1
|
Mavroeidi D, Georganta A, Stefanou DT, Papanikolaou C, Syrigos KN, Souliotis VL. DNA Damage Response Network and Intracellular Redox Status in the Clinical Outcome of Patients with Lung Cancer. Cancers (Basel) 2024; 16:4218. [PMID: 39766117 PMCID: PMC11726754 DOI: 10.3390/cancers16244218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Background/Objectives: DNA damage response (DDR) is a network of molecular pathways associated with the pathogenesis and progression of several diseases, as well as the outcome of chemotherapy. Moreover, the intracellular redox status is essential for maintaining cell viability and controlling cellular signaling. Herein, we analyzed DDR signals and redox status in peripheral blood mononuclear cells (PBMCs) from patients with lung cancer with different response rates to platinum-based chemotherapy. Methods: Several DDR-associated signals and redox status, expressed as the GSH/GSSG ratio, were measured in two lung cancer cell lines (A549, H1299), two normal fibroblast cell lines (WS1, 1BR3hT), and PBMCs from 20 healthy controls and 32 patients with lung cancer at baseline (17 responders and 15 non-responders to subsequent platinum-based chemotherapy). Results: Higher levels of endogenous/baseline DNA damage, decreased GSH/GSSG ratios, and augmented apurinic/apyrimidinic sites, as well as lower nucleotide excision repair (NER) and increased interstrand cross-links (ICLs) repair efficiencies, were observed in lung cancer cell lines compared with normal ones (all p < 0.05). Moreover, PBMCs from patients with lung cancer showed reduced GSH/GSSG ratios, augmented apurinic/apyrimidinic sites, decreased NER and ICL repair capacities, and lower apoptosis rates, compared with healthy controls (all p < 0.001). Interestingly, PBMCs from patients who are responders are characterized by reduced GSH/GSSG ratios, augmented apurinic/apyrimidinic sites, decreased NER and ICL repair capacities, and higher apoptosis rates compared with patients who are non-responders (all p < 0.01). Conclusions: Together, DDR-associated parameters and redox status measured in PBMCs from patients with lung cancer at baseline are associated with the therapeutic benefit of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Anastasia Georganta
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Dimitra T. Stefanou
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
| | - Konstantinos N. Syrigos
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
| |
Collapse
|
2
|
Kouass Sahbani S. Opuntia ficus indica cladode extract inhibit DNA double-strand breaks and locally multiply damaged sites induced by gamma radiation. J Genet Eng Biotechnol 2024; 22:100425. [PMID: 39674631 PMCID: PMC11406244 DOI: 10.1016/j.jgeb.2024.100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 12/16/2024]
Abstract
It is beyond doubt that radiotherapy is extremely effective in treating a wide variety of cancers. The sensitivity of the surrounding normal tissues limits the amount of radiation administered to the tumor. There is an urgent need to develop a treatment that combines pharmacological treatment with ionizing radiation (IR) specifically designed to specifically target cancer cells while protecting the surrounding normal tissue, resulting in an increase in the efficacy of the cancer treatment. IR could cause many types of DNA lesions. Double-strand breaks (DSBs) andlocally multiple damaged sites (LMDS)arethe main radiotoxic damages.Recently, the identification of new antioxidants from natural sources has attracted the attention of scientists. In this context, the present study aims to determine if the Opuntia ficus indica cladode extract (CE) can be used as a radioprotector. MATERIALS AND METHODS The DNA treated by 137Cs γ-radiation (25-700 Gy) in the absence or presence of cactus cladode extract (CCE) was added to theE. colibase excision repair. The amounts of both DNA damages were calculated using the electrophoretic method. RESULTS The irradiation of DNA in the presence of CCE induced a dramatic decrease of the yields of purine and pyrimidine-DSB. A decrease of65 % and 84 % of the purine and pyrimidine-DSB sensitive sites have been calculated, respectively, when the sample added CCE3 during the radiotreatment. Moreover, a reduction of 80 % in the amount of Nth + Fpg-DSB SSs (non-DSB cluster damage) after γ-irradiation in the presence of CCE3 was observed. CONCLUSION Through the present it was found that the CCE can play an important role as a radio protector, maybe by scavenging the ROS formed during radio treatment or by other unknown pathways. The most toxic DNA lesions (DSBs, and LMDS) decreased dramatically. Studies aimed at obtaining more documentation about CCE components with potential radio-preventive activity are desirable because of their protective properties.
Collapse
Affiliation(s)
- Saloua Kouass Sahbani
- Faculty of Applied Medical Science Al Ula branch, Department of Nursing, Taibah University, Kingdom of Saudi Arabia; Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Carthage University, Tunisia.
| |
Collapse
|
3
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
4
|
Zhao J, Zhang Y, Li W, Yao M, Liu C, Zhang Z, Wang C, Wang X, Meng K. Research progress of the Fanconi anemia pathway and premature ovarian insufficiency†. Biol Reprod 2023; 109:570-585. [PMID: 37669135 DOI: 10.1093/biolre/ioad110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023] Open
Abstract
The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.
Collapse
Affiliation(s)
- Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Wenbo Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Mengmeng Yao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Chuqi Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zihan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Heemskerk T, van de Kamp G, Essers J, Kanaar R, Paul MW. Multi-scale cellular imaging of DNA double strand break repair. DNA Repair (Amst) 2023; 131:103570. [PMID: 37734176 DOI: 10.1016/j.dnarep.2023.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Live-cell and high-resolution fluorescence microscopy are powerful tools to study the organization and dynamics of DNA double-strand break repair foci and specific repair proteins in single cells. This requires specific induction of DNA double-strand breaks and fluorescent markers to follow the DNA lesions in living cells. In this review, where we focused on mammalian cell studies, we discuss different methods to induce DNA double-strand breaks, how to visualize and quantify repair foci in living cells., We describe different (live-cell) imaging modalities that can reveal details of the DNA double-strand break repair process across multiple time and spatial scales. In addition, recent developments are discussed in super-resolution imaging and single-molecule tracking, and how these technologies can be applied to elucidate details on structural compositions or dynamics of DNA double-strand break repair.
Collapse
Affiliation(s)
- Tim Heemskerk
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerarda van de Kamp
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
6
|
Berrada S, Martínez-Balsalobre E, Larcher L, Azzoni V, Vasquez N, Da Costa M, Abel S, Audoly G, Lee L, Montersino C, Castellano R, Combes S, Gelot C, Ceccaldi R, Guervilly JH, Soulier J, Lachaud C. A clickable melphalan for monitoring DNA interstrand crosslink accumulation and detecting ICL repair defects in Fanconi anemia patient cells. Nucleic Acids Res 2023; 51:7988-8004. [PMID: 37395445 PMCID: PMC10450163 DOI: 10.1093/nar/gkad559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
Fanconi anemia (FA) is a genetic disorder associated with developmental defects, bone marrow failure and cancer. The FA pathway is crucial for the repair of DNA interstrand crosslinks (ICLs). In this study, we have developed and characterized a new tool to investigate ICL repair: a clickable version of the crosslinking agent melphalan which we name click-melphalan. Our results demonstrate that click-melphalan is as effective as its unmodified counterpart in generating ICLs and associated toxicity. The lesions induced by click-melphalan can be detected in cells by post-labelling with a fluorescent reporter and quantified using flow cytometry. Since click-melphalan induces both ICLs and monoadducts, we generated click-mono-melphalan, which only induces monoadducts, in order to distinguish between the two types of DNA repair. By using both molecules, we show that FANCD2 knock-out cells are deficient in removing click-melphalan-induced lesions. We also found that these cells display a delay in repairing click-mono-melphalan-induced monoadducts. Our data further revealed that the presence of unrepaired ICLs inhibits monoadduct repair. Finally, our study demonstrates that these clickable molecules can differentiate intrinsic DNA repair deficiencies in primary FA patient cells from those in primary xeroderma pigmentosum patient cells. As such, these molecules may have potential for developing diagnostic tests.
Collapse
Affiliation(s)
- Sara Berrada
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Lise Larcher
- University Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, and CNRS UMR7212, Paris, France
- Laboratoire de biologie médicale de référence (LBMR) “Aplastic anemia”, Service d’Hématologie biologique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Violette Azzoni
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nadia Vasquez
- University Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, and CNRS UMR7212, Paris, France
- Laboratoire de biologie médicale de référence (LBMR) “Aplastic anemia”, Service d’Hématologie biologique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mélanie Da Costa
- University Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, and CNRS UMR7212, Paris, France
- Laboratoire de biologie médicale de référence (LBMR) “Aplastic anemia”, Service d’Hématologie biologique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Sébastien Abel
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Gilles Audoly
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Lara Lee
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Camille Montersino
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Rémy Castellano
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sébastien Combes
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Camille Gelot
- Inserm U830, PSL Research University, Institut Curie, Paris, France
| | - Raphaël Ceccaldi
- Inserm U830, PSL Research University, Institut Curie, Paris, France
| | | | - Jean Soulier
- University Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, and CNRS UMR7212, Paris, France
- Laboratoire de biologie médicale de référence (LBMR) “Aplastic anemia”, Service d’Hématologie biologique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Christophe Lachaud
- Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
7
|
Standards for Quantitative Measurement of DNA Damage in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24065427. [PMID: 36982502 PMCID: PMC10051712 DOI: 10.3390/ijms24065427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
As the potential applications of DNA diagnostics continue to expand, there is a need for improved methods and standards for DNA analysis. This report describes several methods that could be considered for the production of reference materials for the quantitative measurement of DNA damage in mammalian cells. With the focus on DNA strand breaks, potentially useful methods for assessing DNA damage in mammalian cells are reviewed. The advantages and limitations of each method, as well as additional concerns with respect to reference material development, are also discussed. In conclusion, we outline strategies for developing candidate DNA damage reference materials that could be adopted by research laboratories in a wide variety of applications.
Collapse
|
8
|
Kim JH, Youn Y, Hwang JH. NCAPH Stabilizes GEN1 in Chromatin to Resolve Ultra-Fine DNA Bridges and Maintain Chromosome Stability. Mol Cells 2022; 45:792-805. [PMID: 36380731 PMCID: PMC9676985 DOI: 10.14348/molcells.2022.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Repairing damaged DNA and removing all physical connections between sister chromosomes is important to ensure proper chromosomal segregation by contributing to chromosomal stability. Here, we show that the depletion of non-SMC condensin I complex subunit H (NCAPH) exacerbates chromosome segregation errors and cytokinesis failure owing to sister-chromatid intertwinement, which is distinct from the ultra-fine DNA bridges induced by DNA inter-strand crosslinks (DNA-ICLs). Importantly, we identified an interaction between NCAPH and GEN1 in the chromatin involving binding at the N-terminus of NCAPH. DNA-ICL activation, using ICL-inducing agents, increased the expression and interaction between NCAPH and GEN1 in the soluble nuclear and chromatin, indicating that the NCAPH-GEN1 interaction participates in repairing DNA damage. Moreover, NCAPH stabilizes GEN1 within chromatin at the G2/M-phase and is associated with DNA-ICL-induced damage repair. Therefore, NCAPH resolves DNA-ICL-induced ultra-fine DNA bridges by stabilizing GEN1 and ensures proper chromosome separation and chromosome structural stability.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
9
|
Jang SW, Kim JM. The RPA inhibitor HAMNO sensitizes Fanconi anemia pathway-deficient cells. Cell Cycle 2022; 21:1468-1478. [PMID: 35506981 PMCID: PMC9278452 DOI: 10.1080/15384101.2022.2074200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The Fanconi anemia (FA) DNA repair pathway is required for DNA inter-strand crosslink (ICL) repair. Besides its role in ICL repair, FA proteins play a central role in stabilizing stalled replication forks, thereby ensuring genome integrity. We previously demonstrated that depletion of replication protein A (RPA) induces the activation of FA pathway leading to FANCD2 monoubiquitination and FANCD2 foci formation. Thus, we speculated that FA-deficient cells would be more sensitive to RPA inhibition compared to FA-proficient cells. Following treatment with RPA inhibitor HAMNO, we observed significant induction in FANCD2 monoubiquitination and foci formation as observed in RPA depletion. In addition, HAMNO treatment caused increased levels of ϒ-H2AX and S-phase accumulation in FA-deficient cells. Importantly, FA-deficient cells showed more increased sensitivity to HAMNO than FA-proficient cells. Moreover, in combination with cisplatin, HAMNO further enhanced the cytotoxicity of cisplatin in FA-deficient cells, while being less toxic against FA-proficient cells. This result suggests that RPA inhibition might be a potential therapeutic candidate for the treatment of FA pathway-deficient tumors.
Collapse
Affiliation(s)
- Seok-Won Jang
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| | - Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea
| |
Collapse
|
10
|
Cordelli E, Bignami M, Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res (Camb) 2021; 10:68-78. [PMID: 33613974 PMCID: PMC7885189 DOI: 10.1093/toxres/tfaa093] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The comet assay is a versatile method for measuring DNA strand breaks in individual cells. It can also be applied to cells isolated from treated animals. In this review, we highlight advantages and limitations of this in vivo comet assay in a regulatory context. Modified versions of the standard protocol detect oxidized DNA bases and may be used to reveal sites of DNA base loss, DNA interstrand crosslinks, and the extent of DNA damage induced indirectly by reactive oxygen species elicited by chemical-induced oxidative stress. The assay is, however, at best semi-quantitative, and we discuss possible approaches to improving DNA damage quantitation and highlight the necessity of optimizing protocol standardization to enhance the comparability of results between laboratories. As a genotoxicity test in vivo, the in vivo comet assay has the advantage over the better established micronucleus erythrocyte test that it can be applied to any organ, including those that are specific targets of chemical carcinogens or those that are the first sites of contact of ingested or inhaled mutagens. We illustrate this by examples of its use in risk assessment for the food contaminants ochratoxin and furan. We suggest that improved quantitation is required to reveal the full potential of the comet assay and enhance its role in the battery of in vivo approaches to characterize the mechanisms of toxicity and carcinogenicity of chemicals and to aid the determination of safe human exposure limits.
Collapse
Affiliation(s)
- Eugenia Cordelli
- Territorial and Production Systems Sustainability Department, Health Protection Technology Division, ENEA, CR Casaccia, Via Anguillarese 301, Rome 00123, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy
| | - Francesca Pacchierotti
- Territorial and Production Systems Sustainability Department, Health Protection Technology Division, ENEA, CR Casaccia, Via Anguillarese 301, Rome 00123, Italy
| |
Collapse
|
11
|
Nakamura J. Potential Doxorubicin-Mediated Dual-Targeting Chemotherapy in FANC/BRCA-Deficient Tumors via Modulation of Cellular Formaldehyde Concentration. Chem Res Toxicol 2020; 33:2659-2667. [PMID: 32876438 DOI: 10.1021/acs.chemrestox.0c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Doxorubicin (DOX) is a widely used classical broad-spectrum anticancer drug. The major mechanism of DOX-mediated anticancer activity at clinically relevant concentrations is believed to be via DNA double-strand breaks due to topoisomerase IIα. However, other mechanisms by which DOX causes cytotoxicity have been proposed, including formaldehyde-dependent virtual interstrand cross-linking (ICL) formation. In this study, a method was established whereby cytotoxicity caused by virtual ICL derived from DOX is turned on and off using a cell culture system. Using this strategy, DOX-mediated cytotoxicity in Fanconi anemia group gene (FANC)/breast cancer susceptibility gene (BRCA)-deficient cells increased up to 70-fold compared to that in cells proficient in DNA repair pathways by increasing intracellular formaldehyde (FA) concentration. This approach also demonstrated that cytotoxicity introduced by DOX-mediated FA-dependent virtual ICL is completely independent of the toxicity induced by topoisomerase II inhibition at the cellular level. The potential of dual-targeting by DOX treatment was verified using an acid-specific FA donor. Overall, anticancer therapy targeting tumors deficient in the FANC/BRCA pathway may be possible by minimizing DOX-induced toxicity in normal cells.
Collapse
Affiliation(s)
- Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
12
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
13
|
Misra S, Zhang X, Wani NA, Sizemore S, Ray A. Both BRCA1-wild type and -mutant triple-negative breast cancers show sensitivity to the NAE inhibitor MLN4924 which is enhanced upon MLN4924 and cisplatin combination treatment. Oncotarget 2020; 11:784-800. [PMID: 32166000 PMCID: PMC7055543 DOI: 10.18632/oncotarget.27485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) shows limited therapeutic efficacy. PARP inhibitor has been approved to treat advanced BRCA-mutant breast cancer but shows high resistance. Therefore, the development of new therapeutics that sensitize TNBC irrespective of BRCA status is urgently needed. The neddylation pathway plays a critical role in many physiological processes by regulating the degradation of proteins. MLN4924, a selective inhibitor of the key neddylation enzyme NEDD8 Activation Enzyme (NAE1), shows higher sensitivity to both BRCA1-wild type and -mutant TNBCs compared to other breast cancer subtypes. MLN4924 induced re-replication with >4N DNA content leading to robust DNA damage. Accumulation of unrepaired DNA damage resulted in S and G2/M arrest causing apoptosis and senescence, due to the stabilization of the replication initiation protein CDT1 and the accumulation of cell cycle proteins upon MLN4924 treatment. Moreover, adding MLN4924 to the standard TNBC chemotherapeutic agent cisplatin increased the DNA damage level, further enhancing the sensitivity. In vivo, MLN4924 reduced tumor growth in a NOD-SCID mouse xenograft model by inducing DNA damage which was further augmented with the MLN4924 and cisplatin cotreatment. NAE1 is overexpressed in TNBC cell lines and in patients compared to other breast cancer subtypes suggesting that NAE1 status is prognostic of MLN4924 treatment response and outcome. Taken together, we demonstrated the mechanism of TNBC sensitization by the MLN4924 and MLN4924/cisplatin treatments irrespective of BRCA1 status, provided a strong justification for using MLN4924 alone or in combination with cisplatin, and identified a genetic background in which this combination will be particularly effective.
Collapse
Affiliation(s)
- Shrilekha Misra
- Department of Pathology, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Nissar Ahmad Wani
- Department of Pathology, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven Sizemore
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Alo Ray
- Department of Pathology, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Ridpath JR, Nakamura J. Acid-specific formaldehyde donor is a potential, dual targeting cancer chemotherapeutic/chemo preventive drug for FANC/BRCA-mutant cancer. Genes Environ 2019; 41:23. [PMID: 31890056 PMCID: PMC6921423 DOI: 10.1186/s41021-019-0136-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022] Open
Abstract
Background Development of chemotherapeutic/preventive drugs that selectively kill cancer - the Holy Grail of cancer research - is a major challenge. A particular difficulty arises when chemotherapeutics and radiation are found to be rather ineffective against quiescent cancer cells in solid tumors. In the limited oxygen condition within a solid tumor, glycolysis induces an acidic environment. In such an environment the compound hexamethylenetetramine (HMTA) will act as a formaldehyde donor. HMTA has been characterized a non-carcinogen in experimental animals and causes no major adverse side-effects in humans. We previously reported that both a chicken B-lymphocyte cell line transformed with an avian leucosis virus and human colon cancer cells deficient in the FANC/BRCA pathway are hypersensitive to formaldehyde. Thus, we assessed the potential usage of HMTA as a chemotherapeutic agent. Results The differential cytotoxicity of HMTA was tested using chicken DT40 cells deficient in DNA repair under neutral and acidic conditions. While HMTA is not efficiently hydrolyzed under neutral conditions, all HR-deficient DT40 cells tested were hypersensitive to HMTA at pH 7.3. In contrast, HMTA clearly increased cell toxicity in FANCD2-, BRCA1- and BRCA2- deficient cells under acidic conditions. Conclusion Here we show that in vitro experiments showed that at low pH HMTA causes drastic cytotoxicity specifically in cells deficient in the FANC/BRCA pathway. These results strongly suggest that HMTA may be an attractive, dual-targeting chemotherapeutic/preventive drug for the selective delivery of formaldehyde to solid tumors and causes cell death in FANC/BRCA-deficient cells without major adverse effects.
Collapse
Affiliation(s)
- John R Ridpath
- 1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Jun Nakamura
- 1Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC USA.,2Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
15
|
Zhang H, Chen Z, Ye Y, Ye Z, Cao D, Xiong Y, Srivastava M, Feng X, Tang M, Wang C, Tainer JA, Chen J. SLX4IP acts with SLX4 and XPF-ERCC1 to promote interstrand crosslink repair. Nucleic Acids Res 2019; 47:10181-10201. [PMID: 31495888 PMCID: PMC6821277 DOI: 10.1093/nar/gkz769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Interstrand crosslinks (ICLs) are highly toxic DNA lesions that are repaired via a complex process requiring the coordination of several DNA repair pathways. Defects in ICL repair result in Fanconi anemia, which is characterized by bone marrow failure, developmental abnormalities, and a high incidence of malignancies. SLX4, also known as FANCP, acts as a scaffold protein and coordinates multiple endonucleases that unhook ICLs, resolve homologous recombination intermediates, and perhaps remove unhooked ICLs. In this study, we explored the role of SLX4IP, a constitutive factor in the SLX4 complex, in ICL repair. We found that SLX4IP is a novel regulatory factor; its depletion sensitized cells to treatment with ICL-inducing agents and led to accumulation of cells in the G2/M phase. We further discovered that SLX4IP binds to SLX4 and XPF-ERCC1 simultaneously and that disruption of one interaction also disrupts the other. The binding of SLX4IP to both SLX4 and XPF-ERCC1 not only is vital for maintaining the stability of SLX4IP protein, but also promotes the interaction between SLX4 and XPF-ERCC1, especially after DNA damage. Collectively, these results demonstrate a new regulatory role for SLX4IP in maintaining an efficient SLX4-XPF-ERCC1 complex in ICL repair.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zu Ye
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Cao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Rodríguez A, Naveja JJ, Torres L, García de Teresa B, Juárez-Figueroa U, Ayala-Zambrano C, Azpeitia E, Mendoza L, Frías S. WIP1 Contributes to the Adaptation of Fanconi Anemia Cells to DNA Damage as Determined by the Regulatory Network of the Fanconi Anemia and Checkpoint Recovery Pathways. Front Genet 2019; 10:411. [PMID: 31130988 PMCID: PMC6509935 DOI: 10.3389/fgene.2019.00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/15/2019] [Indexed: 02/01/2023] Open
Abstract
DNA damage adaptation (DDA) allows the division of cells with unrepaired DNA damage. DNA repair deficient cells might take advantage of DDA to survive. The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs), and deficiencies in this pathway cause a fraction of breast and ovarian cancers as well as FA, a chromosome instability syndrome characterized by bone marrow failure and cancer predisposition. FA cells are hypersensitive to ICLs; however, DDA might promote their survival. We present the FA-CHKREC Boolean Network Model, which explores how FA cells might use DDA. The model integrates the FA pathway with the G2 checkpoint and the checkpoint recovery (CHKREC) processes. The G2 checkpoint mediates cell-cycle arrest (CCA) and the CHKREC activates cell-cycle progression (CCP) after resolution of DNA damage. Analysis of the FA-CHKREC network indicates that CHKREC drives DDA in FA cells, ignoring the presence of unrepaired DNA damage and allowing their division. Experimental inhibition of WIP1, a CHKREC component, in FA lymphoblast and cancer cell lines prevented division of FA cells, in agreement with the prediction of the model.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - J Jesús Naveja
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leda Torres
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Benilde García de Teresa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ulises Juárez-Figueroa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Eugenio Azpeitia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Feng L, Jin F. Expression and prognostic significance of Fanconi anemia group D2 protein and breast cancer type 1 susceptibility protein in familial and sporadic breast cancer. Oncol Lett 2019; 17:3687-3700. [PMID: 30881493 PMCID: PMC6403512 DOI: 10.3892/ol.2019.10046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Fanconi anemia group D2 protein (FANCD2) and breast cancer type 1 susceptibility protein (BRCA1), within the FA/BRCA pathway, are involved in the regulation of DNA damage repair, which is associated with breast cancer (BC) progression. The present study aimed to investigate BRCA1 and FANCD2 expression in breast cancer, and to highlight the association with patient clinical characteristics and prognoses. The BRCA1 and FANCD2 proteins were detected by immunohistochemistry in 335 tissue samples obtained from patients with BC, including 141 patients with familial BC (FBC), 147 patients with sporadic breast cancer (SBC) and 47 patients with benign breast tumors. Western blotting was used to detect the FANCD2 ubiquitination level in 56 frozen specimens that were randomly selected from the SBC group. Protein expression of BRCA1 in the FBC group was positively associated with tumor size, lymphatic invasion, Tumor-Node-Metastasis (TNM) stage, estrogen receptor (ER) status and FANCD2 expression. Protein expression of FANCD2 in the SBC group was positively associated with tumor size, TNM stage, ER status and Ki-67 index. Survival analyses revealed that BRCA1 expression was associated with the decreased disease-free survival (DFS) rate of patients with FBC (versus no BRCA1 expression) and that FANCD2 was associated with decreased DFS of patients with SBC (versus no FANCD expression). Univariable and multivariable analyses demonstrated that BRCA1 expression may be an independent prognostic factor in the FBC group. In the SBC group, FANCD2 high expression and low ubiquitination levels were considered as independent prognostic factors. In conclusion, the present study suggested that BRCA1 and FANCD2 expression, and FANCD2 ubiquitination levels, may be considered of novel potential prognostic value in patients with BC.
Collapse
Affiliation(s)
- Liang Feng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
18
|
Bellani MA, Huang J, Paramasivam M, Pokharel D, Gichimu J, Zhang J, Seidman MM. Imaging cellular responses to antigen tagged DNA damage. DNA Repair (Amst) 2018; 71:183-189. [PMID: 30166246 PMCID: PMC6340790 DOI: 10.1016/j.dnarep.2018.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Repair pathways of covalent DNA damage are understood in considerable detail due to decades of brilliant biochemical studies by many investigators. An important feature of these experiments is the defined adduct location on oligonucleotide or plasmid substrates that are incubated with purified proteins or cell free extracts. With some exceptions, this certainty is lost when the inquiry shifts to the response of living mammalian cells to the same adducts in genomic DNA. This reflects the limitation of assays, such as those based on immunofluorescence, that are widely used to follow responding proteins in cells exposed to a DNA reactive compound. The lack of effective reagents for adduct detection means that the proximity between responding proteins and an adduct must be assumed. Since these assumptions can be incorrect, models based on in vitro systems may fail to account for observations made in vivo. Here we discuss the use of a detection tag to address the problem of lesion location, as illustrated by our recent work on replication dependent and independent responses to interstrand crosslinks.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Jing Huang
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| | - Manikandan Paramasivam
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Durga Pokharel
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Julia Gichimu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Jing Zhang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| |
Collapse
|
19
|
Cole JM, Acott JD, Courcelle CT, Courcelle J. Limited Capacity or Involvement of Excision Repair, Double-Strand Breaks, or Translesion Synthesis for Psoralen Cross-Link Repair in Escherichia coli. Genetics 2018; 210:99-112. [PMID: 30045856 PMCID: PMC6116958 DOI: 10.1534/genetics.118.301239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
DNA interstrand cross-links are complex lesions that covalently bind complementary strands of DNA and whose mechanism of repair remains poorly understood. In Escherichia coli, several gene products have been proposed to be involved in cross-link repair based on the hypersensitivity of mutants to cross-linking agents. However, cross-linking agents induce several forms of DNA damage, making it challenging to attribute mutant hypersensitivity specifically to interstrand cross-links. To address this, we compared the survival of UVA-irradiated repair mutants in the presence of 8-methoxypsoralen-which forms interstrand cross-links and monoadducts-to that of angelicin-a congener forming only monoadducts. We show that incision by nucleotide excision repair is not required for resistance to interstrand cross-links. In addition, neither RecN nor DNA polymerases II, IV, or V is required for interstrand cross-link survival, arguing against models that involve critical roles for double-strand break repair or translesion synthesis in the repair process. Finally, estimates based on Southern analysis of DNA fragments in alkali agarose gels indicate that lethality occurs in wild-type cells at doses producing as few as one to two interstrand cross-links per genome. These observations suggest that E. coli may lack an efficient repair mechanism for this form of damage.
Collapse
Affiliation(s)
- Jessica M Cole
- Department of Biology, Portland State University, Oregon 97201
| | | | | | | |
Collapse
|
20
|
Abstract
Colibactins are hybrid polyketide-nonribosomal peptides produced by Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae harboring the pks genomic island. These genotoxic metabolites are produced by pks-encoded peptide-polyketide synthases as inactive prodrugs called precolibactins, which are then converted to colibactins by deacylation for DNA-damaging effects. Colibactins are bona fide virulence factors and are suspected of promoting colorectal carcinogenesis when produced by intestinal E. coli. Natural active colibactins have not been isolated, and how they induce DNA damage in the eukaryotic host cell is poorly characterized. Here, we show that DNA strands are cross-linked covalently when exposed to enterobacteria producing colibactins. DNA cross-linking is abrogated in a clbP mutant unable to deacetylate precolibactins or by adding the colibactin self-resistance protein ClbS, confirming the involvement of the mature forms of colibactins. A similar DNA-damaging mechanism is observed in cellulo, where interstrand cross-links are detected in the genomic DNA of cultured human cells exposed to colibactin-producing bacteria. The intoxicated cells exhibit replication stress, activation of ataxia-telangiectasia and Rad3-related kinase (ATR), and recruitment of the DNA cross-link repair Fanconi anemia protein D2 (FANCD2) protein. In contrast, inhibition of ATR or knockdown of FANCD2 reduces the survival of cells exposed to colibactin-producing bacteria. These findings demonstrate that DNA interstrand cross-linking is the critical mechanism of colibactin-induced DNA damage in infected cells. Colorectal cancer is the third-most-common cause of cancer death. In addition to known risk factors such as high-fat diets and alcohol consumption, genotoxic intestinal Escherichia coli bacteria producing colibactin are proposed to play a role in colon cancer development. Here, by using transient infections with genotoxic E. coli, we showed that colibactins directly generate DNA cross-links in cellulo. Such lesions are converted into double-strand breaks during the repair response. DNA cross-links, akin to those induced by metabolites of alcohol and high-fat diets and by widely used anticancer drugs, are both severely mutagenic and profoundly cytotoxic lesions. This finding of a direct induction of DNA cross-links by a bacterium should facilitate delineating the role of E. coli in colon cancer and engineering new anticancer agents.
Collapse
|
21
|
Ginsenosides synergize with mitomycin C in combating human non-small cell lung cancer by repressing Rad51-mediated DNA repair. Acta Pharmacol Sin 2018; 39:449-458. [PMID: 28836581 DOI: 10.1038/aps.2017.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
The use of ginseng extract as an adjuvant for cancer treatment has been reported in both animal models and clinical applications, but its molecular mechanisms have not been fully elucidated. Mitomycin C (MMC), an anticancer antibiotic used as a first- or second-line regimen in the treatment for non-small cell lung carcinoma (NSCLC), causes serious adverse reactions when used alone. Here, by using both in vitro and in vivo experiments, we provide evidence for an optimal therapy for NSCLC with total ginsenosides extract (TGS), which significantly enhanced the MMC-induced cytotoxicity against NSCLC A549 and PC-9 cells in vitro when used in combination with relatively low concentrations of MMC. A NSCLC xenograft mouse model was used to confirm the in vivo synergistic effects of the combination of TGS with MMC. Further investigation revealed that TGS could significantly reverse MMC-induced S-phase cell cycle arrest and inhibit Rad51-mediated DNA damage repair, which was evidenced by the inhibitory effects of TGS on the levels of phospho-MEK1/2, phospho-ERK1/2 and Rad51 protein and the translocation of Rad51 from the cytoplasm to the nucleus in response to MMC. In summary, our results demonstrate that TGS could effectively enhance the cytotoxicity of MMC against NSCLC cells in vitro and in vivo, thereby revealing a novel adjuvant anticancer mechanism of TGS. Combined treatment with TGS and MMC can significantly lower the required concentration of MMC and can further reduce the risk of side effects, suggesting a better treatment option for NSCLC patients.
Collapse
|
22
|
Lehmann J, Schubert S, Seebode C, Apel A, Ohlenbusch A, Emmert S. Splice variants of the endonucleases XPF and XPG contain residual DNA repair capabilities and could be a valuable tool for personalized medicine. Oncotarget 2018; 9:1012-1027. [PMID: 29416673 PMCID: PMC5787415 DOI: 10.18632/oncotarget.23105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
The two endonucleases XPF and XPG are essentially involved in nucleotide excision repair (NER) and interstrand crosslink (ICL) repair. Defects in these two proteins result in severe diseases like xeroderma pigmentosum (XP). We applied our newly CRISPR/Cas9 generated human XPF knockout cell line with complete loss of XPF and primary fibroblasts from an XP-G patient (XP20BE) to analyze until now uncharacterized spontaneous mRNA splice variants of these two endonucleases. Functional analyses of these variants were performed using luciferase-based reporter gene assays. Two XPF and XPG splice variants with residual repair capabilities in NER, as well as ICL repair could be identified. Almost all variants are severely C-terminally truncated and lack important protein-protein interaction domains. Interestingly, XPF-202, differing to XPF-003 in the first 12 amino acids only, had no repair capability at all, suggesting an important role of this region during DNA repair, potentially concerning protein-protein interaction. We also identified splice variants of XPF and XPG exerting inhibitory effects on NER. Moreover, we showed that the XPF and XPG splice variants presented with different inter-individual expression patterns in healthy donors, as well as in various tissues. With regard to their residual repair capability and dominant-negative effects, functionally relevant spontaneous XPF and XPG splice variants present promising prognostic marker candidates for individual cancer risk, disease outcome, or therapeutic success. This merits further investigations, large association studies, and translational research within clinical trials in the future.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Schubert
- Information Network of Departments of Dermatology (IVDK), University Medical Center Goettingen, Goettingen, Germany
| | - Christina Seebode
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Antje Apel
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas Ohlenbusch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
23
|
Chesner LN, Degner A, Sangaraju D, Yomtoubian S, Wickramaratne S, Malayappan B, Tretyakova N, Campbell C. Cellular Repair of DNA-DNA Cross-Links Induced by 1,2,3,4-Diepoxybutane. Int J Mol Sci 2017; 18:ijms18051086. [PMID: 28524082 PMCID: PMC5454995 DOI: 10.3390/ijms18051086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 11/25/2022] Open
Abstract
Xenobiotic-induced interstrand DNA–DNA cross-links (ICL) interfere with transcription and replication and can be converted to toxic DNA double strand breaks. In this work, we investigated cellular responses to 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) cross-links induced by 1,2,3,4-diepoxybutane (DEB). High pressure liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI+-MS/MS) assays were used to quantify the formation and repair of bis-N7G-BD cross-links in wild-type Chinese hamster lung fibroblasts (V79) and the corresponding isogenic clones V-H1 and V-H4, deficient in the XPD and FANCA genes, respectively. Both V-H1 and V-H4 cells exhibited enhanced sensitivity to DEB-induced cell death and elevated bis-N7G-BD cross-links. However, relatively modest increases of bis-N7G-BD adduct levels in V-H4 clones did not correlate with their hypersensitivity to DEB. Further, bis-N7G-BD levels were not elevated in DEB-treated human clones with defects in the XPA or FANCD2 genes. Comet assays and γ-H2AX focus analyses conducted with hamster cells revealed that ICL removal was associated with chromosomal double strand break formation, and that these breaks persisted in V-H4 cells as compared to control cells. Our findings suggest that ICL repair in cells with defects in the Fanconi anemia repair pathway is associated with aberrant re-joining of repair-induced double strand breaks, potentially resulting in lethal chromosome rearrangements.
Collapse
Affiliation(s)
- Lisa N Chesner
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Amanda Degner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Dewakar Sangaraju
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Shira Yomtoubian
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Susith Wickramaratne
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Bhaskar Malayappan
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Natalia Tretyakova
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Nilles N, Fahrenkrog B. Taking a Bad Turn: Compromised DNA Damage Response in Leukemia. Cells 2017; 6:cells6020011. [PMID: 28471392 PMCID: PMC5492015 DOI: 10.3390/cells6020011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 02/01/2023] Open
Abstract
Genomic integrity is of outmost importance for the survival at the cellular and the organismal level and key to human health. To ensure the integrity of their DNA, cells have evolved maintenance programs collectively known as the DNA damage response. Particularly challenging for genome integrity are DNA double-strand breaks (DSB) and defects in their repair are often associated with human disease, including leukemia. Defective DSB repair may not only be disease-causing, but further contribute to poor treatment outcome and poor prognosis in leukemia. Here, we review current insight into altered DSB repair mechanisms identified in leukemia. While DSB repair is somewhat compromised in all leukemic subtypes, certain key players of DSB repair are particularly targeted: DNA-dependent protein kinase (DNA-PK) and Ku70/80 in the non-homologous end-joining pathway, as well as Rad51 and breast cancer 1/2 (BRCA1/2), key players in homologous recombination. Defects in leukemia-related DSB repair may not only arise from dysfunctional repair components, but also indirectly from mutations in key regulators of gene expression and/or chromatin structure, such as p53, the Kirsten ras oncogene (K-RAS), and isocitrate dehydrogenase 1 and 2 (IDH1/2). A detailed understanding of the basis for defective DNA damage response (DDR) mechanisms for each leukemia subtype may allow to further develop new treatment methods to improve treatment outcome and prognosis for patients.
Collapse
Affiliation(s)
- Nadine Nilles
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| | - Birthe Fahrenkrog
- Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, 6041 Charleroi, Belgium.
| |
Collapse
|
25
|
Gasch C, Ffrench B, O'Leary JJ, Gallagher MF. Catching moving targets: cancer stem cell hierarchies, therapy-resistance & considerations for clinical intervention. Mol Cancer 2017; 16:43. [PMID: 28228161 PMCID: PMC5322629 DOI: 10.1186/s12943-017-0601-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely believed that targeting the tumour-initiating cancer stem cell (CSC) component of malignancy has great therapeutic potential, particularly in therapy-resistant disease. However, despite concerted efforts, CSC-targeting strategies have not been efficiently translated to the clinic. This is partly due to our incomplete understanding of the mechanisms underlying CSC therapy-resistance. In particular, the relationship between therapy-resistance and the organisation of CSCs as Stem-Progenitor-Differentiated cell hierarchies has not been widely studied. In this review we argue that modern clinical strategies should appreciate that the CSC hierarchy is a dynamic target that contains sensitive and resistant components and expresses a collection of therapy-resisting mechanisms. We propose that the CSC hierarchy at primary presentation changes in response to clinical intervention, resulting in a recurrent malignancy that should be targeted differently. As such, addressing the hierarchical organisation of CSCs into our bench-side theory should expedite translation of CSC-targeting to bed-side practice. In conclusion, we discuss strategies through which we can catch these moving clinical targets to specifically compromise therapy-resistant disease.
Collapse
Affiliation(s)
- Claudia Gasch
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Brendan Ffrench
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland.,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland
| | - Michael F Gallagher
- Department of Histopathology, University of Dublin, Trinity College, Central Pathology Laboratory, St James's Hospital, Dublin 8, Dublin, Ireland. .,Coombe Women and Infant's Hospital, Dublin 8, Dublin, Ireland.
| |
Collapse
|
26
|
Kawashima Y, Yamaguchi N, Teshima R, Narahara H, Yamaoka Y, Anai H, Nishida Y, Hanada K. Detection of DNA double-strand breaks by pulsed-field gel electrophoresis. Genes Cells 2016; 22:84-93. [PMID: 27976495 DOI: 10.1111/gtc.12457] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/07/2016] [Indexed: 02/03/2023]
Abstract
A DNA double-strand break (DSB) is one of the most cytotoxic DNA lesions because unrepaired DSBs cause chromosomal aberrations and cell death. Although many physiological DSBs occur at DNA replication sites, the molecular mechanisms underlying this remain poorly understood. There was therefore a need to develop a highly specific method to detect DSB fragments containing DNA replication sites. Here we investigated whether pulsed-field gel electrophoresis (PFGE) combined with visualization of DNA replication sites by immunoblotting using halogenized deoxyuridines, such as BrdU and IdU, was sufficient for this detection. Our methodology enabled us to reproduce previously reported data. In addition, this methodology was also applied to the detection of bacterial infection-induced DSBs on human chromosomal DNA. Based on our findings, we propose that this strategy combining PFGE with immunoblot analysis will be applicable to studies analyzing the mechanistic details of DNA repair, the DNA damage response and the activity of DNA-damaging agents.
Collapse
Affiliation(s)
- Yuri Kawashima
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nahomi Yamaguchi
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Rie Teshima
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Hirofumi Anai
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshihiro Nishida
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Katsuhiro Hanada
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan.,Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
27
|
Vuono EA, Mukherjee A, Vierra DA, Adroved MM, Hodson C, Deans AJ, Howlett NG. The PTEN phosphatase functions cooperatively with the Fanconi anemia proteins in DNA crosslink repair. Sci Rep 2016; 6:36439. [PMID: 27819275 PMCID: PMC5098254 DOI: 10.1038/srep36439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/17/2016] [Indexed: 11/13/2022] Open
Abstract
Fanconi anemia (FA) is a genetic disease characterized by bone marrow failure and increased cancer risk. The FA proteins function primarily in DNA interstrand crosslink (ICL) repair. Here, we have examined the role of the PTEN phosphatase in this process. We have established that PTEN-deficient cells, like FA cells, exhibit increased cytotoxicity, chromosome structural aberrations, and error-prone mutagenic DNA repair following exposure to ICL-inducing agents. The increased ICL sensitivity of PTEN-deficient cells is caused, in part, by elevated PLK1 kinase-mediated phosphorylation of FANCM, constitutive FANCM polyubiquitination and degradation, and the consequent inefficient assembly of the FA core complex, FANCD2, and FANCI into DNA repair foci. We also establish that PTEN function in ICL repair is dependent on its protein phosphatase activity and ability to be SUMOylated, yet is independent of its lipid phosphatase activity. Finally, via epistasis analysis, we demonstrate that PTEN and FANCD2 function cooperatively in ICL repair.
Collapse
Affiliation(s)
- Elizabeth A. Vuono
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Ananda Mukherjee
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, Michigan, USA
| | - David A. Vierra
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Morganne M. Adroved
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Charlotte Hodson
- Genome Stability Unit, St. Vincent’s Institute, Fitzroy, VIC 3065, Australia
| | - Andrew J. Deans
- Genome Stability Unit, St. Vincent’s Institute, Fitzroy, VIC 3065, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Niall G. Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
28
|
Cho Endonuclease Functions during DNA Interstrand Cross-Link Repair in Escherichia coli. J Bacteriol 2016; 198:3099-3108. [PMID: 27573016 DOI: 10.1128/jb.00509-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 01/21/2023] Open
Abstract
DNA interstrand cross-links are complex lesions that covalently link both strands of the duplex DNA. Lesion removal is proposed to be initiated via the UvrABC nucleotide excision repair complex; however, less is known about the subsequent steps of this complex repair pathway. In this study, we characterized the contribution of nucleotide excision repair mutants to survival in the presence of psoralen-induced damage. Unexpectedly, we observed that the nucleotide excision repair mutants exhibit differential sensitivity to psoralen-induced damage, with uvrC mutants being less sensitive than either uvrA or uvrB We show that Cho, an alternative endonuclease, acts with UvrAB and is responsible for the reduced hypersensitivity of uvrC mutants. We find that Cho's contribution to survival correlates with the presence of DNA interstrand cross-links, rather than monoadducts, and operates at a step after, or independently from, the initial incision during the global repair of psoralen DNA adducts from the genome. IMPORTANCE DNA interstrand cross-links are complex lesions that covalently bind to both strands of the duplex DNA and whose mechanism of repair remains poorly understood. In this study, we show that Cho, an alternative endonuclease, acts with UvrAB and participates in the repair of DNA interstrand cross-links formed in the presence of photoactivated psoralens. Cho's contribution to survival correlates with the presence of DNA interstrand cross-links and operates at a step after, or independently from, the initial incision during the repair process.
Collapse
|
29
|
Replication-Dependent Unhooking of DNA Interstrand Cross-Links by the NEIL3 Glycosylase. Cell 2016; 167:498-511.e14. [PMID: 27693351 DOI: 10.1016/j.cell.2016.09.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.
Collapse
|
30
|
The functional status of DNA repair pathways determines the sensitization effect to cisplatin in non-small cell lung cancer cells. Cell Oncol (Dordr) 2016; 39:511-522. [PMID: 27473273 DOI: 10.1007/s13402-016-0291-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Cisplatin can cause a variety of DNA crosslink lesions including intra-strand and inter-strand crosslinks (ICLs), which are associated with the sensitivity of cancer cells to cisplatin. Here, we aimed to assess the contribution of the Fanconi anemia (FA), homologous recombination (HR) and nucleotide excision repair (NER) pathways to cisplatin resistance in non-small cell lung cancer (NSCLC)-derived cells. METHODS The expression of FA, HR and NER pathway-associated genes was assessed by RT-qPCR and Western blotting. siRNAs were used to knock down the expression of these genes. CCK-8 and flow cytometry assays were used to assess the viability and apoptotic rate of NSCLC-derived cells, respectively. Immunofluorescence and alkaline comet assays were used to assess the repair of ICLs. RESULTS We found that acquired cisplatin-resistant NSCLC-derived A549/DR cells exhibited markedly enhanced FA and HR repair pathway capacities compared to its parental A549 cells and another independent NSCLC-derived cell line, Calu-1, which possesses a moderate innate resistance to cisplatin. siRNA-mediated silencing of the FA-associated genes FANCL and RAD18 and the HR-associated genes BRCA1 and BRCA2 significantly potentiated the sensitivity of A549/DR cells to cisplatin compared to A549 and Calu-1 cells, suggesting that the acquired cisplatin resistance in A549/DR cells may be attributed to enhanced FA and HR pathway capacities responsible for ICL repair. Although we found that expression knockdown of the NER-associated genes XPA and ERCC1 sensitized the three NSCLC-derived cell lines to cisplatin, the sensitization effect was more significant in Calu-1 cells than in A549 and A549/DR cells, implying that the innate cisplatin resistance in Calu-1 cells may result from an increased NER activity. CONCLUSIONS Our results indicate that the functional status of DNA repair pathways determine the sensitivity of NSCLC cells to cisplatin. Direct targeting of the pathway that is involved in cisplatin resistance may be an effective strategy to surmount cisplatin resistance in NSCLC.
Collapse
|
31
|
Augustowska K, Magnowska Z, Kapiszewska M, Gregoraszczuk EL. Is the natural PCDD/PCDF mixture toxic for human placental JEG-3 cell line? The action of the toxicants on hormonal profile, CYP1A1 activity, DNA damage and cell apoptosis. Hum Exp Toxicol 2016; 26:407-17. [PMID: 17623765 DOI: 10.1177/0960327107073119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present study was conducted to define the action of a mixture obtained by the extraction and purification of real fly ash, on specific toxicity endpoints, such as hormonal secretion, CYP1A1 expression, DNA damage and cell apoptosis. JEG-3 cell line was exposed in vitro to different doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or Polychlorinated dibenzo-p-dioxin/Polychlorinated dibenzo-P-furan (PCDD/PCDF) mixture. Both TCDD and the mixture decreased hCG secretion, while inhibition of progesterone levels was noted only under the influence of TCDD. The changes in hormone production were not due to the action on cell viability. There were time-dependent differences in CYP1A1 expression in cells exposed to TCDD and PCDD/PCDF mixture. Both TCDD and PCDD/PCDF mixture did not induce the DNA damage, as evaluated by the comet assay. Significantly lower DNA migration from the head of comet into the comet tail was noted after the removal of reagents. The highest efficiency of this process was noted 4 h after the TCDD and 24 h after the PCDD/PCDF mixture removal. These results suggest that the DNA adducts and/or DNA—DNA cross-links were formed. Neither TCDD nor PCDD/PCDF mixture had any effect on cell apoptosis assessed by caspase-3 activity and Hoechst 33258. Taken together, these findings clearly indicate a weaker action of the mixture when compared with TCDD. However, in both cases, their action was not due to the induction of the DNA damage and subsequent cell apoptosis but due to a direct influence of these toxicants on placental hormone production. Human & Experimental Toxicology ( 2007) 26, 407—417
Collapse
Affiliation(s)
- Katarzyna Augustowska
- Department of Physiology and Toxicology of Reproduction, Chair of Animal Physiology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-306 Krakow, Poland
| | | | | | | |
Collapse
|
32
|
Hashimoto S, Anai H, Hanada K. Mechanisms of interstrand DNA crosslink repair and human disorders. Genes Environ 2016; 38:9. [PMID: 27350828 PMCID: PMC4918140 DOI: 10.1186/s41021-016-0037-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022] Open
Abstract
Interstrand DNA crosslinks (ICLs) are the link between Watson-Crick strands of DNAs with the covalent bond and prevent separation of DNA strands. Since the ICL lesion affects both strands of the DNA, the ICL repair is not simple. So far, nucleotide excision repair (NER), structure-specific endonucleases, translesion DNA synthesis (TLS), homologous recombination (HR), and factors responsible for Fanconi anemia (FA) are identified to be involved in ICL repair. Since the presence of ICL lesions causes severe defects in transcription and DNA replication, mutations in these DNA repair pathways give rise to a various hereditary disorders. NER plays an important role for the ICL recognition and removal in quiescent cells, and defects of NER causes congential progeria syndrome, such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. On the other hand, the ICL repair in S phase requires more complicated orchestration of multiple factors, including structure-specific endonucleases, and TLS, and HR. Disturbed this ICL repair orchestration in S phase causes genome instability resulting a cancer prone disease, Fanconi anemia. So far more than 30 factors in ICL repair have already identified. Recently, a new factor, UHRF1, was discovered as a sensor of ICLs. In addition to this, numbers of nucleases that are involved in the first incision, also called unhooking, of ICL lesions have also been identified. Here we summarize the recent studies of ICL associated disorders and repair mechanism, with emphasis in the first incision of ICLs.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Hirofumi Anai
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593 Japan
| |
Collapse
|
33
|
Somyajit K, Banik B, Saxena S, Babu S, Hande MP, Chakravarty AR, Nagaraju G. Trans-dichlorooxovandium (IV) complex as a novel photoinducible DNA interstrand crosslinker for cancer therapy. Carcinogenesis 2015; 37:145-156. [PMID: 26678223 DOI: 10.1093/carcin/bgv173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/05/2015] [Indexed: 11/13/2022] Open
Abstract
Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.,Present address: NNF Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, DK-2200, Copenhagen N
| | - Bhabatosh Banik
- Department of Inorganic and physical Chemistry, Indian Institute of Science, Bangalore 560012, India and.,Present address: Department of Chemistry, University of Gerogia, Athens, GA 30602, USA
| | - Sneha Saxena
- Department of Biochemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Sharath Babu
- Department of Biochemistry , Indian Institute of Science , Bangalore 560012 , India
| | | | - Akhil R Chakravarty
- Department of Inorganic and physical Chemistry , Indian Institute of Science , Bangalore 560012 , India and
| | - Ganesh Nagaraju
- Department of Biochemistry , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
34
|
Duxin JP, Walter JC. What is the DNA repair defect underlying Fanconi anemia? Curr Opin Cell Biol 2015; 37:49-60. [PMID: 26512453 PMCID: PMC4688103 DOI: 10.1016/j.ceb.2015.09.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Fanconi anemia (FA) is a rare human genetic disease characterized by bone marrow failure, cancer predisposition, and genomic instability. It has been known for many years that FA patient-derived cells are exquisitely sensitive to DNA interstrand cross-linking agents such as cisplatin and mitomycin C. On this basis, it was widely assumed that failure to repair endogenous interstrand cross-links (ICLs) causes FA, although the endogenous mutagen that generates these lesions remained elusive. Recent genetic evidence now suggests that endogenous aldehydes are the driving force behind FA. Importantly, aldehydes cause a variety of DNA lesions, including ICLs and DNA protein cross-links (DPCs), re-kindling the debate about which DNA lesions cause FA. In this review, we discuss new developments in our understanding of DPC and ICL repair, and how these findings bear on the question of which DNA lesion underlies FA.
Collapse
Affiliation(s)
- Julien P Duxin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
35
|
Liu YC, Chang PY, Chao CCK. CITED2 silencing sensitizes cancer cells to cisplatin by inhibiting p53 trans-activation and chromatin relaxation on the ERCC1 DNA repair gene. Nucleic Acids Res 2015; 43:10760-81. [PMID: 26384430 PMCID: PMC4678856 DOI: 10.1093/nar/gkv934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023] Open
Abstract
In this study, we show that silencing of CITED2 using small-hairpin RNA (shCITED2) induced DNA damage and reduction of ERCC1 gene expression in HEK293, HeLa and H1299 cells, even in the absence of cisplatin. In contrast, ectopic expression of ERCC1 significantly reduced intrinsic and induced DNA damage levels, and rescued the effects of CITED2 silencing on cell viability. The effects of CITED2 silencing on DNA repair and cell death were associated with p53 activity. Furthermore, CITED2 silencing caused severe elimination of the p300 protein and markers of relaxed chromatin (acetylated H3 and H4, i.e. H3K9Ac and H3K14Ac) in HEK293 cells. Chromatin immunoprecipitation assays further revealed that DNA damage induced binding of p53 along with H3K9Ac or H3K14Ac at the ERCC1 promoter, an effect which was almost entirely abrogated by silencing of CITED2 or p300. Moreover, lentivirus-based CITED2 silencing sensitized HeLa cell line-derived tumor xenografts to cisplatin in immune-deficient mice. These results demonstrate that CITED2/p300 can be recruited by p53 at the promoter of the repair gene ERCC1 in response to cisplatin-induced DNA damage. The CITED2/p300/p53/ERCC1 pathway is thus involved in the cell response to cisplatin and represents a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hua first Road, Gueishan,Taoyuan 333, Taiwan, Republic of China
| | - Pu-Yuan Chang
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China
| | - Chuck C-K Chao
- Tumor Biology Laboratory, Department of Biochemistry and Molecular Biology, Chang Gung University, 259 Wen-Hua first Road, Gueishan, Taoyuan 333, Taiwan, Republic of China Graduate Institute of Biomedical Sciences, Chang Gung University, 259 Wen-Hua first Road, Gueishan,Taoyuan 333, Taiwan, Republic of China
| |
Collapse
|
36
|
Wang GZ, Liu YQ, Cheng X, Zhou GB. Celastrol induces proteasomal degradation of FANCD2 to sensitize lung cancer cells to DNA crosslinking agents. Cancer Sci 2015; 106:902-8. [PMID: 25891850 PMCID: PMC4520643 DOI: 10.1111/cas.12679] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 12/21/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays a key role in interstrand crosslink (ICL) repair and maintenance of the genomic stability, while inhibition of this pathway may sensitize cancer cells to DNA ICL agents and ionizing radiation (IR). The active FA core complex acts as an E3 ligase to monoubiquitinate FANCD2, which is a functional readout of an activated FA pathway. In the present study, we aimed to identify FANCD2-targeting agents, and found that the natural compound celastrol induced degradation of FANCD2 through the ubiquitin-proteasome pathway. We demonstrated that celastrol downregulated the basal and DNA damaging agent-induced monoubiquitination of FANCD2, followed by proteolytic degradation of the substrate. Furthermore, celastrol treatment abrogated the G2 checkpoint induced by IR, and enhanced the ICL agent-induced DNA damage and inhibitory effects on lung cancer cells through depletion of FANCD2. These results indicate that celastrol is a FANCD2 inhibitor that could interfere with the monoubiquitination and protein stability of FANCD2, providing a novel opportunity to develop FA pathway inhibitor and combinational therapy for malignant neoplasms.
Collapse
Affiliation(s)
- Gui-Zhen Wang
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Yong-Qiang Liu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Xin Cheng
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| | - Guang-Biao Zhou
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
37
|
Burdak-Rothkamm S, Rothkamm K, McClelland K, Al Rashid ST, Prise KM. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells. Cancer Lett 2014; 356:454-61. [PMID: 25304378 DOI: 10.1016/j.canlet.2014.09.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/20/2022]
Abstract
Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.
Collapse
Affiliation(s)
- Susanne Burdak-Rothkamm
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton/Didcot OX11 0RQ, UK
| | - Keeva McClelland
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Shahnaz T Al Rashid
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
38
|
Yao C, Du W, Chen H, Xiao S, Huang L, Chen F. The Fanconi anemia/BRCA pathway is involved in DNA interstrand cross-link repair of adriamycin-resistant leukemia cells. Leuk Lymphoma 2014; 56:755-62. [PMID: 24996439 DOI: 10.3109/10428194.2014.935363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Fanconi anemia/BRCA (FA/BRCA) pathway plays a vital role in DNA damage repair induced by DNA cross-linking agents and is closely related to drug response in cancer treatment. Here we demonstrate that the FA/BRCA pathway contributes to acquired drug resistance in adriamycin (ADR)-resistant leukemia cell lines, and disruption of this pathway partially reverses the drug resistance. We observed that ADR-resistant cells have reduced DNA interstrand cross-links (ICL) compared with ADR-sensitive cells. Western blot studies demonstrated enhanced FA protein expression in ADR-resistant cells. Using siRNA to knock down FANCF in K562/R drug-resistant cells showed increases in sensitivity to ADR and ADR-induced DNA damage, and demonstrated a direct relationship between the FA/BRCA pathway and drug sensitivity. Overexpression of FANCF in K562 drug-sensitive cells partially reproduced the drug-resistant phenotype. These results show that the FA/BRCA pathway is involved in acquired ADR resistance of leukemia cells. The FA/BRCA pathway may be a new target to reverse ADR resistance in leukemia treatment.
Collapse
Affiliation(s)
- Chenjiao Yao
- Department of Hematology, The Third Xiangya Hospital of Central South University , Changsha, Hunan , China
| | | | | | | | | | | |
Collapse
|
39
|
Zhu B, Yan K, Li L, Lin M, Zhang S, He Q, Zheng D, Yang H, Shao G. K63-linked ubiquitination of FANCG is required for its association with the Rap80-BRCA1 complex to modulate homologous recombination repair of DNA interstand crosslinks. Oncogene 2014; 34:2867-78. [PMID: 25132264 DOI: 10.1038/onc.2014.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/21/2014] [Accepted: 06/23/2014] [Indexed: 11/09/2022]
Abstract
DNA interstrand crosslinks (ICLs) are extremely deleterious lesions that are repaired by homologous recombination (HR) through coordination of Fanconi anemia (FA) proteins and breast cancer susceptibility gene 1 (BRCA1) product, but the exact role these proteins have remains unclear. Here we report that FANCG was modified by the addition of lysine63-linked polyubiquitin chains (K63Ub) in response to DNA damage. We show that FANCG K63Ub was dispensable for monoubiquitination of FANCD2, but was required for FANCG to interact with the Rap80-BRCA1 (receptor-associated protein 80-BRCA1) complex for subsequent modulation of HR repair of ICLs induced by mitomycin C. Mutation of three lysine residues within FANCG to arginine (K182, K258 and K347, 3KR) reduced FANCG K63Ub modification, as well as its interaction with the Rap80-BRCA1 complex, and therefore impeded HR repair. In addition, we demonstrated that K63Ub-modified FANCG was deubiquitinated by BRCC36 complex in vitro and in vivo. Inhibition of BRCC36 resulted in increased K63Ub modification of FANCG. Taken together, our results identify a new role of FANCG in HR repair of ICL through K63Ub-mediated interaction with the Rap80-BRCA1 complex.
Collapse
Affiliation(s)
- B Zhu
- 1] Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China [2] Institute of Systems Biology, Peking University, Beijing, China
| | - K Yan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - L Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - M Lin
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - S Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Q He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - D Zheng
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - H Yang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - G Shao
- 1] Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China [2] Institute of Systems Biology, Peking University, Beijing, China
| |
Collapse
|
40
|
Kim Y. Nuclease delivery: versatile functions of SLX4/FANCP in genome maintenance. Mol Cells 2014; 37:569-74. [PMID: 24938228 PMCID: PMC4145367 DOI: 10.14348/molcells.2014.0118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/27/2022] Open
Abstract
As a scaffold, SLX4/FANCP interacts with multiple proteins involved in genome integrity. Although not having recognizable catalytic domains, SLX4 participates in diverse genome maintenance pathways by delivering nucleases where they are needed, and promoting their cooperative execution to prevent genomic instabilities. Physiological importance of SLX4 is emphasized by the identification of causative mutations of SLX4 genes in patients diagnosed with Fanconi anemia (FA), a rare recessive genetic disorder characterized by genomic instability and predisposition to cancers. Recent progress in understanding functional roles of SLX4 has greatly expanded our knowledge in the repair of DNA interstrand crosslinks (ICLs), Holliday junction (HJ) resolution, telomere homeostasis and regulation of DNA damage response induced by replication stress. Here, these diverse functions of SLX4 are reviewed in detail.
Collapse
Affiliation(s)
- Yonghwan Kim
- Department of Life Systems, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
41
|
Abstract
A critical step in DNA interstrand cross-link repair is the programmed collapse of replication forks that have stalled at an ICL. This event is regulated by the Fanconi anemia pathway, which suppresses bone marrow failure and cancer. In this perspective, we focus on the structure of forks that have stalled at ICLs, how these structures might be incised by endonucleases, and how incision is regulated by the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States; Howard Hughes Medical Institute.
| |
Collapse
|
42
|
Kouass Sahbani S, Rezaee M, Cloutier P, Sanche L, Hunting DJ. Non-DSB clustered DNA lesions induced by ionizing radiation are largely responsible for the loss of plasmid DNA functionality in the presence of cisplatin. Chem Biol Interact 2014; 217:9-18. [PMID: 24732435 DOI: 10.1016/j.cbi.2014.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/18/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
The combination of cisplatin and ionizing radiation (IR) increases cell toxicity by both enhancing DNA damage and inhibiting repair mechanisms. Although the formation of cluster DNA lesions, particularly double-strand breaks (DSB) at the site of cisplatin-DNA-adducts has been reported to induce cell death, the contribution of DSB and non-DSB cluster lesions to the cellular toxicity is still unknown. Although both lesions are toxic, it is not always possible to measure their frequency and cell survival in the same model system. To overcome this problem, here, we investigate the effect of cisplatin-adducts on the induction of DSB and non-DSB cluster DNA lesions by IR and determine the impact of such lesions on plasmid functionality. Cluster lesions are two or more lesions on opposite DNA strands with a short distance such that error free repair is difficult or impossible. At a ratio of two cisplatin per plasmid, irradiation of platinated DNA in solution with (137)Cs γ-rays shows enhancements in the formation of DNA DSB and non-DSB cluster lesions by factors of 2.6 and 2.1, respectively, compared to unmodified DNA. However, in absolute terms, the yield for non-DSB cluster lesions is far larger than that for DSB, by a factor of 26. Unmodified and cisplatin-modified DNA were irradiated and subsequently transformed into Escherichia coli to give survival curves representing the functionality of the plasmid DNA as a function of radiation dose. Our results demonstrate that non-DSB cluster lesions are the only toxic lesions present at a sufficient frequency to account for the loss of DNA functionality. Our data also show that Frank-DSB lesions are simply too infrequent to account for the loss of DNA functionality. In conclusion, non-DSB cluster DNA damage is known to be difficult to repair and is probably the lesion responsible for the loss of functionality of DNA modified by cisplatin.
Collapse
Affiliation(s)
- S Kouass Sahbani
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - M Rezaee
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - P Cloutier
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - L Sanche
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - D J Hunting
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
43
|
Saloua KS, Sonia G, Pierre C, Léon S, Darel HJ. The relative contributions of DNA strand breaks, base damage and clustered lesions to the loss of DNA functionality induced by ionizing radiation. Radiat Res 2014; 181:99-110. [PMID: 24397439 DOI: 10.1667/rr13450.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The majority of studies on lethal radiobiological damage have focused on double-strand breaks (DSBs), a type of clustered DNA damage and the evaluation of their toxicity, while other types of clustered DNA damage have received much less attention. The main purpose of this study is to evaluate the contribution of different lesions induced by ionizing radiation to the loss of plasmid DNA functionality. We employed a simple model system comprising E. coli transformed with an irradiated plasmid [pGEM-3Zf (-)] to determine the effect of DSBs and other lesions including base damage and clustered lesions on the functionality ("viability") of the plasmid. The yields of γ-radiation-induced single-strand breaks (SSBs) and DSBs were measured by gel electrophoresis. We found that the transformation efficiency decreases with radiation dose, but this decrease cannot be explained by the formation of DSBs. For example, at doses of 500 and 700 Gy, the relative transformation efficiency falls from 100% to 53% and 26%, respectively, while only 5.7% and 9.1% of the plasmids contain a DSB. In addition, it is also unlikely that randomly distributed base lesions could explain the loss of functionality of the plasmid, since cells can repair them efficiently. However, clustered lesions other than DSBs, which are difficult to repair and result in the loss of information on both DNA strands, have the potential to induce the loss of plasmid functionality. We therefore measured the yields of γ-radiation-induced base lesions and cluster damage, which are respectively converted into SSBs and DSBs by the base excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). Our data demonstrate that the yield of cluster damage (i.e., lesions that yield DSBs following digestion) is 31 times higher than that of frank DSBs. This finding suggests that frank DSBs make a relatively minor contribution to the loss of DNA functionality induced by ionizing radiation, while other toxic lesions formed at a much higher frequencies than DSBs must be responsible for the loss of plasmid functionality. These lesions may be clustered lesions/locally multiply damaged sites (LMDS), including base damage, SSBs and/or intrastrand and interstrand crosslinks, leading to the loss of vital information in the DNA. Using a mathematical model, we estimate that at least three toxic lesions are required for the inactivation of plasmid functionality, in part because even these complex lesions can be repaired.
Collapse
Affiliation(s)
- Kouass Sahbani Saloua
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
44
|
Zhao L, Li N, Yu JK, Tang HT, Li YL, He M, Yu ZJ, Bai XF, Zheng ZH, Wang EH, Wei MJ. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells. ACTA ACUST UNITED AC 2013; 47:24-34. [PMID: 24345874 PMCID: PMC3932970 DOI: 10.1590/1414-431x20132938] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/29/2013] [Indexed: 01/02/2023]
Abstract
Fanconi anemia complementation group F protein (FANCF) is a key factor, which
maintains the function of FA/BRCA, a DNA damage response pathway. However, the
functional role of FANCF in breast cancer has not been elucidated. We performed a
specific FANCF-shRNA knockdown of endogenous FANCF in vitro. Cell
viability was measured with a CCK-8 assay. DNA damage was assessed with an alkaline
comet assay. Apoptosis, cell cycle, and drug accumulation were measured by flow
cytometry. The expression levels of protein were determined by Western blot using
specific antibodies. Based on these results, we used cell migration and invasion
assays to demonstrate a crucial role for FANCF in those processes. FANCF shRNA
effectively inhibited expression of FANCF. We found that proliferation of FANCF
knockdown breast cancer cells (MCF-7 and MDA-MB-435S) was significantly inhibited,
with cell cycle arrest in the S phase, induction of apoptosis, and DNA fragmentation.
Inhibition of FANCF also resulted in decreased cell migration and invasion. In
addition, FANCF knockdown enhanced sensitivity to doxorubicin in breast cancer cells.
These results suggest that FANCF may be a potential target for molecular, therapeutic
intervention in breast cancer.
Collapse
Affiliation(s)
- L Zhao
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - N Li
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - J K Yu
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - H T Tang
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - Y L Li
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - M He
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - Z J Yu
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - X F Bai
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - Z H Zheng
- China Medical University, Institute of Pathology and Pathophysiology, Heping Ward, Shenyang City,Liaoning, China, Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - E H Wang
- China Medical University, Institute of Pathology and Pathophysiology, Heping Ward, Shenyang City,Liaoning, China, Institute of Pathology and Pathophysiology, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| | - M J Wei
- China Medical University, School of Pharmacy, Department of Pharmacology, Heping Ward, Shenyang CityLiaoning, China, Department of Pharmacology, School of Pharmacy, China Medical University, Heping Ward, Shenyang City, Liaoning, China
| |
Collapse
|
45
|
Benitez A, Yuan F, Nakajima S, Wei L, Qian L, Myers R, Hu JJ, Lan L, Zhang Y. Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein. Nucleic Acids Res 2013; 42:1671-83. [PMID: 24170812 PMCID: PMC3919598 DOI: 10.1093/nar/gkt975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.
Collapse
Affiliation(s)
- Anaid Benitez
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Satoshi Nakajima
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leizhen Wei
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liangyue Qian
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Richard Myers
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer J. Hu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Li Lan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- *To whom correspondence should be addressed. Tel: +1 305 243 9237; Fax: +1 305 243 3955;
| |
Collapse
|
46
|
Abstract
MicroRNAs (miRNAs) are 18- to 22-nucleotide-long, single-stranded, noncoding RNAs that regulate important biological processes including differentiation, proliferation, and response to cellular stressors such as hypoxia, nutrient depletion, and traversion of the cell cycle by controlling protein expression within the cell. Many investigators have profiled cancer tissue and serum miRNAs to identify potential therapeutic targets, understand the pathways involved in tumorigenesis, and identify diagnostic tumor signatures. In the setting of pancreatic cancer, obtaining pancreatic tissue is invasive and impractical for early diagnosis. Several groups have profiled miRNAs that are present in the blood as a means to diagnose tumor progression and predict prognosis/survival or drug resistance. Several miRNA signatures found in pancreatic tissue and the peripheral blood, as well as the pathways that are associated with pancreatic cancer, are reviewed here in detail. Three miRNA biomarkers (miR-21, miR-155, and miR-200) have been repetitively identified in both pancreatic cancer tissue and patients' blood. Those miRNAs regulate and are regulated by the central genetic and epigenetic changes observed in pancreatic cancer including p53, transforming growth factor β, p16(INK4A), BRCA1/2, and Kras. These miRNAs are involved in DNA repair, cell cycle, and cell invasion and also play important roles in promoting metastases.
Collapse
|
47
|
Ramamoorthy M, May A, Tadokoro T, Popuri V, Seidman MM, Croteau DL, Bohr VA. The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair. Carcinogenesis 2013; 34:2218-30. [PMID: 23715498 DOI: 10.1093/carcin/bgt183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interstrand cross-links (ICLs) are very severe lesions as they are absolute blocks of replication and transcription. This property of interstrand cross-linking agents has been exploited clinically for the treatment of cancers and other diseases. ICLs are repaired in human cells by specialized DNA repair pathways including components of the nucleotide excision repair pathway, double-strand break repair pathway and the Fanconi anemia pathway. In this report, we identify the role of RECQL5, a member of the RecQ family of helicases, in the repair of ICLs. Using laser-directed confocal microscopy, we demonstrate that RECQL5 is recruited to ICLs formed by trioxalen (a psoralen-derived compound) and ultraviolet irradiation A. Using single-cell gel electrophoresis and proliferation assays, we identify the role of RECQL5 in the repair of ICL lesions. The domain of RECQL5 that recruits to the site of ICL was mapped to the KIX region between amino acids 500 and 650. Inhibition of transcription and of topoisomerases did not affect recruitment, which was inhibited by DNA-intercalating agents, suggesting that the DNA structure itself may be responsible for the recruitment of RECQL5 to the sites of ICLs.
Collapse
Affiliation(s)
- Mahesh Ramamoorthy
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Sharma S, Canman CE. REV1 and DNA polymerase zeta in DNA interstrand crosslink repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:725-40. [PMID: 23065650 PMCID: PMC5543726 DOI: 10.1002/em.21736] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 05/06/2023]
Abstract
DNA interstrand crosslinks (ICLs) are covalent linkages between two strands of DNA, and their presence interferes with essential metabolic processes such as transcription and replication. These lesions are extremely toxic, and their repair is essential for genome stability and cell survival. In this review, we will discuss how the removal of ICLs requires interplay between multiple genome maintenance pathways and can occur in the absence of replication (replication-independent ICL repair) or during S phase (replication-coupled ICL repair), the latter being the predominant pathway used in mammalian cells. It is now well recognized that translesion DNA synthesis (TLS), especially through the activities of REV1 and DNA polymerase zeta (Polζ), is necessary for both ICL repair pathways operating throughout the cell cycle. Recent studies suggest that the convergence of two replication forks upon an ICL initiates a cascade of events including unhooking of the lesion through the actions of structure-specific endonucleases, thereby creating a DNA double-stranded break (DSB). TLS across the unhooked lesion is necessary for restoring the sister chromatid before homologous recombination repair. Biochemical and genetic studies implicate REV1 and Polζ as being essential for performing lesion bypass across the unhooked crosslink, and this step appears to be important for subsequent events to repair the intermediate DSB. The potential role of Fanconi anemia pathway in the regulation of REV1 and Polζ-dependent TLS and the involvement of additional polymerases, including DNA polymerases kappa, nu, and theta, in the repair of ICLs is also discussed in this review.
Collapse
Affiliation(s)
- Shilpy Sharma
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
49
|
Duquette ML, Zhu Q, Taylor ER, Tsay AJ, Shi LZ, Berns MW, McGowan CH. CtIP is required to initiate replication-dependent interstrand crosslink repair. PLoS Genet 2012; 8:e1003050. [PMID: 23144634 PMCID: PMC3493458 DOI: 10.1371/journal.pgen.1003050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 09/12/2012] [Indexed: 11/26/2022] Open
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that block the progression of replication and transcription. CtIP is a conserved DNA repair protein that facilitates DNA end resection in the double-strand break (DSB) repair pathway. Here we show that CtIP plays a critical role during initiation of ICL processing in replicating human cells that is distinct from its role in DSB repair. CtIP depletion sensitizes human cells to ICL inducing agents and significantly impairs the accumulation of DNA damage response proteins RPA, ATR, FANCD2, γH2AX, and phosphorylated ATM at sites of laser generated ICLs. In contrast, the appearance of γH2AX and phosphorylated ATM at sites of laser generated double strand breaks (DSBs) is CtIP-independent. We present a model in which CtIP functions early in ICL repair in a BRCA1– and FANCM–dependent manner prior to generation of DSB repair intermediates. One of the most lethal forms of DNA damage is the interstrand crosslink (ICL). An ICL is a chemical bridge between two nucleotides on complementary strands of DNA. An unrepaired ICL is toxic because it poses an unsurpassable block to DNA replication and transcription. Certain forms of cancer treatment exploit the toxicity of ICL generating agents to target rapidly dividing cells. Sensitivity to crosslinking agents is a defining characteristic of Fanconi Anemia (FA), a hereditary syndrome characterized by an increased risk in cancer development and hematopoietic abnormalities frequently resulting in bone marrow failure. The mechanism underlying ICL repair is important to human health; however, the sequence of molecular events governing ICL repair is poorly understood. Here we describe how the repair protein CtIP functions to initiate ICL repair in replicating cells in a manner distinct from its previously described role in other forms of DNA repair.
Collapse
Affiliation(s)
- Michelle L Duquette
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
SLX4, the newly identified Fanconi anemia protein, FANCP, is implicated in repairing DNA damage induced by DNA interstrand cross-linking (ICL) agents, topoisomerase I (TOP1) inhibitors, and in Holliday junction resolution. It interacts with and enhances the activity of XPF-ERCC1, MUS81-EME1, and SLX1 nucleases, but the requirement for the specific nucleases in SLX4 function is unclear. Here, by complementing a null FA-P Fanconi anemia cell line with SLX4 mutants that specifically lack the interaction with each of the nucleases, we show that the SLX4-dependent XPF-ERCC1 activity is essential for ICL repair but is dispensable for repairing TOP1 inhibitor-induced DNA lesions. Conversely, MUS81-SLX4 interaction is critical for resistance to TOP1 inhibitors but is less important for ICL repair. Mutation of SLX4 that abrogates interaction with SLX1 results in partial resistance to both cross-linking agents and TOP1 inhibitors. These results demonstrate that SLX4 modulates multiple DNA repair pathways by regulating appropriate nucleases.
Collapse
|