1
|
Thangavelu PU, Lin CY, Forouz F, Tanaka K, Dray E, Duijf PHG. The RB protein: more than a sentry of cell cycle entry. Trends Mol Med 2025:S1471-4914(25)00088-7. [PMID: 40300971 DOI: 10.1016/j.molmed.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
Genomic instability is a hallmark of cancer. It fuels cancer progression and therapy resistance. As 'the guardian of the genome', the tumor suppressor protein p53 protects against genomic damage. Canonically, the retinoblastoma protein (RB) is 'the sentry of cell cycle entry', as it dictates whether a cell enters the cell cycle to divide. However, the RB pathway also controls myriad non-canonical cellular processes, including metabolism, stemness, angiogenesis, apoptosis, and immune surveillance. We discuss how frequent RB pathway inactivation and underlying mechanisms in cancers affect these processes. We focus on RB's - rather than p53's - 'guardian of the genome' functions in DNA replication, DNA repair, centrosome duplication, chromosome segregation, and chromatin organization. Finally, we review therapeutic strategies, challenges, and opportunities for targeting RB pathway alterations in cancer.
Collapse
Affiliation(s)
- Pulari U Thangavelu
- Frazer Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Cheng-Yu Lin
- Frazer Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Farzaneh Forouz
- School of Pharmacy, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA; Greehey Children's Cancer Research Institute, San Antonio, TX, USA
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide, SA, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Simonini S. Regulation of cell cycle in plant gametes: when is the right time to divide? Development 2025; 152:dev204217. [PMID: 39831611 PMCID: PMC11829769 DOI: 10.1242/dev.204217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cell division is a fundamental process shared across diverse life forms, from yeast to humans and plants. Multicellular organisms reproduce through the formation of specialized types of cells, the gametes, which at maturity enter a quiescent state that can last decades. At the point of fertilization, signalling lifts the quiescent state and triggers cell cycle reactivation. Studying how the cell cycle is regulated during plant gamete development and fertilization is challenging, and decades of research have provided valuable, yet sometimes contradictory, insights. This Review summarizes the current understanding of plant cell cycle regulation, gamete development, quiescence, and fertilization-triggered reactivation.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH8008, Zurich, Switzerland
| |
Collapse
|
3
|
Simonini S, Bencivenga S, Grossniklaus U. A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis. Science 2024; 383:646-653. [PMID: 38330116 DOI: 10.1126/science.adj4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds.
Collapse
Affiliation(s)
- Sara Simonini
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Stefano Bencivenga
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
4
|
Singh G, Bloskie T, Storey KB. Tissue-specific response of the RB-E2F1 complex during mammalian hibernation. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:1002-1009. [PMID: 35945704 DOI: 10.1002/jez.2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Metabolic rate depression during prolonged bouts of torpor is characteristic of mammalian hibernation, reducing energy expenditures over the winter. Cell cycle arrest is observed in quiescent cells during dormancy, partly due to the retinoblastoma (Rb) protein at G1 /S, given cell division and proliferation are metabolic-costly processes. Rb binds to E2F transcription factors and recruits corepressors (e.g., SUV39H1) to E2F target genes, blocking their transcription and cell cycle passage. Phosphorylation by cyclin-CDK complexes at S780 or S795 abolishes Rb-mediated repression, allowing transition into S phase. The present study compares Rb-E2F1 responses between euthermic and torpid states in five organs (brain, heart, kidney, liver, skeletal muscle) of 13-lined ground squirrels (Ictidomys tridecemlineatus). Immunoblotting assessed the expression of Rb, pRb (S780, S795), E2F1, and SUV39H1. Our findings demonstrate multi-tissue upregulation of Rb and SUV39H1 during torpor, with tissue-specific changes to E2F1 and pRb (S780), suggesting Rb-E2F1 contributes to cell cycle control in hibernation.
Collapse
Affiliation(s)
- Gurjit Singh
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Tighe Bloskie
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Choi EH, Yoon S, Koh YE, Hong TK, Do JT, Lee BK, Hahn Y, Kim KP. Meiosis-specific cohesin complexes display essential and distinct roles in mitotic embryonic stem cell chromosomes. Genome Biol 2022; 23:70. [PMID: 35241136 PMCID: PMC8892811 DOI: 10.1186/s13059-022-02632-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cohesin is a chromosome-associated SMC-kleisin complex that mediates sister chromatid cohesion, recombination, and most chromosomal processes during mitosis and meiosis. However, it remains unclear whether meiosis-specific cohesin complexes are functionally active in mitotic chromosomes. RESULTS Through high-resolution 3D-structured illumination microscopy (3D-SIM) and functional analyses, we report multiple biological processes associated with the meiosis-specific cohesin components, α-kleisin REC8 and STAG3, and the distinct loss of function of meiotic cohesin during the cell cycle of embryonic stem cells (ESCs). First, we show that STAG3 is required for the efficient localization of REC8 to the nucleus by interacting with REC8. REC8-STAG3-containing cohesin regulates topological properties of chromosomes and maintains sister chromatid cohesion. Second, REC8-cohesin has additional sister chromatid cohesion roles in concert with mitotic RAD21-cohesin on ESC chromosomes. SIM imaging of REC8 and RAD21 co-staining revealed that the two types of α-kleisin subunits exhibited distinct loading patterns along ESC chromosomes. Third, knockdown of REC8 or RAD21-cohesin not only leads to higher rates of premature sister chromatid separation and delayed replication fork progression, which can cause proliferation and developmental defects, but also enhances chromosome compaction by hyperloading of retinoblastoma protein-condensin complexes from the prophase onward. CONCLUSIONS Our findings indicate that the delicate balance between mitotic and meiotic cohesins may regulate ESC-specific chromosomal organization and the mitotic program.
Collapse
Affiliation(s)
- Eui-Hwan Choi
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Seobin Yoon
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Young Eun Koh
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Tae Kyung Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul, 05029, South Korea
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University of Albany-State University of New York, Rensselaer, NY, USA
| | - Yoonsoo Hahn
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea
| | - Keun P Kim
- Department of Life Sciences, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
6
|
Martínez-Sánchez M, Hernandez-Monge J, Rangel M, Olivares-Illana V. Retinoblastoma: from discovery to clinical management. FEBS J 2021; 289:4371-4382. [PMID: 34042282 DOI: 10.1111/febs.16035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
The retinoblastoma gene (RB1) was the first tumour suppressor cloned; the role of its protein product (RB) as the principal driver of the G1 checkpoint in cell cycle control has been extensively studied. However, many other RB functions are continuously reported. Its role in senescence, DNA repair and apoptosis, among others, is indications of the significance of RB in a vast network of cellular interactions, explaining why RB loss or its malfunction is one of the leading causes of a large number of paediatric and adult cancers. RB was first reported in retinoblastoma, a common intraocular malignancy in the paediatric population worldwide. Currently, its diagnosis is clinical, and in nondeveloped countries, where the incidence is higher, it is performed in advanced stages of the disease, compromising the integrity of the eye and the patient's life. Even though new treatments are being continuously developed, enucleation is still a major choice due to the late disease stage diagnosis and treatments costs. Research into biomarkers is our best option to improve the chances of good results in the treatment and hopes of patients' good quality of life. Here, we recapitulated the history of the disease and the first treatments to put the advances in its clinical management into perspective. We also review the different functions of the protein and the progress in the search for biomarkers. It is clear that there is still a long way to go, but we should offer these children and their families a better way to deal with the disease with the community's effort.
Collapse
Affiliation(s)
- Mayra Martínez-Sánchez
- Laboratorio de Interacciones Biomoleculares y Cancer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | - Jesús Hernandez-Monge
- Catedra CONACyT - Laboratorio de Biomarcadores Moleculares, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | - Martha Rangel
- Departamento de Oftalmología. Hospital Central "Ignacio Morones Prieto", San Luis Potosí, Mexico
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cancer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
7
|
Liu H, Wang J, Liu Y, Hu L, Zhang C, Xing B, Du X. Human U3 protein14a is a novel type ubiquitin ligase that binds RB and promotes RB degradation depending on a leucine-rich region. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1611-1620. [DOI: 10.1016/j.bbamcr.2018.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
|
8
|
The N Terminus of the Retinoblastoma Protein Inhibits DNA Replication via a Bipartite Mechanism Disrupted in Partially Penetrant Retinoblastomas. Mol Cell Biol 2015; 36:832-45. [PMID: 26711265 DOI: 10.1128/mcb.00636-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2015] [Indexed: 02/01/2023] Open
Abstract
The N-terminal domain of the retinoblastoma (Rb) tumor suppressor protein (RbN) harbors in-frame exon deletions in partially penetrant hereditary retinoblastomas and is known to impair cell growth and tumorigenesis. However, how such RbN deletions contribute to Rb tumor- and growth-suppressive functions is unknown. Here we establish that RbN directly inhibits DNA replication initiation and elongation using a bipartite mechanism involving N-terminal exons lost in cancer. Specifically, Rb exon 7 is necessary and sufficient to target and inhibit the replicative CMG helicase, resulting in the accumulation of inactive CMGs on chromatin. An independent N-terminal loop domain, which forms a projection, specifically blocks DNA polymerase α (Pol-α) and Ctf4 recruitment without affecting DNA polymerases ε and δ or the CMG helicase. Individual disruption of exon 7 or the projection in RbN or Rb, as occurs in inherited cancers, partially impairs the ability of Rb/RbN to inhibit DNA replication and block G1-to-S cell cycle transit. However, their combined loss abolishes these functions of Rb. Thus, Rb growth-suppressive functions include its ability to block replicative complexes via bipartite, independent, and additive N-terminal domains. The partial loss of replication, CMG, or Pol-α control provides a potential molecular explanation for how N-terminal Rb loss-of-function deletions contribute to the etiology of partially penetrant retinoblastomas.
Collapse
|
9
|
Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression. Nat Commun 2015; 6:10028. [PMID: 26639898 PMCID: PMC4686657 DOI: 10.1038/ncomms10028] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/28/2015] [Indexed: 12/13/2022] Open
Abstract
Changes in gene expression during tumorigenesis are often considered the consequence of de novo mutations occurring in the tumour. An alternative possibility is that the transcriptional response of oncogenic transcription factors evolves during tumorigenesis. Here we show that aberrant E2f activity, following inactivation of the Rb gene family in a mouse model of liver cancer, initially activates a robust gene expression programme associated with the cell cycle. Slowly accumulating E2f1 progressively recruits a Pontin/Reptin complex to open the chromatin conformation at E2f target genes and amplifies the E2f transcriptional response. This mechanism enhances the E2f-mediated transactivation of cell cycle genes and initiates the activation of low binding affinity E2f target genes that regulate non-cell-cycle functions, such as the Warburg effect. These data indicate that both the physiological and the oncogenic activities of E2f result in distinct transcriptional responses, which could be exploited to target E2f oncogenic activity for therapy. E2F transcription factors are primarily known for the regulation of the cell cycle and are often dysregulated in cancer. Here, the authors show that during cancer progression E2F1 recruits a Pontin/Reptin complex to E2F target genes to open chromatin and increase E2F transcriptional response.
Collapse
|
10
|
Vormer TL, Hansen JB, Te Riele H. The retinoblastoma protein: multitasking to suppress tumorigenesis. Mol Cell Oncol 2015; 2:e968062. [PMID: 27308398 PMCID: PMC4905230 DOI: 10.4161/23723548.2014.968062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022]
Abstract
Tumor suppressor activity of the retinoblastoma protein pRB is preserved despite loss of interaction with E2F transcription factors (E2F) or proteins harboring a leucine-x-cysteine-x-glutamic acid motif (LxCxE, where x is any amino acid). This indicates that pRB uses several parallel pathways to suppress tumorigenesis, which may also include E2F- and LxCxE-independent interactions.
Collapse
Affiliation(s)
- Tinke L Vormer
- Division of Biological Stress Response; The Netherlands Cancer Institute ; Amsterdam, The Netherlands
| | - Jacob B Hansen
- Department of Biology; University of Copenhagen ; Copenhagen, Denmark
| | - Hein Te Riele
- Division of Biological Stress Response; The Netherlands Cancer Institute ; Amsterdam, The Netherlands
| |
Collapse
|
11
|
Oyama K, El-Nachef D, Zhang Y, Sdek P, MacLellan WR. Epigenetic regulation of cardiac myocyte differentiation. Front Genet 2014; 5:375. [PMID: 25408700 PMCID: PMC4219506 DOI: 10.3389/fgene.2014.00375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/07/2014] [Indexed: 12/04/2022] Open
Abstract
Cardiac myocytes (CMs) proliferate robustly during fetal life but withdraw permanently from the cell cycle soon after birth and undergo terminal differentiation. This cell cycle exit is associated with the upregulation of a host of adult cardiac-specific genes. The vast majority of adult CMs (ACMs) do not reenter cell cycle even if subjected to mitogenic stimuli. The basis for this irreversible cell cycle exit is related to the stable silencing of cell cycle genes specifically involved in the progression of G2/M transition and cytokinesis. Studies have begun to clarify the molecular basis for this stable gene repression and have identified epigenetic and chromatin structural changes in this process. In this review, we summarize the current understanding of epigenetic regulation of CM cell cycle and cardiac-specific gene expression with a focus on histone modifications and the role of retinoblastoma family members.
Collapse
Affiliation(s)
- Kyohei Oyama
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Danny El-Nachef
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Patima Sdek
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - W Robb MacLellan
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| |
Collapse
|
12
|
Inactivation of Rb and E2f8 synergizes to trigger stressed DNA replication during erythroid terminal differentiation. Mol Cell Biol 2014; 34:2833-47. [PMID: 24865965 DOI: 10.1128/mcb.01651-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rb is critical for promoting cell cycle exit in cells undergoing terminal differentiation. Here we show that during erythroid terminal differentiation, Rb plays a previously unappreciated and unorthodox role in promoting DNA replication and cell cycle progression. Specifically, inactivation of Rb in erythroid cells led to stressed DNA replication, increased DNA damage, and impaired cell cycle progression, culminating in defective terminal differentiation and anemia. Importantly, all of these defects associated with Rb loss were exacerbated by the concomitant inactivation of E2f8. Gene expression profiling and chromatin immunoprecipitation (ChIP) revealed that Rb and E2F8 cosuppressed a large array of E2F target genes that are critical for DNA replication and cell cycle progression. Remarkably, inactivation of E2f2 rescued the erythropoietic defects resulting from Rb and E2f8 deficiencies. Interestingly, real-time quantitative PCR (qPCR) on E2F2 ChIPs indicated that inactivation of Rb and E2f8 synergizes to increase E2F2 binding to its target gene promoters. Taken together, we propose that Rb and E2F8 collaborate to promote DNA replication and erythroid terminal differentiation by preventing E2F2-mediated aberrant transcriptional activation through the ability of Rb to bind and sequester E2F2 and the ability of E2F8 to compete with E2F2 for E2f-binding sites on target gene promoters.
Collapse
|
13
|
Abstract
The Rb/E2F pathway is deregulated in virtually all human tumors. It is clear that, in addition to Rb itself, essential cofactors required for transcriptional repression and silencing of E2F target genes are mutated or lost in cancer. To identify novel cofactors required for Rb/E2F-mediated inhibition of cell proliferation, we performed a genome-wide short hairpin RNA screen. In addition to several known Rb cofactors, the screen identified components of the Mediator complex, a large multiprotein coactivator required for RNA polymerase II transcription. We show that the Mediator complex subunit MED13L is required for Rb/E2F control of cell growth, the complete repression of cell cycle target genes, and cell cycle inhibition.
Collapse
|
14
|
Grinstein E, Mahotka C, Borkhardt A. Rb and nucleolin antagonize in controlling human CD34 gene expression. Cell Signal 2011; 23:1358-1365. [PMID: 21440621 DOI: 10.1016/j.cellsig.2011.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/17/2011] [Indexed: 01/12/2023]
Abstract
Retinoblastoma protein (Rb) controls cell proliferation, differentiation, survival and gene expression and it has a central role in the signaling network that provides a cell cycle checkpoint in the G1 phase of the cell cycle. Studies in mice have shown that Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment and it acts as a critical regulator of hematopoietic stem and progenitor cells under stress. In human hematopoiesis, the CD34 protein is expressed on a subset of progenitor cells capable of self-renewal, multilineage differentiation, and hematopoietic reconstitution, and CD34 has a role in the differentiation of hematopoietic cells. Here we find that, in CD34-positive hematopoietic cells, Rb controls the human CD34 promoter region by antagonizing the CD34 promoter factor nucleolin to provide a mechanism that links expression of endogenous CD34 to cell cycle progression. Our study suggests a direct involvement of Rb in the transcriptional program of human CD34-positive hematopoietic stem/progenitor cells, thus providing further insights into the molecular network relevant to the features of these cells.
Collapse
Affiliation(s)
- Edgar Grinstein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Düsseldorf, Germany
| | | | | |
Collapse
|
15
|
Abstract
The RB1 gene is the first tumor suppressor gene identified whose mutational inactivation is the cause of a human cancer, the pediatric cancer retinoblastoma. The 25 years of research since its discovery has not only illuminated a general role for RB1 in human cancer, but also its critical importance in normal development. Understanding the molecular function of the RB1 encoded protein, pRb, is a long-standing goal that promises to inform our understanding of cancer, its relationship to normal development, and possible therapeutic strategies to combat this disease. Achieving this goal has been difficult, complicated by the complexity of pRb and related proteins. The goal of this review is to explore the hypothesis that, at its core, the molecular function of pRb is to dynamically regulate the location-specific assembly or disassembly of protein complexes on the DNA in response to the output of various signaling pathways. These protein complexes participate in a variety of molecular processes relevant to DNA including gene transcription, DNA replication, DNA repair, and mitosis. Through regulation of these processes, RB1 plays a uniquely prominent role in normal development and cancer.
Collapse
Affiliation(s)
- Meenalakshmi Chinnam
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
16
|
Rizwani W, Alexandrow M, Chellappan S. Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle 2009; 8:1621-9. [PMID: 19377303 DOI: 10.4161/cc.8.10.8578] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Prohibitin, a tumor suppressor protein, has been shown to repress E2F-mediated transcription and arrest cell cycle progression. while prohibitin has been proposed to regulate cell cycle progression by repressing transcriptional targets of E2F1, it is not clear whether other mechanisms are also involved in mediating the growth arrest. Here we demonstrate that prohibitin can function as a potent inhibitor of DNA replication by interacting with members of Minichromosome maintenance complex of proteins (MCM2-7). The data presented here indicates that prohibitin can physically interact with MCM2, MCM5 and MCM7 in in vitro GST binding assays as well as in MCF-7 cells as seen by immunoprecipitation-western blot experiments. The association was cell cycle dependent, and more pronounced 4-8 hours after serum stimulation of quiescent cells. Prohibitin associated more robustly with MCM2 and MCM5 compared to MCM7, suggesting that prohibitin mainly interacts with the regulatory subunits of the MCM complex. Confirming these results, prohibitin was found to co-localize with MCM2, MCM5 and MCM7 in MCF-7 cells, as seen by double immunofluorescence experiments. Further, Prohibitin strongly inhibited DNA replication in an in vitro replication assay. These results strongly suggest that prohibitin effectively represses replication by interacting with the components of mammalian replication machinery and this might contribute to the growth regulatory properties of prohibitin.
Collapse
Affiliation(s)
- Wasia Rizwani
- Department of Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | |
Collapse
|
17
|
Braden WA, McClendon AK, Knudsen ES. Cyclin-dependent kinase 4/6 activity is a critical determinant of pre-replication complex assembly. Oncogene 2008; 27:7083-93. [PMID: 18776921 DOI: 10.1038/onc.2008.319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinases (CDKs) are important in regulating cell cycle transitions, particularly in coordinating DNA replication. Although the role of CDK2 activity on the replication apparatus has been extensively studied, the role of CDK4/6 in DNA replication control is less understood. Through targeted inhibition of CDK4/6 activity, we demonstrate that CDK4/6 kinase activity promotes cdc6 and cdt1 expression, and pre-replication complex (pre-RC) assembly in cycling cells. Conversely, CDK2 inhibition had no effect on the pre-RC assembly. The inhibition of pre-RC assembly is dependent on a functional retinoblastoma (RB) protein, which mediates downstream effects. As such, CDK4/6 inhibition has minimal effect on the replication apparatus in the absence of RB. The requirement of CDK4/6 was further interrogated using cells lacking D-type cyclins, in which replication complexes form normally, and correspondingly CDK4/6 inhibition had no effect on cell cycle or replication control. However, in the absence of D-type cyclins, CDK2 inhibition resulted in the attenuation of cdc6 and cdt1 levels, suggesting overlapping roles for CDK4/6 and CDK2 in regulating replication protein activity. Finally, CDK4/6 inhibition prevented the accumulation of cdc6 and cdt1 as cells progressed from mitosis through the subsequent G(1). Combined, these studies indicate that CDK4/6 activity is important in regulating the expression of these critical mediators of DNA replication.
Collapse
Affiliation(s)
- W A Braden
- Department of Cancer Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
18
|
Coordinate regulation of Fanconi anemia gene expression occurs through the Rb/E2F pathway. Oncogene 2008; 27:4798-808. [PMID: 18438432 DOI: 10.1038/onc.2008.121] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fanconi anemia (FA) is a genome instability syndrome that is characterized by progressive bone marrow failure and a high risk of cancer. FA patients are particularly susceptible to leukemia as well as squamous cell carcinomas (SCCs) of the head and neck, anogenital region and skin. Thirteen complementation groups and the corresponding FA genes have been identified, and their protein products assemble into nuclear core complexes during DNA-damage responses. Much progress has been made in our understanding of post-translational FA protein modifications and physical interactions. By contrast, little is known about the control of protein availability at the level of transcription. We report here that multiple FA proteins were downregulated during the proliferative arrest of primary human keratinocytes and HeLa cells, and that the observed regulation was at a transcriptional level. Proliferative stimuli such as expression of HPV16 E7 as well as E2F1 overexpression in primary cells resulted in coordinate FA upregulation. To define the underlying mechanism, we examined the endogenous FANCD2 promoter, and detected regulated binding of members of the E2F/Rb family in chromatin immunoprecipitation assays. Finally, a 1 kb promoter fragment was sufficient to confer E2F/Rb regulation in reporter assays. Taken together, our data demonstrate FA gene co-regulation in synchrony with the cell cycle and suggest that deregulated expression of individual FA genes-in addition to FA gene mutation-may promote FA-related human cancer.
Collapse
|
19
|
Liu E, Lee AYL, Chiba T, Olson E, Sun P, Wu X. The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted. ACTA ACUST UNITED AC 2007; 179:643-57. [PMID: 18025301 PMCID: PMC2080923 DOI: 10.1083/jcb.200704138] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA replication in eukaryotic cells is tightly controlled by a licensing mechanism, ensuring that each origin fires once and only once per cell cycle. We demonstrate that the ataxia telangiectasia and Rad3 related (ATR)–mediated S phase checkpoint acts as a surveillance mechanism to prevent rereplication. Thus, disruption of licensing control will not induce significant rereplication in mammalian cells when the ATR checkpoint is intact. We also demonstrate that single-stranded DNA (ssDNA) is the initial signal that activates the checkpoint when licensing control is compromised in mammalian cells. We demonstrate that uncontrolled DNA unwinding by minichromosome maintenance proteins upon Cdt1 overexpression is an important mechanism that leads to ssDNA accumulation and checkpoint activation. Furthermore, we show that replication protein A 2 and retinoblastoma protein are both downstream targets for ATR that are important for the inhibition of DNA rereplication. We reveal the molecular mechanisms by which the ATR-mediated S phase checkpoint pathway prevents DNA rereplication and thus significantly improve our understanding of how rereplication is prevented in mammalian cells.
Collapse
Affiliation(s)
- Enbo Liu
- Department of Molecular Experimental Medicine and 2Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
20
|
Belbin TJ, Bergman A, Brandwein-Gensler M, Chen Q, Childs G, Garg M, Haigentz M, Hogue-Angeletti R, Moadel R, Negassa A, Owen R, Prystowsky MB, Schiff B, Schlecht NF, Shifteh K, Smith RV, Zheng X. Head and neck cancer: reduce and integrate for optimal outcome. Cytogenet Genome Res 2007; 118:92-109. [PMID: 18000360 DOI: 10.1159/000108290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/09/2007] [Indexed: 01/14/2023] Open
Affiliation(s)
- T J Belbin
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Roy S, Kaur M, Agarwal C, Tecklenburg M, Sclafani RA, Agarwal R. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther 2007; 6:2696-707. [PMID: 17938263 DOI: 10.1158/1535-7163.mct-07-0104] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent studies have shown that silibinin induces p21/Cip1 and p27/Kip1 and G1 arrest in different prostate cancer cells irrespective of p53 status; however, biological significance and mechanism of such induction have not been studied. Here, using two different prostate cancer cell lines DU145 and 22Rv1, representing androgen-independent and androgen-dependent stages of malignancy, first we investigated the importance of p21 and p27 induction in silibinin-mediated G1 arrest. Silencing p21 and p27 individually by RNA interference showed marked reversal in G1 arrest; however, their simultaneous ablation showed additional reversal of G1 arrest in 22Rv1 but not DU145 cells. These results suggest that whereas relative importance of these molecules might be cell line specific, their induction by silibinin is essential for its G1 arrest effect. Next, studies were done to examine mechanisms of their induction where cycloheximide-chase experiments showed that silibinin increases p21 and p27 protein half-life. This effect was accompanied by strong reduction in Skp2 level and its binding with p21 and p27 together with strong decrease in phosphorylated Thr(187) p27 without considerable change in proteasomal activity, suggesting a posttranslational mechanism. Skp2 role was further elucidated using Skp2-small interfering RNA-transfected cells, where decreased G1 arrest and attenuated Cip/Kip induction were observed with silibinin treatment. Further, silibinin caused a marked increase in p21 and p27 mRNA levels together with an increase in their promoter activity, also indicating a transcriptional mechanism. Together, our results for the first time identify a central role of p21 and p27 induction and their regulatory mechanism in silibinin-mediated cell cycle arrest.
Collapse
Affiliation(s)
- Srirupa Roy
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, 4200 East Ninth Street, Box C238, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
22
|
Bandyopadhyay D, Curry JL, Lin Q, Richards HW, Chen D, Hornsby PJ, Timchenko NA, Medrano EE. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi. Aging Cell 2007; 6:577-91. [PMID: 17578512 PMCID: PMC1974778 DOI: 10.1111/j.1474-9726.2007.00308.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The retinoblastoma (RB)/p16(INK4a) pathway regulates senescence of human melanocytes in culture and oncogene-induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently detected in p16(INK4a)-positive, senescent intradermal melanocytic nevi but not in proliferating, recurrent nevus cells that localize to the epidermal/dermal junction. To assess the role of HDAC1 in the senescence of melanocytes and nevi, we used tetracycline-based inducible expression systems in cultured melanocytic cells. We found that HDAC1 drives a sequential and cooperative activity of chromatin remodeling effectors, including transient recruitment of Brahma (Brm1) into RB/HDAC1 mega-complexes, formation of heterochromatin protein 1 beta (HP1 beta)/SUV39H1 foci, methylation of H3-K9, stable association of RB with chromatin and significant global heterochromatinization. These chromatin changes coincide with expression of typical markers of senescence, including the senescent-associated beta-galactosidase marker. Notably, formation of RB/HP1 beta foci and early tethering of RB to chromatin depends on intact Brm1 ATPase activity. As cells reached senescence, ejection of Brm1 from chromatin coincided with its dissociation from HP1 beta/RB and relocalization to protein complexes of lower molecular weight. These results provide new insights into the role of the RB pathway in regulating cellular senescence and implicate HDAC1 as a likely mediator of early chromatin remodeling events.
Collapse
Affiliation(s)
- Debdutta Bandyopadhyay
- Department of Dermatology, and Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tapia-Vieyra JV, Ostrosky-Wegman P, Mas-Oliva J. Proapoptotic role of novel gene-expression factors. Clin Transl Oncol 2007; 9:355-63. [PMID: 17594949 DOI: 10.1007/s12094-007-0067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The mechanisms that control cellular proliferation, as well as those related with programmed cell death or apoptosis, require precise regulation systems to prevent diseases such as cancer. Events related to cellular proliferation as well as those associated with apoptosis involve the regulation of gene expression carried out by three basic genetic expression regulation mechanisms: transcription, splicing of the primary transcript for mature mRNA formation, and RNA translation, a ribosomal machinery-dependent process for protein synthesis. While development of each one of these processes requires energy for recognition and assembly of a number of molecular complexes, it has been reported that an increased expression of several members of these protein complexes promotes apoptosis in distinct cell types. The question of how these factors interact with other proteins in order to incorporate themselves into the different transduction cascades and stimulate the development of programmed cell death, although nowadays actively studied, is still waiting for a clear-cut answer. This review focuses on the interactions established between different families of transcription, elongation, translation and splicing factors associated to the progression of apoptosis.
Collapse
Affiliation(s)
- J V Tapia-Vieyra
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | | | | |
Collapse
|
24
|
Srinivasan SV, Mayhew CN, Schwemberger S, Zagorski W, Knudsen ES. RB loss promotes aberrant ploidy by deregulating levels and activity of DNA replication factors. J Biol Chem 2007; 282:23867-77. [PMID: 17556357 DOI: 10.1074/jbc.m700542200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The retinoblastoma tumor suppressor (RB) is functionally inactivated in many human cancers. Classically, RB functions to repress E2F-mediated transcription and inhibit cell cycle progression. Consequently, RB ablation leads to loss of cell cycle control and aberrant expression of E2F target genes. Emerging evidence indicates a role for RB in maintenance of genomic stability. Here, mouse adult fibroblasts were utilized to demonstrate that aberrant DNA content in RB-deficient cells occurs concomitantly with an increase in levels and chromatin association of DNA replication factors. Furthermore, following exposure to nocodazole, RB-proficient cells arrest with 4 n DNA content, whereas RB-deficient cells bypass the mitotic block, continue DNA synthesis, and accumulate cells with higher ploidy and micronuclei. Under this condition, RB-deficient cells also retain high levels of tethered replication factors, MCM7 and PCNA, indicating that DNA replication occurs in these cells under nonpermissive conditions. Exogenous expression of replication factors Cdc6 or Cdt1 in RB-proficient cells does not recapitulate the RB-deficient cell phenotype. However, ectopic E2F expression in RB-proficient cells elevated ploidy and bypassed the response to nocodazole-induced cessation of DNA replication in a manner analogous to RB loss. Collectively, these results demonstrate that deregulated S phase control is a key mechanism by which RB-deficient cells acquire elevated ploidy.
Collapse
Affiliation(s)
- Seetha V Srinivasan
- Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
25
|
Nampoothiri LP, Neelima PS, Rao AJ. Proteomic profiling of forskolin-induced differentiated BeWo cells: an in-vitro model of cytotrophoblast differentiation. Reprod Biomed Online 2007; 14:477-87. [PMID: 17425831 DOI: 10.1016/s1472-6483(10)60896-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Placental trophoblastic differentiation is characterized by the fusion of monolayer cytotrophoblasts into syncytiotrophoblasts. During this process of differentiation, several morphological and biochemical changes are known to occur, and this model has been employed to investigate the changes that occur at the gene and protein level during differentiation. Using the sensitive technique of proteomics [two-dimensional gel electrophoresis (2DGE)], changes in protein profile were evaluated in the control and forskolin-induced differentiated cells of trophoblastic choriocarcinoma BeWo cell line. Several proteins were differentially expressed in control and differentiated cells. Four major proteins were up-regulated as assessed by silver staining, and were further characterized as c-h-ras p 21 (phosphorylated), retinoblastoma susceptibility protein 1 and integrase interactor protein 1. These proteins are known to play an important role in growth arrest of cells, and thus may play a role in initiating the process of differentiation.
Collapse
|
26
|
Genovese C, Trani D, Caputi M, Claudio PP. Cell cycle control and beyond: emerging roles for the retinoblastoma gene family. Oncogene 2006; 25:5201-9. [PMID: 16936738 DOI: 10.1038/sj.onc.1209652] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rb family proteins (pRb/p105, Rb2/p130 and p107) play a key role in cell cycle control and are worthily involved in transcription repression and tumor suppression. The mechanisms of transcriptional activation and repression by the Rb gene family has been extensively investigated: pRb, pRb2/p130 and p107 interact with different E2F family factors and can inhibit E2F responsive promoters, interfering with progression of cell cycle, gene transcription, initiation of apoptotic process and cell differentiation. Recent studies have indicated that Rb and Rb2/p130 may be involved in cellular response to DNA damage events, by influencing the transcription of factors involved in DNA repair pathways. In particular, evidences suggest that Rb loss and target gene deregulation impacts on the repair of UV-induced pyrimidine pyrimidone photoproducts (6-4 PP) by regulating the expression of several DNA damage factors involved in UV DNA damage repair processes, including proliferating cell nuclear antigen. Ongoing studies are focused on the mechanisms by which Rb family genes drive cell cycle exit following DNA damage induction, and how Rb gene family's interaction with chromatin remodeling factors can influence DNA repair dynamics.
Collapse
Affiliation(s)
- C Genovese
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
27
|
Fang SC, Reyes CDL, Umen JG. Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS Genet 2006; 2:e167. [PMID: 17040130 PMCID: PMC1599770 DOI: 10.1371/journal.pgen.0020167] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/17/2006] [Indexed: 01/15/2023] Open
Abstract
Size control is essential for all proliferating cells, and is thought to be regulated by checkpoints that couple cell size to cell cycle progression. The aberrant cell-size phenotypes caused by mutations in the retinoblastoma (RB) tumor suppressor pathway are consistent with a role in size checkpoint control, but indirect effects on size caused by altered cell cycle kinetics are difficult to rule out. The multiple fission cell cycle of the unicellular alga Chlamydomonas reinhardtii uncouples growth from division, allowing direct assessment of the relationship between size phenotypes and checkpoint function. Mutations in the C. reinhardtii RB homolog encoded by MAT3 cause supernumerous cell divisions and small cells, suggesting a role for MAT3 in size control. We identified suppressors of an mat3 null allele that had recessive mutations in DP1 or dominant mutations in E2F1, loci encoding homologs of a heterodimeric transcription factor that is targeted by RB-related proteins. Significantly, we determined that the dp1 and e2f1 phenotypes were caused by defects in size checkpoint control and were not due to a lengthened cell cycle. Despite their cell division defects, mat3, dp1, and e2f1 mutants showed almost no changes in periodic transcription of genes induced during S phase and mitosis, many of which are conserved targets of the RB pathway. Conversely, we found that regulation of cell size was unaffected when S phase and mitotic transcription were inhibited. Our data provide direct evidence that the RB pathway mediates cell size checkpoint control and suggest that such control is not directly coupled to the magnitude of periodic cell cycle transcription. All cell types have a characteristic size, but the means by which cell size is determined remain mysterious. In proliferating cells, control mechanisms termed checkpoints are thought to prevent cells from dividing until they have reached a minimum size, but the nature of size checkpoints has proved difficult to dissect. The unicellular alga Chlamydomonas reinhardtii divides via an unusual mechanism that uncouples growth from division, and thereby allows a direct assessment of how different genetic pathways contribute to size control. The retinoblastoma (RB) tumor suppressor pathway is a critical regulator of cell cycle control in plants and animals and is thought to act as a transcriptional switch for cell cycle genes, but it had not been directly implicated in cell size checkpoint function. The authors found that mutations in genes that encode key proteins of the RB pathway in Chlamydomonas affect cell size and cell cycle control by altering size checkpoint function. Unexpectedly, the predicted transcriptional targets of the RB pathway were not affected by the mutations, and blocking transcription did not alter cell size control. These data link the RB tumor suppressor pathway directly to size control and suggest the possibility that cell size and cell cycle control by the RB pathway may not be coupled to its transcriptional output.
Collapse
Affiliation(s)
- Su-Chiung Fang
- Plant Biology Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - Chris de los Reyes
- Plant Biology Laboratory, The Salk Institute, La Jolla, California, United States of America
| | - James G Umen
- Plant Biology Laboratory, The Salk Institute, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Braden WA, Lenihan JM, Lan Z, Luce KS, Zagorski W, Bosco E, Reed MF, Cook JG, Knudsen ES. Distinct action of the retinoblastoma pathway on the DNA replication machinery defines specific roles for cyclin-dependent kinase complexes in prereplication complex assembly and S-phase progression. Mol Cell Biol 2006; 26:7667-81. [PMID: 16908528 PMCID: PMC1636881 DOI: 10.1128/mcb.00045-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The retinoblastoma (RB) and p16ink4a tumor suppressors are believed to function in a linear pathway that is functionally inactivated in a large fraction of human cancers. Recent studies have shown that RB plays a critical role in regulating S phase as a means for suppressing aberrant proliferation and controlling genome stability. Here, we demonstrate a novel role for p16ink4a in replication control that is distinct from that of RB. Specifically, p16ink4a disrupts prereplication complex assembly by inhibiting mini-chromosome maintenance (MCM) protein loading in G1, while RB was found to disrupt replication in S phase through attenuation of PCNA function. This influence of p16ink4a on the prereplication complex was dependent on the presence of RB and the downregulation of cyclin-dependent kinase (CDK) activity. Strikingly, the inhibition of CDK2 activity was not sufficient to prevent the loading of MCM proteins onto chromatin, which supports a model wherein the composite action of multiple G1 CDK complexes regulates prereplication complex assembly. Additionally, p16ink4a attenuated the levels of the assembly factors Cdt1 and Cdc6. The enforced expression of these two licensing factors was sufficient to restore the assembly of the prereplication complex yet failed to promote S-phase progression due to the continued absence of PCNA function. Combined, these data reveal that RB and p16ink4a function through distinct pathways to inhibit the replication machinery and provide evidence that stepwise regulation of CDK activity interfaces with the replication machinery at two discrete execution points.
Collapse
Affiliation(s)
- Wesley A Braden
- Department of Cell Biology, Vontz Center for Molecular Studies, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Knudsen ES, Knudsen KE. Retinoblastoma tumor suppressor: where cancer meets the cell cycle. Exp Biol Med (Maywood) 2006; 231:1271-81. [PMID: 16816134 DOI: 10.1177/153537020623100713] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma tumor suppressor gene, Rb, was the first tumor suppressor identified and plays a fundamental role in regulation of progression through the cell cycle. This review details facets of RB protein function in cell cycle control and focuses on specific questions that remain intensive areas of investigation.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Cell Biology and University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA.
| | | |
Collapse
|
30
|
Slebos RJC, Yi Y, Ely K, Carter J, Evjen A, Zhang X, Shyr Y, Murphy BM, Cmelak AJ, Burkey BB, Netterville JL, Levy S, Yarbrough WG, Chung CH. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res 2006; 12:701-9. [PMID: 16467079 DOI: 10.1158/1078-0432.ccr-05-2017] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human papillomavirus (HPV) is associated with a subset of head and neck squamous cell carcinoma (HNSCC). Between 15% and 35% of HNSCCs harbor HPV DNA. Demographic and exposure differences between HPV-positive (HPV+) and negative (HPV-) HNSCCs suggest that HPV+ tumors may constitute a subclass with different biology, whereas clinical differences have also been observed. Gene expression profiles of HPV+ and HPV- tumors were compared with further exploration of the biological effect of HPV in HNSCC. Thirty-six HNSCC tumors were analyzed using Affymetrix Human 133U Plus 2.0 GeneChip and for HPV by PCR and real-time PCR. Eight of 36 (22%) tumors were positive for HPV subtype 16. Statistical analysis using Significance Analysis of Microarrays based on HPV status as a supervising variable resulted in a list of 91 genes that were differentially expressed with statistical significance. Results for a subset of these genes were verified by real-time PCR. Genes highly expressed in HPV+ samples included cell cycle regulators (p16(INK4A), p18, and CDC7) and transcription factors (TAF7L, RFC4, RPA2, and TFDP2). The microarray data were also investigated by mapping genes by chromosomal location (DIGMAP). A large number of genes on chromosome 3q24-qter had high levels of expression in HPV+ tumors. Further investigation of differentially expressed genes may reveal the unique pathways in HPV+ tumors that may explain the different natural history and biological properties of these tumors. These properties may be exploited as a target of novel therapeutic agents in HNSCC treatment.
Collapse
Affiliation(s)
- Robbert J C Slebos
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6307, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu F, Lee WH. CtIP activates its own and cyclin D1 promoters via the E2F/RB pathway during G1/S progression. Mol Cell Biol 2006; 26:3124-34. [PMID: 16581787 PMCID: PMC1446954 DOI: 10.1128/mcb.26.8.3124-3134.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell cycle progression from G(1) to S phase is mainly controlled by E2F transcription factors and RB family proteins. Previously we showed that the presence of CtIP is essential for G(1)/S transition in primary mouse blastocysts, as well as in NIH 3T3 cells. However, how CtIP executes this function remains to be elucidated. Here we show that in NIH 3T3 cells the expression of CtIP is regulated by the E2F/RB pathway during late G(1) and S phases. The presence of wild-type CtIP, but not the E157K mutant form, which failed to interact with RB, enhanced its own promoter activity. Chromatin immunoprecipitation analysis indicated that the recruitment of CtIP to its promoter occurs concomitantly with TFIIB, a component of the RNA polymerase II complex, and with dissociation of RB from the promoter during late G(1) and G(1)/S transition. Similar positive regulation of cyclin D1 expression by CtIP was also observed. Consistently, cells expressing the CtIP(E157K) protein alone exhibited growth retardation, an increase in the G(1) population, and a decrease in the S-phase population. Taken together, these results suggest that, contrary to the postulated universal corepressor role, CtIP activates a subset of E2F-responsive promoters by releasing RB-imposed repression and therefore promotes G(1)/S progression.
Collapse
Affiliation(s)
- Feng Liu
- Department of Biological Chemistry, 839 Medical Science Court, 124 Sprague Hall, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
32
|
Abstract
Rb was the first tumour suppressor identified through human genetic studies. The most significant achievement after almost twenty years since its cloning is the revelation that Rb possesses functions of a transcription regulator. Rb serves as a transducer between the cell cycle machinery and promoter-specific transcription factors. In this capacity, Rb is best known as a repressor of the E2F/DP family of transcription factors, which regulate expression of genes involved in cell proliferation and survival. An equally important aspect of Rb as a transcription regulator is that Rb also activates certain differentiation transcription factors to promote cellular differentiation. The molecular mechanisms behind the repressive effects of Rb on E2Fs have come to light in significant details, while those relating to Rb activation of differentiation transcription factors are much less understood. Finally, it has become clear that there are other aspects to Rb function that are not immediately related to transcription regulation.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Developmental and Molecular Biology, and Medicine, The Albert Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
33
|
Barbie DA, Conlan LA, Kennedy BK. Nuclear tumor suppressors in space and time. Trends Cell Biol 2005; 15:378-85. [PMID: 15936946 DOI: 10.1016/j.tcb.2005.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Revised: 04/25/2005] [Accepted: 05/24/2005] [Indexed: 11/21/2022]
Abstract
Numerous studies have identified key binding partners and functional activities of nuclear tumor-suppressor proteins such as the retinoblastoma protein, p53 and BRCA1. Historically, less attention has been given to the subnuclear locations of these proteins. Here, we describe several recent studies that promote the view that regulated association with subcompartments of the nucleus is inherent to tumor-suppressor function.
Collapse
Affiliation(s)
- David A Barbie
- Department of Internal Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
34
|
Abstract
The E2 factor (E2F) family of transcription factors are downstream targets of the retinoblastoma protein. E2F factors have been known for several years to be important regulators of S-phase entry. Recent studies have improved our understanding of the molecular mechanisms of action used by this transcriptional network. In addition, they have given us an appreciation of the fact that E2F has functions that reach beyond G1/S control and impact cell proliferation in several different ways. The discovery of new family members with unusual properties, the unexpected phenotypes of mutant animals, a diverse collection of biological activities, a large number of new putative target genes and the new modes of transcriptional regulation have all contributed to an increasingly complex view of E2F function. In this review, we will discuss these recent developments and describe how they are beginning to shape a new and revised picture of the E2F transcriptional program.
Collapse
|
35
|
Naderi S, Wang JYJ, Chen TT, Gutzkow KB, Blomhoff HK. cAMP-mediated inhibition of DNA replication and S phase progression: involvement of Rb, p21Cip1, and PCNA. Mol Biol Cell 2005; 16:1527-42. [PMID: 15647383 PMCID: PMC551513 DOI: 10.1091/mbc.e04-06-0501] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cAMP exerts an antiproliferative effect on a number of cell types including lymphocytes. This effect of cAMP is proposed to be mediated by its ability to inhibit G1/S transition. In this report, we provide evidence for a new mechanism whereby cAMP might inhibit cellular proliferation. We show that elevation of intracellular levels of cAMP inhibits DNA replication and arrests the cells in S phase. The cAMP-induced inhibition of DNA synthesis was associated with the increased binding of p21Cip1 to Cdk2-cyclin complexes, inhibition of Cdk2 kinase activity, dephosphorylation of Rb, and dissociation of PCNA from chromatin in S phase cells. The ability of cAMP to inhibit DNA replication and trigger release of PCNA from chromatin required Rb and p21Cip1 proteins, since both processes were only marginally affected by increased levels of cAMP in Rb-/- and p21Cip1-/- 3T3 fibroblasts. Importantly, the implications of cAMP-induced inhibition of DNA synthesis in cancer treatment was demonstrated by the ability of cAMP to reduce apoptosis induced by S phase-specific cytotoxic drugs. Taken together, these results demonstrate a novel role for cAMP in regulation of DNA synthesis and support a model in which activation of cAMP-dependent signaling protects cells from the effect of S phase-specific antitumor agents.
Collapse
Affiliation(s)
- Soheil Naderi
- Institute of Basic Medical Sciences, Department of Biochemistry, University of Oslo, Oslo N-0317, Norway.
| | | | | | | | | |
Collapse
|
36
|
Korenjak M, Taylor-Harding B, Binné UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N, Brehm A. Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 2004; 119:181-93. [PMID: 15479636 DOI: 10.1016/j.cell.2004.09.034] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 09/12/2004] [Accepted: 09/23/2004] [Indexed: 01/05/2023]
Abstract
The retinoblastoma tumor suppressor protein (pRb) regulates gene transcription by binding E2F transcription factors. pRb can recruit several repressor complexes to E2F bound promoters; however, native pRb repressor complexes have not been isolated. We have purified E2F/RBF repressor complexes from Drosophila embryo extracts and characterized their roles in E2F regulation. These complexes contain RBF, E2F, and Myb-interacting proteins that have previously been shown to control developmentally regulated patterns of DNA replication in follicle cells. The complexes localize to transcriptionally silent sites on polytene chromosomes and mediate stable repression of a specific set of E2F targets that have sex- and differentiation-specific expression patterns. Strikingly, seven of eight complex subunits are structurally and functionally related to C. elegans synMuv class B genes, which cooperate to control vulval differentiation in the worm. These results reveal an extensive evolutionary conservation of specific pRb repressor complexes that physically combine subunits with established roles in the regulation of transcription, DNA replication, and chromatin structure.
Collapse
Affiliation(s)
- Michael Korenjak
- Lehrstuhl für Molekularbiologie, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|