2-PLD2 could be visualized by fluorescence microscopy in RAW/LR5 macrophages concentrated in actin-rich membrane ruffles, making possible that Grb2 serves as a docking or intermediary protein. The Grb2/PLD2-mediated chemotaxis process also depends on Grb2's ability to recognize other motility proteins, like the Wiskott-Aldrich syndrome protein (WASP). Cell transfection with WASP, PLD2, and Grb2 constructs yields the highest levels of cell migration response, particularly in a macrophage cell line (RAW/LR5) and only modestly in the fibroblast cell line COS-7. Further, RAW/LR5 macrophages utilize for cell migration an additional pathway that involves S6 kinase (S6K) through PLD2-Y(296), known to be phosphorylated by epidermal growth factor receptor (EGFR) kinase. Thus, both fibroblasts and macrophages use activity-dependent and activity-independent signaling mechanisms. However, highly mobile cells like macrophages use all signaling machinery available to them to accomplish their required function in rapid immune response, which sets them apart from fibroblasts, cells normally nonmobile that are only briefly involved in wound healing.
Collapse
|
31
|
Gomez-Cambronero J. New concepts in phospholipase D signaling in inflammation and cancer. ScientificWorldJournal 2010; 10:1356-69. [PMID: 20623096 PMCID: PMC3070604 DOI: 10.1100/tsw.2010.116] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA) and choline. PLD regulation in cells falls into two major signaling categories. One is via growth factors/mitogens, such as EGF, PDGF, insulin, and serum, and implicates tyrosine kinases; the other is via the small GTPase proteins Arf and Rho. We summarize here our lab's and other groups' contributions to those pathways and introduce several novel concepts. For the mitogen-induced signaling, new data indicate that an increase in cell transformation in PLD2-overexpressing cells is due to an increase of de novo DNA synthesis induced by PLD2, with the specific tyrosine residues involved in those functions being Y and Y. Recent research has also implicated Grb2 in tyrosine phosphorylation of PLD2 that also involves Sos and the ERK pathway. The targets of phosphorylation within the PLD2 molecule that are key to its regulation have recently been precisely mapped. They are Y, Y, and Y and the responsible kinases are, respectively, EGFR, JAK3, and Src. Y is an inhibitory site and its phosphorylation explains the low PLD2 activity that exists in low-invasive MCF-7 breast cancer cells. Advances along the small GTPase front have implicated cell migration, as PLD1 and PLD2 cause an increase in chemotaxis of leukocytes and inflammation. PA is necessary for full chemotaxis. PA enriches the localization of the atypical guanine exchange factor (GEF), DOCK2, at the leading edge of polarized neutrophils. Further, extracellular PA serves as a neutrophil chemoattractant; PA enters the cell and activates the mTOR/S6K pathway (specifically, S6K). A clear connection between PLD with the mTOR/S6K pathway has been established, in that PA binds to mTOR and also binds to S6K independently of mTOR. Lastly, there is evidence in the upstream direction of cell signaling that mTOR and S6K keep PLD2 gene expression function down-regulated in basal conditions. In summary, the involvement of PLD2 in cell signaling continues to expand geometrically. It involves gene transcription, mitogenic and cell migration effects as seen in normal growth, tumor development, and inflammation.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School Medicine, Dayton, OH, USA.
| |
Collapse
|
32
|
Kang DW, Lee SH, Yoon JW, Park WS, Choi KY, Min DS. Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis. Cancer Res 2010; 70:4233-4242. [PMID: 20442281 DOI: 10.1158/0008-5472.can-09-3470] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the Wnt signaling pathway occurs frequently in human cancers, but an understanding of the targets and regulation of this important pathway remains incomplete. In this study, we report that phospholipase D (PLD), a cell survival mediator that is upregulated in cancer, is an important target of the Wnt signaling pathway that functions in a positive feedback loop to reinforce pathway output. PLD1 expression and activity was enhanced by treatment with Wnt3a and glycogen synthase kinase-3 inhibitors, and the Wnt pathway-regulated transcription factors beta-catenin and TCF-4 were required for this effect. Three functional TCF-4-binding sites were identified within the PLD1 promoter. Interestingly, suppressing PLD1 blocked the ability of beta-catenin to transcriptionally activate PLD1 and other Wnt target genes by preventing beta-catenin/TCF-4 complex formation. Conversely, tactics to elevate intracellular levels of phosphatidic acid, the product of PLD1 enzyme activity, enhanced beta-catenin/TCF-4 complex formation as well as beta-catenin-dependent TCF transcriptional activity. In cell-based assays, PLD1 was necessary for the anchorage-independent growth driven by Wnt/beta-catenin signaling, whereas beta-catenin/TCF-4 was necessary for the anchorage-independent growth driven by PLD1 activation. Taken together, our findings define a function for PLD1 in a positive feedback loop of Wnt/beta-catenin/TCF-4 signaling that provides new mechanistic insights into cancer, with implications of novel strategies to disrupt Wnt signaling in cancer.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | |
Collapse
|
33
|
PLD1-dependent PKCgamma activation downstream to Src is essential for the development of pathologic retinal neovascularization. Blood 2010; 116:1377-85. [PMID: 20421451 DOI: 10.1182/blood-2010-02-271478] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) appears to be an important mediator of pathologic retinal angiogenesis. In understanding the mechanisms of pathologic retinal neovascularization, we found that VEGF activates PLD1 in human retinal microvascular endothelial cells, and this event is dependent on Src. In addition, VEGF activates protein kinase C-gamma (PKCgamma) via Src-dependent PLD1 stimulation. Inhibition of Src, PLD1, or PKCgamma via pharmacologic, dominant negative mutant, or siRNA approaches significantly attenuated VEGF-induced human retinal microvascular endothelial cell migration, proliferation, and tube formation. Hypoxia also induced Src-PLD1-PKCgamma signaling in retina, leading to retinal neovascularization. Furthermore, siRNA-mediated down-regulation of VEGF inhibited hypoxia-induced Src-PLD1-PKCgamma activation and neovascularization. Blockade of Src-PLD1-PKCgamma signaling via the siRNA approach also suppressed hypoxia-induced retinal neovascularization. Thus, these observations demonstrate, for the first time, that Src-dependent PLD1-PKCgamma activation plays an important role in pathologic retinal angiogenesis.
Collapse
|
34
|
Kang DW, Min DS. Platelet derived growth factor increases phospholipase D1 but not phospholipase D2 expression via NFkappaB signaling pathway and enhances invasion of breast cancer cells. Cancer Lett 2010; 294:125-33. [PMID: 20188462 DOI: 10.1016/j.canlet.2010.01.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/22/2010] [Accepted: 01/24/2010] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) has emerged as a critical element in the cell growth signaling. Despite extensive information regarding the regulation of PLD activity in cell survival, the signaling mechanisms that regulate PLD expression in cancer remains poorly understood. Here we investigate that platelet derived growth factor (PDGF) increases PLD1 but not PLD2 expression via Ras-ERK/PI3K-NFkappaB signaling cascade in SK-BR3 breast cancer cells. The two NFkappaB-binding sites are functionally critical for transcriptional activation of PLD1 induced by PDGF. Furthermore, depletion of PLD1 using siRNA significantly abolished PDGF-induced upregulation of matrix metalloproteinase-2 or -9 and invasion of breast cancer cells. Thus, we propose that PDGF-induced PLD1 expression via NFkappaB signaling pathway might contribute to carcinogenesis.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon dong, Busan, Republic of Korea
| | | |
Collapse
|
35
|
A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation. Mol Cell Biol 2010; 30:2251-63. [PMID: 20176813 DOI: 10.1128/mcb.01239-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report here that the enzymatic activity of phospholipase D2 (PLD2) is regulated by phosphorylation-dephosphorylation. Phosphatase treatment of PLD2-overexpressing cells showed a biphasic nature of changes in activity that indicated the existence of "activator" and "inhibitory" sites. We identified three kinases capable of phosphorylating PLD2 in vitro-epidermal growth factor receptor (EGFR), JAK3, and Src (with JAK3 reported for the first time in this study)-that phosphorylate an inhibitory, an activator, and an ambivalent (one that can yield either effect) site, respectively. Mass spectrometry analyses indicated the target of each of these kinases as Y(296) for EGFR, Y(415) for JAK3, and Y(511) for Src. The extent to which each site is activated or inhibited depends on the cell type considered. In COS-7, cells that show the highest level of PLD2 activity, the Y(415) is a prominent site, and JAK3 compensates the negative modulation by EGFR on Y(296). In MCF-7, cells that show the lowest level of PLD2 activity, the converse is the case, with Y(296) unable to compensate the positive modulation by Y(415). MTLn3, with medium to low levels of lipase activity, show an intermediate pattern of regulation but closer to MCF-7 than to COS-7 cells. The negative effect of EGFR on the two cancer cell lines MTLn3 and MCF-7 is further proven by RNA silencing experiments that yield COS-7 showing lower PLD2 activity, and MTLn3 and MCF-7 cells showing an elevated activity. MCF-7 is a cancer cell line derived from a low-aggressive/invasive form of breast cancer that has relatively low levels of PLD activity. We propose that PLD2 activity is low in the breast cancer cell line MCF-7 because it is kept downregulated by tyrosyl phosphorylation of Y(296) by EGFR kinase. Thus, phosphorylation of PLD2-Y(296) could be the signal for lowering the level of PLD2 activity in transformed cells with low invasive capabilities.
Collapse
|
36
|
Kang DW, Lee JY, Oh DH, Park SY, Woo TM, Kim MK, Park MH, Jang YH, Min DS. Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells. Exp Mol Med 2010; 41:678-85. [PMID: 19478552 DOI: 10.3858/emm.2009.41.9.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In spite of the importance of phospholipase D (PLD) in cell proliferation and tumorigenesis, little is known about the molecules regulating PLD expression. Thus, identification of small molecules inhibiting PLD expression would be an important advance for PLD- mediated physiology. We examined one such here, denoted Triptolide, which was identified in a chemical screen for inhibitors of PLD expression using cell assay system based on measurement of PLD promoter activity. Triptolide significantly suppressed the expression of both PLD1 and PLD2 with sub-mM potency in MDA-MB-231 breast cancer cells as analyzed by promoter assay and RT-PCR. Moreover, triptolide abolished the protein level of PLD in a time and dose-dependent manner. Triptolide-induced PLD1 downregulation was also observed in all the cancer cells examined, suggesting a general phenomenon detected in various cancer cells. Decrease of PLD expression by triptolide suppressed both basal and PMA-induced PLD activity. In addition, triptolide inhibited activation of NFkB which increased PLD1 expression. Ultimately, downregulation of PLD by triptolide inhibited proliferation of breast cancer cells. Taken together, we demonstrate that triptolide suppresses the expression of PLD via inhibition of NFkappaB activation and then decreases cell proliferation.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Su W, Chen Q, Frohman MA. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol 2010; 5:1477-86. [PMID: 19903073 DOI: 10.2217/fon.09.110] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phospholipase D (PLD)1 and PLD2, the classic mammalian members of the PLD superfamily, have been linked over the past three decades to immune cell function and to cell biological processes required by cancer cells for metastasis. However, owing to the lack of effective small-molecule inhibitors, it has not been possible to validate these roles for the PLDs and to explore the possible utility of acute and chronic PLD inhibition in vivo. The first such inhibitors have recently been described and demonstrated to block neutrophil chemotaxis and invasion by breast cancer cells in culture, increasing the prospects for a new class of therapeutics for autoimmune disorders and several types of metastatic cancer.
Collapse
Affiliation(s)
- Wenjuan Su
- Center for Developmental Genetics, Program in Molecular & Cellular Pharmacology and, Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
38
|
Lee CS, Kim KL, Jang JH, Choi YS, Suh PG, Ryu SH. The roles of phospholipase D in EGFR signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:862-8. [DOI: 10.1016/j.bbalip.2009.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 04/23/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
|
39
|
Henkels KM, Short S, Peng HJ, Di Fulvio M, Gomez-Cambronero J. PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2009; 389:224-8. [PMID: 19715678 DOI: 10.1016/j.bbrc.2009.08.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 08/20/2009] [Indexed: 11/19/2022]
Abstract
Phospholipase D2 (PLD2) overexpression in mammalian cells results in cell transformation. We have hypothesized that this is due to an increase of de novo DNA synthesis. We show here that overexpression of PLD2-WT leads to an increased DNA synthesis, as measured by the expression levels of the proliferation markers PCNA, p27(KIP1) and phospho-histone-3. The enhancing effect was even higher with phosphorylation-deficient PLD2-Y179F and PLD2-Y511F mutants. The mechanism for this did not involve the enzymatic activity of the lipase, but, rather, the presence of the protein tyrosine phosphatase CD45, as silencing with siRNA for CD45 abrogated the effect. The two Y-->F mutants had in common a YxN consensus site that, in the phosphorylated counterparts, could be recognized by SH2-bearing proteins, such as Grb2. Even though Y179F and Y511F cannot bind Grb2, they could still find other protein partners, one of which, we have reasoned, could be CD45 itself. Affinity purified PLD2 is indeed activated by Grb2 and deactivated by CD45 in vitro. We concluded that phosphorylated PLD2, aided by Grb2, mediates lipase activity, whereas dephosphorylated PLD2 mediates an induction of cell proliferation, and the specific residues involved in this newly discovered regulation of PLD2 are Y(179) and Y(511).
Collapse
Affiliation(s)
- Karen M Henkels
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
40
|
Foster DA. Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:949-55. [PMID: 19264150 DOI: 10.1016/j.bbalip.2009.02.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 12/31/2022]
Abstract
During the past decade elevated phospholipase D (PLD) activity has been reported in virtually all cancers where it has been examined. PLD catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger phosphatidic acid (PA). While many targets of PA signaling have been identified, the most critical target of PA in cancer cells is likely to be mTOR - the mammalian target of rapamycin. mTOR has been widely implicated in signals that suppress apoptotic programs in cancer cells - frequently referred to as survival signals. mTOR exists as two multi-component complexes known as mTORC1 and mTORC2. Recent data has revealed that PA is required for the stability of both mTORC1 and mTORC2 complexes - and therefore also required for the kinase activity of both mTORC1 and mTORC2. PA interacts with mTOR in a manner that is competitive with rapamycin, and as a consequence, elevated PLD activity confers rapamycin resistance - a point that has been largely overlooked in clinical trials involving rapamycin-based strategies. The earliest genetic changes occurring in an emerging tumor are generally ones that suppress default apoptotic programs that likely represent the first line of defense of cancer. Targeting survival signals in human cancers represents a rational anti-cancer therapeutic strategy. Therefore, understanding the signals that regulate PA levels and how PA impacts upon mTOR could be important for developing strategies to de-repress the survival signals that suppress apoptosis. This review summarizes the role of PA in regulating the mTOR-mediated signals that promote cancer cell survival.
Collapse
Affiliation(s)
- David A Foster
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
| |
Collapse
|
41
|
Block ER, Klarlund JK. Wounding sheets of epithelial cells activates the epidermal growth factor receptor through distinct short- and long-range mechanisms. Mol Biol Cell 2008; 19:4909-17. [PMID: 18799627 DOI: 10.1091/mbc.e08-01-0097] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wounding epithelia induces activation of the epidermal growth factor receptor (EGFR), which is absolutely required for induction of motility. ATP is released from cells after wounding; it binds to purinergic receptors on the cell surface, and the EGFR is subsequently activated. Exogenous ATP activates phospholipase D, and we show here that ATP activates the EGFR through the phospholipase D2 isoform. The EGFR is activated in cells far (>0.3 cm) from wounds, which is mediated by diffusion of extracellular ATP because activation at a distance from wounds is abrogated by eliminating ATP in the medium with apyrase. In sharp contrast, activation of the EGFR near wounds is not sensitive to apyrase. Time-lapse microscopy revealed that cells exhibit increased motilities near edges of wounds; this increase in motility is not sensitive to apyrase, and apyrase does not detectably inhibit healing of wounds in epithelial sheets. This novel ATP/PLD2-independent pathway activates the EGFR by a transactivation process through ligand release, and it involves signaling by a member of the Src family of kinases. We conclude that wounding activates two distinct signaling pathways that induce EGFR activation and promote healing of wounds in epithelial cells. One pathway signals at a distance from wounds through release of ATP, and another pathway acts locally and is independent on ATP signaling.
Collapse
Affiliation(s)
- Ethan R Block
- Ophthalmology and Visual Sciences Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
42
|
Knoepp SM, Chahal MS, Xie Y, Zhang Z, Brauner DJ, Hallman MA, Robinson SA, Han S, Imai M, Tomlinson S, Meier KE. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol Pharmacol 2008; 74:574-84. [PMID: 18523140 DOI: 10.1124/mol.107.040105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phosphatidylcholine-using phospholipase D (PLD) isoform PLD2 is widely expressed in mammalian cells and is activated in response to a variety of promitogenic agonists. In this study, active and inactive hemagglutinin-tagged human PLD2 (HA-PLD2) constructs were stably expressed in an EL4 cell line lacking detectable endogenous PLD1 or PLD2. The overall goal of the study was to examine the roles of PLD2 in cellular signal transduction and cell phenotype. HA-PLD2 confers PLD activity that is activated by phorbol ester, ionomycin, and okadaic acid. Proliferation and Erk activation are unchanged in cells transfected with active PLD2; proliferation rate is decreased in cells expressing inactive PLD2. Basal tyrosine phosphorylation of focal adhesion kinase (FAK) is increased in cells expressing active PLD2, as is phosphorylation of Akt; inactive PLD2 has no effect. Expression of active PLD2 is associated with increased spreading and elongation of cells on tissue culture plastic, whereas inactive PLD2 inhibits cell spreading. Inactive PLD2 also inhibits cell adhesion, migration, and serum-induced invasion. Cells expressing active PLD2 form metastases in syngeneic mice, as do the parental cells; cells expressing inactive PLD2 form fewer metastases than parental cells. In summary, active PLD2 enhances FAK phosphorylation, Akt activation, and cell invasion in EL4 lymphoma cells, whereas inactive PLD2 exerts inhibitory effects on adhesion, migration, invasion, and tumor formation. Overall, expression of active PLD2 enhances processes favorable to lymphoma cell metastasis, whereas expression of inactive PLD2 inhibits metastasis.
Collapse
Affiliation(s)
- Stewart M Knoepp
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164-6534, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jang YH, Ahn BH, Namkoong S, Kim YM, Jin JK, Kim YS, Min DS. Differential regulation of apoptosis by caspase-mediated cleavage of phospholipase D isozymes. Cell Signal 2008; 20:2198-207. [PMID: 18694819 DOI: 10.1016/j.cellsig.2008.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/20/2008] [Accepted: 07/17/2008] [Indexed: 11/27/2022]
Abstract
Phospholipase D (PLD) has been implicated in survival and anti-apoptosis, but the molecular mechanism by which it responds to apoptotic stimuli is poorly unknown. Here, we demonstrate that cleavage of PLD isozymes as specific substrates of caspase differentially regulates apoptosis. PLD1 is cleaved at one internal site (DDVD(545)S) and PLD2 is cleaved at two or three sites (PTGD(13)ELD(16)S and DEVD(28)T) in the front of N-terminus. Cleavage of PLD was endogenously detected in post-mortem Alzheimer brain together with activated caspase-3, suggesting the physiological relevance. The cleavage of PLD1 but not PLD2 might act as an inactivating process since PLD1 but not PLD2 activity is significantly decreased during apoptosis, suggesting that differential cleavage of PLD isozymes could affect its enzymatic activity. Moreover, caspase-resistant mutant of PLD1 showed more potent anti-apoptotic capacity than that of wild type PLD1, whereas PLD2 maintained anti-apoptotic potency in spite of its cleavage during apoptosis. Moreover, PLD2 showed more potent anti-apoptotic effect than that of PLD1 in overexpression and knockdown experiments, suggesting that difference in anti-apoptotic potency between PLD1 and PLD2 might be due to its intrinsic protein property. Taken together, our results demonstrate that differential cleavage pattern of PLD isozymes by caspase might affect its enzymatic activity and anti-apoptotic function.
Collapse
Affiliation(s)
- Young Hoon Jang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Cleavage of phospholipase D1 by caspase promotes apoptosis via modulation of the p53-dependent cell death pathway. Cell Death Differ 2008; 15:1782-93. [PMID: 18636075 DOI: 10.1038/cdd.2008.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The enzymatic activity of phospholipase D (PLD) is known to be essential for cell survival and protection from apoptosis. However, the mechanisms regulating PLD activity during apoptosis remain unknown. Here we report that cleavage of PLD1 by caspases facilitates p53-mediated apoptosis. Cleavage of PLD1 into an N-terminal fragment (NF-PLD1) and a C-terminal fragment at the amino-acid sequence, DDVD(545), led to a reduction in PLD1 activity. However, a caspase-resistant mutant form of PLD1 retained significant levels of enzymatic activity and apoptotic function as compared to wild-type PLD1. Exogenous NF-PLD1 expression induced apoptosis through a dominant-negative effect on the activity of endogenous PLD1. During apoptosis, a small fraction of PLD1 is cleaved by caspases in a p53-independent manner and NF-PLD1 amplifies apoptotic signaling through inhibition of the remaining PLD1 activity. As PLD1 suppresses the ATM-Chk2-p53 pathway, elimination of PLD1 activity through NF-PLD1 or si-RNA against PLD1 increases apoptosis in a p53-dependent manner. Taken together, our results reveal that cleavage of PLD1 by caspases promotes apoptosis via modulation of the p53-dependent cell death pathway.
Collapse
|
45
|
Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC. BMC Cancer 2008; 8:144. [PMID: 18498667 PMCID: PMC2412888 DOI: 10.1186/1471-2407-8-144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 05/23/2008] [Indexed: 11/30/2022] Open
Abstract
Background RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation. Methods Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay. Results In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC. Conclusion These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.
Collapse
|
46
|
Actin cytoskeletal mediators of motility and invasion amplified and overexpressed in head and neck cancer. Clin Exp Metastasis 2008; 25:289-304. [DOI: 10.1007/s10585-008-9154-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/19/2008] [Indexed: 01/10/2023]
|
47
|
Kang DW, Park MH, Lee YJ, Kim HS, Kwon TK, Park WS, Min DS. Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFkappaB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J Biol Chem 2008; 283:4094-4104. [PMID: 18084005 DOI: 10.1074/jbc.m707416200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite its importance in cell proliferation and tumorigenesis, very little is known about the molecular mechanism underlying the regulation of phospholipase D (PLD) expression. PLD isozymes are significantly co-overexpressed with cancer marker genes in colorectal carcinoma. Phorbol 12-myristate 13-acetate (PMA) treatment, as a mitogenic signal in colon cancer cells, selectively increases PLD1 expression in transcription and post-transcription. Moreover, experiments using intraperitoneal injection of PMA into mice showed selective PLD1 induction in the intestine and lung tissues, which suggests its physiological relevance in vivo. Therefore, we have undertaken a detailed analysis of the effects of PMA on the promoter activity of PLD genes. Protein kinase C inhibitors, but not a protein kinase A inhibitor, were found to suppress the up-regulation of PLD1 but not PLD2. Dominant-negative mutants of Ras, Raf, and MEK suppressed the induction and activity of PLD1. Moreover, depletion of the supposedly involved proteins reduced the endogenous PLD1 protein level. An important role for NFkappaB as a downstream target of ERK in PMA-induced PLD1 induction was also demonstrated using the inhibitor, small interfering RNA, chromatin immunoprecipitation assay, and site-specific mutagenesis. Furthermore, inhibitors of these signaling proteins and depletion of PLD1 suppressed PMA-induced matrix metalloproteinase-9 secretion and PLD1 induction. In conclusion, we demonstrate for the first time that induction of PLD1 through a protein kinase C/Ras/ERK/NFkappaB-dependent pathway is involved in the secretion of matrix metalloproteinase-9 in colorectal cancer cells.
Collapse
Affiliation(s)
- Dong Woo Kang
- Department of Molecular Biology, College of Natural Science, and College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Tomashov-Matar R, Levi M, Shalgi R. The involvement of Src family kinases (SFKs) in the events leading to resumption of meiosis. Mol Cell Endocrinol 2008; 282:56-62. [PMID: 18166263 DOI: 10.1016/j.mce.2007.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ovulated mammalian eggs remain arrested at the second meiotic metaphase (MII) until fertilization. The fertilizing spermatozoon initiates a sequence of biochemical events, collectively referred to as 'egg activation', which overcome this arrest. The initial observable change within the activated egg is a transient rise in intracellular Ca2+ concentration ([Ca2+]i) followed by cortical granule exocytosis (CGE) and resumption of the second meiotic division (RMII). To date, the mechanism by which the fertilizing spermatozoon activates the signaling pathways upstream to the Ca2+ release and the manner by which the signals downstream to Ca2+ release evoke RMII are not well documented. Protein tyrosine kinases (PTKs) were suggested as possible inducers of some aspects of egg activation. Src family kinases (SFKs) constitute a large family of evolutionarily conserved PTKs that mediate crucial biological functions. At present, the theory that one or more SFKs are necessary and sufficient for Ca2+ regulation at fertilization is documented in eggs of marine invertebrates. The mechanism leading to Ca2+ release during fertilization is less established in mammalian eggs. A controversy still exists as to whether SFKs within the mammalian egg are sufficient and/or necessary for Ca2+ release, or whether they play a role during egg activation via other signaling pathways. This article summarizes the possible signaling pathways involved upstream to Ca2+ release but focuses mainly on the involvement of SFKs downstream to Ca2+ release toward RMII, in invertebrate and vertebrate eggs.
Collapse
Affiliation(s)
- R Tomashov-Matar
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | |
Collapse
|
49
|
Di Fulvio M, Frondorf K, Gomez-Cambronero J. Mutation of Y179 on phospholipase D2 (PLD2) upregulates DNA synthesis in a PI3K-and Akt-dependent manner. Cell Signal 2008; 20:176-85. [PMID: 18006275 PMCID: PMC2276604 DOI: 10.1016/j.cellsig.2007.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 09/13/2007] [Accepted: 10/03/2007] [Indexed: 11/23/2022]
Abstract
Phospholipase D2 (PLD2), one of the two mammalian members of the PLD family, has been implicated in cell proliferation, transformation, tumor progression and survival. However, as precise mechanistic details are still unknown, we investigated here if the PLD2 isoform would signal through the PI3K/AKT pathway. Transient expression of PLD2 in COS7 cells with either the WT or with a Y179F mutant, resulted in an increased basal phosphorylation of AKT in residues T308 and S473, in a PI3K-dependent manner. Transfection of PLD2-Y179F (but not the wild type) caused an increased (>2-fold) DNA synthesis even in the absence of extracellular stimuli. Other signaling mechanisms downstream such PLD/PI3K dependence (that might lead to DNA synthesis regulation) were further studied. PLD2-Y179F caused an increase in phosphorylation of p42/p44 ERK and in the expression of G0/G1 phase transition markers (p21 CIP, PCNA), and these effects, too, were dependent on PI3K. Interestingly, Akt, once activated induced the phosphorylation of PLD2 on residue T175, an effect that was inhibited by LY296004. Lastly, if PLD2-Y179F is further mutated in residue K758 (PLD2 Y179F-K758R), which renders inactive a catalytic site, DNA synthesis is then abrogated, indicating that the activity of the enzyme (i.e. synthesis of PA) is necessary for the observed effects. In conclusion, the unavailability of residue Y179 on PLD2 to become phosphorylated leads to an augmentation of DNA synthesis concomitantly with MEK and AKT phosphorylation, in a process that is dependent on PI3K and independent of any extracellular stimuli. This might be critical for the maintenance of the PLD2-regulated proliferative status.
Collapse
Affiliation(s)
- Mauricio Di Fulvio
- Cell Biology and Physiology, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | |
Collapse
|
50
|
Ishigami T, Uzawa K, Higo M, Nomura H, Saito K, Kato Y, Nakashima D, Shiiba M, Bukawa H, Yokoe H, Kawata T, Ito H, Tanzawa H. Genes and molecular pathways related to radioresistance of oral squamous cell carcinoma cells. Int J Cancer 2007; 120:2262-70. [PMID: 17290400 DOI: 10.1002/ijc.22561] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To identify genes associated with radioresistant oral squamous cell carcinoma (OSCC), we compared gene expression signatures between OSCC cell lines exhibiting radioresistance and cells with radiosensitivity after X-ray irradiation in a dose-dependent manner using Affymetrix GeneChip analysis with Human Genome-U133 plus 2.0 GeneChip. The microarray data identified 167 genes that were significantly overexpressed in radioresistant cells after X-ray irradiation. Among the genes identified, 40 were mapped to 3 highly significant genetic networks identified by the Ingenuity Pathway Analysis tool. Gene ontology analysis showed that cancer-related function had the highest significance. The 40 genes included 25 cancer-related genes that formed 1 network and were categorized by function into growth and proliferation, apoptosis, and adhesion. Furthermore, real-time quantitative reverse transcriptase-polymerase chain reaction showed that the mRNA expression levels of the 25 genes were higher in radioresistant cells than in radiosensitive cells in a dose-dependent manner and in a time-dependent manner. Our results suggest that the identified genes help to elucidate the molecular mechanisms of the radioresistance of OSCC and could be radiotherapeutic molecular markers for choosing the appropriate radiotherapy for this disease.
Collapse
Affiliation(s)
- Takashi Ishigami
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8607, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|