1
|
Blears D, Lou J, Fong N, Mitter R, Sheridan RM, He D, Dirac-Svejstrup AB, Bentley D, Svejstrup JQ. Redundant pathways for removal of defective RNA polymerase II complexes at a promoter-proximal pause checkpoint. Mol Cell 2024; 84:4790-4807.e11. [PMID: 39504960 DOI: 10.1016/j.molcel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The biological purpose of Integrator and RNA polymerase II (RNAPII) promoter-proximal pausing remains uncertain. Here, we show that loss of INTS6 in human cells results in increased interaction of RNAPII with proteins that can mediate its dissociation from the DNA template, including the CRL3ARMC5 E3 ligase, which ubiquitylates CTD serine5-phosphorylated RPB1 for degradation. ARMC5-dependent RNAPII ubiquitylation is activated by defects in factors acting at the promoter-proximal pause, including Integrator, DSIF, and capping enzyme. This ARMC5 checkpoint normally curtails a sizeable fraction of RNAPII transcription, and ARMC5 knockout cells produce more uncapped transcripts. When both the Integrator and CRL3ARMC5 turnover mechanisms are compromised, cell growth ceases and RNAPII with high pausing propensity disperses from the promoter-proximal pause site into the gene body. These data support a model in which CRL3ARMC5 functions alongside Integrator in a checkpoint mechanism that removes faulty RNAPII complexes at promoter-proximal pause sites to safeguard transcription integrity.
Collapse
Affiliation(s)
- Daniel Blears
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jiangman Lou
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ryan M Sheridan
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Dandan He
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - A Barbara Dirac-Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - David Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Li Y, Wang Q, Xu Y, Li Z. Structures of co-transcriptional RNA capping enzymes on paused transcription complex. Nat Commun 2024; 15:4622. [PMID: 38816438 PMCID: PMC11139899 DOI: 10.1038/s41467-024-48963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
The 5'-end capping of nascent pre-mRNA represents the initial step in RNA processing, with evidence demonstrating that guanosine addition and 2'-O-ribose methylation occur in tandem with early steps of transcription by RNA polymerase II, especially at the pausing stage. Here, we determine the cryo-EM structures of the paused elongation complex in complex with RNGTT, as well as the paused elongation complex in complex with RNGTT and CMTR1. Our findings show the simultaneous presence of RNGTT and the NELF complex bound to RNA polymerase II. The NELF complex exhibits two conformations, one of which shows a notable rearrangement of NELF-A/D compared to that of the paused elongation complex. Moreover, CMTR1 aligns adjacent to RNGTT on the RNA polymerase II stalk. Our structures indicate that RNGTT and CMTR1 directly bind the paused elongation complex, illuminating the mechanism by which 5'-end capping of pre-mRNA during transcriptional pausing.
Collapse
Affiliation(s)
- Yan Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ze Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Garg G, Dienemann C, Farnung L, Schwarz J, Linden A, Urlaub H, Cramer P. Structural insights into human co-transcriptional capping. Mol Cell 2023:S1097-2765(23)00424-0. [PMID: 37369200 DOI: 10.1016/j.molcel.2023.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/22/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Co-transcriptional capping of the nascent pre-mRNA 5' end prevents degradation of RNA polymerase (Pol) II transcripts and suppresses the innate immune response. Here, we provide mechanistic insights into the three major steps of human co-transcriptional pre-mRNA capping based on six different cryoelectron microscopy (cryo-EM) structures. The human mRNA capping enzyme, RNGTT, first docks to the Pol II stalk to position its triphosphatase domain near the RNA exit site. The capping enzyme then moves onto the Pol II surface, and its guanylyltransferase receives the pre-mRNA 5'-diphosphate end. Addition of a GMP moiety can occur when the RNA is ∼22 nt long, sufficient to reach the active site of the guanylyltransferase. For subsequent cap(1) methylation, the methyltransferase CMTR1 binds the Pol II stalk and can receive RNA after it is grown to ∼29 nt in length. The observed rearrangements of capping factors on the Pol II surface may be triggered by the completion of catalytic reaction steps and are accommodated by domain movements in the elongation factor DRB sensitivity-inducing factor (DSIF).
Collapse
Affiliation(s)
- Gaurika Garg
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Lucas Farnung
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Juliane Schwarz
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Andreas Linden
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Multidisciplinary Sciences, Bioanalytical Mass Spectrometry Group, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bionalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Ding P, Summers MF. Sequestering the 5′‐cap for viral RNA packaging. Bioessays 2022; 44:e2200104. [PMID: 36101513 DOI: 10.1002/bies.202200104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Abstract
Many viruses evolved mechanisms for capping the 5'-ends of their plus-strand RNAs as a means of hijacking the eukaryotic messenger RNA (mRNA) splicing/translation machinery. Although capping is critical for replication, the RNAs of these viruses have other essential functions including their requirement to be packaged as either genomes or pre-genomes into progeny viruses. Recent studies indicate that human immunodeficiency virus type-1 (HIV-1) RNAs are segregated between splicing/translation and packaging functions by a mechanism that involves structural sequestration of the 5'-cap. Here, we examined studies reported for other viruses and retrotransposons that require both selective packaging of their RNAs and 5'-RNA capping for host-mediated translation. Our findings suggest that viruses and retrotransposons have evolved multiple mechanisms to control 5'-cap accessibility, consistent with the hypothesis that removal or sequestration of the 5' cap enables packageable RNAs to avoid capture by the cellular RNA processing and translation machinery.
Collapse
Affiliation(s)
- Pengfei Ding
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute University of Maryland Baltimore County Baltimore Maryland USA
| | - Michael F. Summers
- Department of Chemistry and Biochemistry and Howard Hughes Medical Institute University of Maryland Baltimore County Baltimore Maryland USA
| |
Collapse
|
5
|
Interplay of mRNA capping and transcription machineries. Biosci Rep 2021; 40:221784. [PMID: 31904821 PMCID: PMC6981093 DOI: 10.1042/bsr20192825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
Early stages of transcription from eukaryotic promoters include two principal events: the capping of newly synthesized mRNA and the transition of RNA polymerase II from the preinitiation complex to the productive elongation state. The capping checkpoint model implies that these events are tightly coupled, which is necessary for ensuring the proper capping of newly synthesized mRNA. Recent findings also show that the capping machinery has a wider effect on transcription and the entire gene expression process. The molecular basis of these phenomena is discussed.
Collapse
|
6
|
Abstract
Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5′ methylated cap and 3′ poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales. We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.
Collapse
|
7
|
Cao D, Liang B. Cryo-Electron Microscopy Structures of the Pneumoviridae Polymerases. Viral Immunol 2020; 34:18-26. [PMID: 32429800 DOI: 10.1089/vim.2020.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The resolution revolution of cryo-electron microscopy (cryo-EM) has made a significant impact on the structural analysis of the Pneumoviridae multifunctional RNA polymerases. In recent months, several high-resolution structures of apo RNA polymerases of Pneumoviridae, which includes the human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), have been determined by single-particle cryo-EM. These structures illustrated high similarities and minor differences between the Pneumoviridae polymerases and revealed the potential mechanisms of the Pneumoviridae RNA synthesis.
Collapse
Affiliation(s)
- Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
8
|
mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription. Cell Rep 2019; 23:1530-1542. [PMID: 29719263 PMCID: PMC5946721 DOI: 10.1016/j.celrep.2018.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 01/11/2018] [Accepted: 03/30/2018] [Indexed: 11/20/2022] Open
Abstract
mRNA cap addition occurs early during RNA Pol II-dependent transcription, facilitating pre-mRNA processing and translation. We report that the mammalian mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II transcription independent of mRNA capping and translation. In cells, sublethal suppression of RNMT-RAM reduces RNA Pol II occupancy, net mRNA synthesis, and pre-mRNA levels. Conversely, expression of RNMT-RAM increases transcription independent of cap methyltransferase activity. In isolated nuclei, recombinant RNMT-RAM stimulates transcriptional output; this requires the RAM RNA binding domain. RNMT-RAM interacts with nascent transcripts along their entire length and with transcription-associated factors including the RNA Pol II subunits SPT4, SPT6, and PAFc. Suppression of RNMT-RAM inhibits transcriptional markers including histone H2BK120 ubiquitination, H3K4 and H3K36 methylation, RNA Pol II CTD S5 and S2 phosphorylation, and PAFc recruitment. These findings suggest that multiple interactions among RNMT-RAM, RNA Pol II factors, and RNA along the transcription unit stimulate transcription. mRNA cap methyltransferase, RNMT-RAM, promotes RNA Pol II-dependent transcription RNMT-RAM-dependent transcription is independent of mRNA cap methylation RNMT-RAM binds to the entire length of pre-mRNA and to transcription-associated proteins Significant loss of RNA Pol II gene occupancy is observed on RNMT-RAM suppression
Collapse
|
9
|
Mitra P, Deshmukh AS, Gurupwar R, Kashyap P. Characterization of Toxoplasma gondii Spt5 like transcription elongation factor. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:184-197. [DOI: 10.1016/j.bbagrm.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
|
10
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
11
|
Picard-Jean F, Bougie I, Shuto S, Bisaillon M. The immunosuppressive agent mizoribine monophosphate is an inhibitor of the human RNA capping enzyme. PLoS One 2013; 8:e54621. [PMID: 23349942 PMCID: PMC3547949 DOI: 10.1371/journal.pone.0054621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/13/2012] [Indexed: 11/18/2022] Open
Abstract
Mizoribine monophosphate (MZP) is a specific inhibitor of the cellular inosine-5′-monophosphate dehydrogenase (IMPDH), the enzyme catalyzing the rate-limiting step of de novo guanine nucleotide biosynthesis. MZP is a highly potent antagonistic inhibitor of IMPDH that blocks the proliferation of T and B lymphocytes that use the de novo pathway of guanine nucleotide synthesis almost exclusively. In the present study, we investigated the ability of MZP to directly inhibit the human RNA capping enzyme (HCE), a protein harboring both RNA 5′-triphosphatase and RNA guanylyltransferase activities. HCE is involved in the synthesis of the cap structure found at the 5′ end of eukaryotic mRNAs, which is critical for the splicing of the cap-proximal intron, the transport of mRNAs from the nucleus to the cytoplasm, and for both the stability and translation of mRNAs. Our biochemical studies provide the first insight that MZP can inhibit the formation of the RNA cap structure catalyzed by HCE. In the presence of MZP, the RNA 5′-triphosphatase activity appears to be relatively unaffected while the RNA guanylyltransferase activity is inhibited, indicating that the RNA guanylyltransferase activity is the main target of MZP inhibition. Kinetic studies reveal that MZP is a non-competitive inhibitor that likely targets an allosteric site on HCE. Mizoribine also impairs mRNA capping in living cells, which could account for the global mechanism of action of this therapeutic agent. Together, our study clearly demonstrates that mizoribine monophosphate inhibits the human RNA guanylyltransferase in vitro and impair mRNA capping in cellulo.
Collapse
Affiliation(s)
- Frédéric Picard-Jean
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Isabelle Bougie
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Satoshi Shuto
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Martin Bisaillon
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
12
|
Abstract
Messenger RNAs transcribed by RNA polymerase II are modified at their 5'-end by the cotranscriptional addition of a 7-methylguanosine (m(7)G) cap. The cap is an important modulator of gene expression and the mechanism and components involved in its removal have been extensively studied. At least two decapping enzymes, Dcp2 and Nudt16, and an array of decapping regulatory proteins remove the m(7)G cap from an mRNA exposing the 5'-end to exonucleolytic decay. In contrast, relatively less is known about the decay of mRNAs that may be aberrantly capped. The recent demonstration that the Saccharomyces cerevisiae Rai1 protein selectively hydrolyzes aberrantly capped mRNAs provides new insights into the modulation of mRNA that lack a canonical m(7)G cap 5'-end. Whether an mRNA is uncapped or capped but missing the N7 methyl moiety, Rai1 hydrolyzes its 5'-end to generate an mRNA with a 5' monophosphate. Interestingly, Rai1 heterodimerizes with the Rat1 5'-3' exoribonuclease, which subsequently degrades the 5'-end monophosphorylated mRNA. Importantly, Rat1 stimulates the 5'-end hydrolysis activities of Rai1 to generate a 5'-end unprotected mRNA substrate for Rat1 and, in turn, Rai1 stimulates the activity of Rat1. The Rai1-Rat1 heterodimer functions as a molecular motor to detect and degrade mRNAs with aberrant caps and defines a novel quality control mechanism that ensures mRNA 5'-end integrity. The increase in aberrantly capped mRNA population following nutritional stress in S. cerevisiae demonstrates the presence of aberrantly capped mRNAs in cells and further reinforces the functional significance of the Rai1 in ensuring mRNA 5'-end integrity.
Collapse
Affiliation(s)
- Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Mi Zhou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
13
|
Estruch F, Hodge C, Gómez-Navarro N, Peiró-Chova L, Heath CV, Cole CN. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors. BMC Genet 2012; 13:80. [PMID: 22963203 PMCID: PMC3506551 DOI: 10.1186/1471-2156-13-80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/31/2012] [Indexed: 12/27/2022] Open
Abstract
Background The various steps of mRNP biogenesis (transcription, processing and export) are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC) formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.
Collapse
Affiliation(s)
- Francisco Estruch
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Burjassot, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Hartzog GA, Fu J. The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:105-15. [PMID: 22982195 DOI: 10.1016/j.bbagrm.2012.08.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/21/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
In all domains of life, elongating RNA polymerases require the assistance of accessory factors to maintain their processivity and regulate their rate. Among these elongation factors, the Spt5/NusG factors stand out. Members of this protein family appear to be the only transcription accessory proteins that are universally conserved across all domains of life. In archaea and eukaryotes, Spt5 associates with a second protein, Spt4. In addition to regulating elongation, the eukaryotic Spt4-Spt5 complex appears to couple chromatin modification states and RNA processing to transcription elongation. This review discusses the experimental bases for our current understanding of Spt4-Spt5 function and recent studies that are beginning to elucidate the structure of Spt4-Spt5/RNA polymerase complexes and mechanism of Spt4-Spt5 action. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Grant A Hartzog
- Department of MCD Biology, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
15
|
Kaplan CD, Jin H, Zhang IL, Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet 2012; 8:e1002627. [PMID: 22511879 PMCID: PMC3325174 DOI: 10.1371/journal.pgen.1002627] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/15/2012] [Indexed: 12/27/2022] Open
Abstract
Structural and biochemical studies have revealed the importance of a conserved, mobile domain of RNA Polymerase II (Pol II), the Trigger Loop (TL), in substrate selection and catalysis. The relative contributions of different residues within the TL to Pol II function and how Pol II activity defects correlate with gene expression alteration in vivo are unknown. Using Saccharomyces cerevisiae Pol II as a model, we uncover complex genetic relationships between mutated TL residues by combinatorial analysis of multiply substituted TL variants. We show that in vitro biochemical activity is highly predictive of in vivo transcription phenotypes, suggesting direct relationships between phenotypes and Pol II activity. Interestingly, while multiple TL residues function together to promote proper transcription, individual residues can be separated into distinct functional classes likely relevant to the TL mechanism. In vivo, Pol II activity defects disrupt regulation of the GTP-sensitive IMD2 gene, explaining sensitivities to GTP-production inhibitors, but contrasting with commonly cited models for this sensitivity in the literature. Our data provide support for an existing model whereby Pol II transcriptional activity provides a proxy for direct sensing of NTP levels in vivo leading to IMD2 activation. Finally, we connect Pol II activity to transcription start site selection in vivo, implicating the Pol II active site and transcription itself as a driver for start site scanning, contravening current models for this process. Transcription by multisubunit RNA polymerases (msRNAPs) is essential for all kingdoms of life. A conserved region within msRNAPs called the trigger loop (TL) is critical for selection of nucleotide substrates and activity. We present analysis of the RNA Polymerase II (Pol II) TL from the model eukaryote Saccharomyces cerevisiae. Our experiments reveal how TL residues differentially contribute to viability and transcriptional activity. We find that in vivo growth phenotypes correlate with severity of transcriptional defects and that changing Pol II activity to either faster or slower than wild type causes specific transcription defects. We identify transcription start site selection as sensitive to Pol II catalytic activity, proposing that RNA synthesis (an event downstream of many steps in the initiation process) contributes to where productive transcription occurs. Pol II transcription activity was excluded from previous models for selection of productive Pol II start sites. Finally, drug sensitivity data have been widely interpreted to indicate that Pol II mutants defective in elongation properties are sensitized to reduction in GTP levels (a Pol II substrate). Our data suggest an alternate explanation, that sensitivity to decreased GTP levels may be explained in light of Pol II mutant transcriptional start site defects.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | |
Collapse
|
16
|
Abstract
Messenger RNAs undergo 5' capping, splicing, 3'-end processing, and export before translation in the cytoplasm. It has become clear that these mRNA processing events are tightly coupled and have a profound effect on the fate of the resulting transcript. This processing is represented by modifications of the pre-mRNA and loading of various protein factors. The sum of protein factors that stay with the mRNA as a result of processing is modified over the life of the transcript, conferring significant regulation to its expression.
Collapse
Affiliation(s)
- Sami Hocine
- Department for Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
17
|
Suh MH, Meyer PA, Gu M, Ye P, Zhang M, Kaplan CD, Lima CD, Fu J. A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J Biol Chem 2010; 285:34027-38. [PMID: 20720002 PMCID: PMC2962502 DOI: 10.1074/jbc.m110.145110] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/03/2010] [Indexed: 11/06/2022] Open
Abstract
RNA capping enzyme (CE) is recruited specifically to RNA polymerase II (Pol II) transcription sites to facilitate cotranscriptional 5'-capping of pre-mRNA and other Pol II transcripts. The current model to explain this specific recruitment of CE to Pol II as opposed to Pol I and Pol III rests on the interaction between CE and the phosphorylated C-terminal domain (CTD) of Pol II largest subunit Rpb1 and more specifically between the CE nucleotidyltransferase domain and the phosphorylated CTD. Through biochemical and diffraction analyses, we demonstrate the existence of a distinctive stoichiometric complex between CE and the phosphorylated Pol II (Pol IIO). Analysis of the complex revealed an additional and unexpected polymerase-CE interface (PCI) located on the multihelical Foot domain of Rpb1. We name this interface PCI1 and the previously known nucleotidyltransferase/phosphorylated CTD interface PCI2. Although PCI1 and PCI2 individually contribute to only weak interactions with CE, a dramatically stabilized and stoichiometric complex is formed when PCI1 and PCI2 are combined in cis as they occur in an intact phosphorylated Pol II molecule. Disrupting either PCI1 or PCI2 by alanine substitution or deletion diminishes CE association with Pol II and causes severe growth defects in vivo. Evidence from manipulating PCI1 indicates that the Foot domain contributes to the specificity in CE interaction with Pol II as opposed to Pol I and Pol III. Our results indicate that the dual interface based on combining PCI1 and PCI2 is required for directing CE to Pol II elongation complexes.
Collapse
Affiliation(s)
- Man-Hee Suh
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Peter A. Meyer
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Meigang Gu
- the Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, and
| | - Ping Ye
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mincheng Zhang
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Craig D. Kaplan
- the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Christopher D. Lima
- the Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, and
| | - Jianhua Fu
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
18
|
Jimeno-González S, Haaning LL, Malagon F, Jensen TH. The yeast 5'-3' exonuclease Rat1p functions during transcription elongation by RNA polymerase II. Mol Cell 2010; 37:580-7. [PMID: 20188675 DOI: 10.1016/j.molcel.2010.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 08/05/2009] [Accepted: 12/08/2009] [Indexed: 12/20/2022]
Abstract
Termination of RNA polymerase II (RNAPII) transcription of protein-coding genes occurs downstream of cleavage/polyadenylation sites. According to the "torpedo" model, the 5'-3' exonuclease Rat1p/Xrn2p attacks the newly formed 5' end of the cleaved pre-mRNA, causing the still transcribing RNAPII to terminate. Here we demonstrate a similar role of S. cerevisiae Rat1p within the gene body. We find that the transcription processivity defect imposed on RNAPII by the rpb1-N488D mutation is corrected upon Rat1p inactivation. Importantly, Rat1p-dependent transcription termination occurs upstream the polyadenylation site. Genetic and biochemical evidence demonstrate that mRNA capping is defective in rpb1-N488D cells, which leads to increased levels of Rat1p all along the gene locus. Consistently, Rat1p-dependent RNAPII termination is also observed in the capping-deficient ceg1-63 strain. Our data suggest that Rat1p serves to terminate RNAPII molecules engaged in the production of uncapped RNA, regardless of their position on the gene locus.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, Aarhus DK-8000, Denmark
| | | | | | | |
Collapse
|
19
|
Abstract
The 7-methylguanosine cap added to the 5′ end of mRNA is essential for efficient gene expression and cell viability. Methylation of the guanosine cap is necessary for the translation of most cellular mRNAs in all eukaryotic organisms in which it has been investigated. In some experimental systems, cap methylation has also been demonstrated to promote transcription, splicing, polyadenylation and nuclear export of mRNA. The present review discusses how the 7-methylguanosine cap is synthesized by cellular enzymes, the impact that the 7-methylguanosine cap has on biological processes, and how the mRNA cap methylation reaction is regulated.
Collapse
|
20
|
Expression of bacterial Rho factor in yeast identifies new factors involved in the functional interplay between transcription and mRNP biogenesis. Mol Cell Biol 2009; 29:4033-44. [PMID: 19451224 DOI: 10.1128/mcb.00272-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In eukaryotic cells, the nascent pre-mRNA molecule is coated sequentially with a large set of processing and binding proteins that mediate its transformation into an export-competent ribonucleoprotein particle (mRNP) that is ready for translation in the cytoplasm. We have implemented an original assay that monitors the dynamic interplay between transcription and mRNP biogenesis and that allows the screening for new factors linking mRNA synthesis to translation in Saccharomyces cerevisiae. The assay is based on the perturbation of gene expression induced by the bacterial Rho factor, an RNA-dependent helicase/translocase that acts as a competitor at one or several steps of mRNP biogenesis in yeast. We show that the expression of Rho in yeast leads to a dose-dependent growth defect that stems from its action on RNA polymerase II-mediated transcription. Rho expression induces the production of aberrant transcripts that are degraded by the nuclear exosome. A screen for dosage suppressors of the Rho-induced growth defect identified several genes that are involved in the different steps of mRNP biogenesis and export, as well as other genes with both known functions in transcription regulation and unknown functions. Our results provide evidence for an extensive cross talk between transcription, mRNP biogenesis, and export. They also uncover new factors that potentially are involved in these interconnected events.
Collapse
|
21
|
Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 2008; 15:819-26. [PMID: 18641664 PMCID: PMC2574591 DOI: 10.1038/nsmb.1461] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/13/2008] [Indexed: 12/24/2022]
Abstract
Mounting evidence suggests that transcription and RNA processing are intimately coupled in vivo, although each process can occur independently in vitro. It is generally thought that polymerase II (Pol II) C-terminal domain (CTD) kinases are recruited near the transcription start site to overcome initial Pol II pausing events, and that stably bound kinases facilitate productive elongation and co-transcriptional RNA processing. Whereas most studies have focused on how RNA processing machineries take advantage of the transcriptional apparatus to efficiently modify nascent RNA, here we report that a well-studied splicing factor, SC35, affects transcriptional elongation in a gene-specific manner. SC35 depletion induces Pol II accumulation within the gene body and attenuated elongation, which are correlated with defective P-TEFb (a complex composed of CycT1-CDK9) recruitment and dramatically reduced CTD Ser2 phosphorylation. Recombinant SC35 is sufficient to rescue this defect in nuclear run-on experiments. These findings suggest a reciprocal functional relationship between the transcription and splicing machineries during gene expression.
Collapse
Affiliation(s)
- Shengrong Lin
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0651, USA
| | | | | | | | | |
Collapse
|
22
|
Uzureau P, Daniels JP, Walgraffe D, Wickstead B, Pays E, Gull K, Vanhamme L. Identification and characterization of two trypanosome TFIIS proteins exhibiting particular domain architectures and differential nuclear localizations. Mol Microbiol 2008; 69:1121-36. [PMID: 18627464 PMCID: PMC2610381 DOI: 10.1111/j.1365-2958.2008.06348.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nuclear transcription of Trypanosoma brucei displays unusual features. Most protein-coding genes are organized in large directional gene clusters, which are transcribed polycistronically by RNA polymerase II (pol II) with subsequent processing to generate mature mRNA. Here, we describe the identification and characterization of two trypanosome homologues of transcription elongation factor TFIIS (TbTFIIS1 and TbTFIIS2-1). TFIIS has been shown to aid transcription elongation by relieving arrested pol II. Our phylogenetic analysis demonstrated the existence of four independent TFIIS expansions across eukaryotes. While TbTFIIS1 contains only the canonical domains II and III, the N-terminus of TbTFIIS2-1 contains a PWWP domain and a domain I. TbTFIIS1 and TbTFIIS2-1 are expressed in procyclic and bloodstream form cells and localize to the nucleus in similar, but distinct, punctate patterns throughout the cell cycle. Neither TFIIS protein was enriched in the major pol II sites of spliced-leader RNA transcription. Single RNA interference (RNAi)-mediated knock-down and knockout showed that neither protein is essential. Double knock-down, however, impaired growth. Repetitive failure to generate a double knockout of TbTFIIS1 and TbTFIIS2-1 strongly suggests synthetical lethality and thus an essential function shared by the two proteins in trypanosome growth.
Collapse
Affiliation(s)
- Pierrick Uzureau
- Laboratoire de Parasitologie Moléculaire, ULB IBMM, rue des Pr Jeneer et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Pandit S, Wang D, Fu XD. Functional integration of transcriptional and RNA processing machineries. Curr Opin Cell Biol 2008; 20:260-5. [PMID: 18436438 PMCID: PMC2701685 DOI: 10.1016/j.ceb.2008.03.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 03/10/2008] [Indexed: 12/23/2022]
Abstract
Cotranscriptional RNA processing not only permits temporal RNA processing before the completion of transcription but also allows sequential recognition of RNA processing signals on nascent transcripts threading out from the elongating RNA polymerase II (RNAPII) complex. Rapid progress in recent years has established multiple contacts that physically connect the transcription and RNA processing machineries, which centers on the C-terminal domain (CTD) of the largest subunit of RNAPII. Although cotranscriptional RNA processing has been substantiated, the evidence for 'reciprocal' coupling starts to emerge, which emphasizes functional integration of transcription and RNA processing machineries in a mutually beneficial manner for efficient and regulated gene expression.
Collapse
Affiliation(s)
- Shatakshi Pandit
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, United States
| | | | | |
Collapse
|
24
|
Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II. Mol Cell Biol 2007; 28:1393-403. [PMID: 18086892 DOI: 10.1128/mcb.01733-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the timing of the recruitment of Spn1 and its partner, Spt6, to the CYC1 gene. Like TATA binding protein and RNA polymerase II (RNAPII), Spn1 is constitutively recruited to the CYC1 promoter, although levels of transcription from this gene, which is regulated postrecruitment of RNAPII, are low. In contrast, Spt6 appears only after growth in conditions in which the gene is highly transcribed. Spn1 recruitment is via interaction with RNAPII, since an spn1 mutant defective for interaction with RNAPII is not targeted to the promoter, and Spn1 is necessary for Spt6 recruitment. Through a targeted genetic screen, strong and specific antagonizing interactions between SPN1 and genes encoding Swi/Snf subunits were identified. Like Spt6, Swi/Snf appears at CYC1 only after activation of the gene. However, Spt6 significantly precedes Swi/Snf occupancy at the promoter. In the absence of Spn1 recruitment, Swi/Snf is constitutively found at the promoter. These observations support a model whereby Spn1 negatively regulates RNAPII transcriptional activity by inhibiting recruitment of Swi/Snf to the CYC1 promoter, and this inhibition is abrogated by the Spn1-Spt6 interaction. These findings link Spn1 functions to the transition from an inactive to an actively transcribing RNAPII complex at a postrecruitment-regulated promoter.
Collapse
|
25
|
Human capping enzyme promotes formation of transcriptional R loops in vitro. Proc Natl Acad Sci U S A 2007; 104:17620-5. [PMID: 17978174 DOI: 10.1073/pnas.0708866104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cap formation is the first step of pre-mRNA processing in eukaryotic cells. Immediately after transcription initiation, capping enzyme (CE) is recruited to RNA polymerase II (Pol II) by the phosphorylated carboxyl-terminal domain of the Pol II largest subunit (CTD), allowing cotranscriptional capping of the nascent pre-mRNA. Recent studies have indicated that CE affects transcription elongation and have suggested a checkpoint model in which cotranscriptional capping is a necessary step for the early phase of transcription. To investigate further the role of the CTD in linking transcription and processing, we generated a fusion protein of the mouse CTD with T7 RNA polymerase (CTD-T7 RNAP). Unexpectedly, in vitro transcription assays with CTD-T7 RNAP showed that CE promotes formation of DNA.RNA hybrids or R loops. Significantly, phosphorylation of the CTD was required for CE-dependent R-loop formation (RLF), consistent with a critical role for the CTD in CE recruitment to the transcription complex. The guanylyltransferase domain was necessary and sufficient for RLF, but catalytic activity was not required. In vitro assays with appropriate synthetic substrates indicate that CE can promote RLF independent of transcription. ASF/SF2, a splicing factor known to prevent RLF, and GTP, which affects CE conformation, antagonized CE-dependent RLF. Our findings suggest that CE can play a direct role in transcription by modulating displacement of nascent RNA during transcription.
Collapse
|
26
|
Cheng B, Price DH. Properties of RNA polymerase II elongation complexes before and after the P-TEFb-mediated transition into productive elongation. J Biol Chem 2007; 282:21901-12. [PMID: 17548348 DOI: 10.1074/jbc.m702936200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The positive transcription elongation factor, P-TEFb, controls the fraction of initiated RNA polymerase II molecules that enter into the productive mode of elongation necessary to generate mRNAs. To better understand the mechanism of this transition into productive elongation we optimized a defined in vitro transcription system and compared results obtained with it to those obtained with a crude system. We found that controlling the function of TFIIF is a key aspect of RNA polymerase II elongation control. Before P-TEFb function, early elongation complexes under the control of negative factors are completely unresponsive to the robust elongation stimulatory activity of TFIIF. P-TEFb-mediated phosphorylation events, targeting the elongation complex containing DSIF and NELF, reverse the negative effect of DSIF and NELF and simultaneously facilitate the action of TFIIF. We also found that productive elongation complexes are completely resistant to negative elongation factors. Our data suggest that an additional factor(s) is involved in establishing the unique resistance activities of the elongation complexes before and after P-TEFb function. Furthermore, we provide evidence for the existence of another positive activity required for efficient function of P-TEFb. A model of the mechanism of P-TEFb-mediated elongation control is proposed in which P-TEFb induces the transition into productive elongation by changing the accessibility of elongation factors to elongation complexes. Our results have uncovered important properties of elongation complexes that allow a more complete understanding of how P-TEFb controls the elongation phases of transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Biochemistry, Molecular and Cellular Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
27
|
Razin SV. C-terminal domain of subunit Rpb1 of nuclear RNA polymerase II and its role in the transcription cycle. Mol Biol 2007; 41:387-94. [PMID: 17685218 DOI: 10.1134/s0026893307030053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent years are marked by drastic increase of interest in the role of chromatin in regulation of gene activity. In the seventies of the last century many studies were undertaken in order to identify different forms of histones involved in regulation on transcription. The results of these studies were conflicting. Determination of primary structures of the main forms of histones demonstrated the extreme conservativity of these proteins. Once the nucleosomes were discovered and their organization was studied, it became clear that nucleosome as a basic unit of chromatin is also highly conservative. This conception gradually changed in recent years. Many variant forms of nucleosomal core histones encoded by separate genes were discovered. In addition it was demonstrated that both canonical and variant forms of histones may by modified post-translationally in different ways. As a result, a possibility to assemble a number of different nucleosomal particles became evident. Furthermore, a clear correlation between certain modification of histones and DNA packaging in either active or inactive chromatin was established. Similarly, a correlation between formation of active (inactive) chromatin and incorporation of particular histone variants into nucleosomes was observed. To integrate all the above findings into the existing model of chromatin organization and functioning, the hypothesis of "histone code" was proposed. In this review the present state of our knowledge about chromatin organization and the role of this organization in transcription regulation will be discussed.
Collapse
|
28
|
Kopcewicz KA, O'Rourke TW, Reines D. Metabolic regulation of IMD2 transcription and an unusual DNA element that generates short transcripts. Mol Cell Biol 2007; 27:2821-9. [PMID: 17296737 PMCID: PMC1899919 DOI: 10.1128/mcb.02159-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation of IMD2 in yeast (Saccharomyces cerevisiae) is governed by the concentration of intracellular guanine nucleotide pools. The mechanism by which pool size is measured and transduced to the transcriptional apparatus is unknown. Here we show that DNA sequences surrounding the IMD2 initiation site constitute a repressive element (RE) involved in guanine regulation that contains a novel transcription-blocking activity. When this regulatory region is placed downstream of a heterologous promoter, short poly(A)(+) transcripts are generated. The element is orientation dependent, and sequences within the normally transcribed and nontranscribed regions of the element are required for its activity. The promoter-proximal short RNAs are unstable and serve as substrates for the nuclear exosome. These findings support a model in which intergenic short transcripts emanating from upstream of the IMD2 promoter are terminated by a polyadenylation/terminator-like signal embedded within the IMD2 transcription start site.
Collapse
Affiliation(s)
- Katarzyna A Kopcewicz
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | | | | |
Collapse
|
29
|
Mohamed MR, Piacente SC, Dickerman B, Niles EG. Effect of UTP sugar and base modifications on vaccinia virus early gene transcription. Virology 2006; 349:359-70. [PMID: 16460779 DOI: 10.1016/j.virol.2006.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/03/2005] [Accepted: 01/03/2006] [Indexed: 11/23/2022]
Abstract
Prior efforts demonstrated that RNA oligonucleotides containing the transcription termination signal UUUUUNU stimulate premature termination of vaccinia virus early gene transcription, in vitro. This observation suggests that viral transcription termination may be an attractive target for the development of anti-poxvirus agents. Since short RNA molecules are readily susceptible to nuclease digestion, their use would require stabilizing modifications. In order to evaluate the effect of both ribose and uracil modifications of the U5NU signal on early gene transcription termination, UTP derivatives harboring modifications to the uracil base, the 2' position of the ribose sugar and the phosphodiester bond were examined in an in vitro vaccinia virus early gene transcription termination system. Incorporation of 4-S-U, 5-methyl-U, 2-S-U, pseudo U and 2'-F-dU into the nascent transcript inhibited transcription termination. 6-aza-U, 2'-amino-U, 2'-azido-U and 2'-O methyl-U inhibited transcription elongation resulting in the accumulation of short transcripts. The majority of the short transcripts remained in the ternary complex and could be chased into full-length transcripts. Initially, derivatives of all uridines in the termination signal were tested. Partial modification of the termination signal reduced termination activity, as well. Introduction of 2'-O methyl ribose to the first three uridines of the U9 termination signal reduced the ability of U9 containing oligonucleotides to stimulate in vitro transcription termination, in trans. Further modifications eliminated this activity. Thus, viral early gene transcription termination demonstrates a rigorous requirement for a U5NU signal that is unable to tolerate modification to the base or sugar. Additionally, VTF was shown to enhance transcription elongation through the T9 sequence in the template. These results suggest that VTF may play a subtle role in early gene transcription elongation in addition to its known function in mRNA cap formation, early gene transcription termination and intermediate gene transcription initiation.
Collapse
Affiliation(s)
- Mohamed Ragaa Mohamed
- Department of Biochemistry, Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Transcription is coupled with the concomitant assembly of RNA-binding proteins to the nascent mRNA to generate a stable and export-competent mRNP particle. RNA-binding factors recruited at active transcription sites specify the processing, nuclear export, subcellular localization, translation and stability of the mRNA. The assembly of the mRNP particle starts with the association of the cap-binding protein complex followed by the splicing-dependent assembly of the exon-junction complex in intron-containing genes and by the binding of RNA-export adaptor proteins. New findings suggest that mRNP assembly is a genetically controlled process that plays a key role in gene expression and other cellular processes, including the maintenance of genome integrity.
Collapse
Affiliation(s)
- Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, 41012 Sevilla, Spain.
| |
Collapse
|
31
|
Abstract
The universal pre-mRNA processing events of 5' end capping, splicing, and 3' end formation by cleavage/polyadenylation occur co-transcriptionally. As a result, the substrate for mRNA processing factors is a nascent RNA chain that is being extruded from the RNA polymerase II exit channel at 10-30 bases per second. How do processing factors find their substrate RNAs and complete most mRNA maturation before transcription is finished? Recent studies suggest that this task is facilitated by a combination of protein-RNA and protein-protein interactions within a 'mRNA factory' that comprises the elongating RNA polymerase and associated processing factors. This 'factory' undergoes dynamic changes in composition as it traverses a gene and provides the setting for regulatory interactions that couple processing to transcriptional elongation and termination.
Collapse
Affiliation(s)
- David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, UCHSC at Fitzsimons, Aurora, Colorado 80045, USA.
| |
Collapse
|
32
|
Auboeuf D, Dowhan DH, Dutertre M, Martin N, Berget SM, O'Malley BW. A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol Cell Biol 2005; 25:5307-16. [PMID: 15964789 PMCID: PMC1156981 DOI: 10.1128/mcb.25.13.5307-5316.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Didier Auboeuf
- INSERM U685/AVENIR, Centre G. Hayem, Hôpital Saint Louis, Paris, France.
| | | | | | | | | | | |
Collapse
|
33
|
Bucheli ME, Buratowski S. Npl3 is an antagonist of mRNA 3' end formation by RNA polymerase II. EMBO J 2005; 24:2150-60. [PMID: 15902270 PMCID: PMC1150882 DOI: 10.1038/sj.emboj.7600687] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 04/28/2005] [Indexed: 11/09/2022] Open
Abstract
Proper 3' end formation is critical for the production of functional mRNAs. Termination by RNA polymerase II is linked to mRNA cleavage and polyadenylation, but it is less clear whether earlier stages of mRNA production also contribute to transcription termination. We performed a genetic screen to identify mutations that decreased transcriptional readthrough of a defective GAL10 poly(A) terminator. A partial deletion of the GAL10 downstream region leads to transcription through the downstream GAL7 promoter, resulting in the inability of cells to grow on galactose. Mutations in elongation factors Spt4 and Spt6 suppress the readthrough phenotype, presumably by decreasing the amount of polymerase transcribing through the downstream GAL7 promoter. Interestingly, mutations in the mRNA-binding protein Npl3 improve transcription termination. Both in vivo and in vitro experiments suggest that Npl3 can antagonize 3' end formation by competing for RNA binding with polyadenylation/termination factors. These results suggest that elongation rate and mRNA packaging can influence polyadenylation and termination.
Collapse
Affiliation(s)
- Miriam E Bucheli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA. Tel.: +1 617 432 0696; Fax: +1 617 738 0516; E-mail:
| |
Collapse
|