1
|
Quadalti C, Moretti M, Ferrazzi F, Calzà L, Giardino L, Baldassarro VA. Rat embryonic stem cell-based in vitro testing platform for mammalian embryo toxicology at pre- and post-implantation stages. FRONTIERS IN TOXICOLOGY 2025; 7:1561386. [PMID: 40406629 PMCID: PMC12095294 DOI: 10.3389/ftox.2025.1561386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/22/2025] [Indexed: 05/26/2025] Open
Abstract
Introduction The international guidelines outlining the mandatory developmental toxicology studies of new molecules on pre-implantation, post-implantation and organogenesis phases, require a minimum of 60 pregnant female rats for each molecule to be tested. To date, available in vitro methods still have many limitations, resulting in poor translational power. Methods In the present study, an innovative in vitro platform is proposed, based on rat embryonic stem cells (RESCs), which is easy to use and suitable for wide-scale screening, mimicking two different developmental stages: i) pre-implant model (undifferentiated pluripotent cells), ii) post-implant model (neuroectodermal lineage differentiation). Results The in vitro platform was validated by testing the toxicity on the pre-implant model of RA itself, as a known teratogen, a member of the environmental pollutant family per- and polyfluoroalkyl substances (PFAS), the perfluorooctanic acid (PFOA), and the endocrine disruptor chemical 2,2',6,6'-tetrabromobisphenol A (TBBPA) as test compound, targeting the thyroid hormone (TH) signal. The post-implant model showed inactivation of the pluripotent markers and activation of the neuroectodermal markers. The preimplant model resulted high responsive and sensitive to the embryotoxic effect of the tested compounds. The TBBPA was selected to test the potential effects of on viability and neuroectodermal differentiation, assessed through colorimetric and cell-based high-content screening methods establishing sub-toxic (20 μM) and toxic (40 μM) doses. A high-throughput gene expression array-based analysis showed a prompt response of the in vitro testing platform to TBBPA treatment. A rescue experiment exploiting a pan-thyroid receptor (pan-TR) inhibitor (1-850) showed that the effects of TBBPA on RESCs was blocked, demonstrating its activity through TRs. Discussion The RESCs-based platform allowed reproducible, robust and highly predictable results, thanks to the coupling of RESCs with high-throughput technologies. These results support the possible use of RESCs-based models as a screening platform for developmental toxicity testing to reduce the number of animals currently used for this aim.
Collapse
Affiliation(s)
- Corinne Quadalti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
| | - Marzia Moretti
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| | | | - Laura Calzà
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
| | - Luciana Giardino
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
| | - Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Sciences and Technology ICIR-HST, University of Bologna, Bologna, Italy
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Katerndahl CDS, Rogers ORS, Day RB, Xu Z, Helton NM, Ramakrishnan SM, Miller CA, Ley TJ. PML::RARA and GATA2 proteins interact via DNA templates to induce aberrant self-renewal in mouse and human hematopoietic cells. Proc Natl Acad Sci U S A 2024; 121:e2317690121. [PMID: 38648485 PMCID: PMC11067031 DOI: 10.1073/pnas.2317690121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The underlying mechanism(s) by which the PML::RARA fusion protein initiates acute promyelocytic leukemia is not yet clear. We defined the genomic binding sites of PML::RARA in primary mouse and human hematopoietic progenitor cells with V5-tagged PML::RARA, using anti-V5-PML::RARA chromatin immunoprecipitation sequencing and CUT&RUN approaches. Most genomic PML::RARA binding sites were found in regions that were already chromatin-accessible (defined by ATAC-seq) in unmanipulated, wild-type promyelocytes, suggesting that these regions are "open" prior to PML::RARA expression. We found that GATA binding motifs, and the direct binding of the chromatin "pioneering factor" GATA2, were significantly enriched near PML::RARA binding sites. Proximity labeling studies revealed that PML::RARA interacts with ~250 proteins in primary mouse hematopoietic cells; GATA2 and 33 others require PML::RARA binding to DNA for the interaction to occur, suggesting that binding to their cognate DNA target motifs may stabilize their interactions. In the absence of PML::RARA, Gata2 overexpression induces many of the same epigenetic and transcriptional changes as PML::RARA. These findings suggested that PML::RARA may indirectly initiate its transcriptional program by activating Gata2 expression: Indeed, we demonstrated that inactivation of Gata2 prior to PML::RARA expression prevented its ability to induce self-renewal. These data suggested that GATA2 binding creates accessible chromatin regions enriched for both GATA and Retinoic Acid Receptor Element motifs, where GATA2 and PML::RARA can potentially bind and interact with each other. In turn, PML::RARA binding to DNA promotes a feed-forward transcriptional program by positively regulating Gata2 expression. Gata2 may therefore be required for PML::RARA to establish its transcriptional program.
Collapse
Affiliation(s)
- Casey D. S. Katerndahl
- Division of Oncology, Department of Internal Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Olivia R. S. Rogers
- Division of Oncology, Department of Internal Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Ryan B. Day
- Division of Oncology, Department of Internal Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Ziheng Xu
- Division of Oncology, Department of Internal Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Nichole M. Helton
- Division of Oncology, Department of Internal Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Sai Mukund Ramakrishnan
- Division of Oncology, Department of Internal Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Christopher A. Miller
- Division of Oncology, Department of Internal Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Timothy J. Ley
- Division of Oncology, Department of Internal Medicine, Section of Stem Cell Biology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
3
|
Aktar A, Heit B. Role of the pioneer transcription factor GATA2 in health and disease. J Mol Med (Berl) 2023; 101:1191-1208. [PMID: 37624387 DOI: 10.1007/s00109-023-02359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
The transcription factor GATA2 is involved in human diseases ranging from hematopoietic disorders, to cancer, to infectious diseases. GATA2 is one of six GATA-family transcription factors that act as pioneering transcription factors which facilitate the opening of heterochromatin and the subsequent binding of other transcription factors to induce gene expression from previously inaccessible regions of the genome. Although GATA2 is essential for hematopoiesis and lymphangiogenesis, it is also expressed in other tissues such as the lung, prostate gland, gastrointestinal tract, central nervous system, placenta, fetal liver, and fetal heart. Gene or transcriptional abnormalities of GATA2 causes or predisposes patients to several diseases including the hematological cancers acute myeloid leukemia and acute lymphoblastic leukemia, the primary immunodeficiency MonoMAC syndrome, and to cancers of the lung, prostate, uterus, kidney, breast, gastric tract, and ovaries. Recent data has also linked GATA2 expression and mutations to responses to infectious diseases including SARS-CoV-2 and Pneumocystis carinii pneumonia, and to inflammatory disorders such as atherosclerosis. In this article we review the role of GATA2 in the etiology and progression of these various diseases.
Collapse
Affiliation(s)
- Amena Aktar
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology; the Western Infection, Immunity and Inflammation Centre, The University of Western Ontario, London, ON, N6A 5C1, Canada.
- Robarts Research Institute, London, ON, N6A 3K7, Canada.
| |
Collapse
|
4
|
A feedback loop between GATA2-AS1 and GATA2 promotes colorectal cancer cell proliferation, invasion, epithelial-mesenchymal transition and stemness via recruiting DDX3X. J Transl Med 2022; 20:287. [PMID: 35752837 PMCID: PMC9233859 DOI: 10.1186/s12967-022-03483-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor with a high risk of metastasis. Long non-coding RNAs (lncRNAs) have been reported to be implicated in cancer progression via regulating its nearby gene. Herein, we investigated the function of GATA binding protein 2 (GATA2) and lncRNA GATA2 antisense RNA 1 (GATA2-AS1) in CRC and the mechanism underlying their interaction. METHODS Colony formation assay, flow cytometry analysis and transwell assay were implemented to detect cell proliferation, apoptosis and invasion. Western blot analysis and sphere formation assay were conducted to assess epithelial-mesenchymal transition (EMT) and cancer stemness of CRC cells. RNA pull down, RNA-binding protein immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and luciferase reporter assays were implemented to investigate the regulatory mechanism between GATA2-AS1 and GATA2. RESULTS GATA2-AS1 and GATA2 were highly expressed in CRC cells. Knockdown of GATA2-AS1 and GATA2 impeded CRC cell proliferation, invasion, EMT and cancer stemness, and induced cell apoptosis. GATA2-AS1 expression was positively correlated with GATA2. GATA2-AS1 recruited DEAD-box helicase 3 X-linked (DDX3X) to stabilize GATA2 mRNA. GATA2 combined with GATA2-AS1 promoter to enhance GATA2-AS1 expression. CONCLUSION Our study confirmed that a feedback loop between GATA2-AS1 and GATA2 promotes CRC progression, which might offer novel targets for CRC treatment.
Collapse
|
5
|
Leszczyński P, Śmiech M, Salam Teeli A, Haque E, Viger R, Ogawa H, Pierzchała M, Taniguchi H. Deletion of the Prdm3 Gene Causes a Neuronal Differentiation Deficiency in P19 Cells. Int J Mol Sci 2020; 21:ijms21197192. [PMID: 33003409 PMCID: PMC7582457 DOI: 10.3390/ijms21197192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.
Collapse
Affiliation(s)
- Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Magdalena Śmiech
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Robert Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC GIV4G2, Canada;
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC G1V0A6, Canada
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan;
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology, Department of Genomics and Biodiversity, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
6
|
CHD8 dosage regulates transcription in pluripotency and early murine neural differentiation. Proc Natl Acad Sci U S A 2020; 117:22331-22340. [PMID: 32839322 DOI: 10.1073/pnas.1921963117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The chromatin remodeler CHD8 is among the most frequently mutated genes in autism spectrum disorder (ASD). CHD8 has a dosage-sensitive role in ASD, but when and how it becomes critical to human social function is unclear. Here, we conducted genomic analyses of heterozygous and homozygous Chd8 mouse embryonic stem cells and differentiated neural progenitors. We identify dosage-sensitive CHD8 transcriptional targets, sites of regulated accessibility, and an unexpected cooperation with SOX transcription factors. Collectively, our findings reveal that CHD8 negatively regulates expression of neuronal genes to maintain pluripotency and also during differentiation. Thus, CHD8 is essential for both the maintenance of pluripotency and neural differentiation, providing mechanistic insight into its function with potential implications for ASD.
Collapse
|
7
|
Alsayegh K, Cortés-Medina LV, Ramos-Mandujano G, Badraiq H, Li M. Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators. Curr Genomics 2019; 20:438-452. [PMID: 32194342 PMCID: PMC7062042 DOI: 10.2174/1389202920666191017163837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.
Collapse
Affiliation(s)
- Khaled Alsayegh
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heba Badraiq
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mo Li
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Todd L, Suarez L, Quinn C, Fischer AJ. Retinoic Acid-Signaling Regulates the Proliferative and Neurogenic Capacity of Müller Glia-Derived Progenitor Cells in the Avian Retina. Stem Cells 2017; 36:392-405. [PMID: 29193451 DOI: 10.1002/stem.2742] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Abstract
In the retina, Müller glia have the potential to become progenitor cells with the ability to proliferate and regenerate neurons. However, the ability of Müller glia-derived progenitor cells (MGPCs) to proliferate and produce neurons is limited in higher vertebrates. Using the chick model system, we investigate how retinoic acid (RA)-signaling influences the proliferation and the formation of MGPCs. We observed an upregulation of cellular RA binding proteins (CRABP) in the Müller glia of damaged retinas where the formation of MGPCs is known to occur. Activation of RA-signaling was stimulated, whereas inhibition suppressed the proliferation of MGPCs in damaged retinas and in fibroblast growth factor 2-treated undamaged retinas. Furthermore, inhibition of RA-degradation stimulated the proliferation of MGPCs. Levels of Pax6, Klf4, and cFos were upregulated in MGPCs by RA agonists and downregulated in MGPCs by RA antagonists. Activation of RA-signaling following MGPC proliferation increased the percentage of progeny that differentiated as neurons. Similarly, the combination of RA and insulin-like growth factor 1 (IGF1) significantly increased neurogenesis from retinal progenitors in the circumferential marginal zone (CMZ). In summary, RA-signaling stimulates the formation of proliferating MGPCs and enhances the neurogenic potential of MGPCs and stem cells in the CMZ. Stem Cells 2018;36:392-405.
Collapse
Affiliation(s)
- Levi Todd
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lilianna Suarez
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Colin Quinn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Comparative Analysis of Quantitative Parameters of Expression of the Retinoic Acid Nuclear Receptor RARα Gene and APE1/YB-1/MDR1 Pattern Genes in Patients with Newly Detected Multiple Myeloma. Bull Exp Biol Med 2017; 164:90-94. [DOI: 10.1007/s10517-017-3931-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 12/17/2022]
|
10
|
Xu W, Jia G, Davie JR, Murphy L, Kratzke R, Banerji S. A 10-Gene Yin Yang Expression Ratio Signature for Stage IA and IB Non-Small Cell Lung Cancer. J Thorac Oncol 2016; 11:2150-2160. [PMID: 27498386 DOI: 10.1016/j.jtho.2016.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Lung cancer is the leading killer cancer worldwide. There is an urgent need for easy-to-use and robust clinical gene signatures for improved prognosis and treatment prediction. METHODS We used a gene expression signature termed the Yin and Yang mean ratio (YMR), which is based on two groups of genes with opposing function, to determine lung cancer prognosis. The YMR signature represents the relative state of an individual tumor on a gene expression spectrum ranging from malignancy to the normal healthy lung. The genes in the YMR signature have therefore been determined independently of survival time, which is different from previous regression models. We then leveraged the cross-platform utility of the YMR signature to optimize the signature into a smaller set of genes that validated the robustness of the signature in many independent lung cancer expression data sets. RESULTS Four Yin and six Yang genes were optimized using 741 NSCLC cases from diverse platforms, including microarray and RNA sequencing. The 10-gene signature demonstrated significant differences in survival in eight individual independent data sets and a larger combined 1346-patient data set. When multivariate analysis taking into account other common predictors of survival was used, the 5-year recurrence-free rate of YMR (p = 6.4 × 10-6, HR =1.71 [1.36-2.16]) was secondary only to stage. The YMR signature significantly separated high- and low-risk patients with stage IA or 1B adenocarcinoma and squamous cell carcinomas of all stages. The YMR signature can also predict the benefit of adjuvant chemotherapy in high-risk patients with stage I NSCLC. CONCLUSIONS The YMR signature has great potential for guiding clinical management for NSCLC, particularly early-stage disease. The signature appears more reproducible than older signatures and functions using a variety of common gene expression platforms.
Collapse
Affiliation(s)
- Wayne Xu
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Gaofeng Jia
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leigh Murphy
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert Kratzke
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Shantanu Banerji
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada; Section of Hematology and Oncology, Department of Internal Medicine, Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Medical Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Kalitin NN, Karamysheva AF. RARα mediates all-trans-retinoic acid-induced VEGF-C, VEGF-D, and VEGFR3 expression in lung cancer cells. Cell Biol Int 2016; 40:456-64. [PMID: 26818829 DOI: 10.1002/cbin.10587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/22/2016] [Indexed: 11/08/2022]
Abstract
The regulation of vascular endothelial growth factors C (VEGF-C) and D (VEGF-D), and their receptor VEGFR3 gene and protein expression by all-trans-retinoic acid (atRA) in A549 lung cancer cells, was investigated. We showed that atRA treatment increased VEGF-C, VEGF-D, and VEGFR3 protein and mRNA contents in dose-dependent manner. atRA-mediated increase of both ligands and receptor expression correlated with the elevated level of retinoic acid receptor α (RARα) expression, while the level of another atRA receptor, peroxisome proliferator-activated receptor β/δ (PPARβ/δ), was decreased. We demonstrated that the classical counterpart of RARα, retinoid X receptor α (RXRα), was down-regulated in both cytoplasm and nucleus of A549 cells upon atRA addition. On the contrary, the nuclear quantity of another possible RARα counterpart, transcription factor Sp1, was increased after atRA treatment.
Collapse
Affiliation(s)
- Nikolay N Kalitin
- Laboratory of Tumor Cell Genetics, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, 115478, Russia
| | - Aida F Karamysheva
- Laboratory of Tumor Cell Genetics, Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, 115478, Russia
| |
Collapse
|
12
|
Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, Agalarov Y, Demir CS, Lawrence DM, Sutton DL, Tabruyn SP, Miura N, Salminen M, Petrova TV, Matthews JM, Hahn CN, Scott HS, Harvey NL. GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest 2015. [PMID: 26214525 DOI: 10.1172/jci78888] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.
Collapse
|
13
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
14
|
Manna PR, Slominski AT, King SR, Stetson CL, Stocco DM. Synergistic activation of steroidogenic acute regulatory protein expression and steroid biosynthesis by retinoids: involvement of cAMP/PKA signaling. Endocrinology 2014; 155:576-91. [PMID: 24265455 PMCID: PMC3891939 DOI: 10.1210/en.2013-1694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both retinoic acid receptors (RARs) and retinoid X receptors (RXRs) mediate the action of retinoids that play important roles in reproductive development and function, as well as steroidogenesis. Regulation of steroid biosynthesis is principally mediated by the steroidogenic acute regulatory protein (StAR); however, the modes of action of retinoids in the regulation of steroidogenesis remain obscure. In this study we demonstrate that all-trans retinoic acid (atRA) enhances StAR expression, but not its phosphorylation (P-StAR), and progesterone production in MA-10 mouse Leydig cells. Activation of the protein kinase A (PKA) cascade, by dibutyrl-cAMP or type I/II PKA analogs, markedly increased retinoid-responsive StAR, P-StAR, and steroid levels. Targeted silencing of endogenous RARα and RXRα, with small interfering RNAs, resulted in decreases in 9-cis RA-stimulated StAR and progesterone levels. Truncation of and mutational alterations in the 5'-flanking region of the StAR gene demonstrated the importance of the -254/-1-bp region in retinoid responsiveness. An oligonucleotide probe encompassing an RXR/liver X receptor recognition motif, located within the -254/-1-bp region, specifically bound MA-10 nuclear proteins and in vitro transcribed/translated RXRα and RARα in EMSAs. Transcription of the StAR gene in response to atRA and dibutyrl-cAMP was influenced by several factors, its up-regulation being dependent on phosphorylation of cAMP response-element binding protein (CREB). Chromatin immunoprecipitation studies revealed the association of phosphorylation of CREB, CREB binding protein, RXRα, and RARα to the StAR promoter. Further studies elucidated that hormone-sensitive lipase plays an important role in atRA-mediated regulation of the steroidogenic response that involves liver X receptor signaling. These findings delineate the molecular events by which retinoids influence cAMP/PKA signaling and provide additional and novel insight into the regulation of StAR expression and steroidogenesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry (P.R.M., S.R.K., D.M.S.), Department of Dermatology and Pathology (C.L.S.), Texas Tech University Health Sciences Center, Lubbock, Texas 79430; and Department of Pathology and Laboratory Medicine (A.T.S.), University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | | | | | | | | |
Collapse
|
15
|
Rubel CA, Franco HL, Jeong JW, Lydon JP, DeMayo FJ. GATA2 is expressed at critical times in the mouse uterus during pregnancy. Gene Expr Patterns 2012; 12:196-203. [PMID: 22476030 DOI: 10.1016/j.gep.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 11/27/2022]
Abstract
In mammals, such as mouse and human, timely production of the progesterone receptor (PR) in the proper uterine compartments is critical for preparing the uterus for the initiation and maintenance of pregnancy. Developmentally, the expression of GATA2, a member of the six member zinc-finger family of transcription factors, has been shown to be necessary for multiple non-related tissues, such as the hematopoietic system, adipose maturation and the urogential system. We recently identified Gata2 as a potential progesterone target gene in the mouse uterus; however, the expression of the GATA genes in the mouse uterus during pregnancy has not been demonstrated. In the present study, we examined the expression of GATA2 protein during the phases of pregnancy, including early pregnancy where progesterone (P4) signaling is critical in order to facilitate the window of receptivity for embryo implantation and during the decidualization of the uterine stroma, a process of cellular proliferation and differentiation which is necessary for maintenance of the invading embryo until placentation occurs. Here, we report that GATA2 protein is expressed in the uterine luminal and glandular epithelium pre-implantation, spatio-temporally co-localizing with that of the PR. Additionally, GATA2 continues to be expressed in the decidualized stroma throughout early pregnancy indicating a role in the maintenance of decidual cells. Based on these findings, we conclude that GATA2 is expressed during critical phases of early pregnancy, similar to that of the PR, and that it may play a major role in mediating P4 signaling in the mouse uterus.
Collapse
Affiliation(s)
- Cory A Rubel
- One Baylor Plaza, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
16
|
The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol 2011; 82:1-17. [PMID: 21605981 DOI: 10.1016/j.critrevonc.2011.04.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/18/2011] [Accepted: 04/21/2011] [Indexed: 11/23/2022] Open
Abstract
Hematopoiesis involves an elaborate regulatory network of transcription factors that coordinates the expression of multiple downstream genes, and maintains homeostasis within the hematopoietic system through the accurate orchestration of cellular proliferation, differentiation and survival. As a result, defects in the expression levels or the activity of these transcription factors are intimately linked to hematopoietic disorders, including leukemia. The GATA family of nuclear regulatory proteins serves as a prototype for the action of lineage-restricted transcription factors. GATA1 and GATA2 are expressed principally in hematopoietic lineages, and have essential roles in the development of multiple hematopoietic cells, including erythrocytes and megakaryocytes. Moreover, GATA2 is crucial for the proliferation and maintenance of hematopoietic stem cells and multipotential progenitors. In this review, we summarize the current knowledge regarding the biological properties and functions of the GATA2 transcription factor in normal and malignant hematopoiesis.
Collapse
|
17
|
Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell–derived hemato-vascular precursors. Blood 2010; 116:4786-94. [DOI: 10.1182/blood-2010-01-263335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Current induction schemes directing hematopoietic differentiation of human embryonic stem cells (hESCs) are not well defined to mimic the sequential stages of hematopoietic development in vivo. Here, we report a 3-stage method to direct differentiation of hESCs toward hematopoietic progenitors in chemically defined mediums. In the first 2 stages, we efficiently generated T-positive primitive streak/mesendoderm cells and kinase domain receptor–positive (KDR+) platelet-derived growth factor receptor α–negative (PDGFRα−) hemato-vascular precursors sequentially. In the third stage, we found that cells in a spontaneous differentiation condition mainly formed erythroid colonies. Addition of all-trans retinoic acid (RA) greatly enhanced generation of hematopoietic progenitors in this stage while suppressing erythroid development. The RA-treated cells highly expressed definitive hematopoietic genes, formed large numbers of multilineage and myeloid colonies, and gave rise to greater than 45% CD45+ hematopoietic cells. When hematopoietic progenitors were selected with CD34 and C-Kit, greater than 95% CD45+ hematopoietic cells could be generated. In addition, we found that endogenous RA signaling at the second stage was required for vascular endothelial growth factor/basic fibroblast growth factor–induced hemato-vascular specification, whereas exogenously applied RA efficiently induced KDR−PDGFRα+ paraxial mesoderm cells. Our study suggests that RA signaling plays diverse roles in human mesoderm and hematopoietic development.
Collapse
|
18
|
Figueira ACM, Polikarpov I, Veprintsev D, Santos GM. Dissecting the Relation between a nuclear receptor and GATA: binding affinity studies of thyroid hormone receptor and GATA2 on TSHβ promoter. PLoS One 2010; 5:e12628. [PMID: 20838640 PMCID: PMC2935386 DOI: 10.1371/journal.pone.0012628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/16/2010] [Indexed: 01/08/2023] Open
Abstract
Background Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up- or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSHβ) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings In an effort to better understand the mechanism that drives TSHβ down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSHβ promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSHβ promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.
Collapse
Affiliation(s)
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Dmitry Veprintsev
- Biomolecular Research Laboratory, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | |
Collapse
|
19
|
van der Pouw Kraan TCTM, Schirmer SH, Fledderus JO, Moerland PD, Baggen JM, Leyen TA, van der Laan AM, Piek JJ, van Royen N, Horrevoets AJG. Expression of a retinoic acid signature in circulating CD34 cells from coronary artery disease patients. BMC Genomics 2010; 11:388. [PMID: 20565948 PMCID: PMC2901320 DOI: 10.1186/1471-2164-11-388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/21/2010] [Indexed: 11/12/2022] Open
Abstract
Background Circulating CD34+ progenitor cells have the potential to differentiate into a variety of cells, including endothelial cells. Knowledge is still scarce about the transcriptional programs used by CD34+ cells from peripheral blood, and how these are affected in coronary artery disease (CAD) patients. Results We performed a whole genome transcriptome analysis of CD34+ cells, CD4+ T cells, CD14+ monocytes, and macrophages from 12 patients with CAD and 11 matched controls. CD34+ cells, compared to other mononuclear cells from the same individuals, showed high levels of KRAB box transcription factors, known to be involved in gene silencing. This correlated with high expression levels in CD34+ cells for the progenitor markers HOXA5 and HOXA9, which are known to control expression of KRAB factor genes. The comparison of expression profiles of CD34+ cells from CAD patients and controls revealed a less naïve phenotype in patients' CD34+ cells, with increased expression of genes from the Mitogen Activated Kinase network and a lowered expression of a panel of histone genes, reaching levels comparable to that in more differentiated circulating cells. Furthermore, we observed a reduced expression of several genes involved in CXCR4-signaling and migration to SDF1/CXCL12. Conclusions The altered gene expression profile of CD34+ cells in CAD patients was related to activation/differentiation by a retinoic acid-induced differentiation program. These results suggest that circulating CD34+ cells in CAD patients are programmed by retinoic acid, leading to a reduced capacity to migrate to ischemic tissues.
Collapse
Affiliation(s)
- Tineke C T M van der Pouw Kraan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat, 1081BT Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cai K, Gudas LJ. Retinoic acid receptors and GATA transcription factors activate the transcription of the human lecithin:retinol acyltransferase gene. Int J Biochem Cell Biol 2009; 41:546-53. [PMID: 18652909 PMCID: PMC2628449 DOI: 10.1016/j.biocel.2008.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/13/2008] [Accepted: 06/21/2008] [Indexed: 11/29/2022]
Abstract
Lecithin:retinol acyltransferase (LRAT) catalyzes the esterification of retinol (vitamin A). Retinyl esters and LRAT protein levels are reduced in many types of cancer cells. We present data that both the LRAT and retinoic acid receptor beta(2) (RARbeta(2)) mRNA levels in the human prostate cancer cell line PC-3 are lower than those in cultured normal human prostate epithelial cells (PrEC). The activity of the human LRAT promoter (2.0 kb) driving a luciferase reporter gene in PC-3 cells is less than 40% of that in PrEC cells. Retinoic acid (RA) treatment increased this LRAT promoter-luciferase activity in PrEC cells, but not in PC-3 cells. Deletion of various regions of the human LRAT promoter demonstrated that a 172-bp proximal promoter region is essential for LRAT transcription and confers RA responsiveness in PrEC cells. This 172-bp region, contained within the 186 bp pLRAT/luciferase construct, has five putative GATA binding sites. Cotransfection of RARbeta(2) or RARgamma and the transcription factor GATA-4 increased LRAT (pLRAT186) promoter activity in both PrEC and PC-3 cells. In addition, we found that both retinoic acid and retinol induced transcripts for the STRA6 gene, which encodes a membrane receptor involved in retinol (vitamin A) uptake, in PrEC cells but not in PC-3 cells. In summary, our data show that the transcriptional regulation of the human LRAT gene is aberrant in human prostate cancer cells and that GATA transcription factors are involved in the transcriptional activation of LRAT in PrEC cells.
Collapse
Affiliation(s)
- Kun Cai
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021, USA
| | | |
Collapse
|
21
|
Gupta P, Ho PC, Huq MDM, Ha SG, Park SW, Khan AA, Tsai NP, Wei LN. Retinoic acid-stimulated sequential phosphorylation, PML recruitment, and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression. Proc Natl Acad Sci U S A 2008; 105:11424-9. [PMID: 18682553 PMCID: PMC2516243 DOI: 10.1073/pnas.0710561105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Indexed: 11/18/2022] Open
Abstract
We previously reported an intricate mechanism underlying the homeostasis of Oct4 expression in normally proliferating stem cell culture of P19, mediated by SUMOylation of orphan nuclear receptor TR2. In the present study, we identify a signaling pathway initiated from the nongenomic activity of all-trans retinoic acid (atRA) to stimulate complex formation of extracellular signal-regulated kinase 2 (ERK2) with its upstream kinase, mitogen-activated protein kinase kinase (MEK). The activated ERK2 phosphorylates threonine-210 (Thr-210) of TR2, stimulating its subsequent SUMOylation. Dephosphorylated TR2 recruits coactivator PCAF and functions as an activator for its target gene Oct4. Upon phosphorylation at Thr-210, TR2 increasingly associates with promyelocytic leukemia (PML) nuclear bodies, becomes SUMOylated, and recruits corepressor RIP140 to act as a repressor for its target, Oct4. To normally proliferating P19 stem cell culture, exposure to a physiological concentration of atRA triggers a rapid nongenomic signaling cascade to suppress Oct4 gene and regulate cell proliferation.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Ping-Chih Ho
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - MD Mostaqul Huq
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Sung Gil Ha
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Amjad Ali Khan
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Nien-Pei Tsai
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|
22
|
Mast cell transcriptional networks. Blood Cells Mol Dis 2008; 41:82-90. [PMID: 18406636 DOI: 10.1016/j.bcmd.2008.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/06/2008] [Indexed: 11/20/2022]
Abstract
Unregulated activation of mast cells can contribute to the pathogenesis of inflammatory and allergic diseases, including asthma, rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. Absence of mast cells in animal models can lead to impairment in the innate immune response to parasites and bacterial infections. Aberrant clonal accumulation and proliferation of mast cells can result in a variety of diseases ranging from benign cutaneous mastocytosis to systemic mastocytosis or mast cell leukemia. Understanding mast cell differentiation provides important insights into mechanisms of lineage selection during hematopoiesis and can provide targets for new drug development to treat mast cell disorders. In this review, we discuss controversies related to development, sites of origin, and the transcriptional program of mast cells.
Collapse
|
23
|
Gene transactivation without direct DNA binding defines a novel gain-of-function for PML-RARα. Blood 2008; 111:1634-43. [DOI: 10.1182/blood-2007-04-081125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractPML-RARα is the causative oncogene in 5% to 10% of the cases of acute myeloid leukemia. At physiological concentrations of retinoic acid, PML-RARα silences RARα target genes, blocking differentiation of the cells. At high concentrations of ligand, it (re)activates the transcription of target genes, forcing terminal differentiation. The study of RARα target genes that mediate this differentiation has identified several genes that are important for proliferation and differentiation control in normal and malignant hematopoietic cells. In this paper, we show that the PML-RARα fusion protein not only interferes with the transcription of regular RARα target genes. We show that the ID1 and ID2 promoters are activated by PML-RARα but, unexpectedly, not by wild-type RARα/RXR. Our data support a model in which the PML-RARα fusion protein regulates a novel class of target genes by interaction with the Sp1 and NF-Y transcription factors, without directly binding to the DNA, defining a gain-of-function for the oncoprotein.
Collapse
|
24
|
A possible anti-proliferative and anti-metastatic effect of irradiated riboflavin in solid tumours. Cancer Lett 2007; 258:126-34. [DOI: 10.1016/j.canlet.2007.08.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 08/27/2007] [Accepted: 08/31/2007] [Indexed: 11/19/2022]
|
25
|
Annabi B, Currie JC, Moghrabi A, Béliveau R. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leuk Res 2007; 31:1277-1284. [PMID: 17081606 DOI: 10.1016/j.leukres.2006.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/27/2006] [Accepted: 10/04/2006] [Indexed: 10/25/2022]
Abstract
Matrix metalloproteinase (MMP)-9 expression is linked with myeloid cell differentiation, as well as inflammation and angiogenesis processes related to cancer progression. MMP-9 secretion and macrophage-like HL-60 myeloid leukemia cells differentiation were triggered by the tumor-promoting agent PMA. The chemopreventive effects of green tea catechins epigallocatechin-gallate, catechin-gallate, and epicatechin-gallate, but not those catechins that lack a 3'-galloyl group, inhibited in a time- and dose-dependent manner MMP-9 secretion. The gene and protein expression of MMP-9 and of the mRNA stabilizing factor HuR were also inhibited, while that of the 67 kDa laminin receptor remained unaffected. Specific catechins may help optimize current chemotherapeutic treatment protocols for leukemia.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
26
|
Abstract
The PLZF gene is one of five partners fused to the retinoic acid receptor alpha in acute promyelocytic leukemia. PLZF encodes a DNA-binding transcriptional repressor and the PLZF-RARalpha fusion protein like other RARalpha fusions can inhibit the genetic program mediated by the wild tpe retinoic acid receptor. However an increasing body of literature indicates an important role for the PLZF gene in growth control and development. This information suggests that loss of PLZF function might also contribute to leukemogenesis.
Collapse
Affiliation(s)
- M J McConnell
- Division of Hematology/Oncology, Northwestern University, Feinberg School of Medicine, 303 E Superior St, Chicago, IL 60611, USA
| | | |
Collapse
|
27
|
Matsushita A, Sasaki S, Kashiwabara Y, Nagayama K, Ohba K, Iwaki H, Misawa H, Ishizuka K, Nakamura H. Essential role of GATA2 in the negative regulation of thyrotropin beta gene by thyroid hormone and its receptors. Mol Endocrinol 2007; 21:865-84. [PMID: 17244762 DOI: 10.1210/me.2006-0208] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously we reported that the negative regulation of the TSHbeta gene by T(3) and its receptor [thyroid hormone receptor (TR)] is observed in CV1 cells when GATA2 and Pit1 are introduced. Using this system, we further studied the mechanism of TSHbeta inhibition. The negative regulatory element (NRE), which had been reported to mediate T(3)-bound TR (T(3)-TR)-dependent inhibition, is dispensable, because deletion or mutation of NRE did not impair suppression. The reporter construct, TSHbeta-D4-chloramphenicol acetyltransferase, which possesses only the binding sites for Pit1 and GATA2, was activated by GATA2 alone, and this transactivation was specifically inhibited by T(3)-TR. The Zn finger region of GATA2 interacts with the DNA-binding domain of TR in a T(3)-independent manner. The suppression by T(3)-TR was impaired by overexpression of a dominant-negative type TR-associated protein (TRAP) 220, an N- and C-terminal deletion construct, indicating the participation of TRAP220. Chromatin immunoprecipitation assays with a thyrotroph cell line, TalphaT1, revealed that T(3) treatment recruited histone deacetylase 3, reduced the acetylation of histone H4, and caused the dissociation of TRAP220 within 15-30 min. The reduction of histone H4 acetylation was transient, whereas the dissociation of TRAP220 persisted for a longer period. In the negative regulation of the TSHbeta gene by T(3)-TR we report that 1) GATA2 is the major transcriptional activator of the TSHbeta gene, 2) the putative NRE previously reported is not required, 3) TR-DNA-binding domain directly interacts with the Zn finger region of GATA2, and 4) histone deacetylation and TRAP220 dissociation are important.
Collapse
Affiliation(s)
- Akio Matsushita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Antoun J, Amet Y, Simon B, Dréano Y, Corlu A, Corcos L, Salaun JP, Plée-Gautier E. CYP4A11 is repressed by retinoic acid in human liver cells. FEBS Lett 2006; 580:3361-7. [PMID: 16712844 DOI: 10.1016/j.febslet.2006.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 04/28/2006] [Accepted: 05/03/2006] [Indexed: 12/31/2022]
Abstract
CYP4A11, the major fatty acid omega-hydroxylase in human liver is involved in the balance of lipids, but its role and regulation are both poorly understood. We studied the effects of retinoids on the regulation of CYP4A11 in the human hepatoma cell line HepaRG. Treatment of HepaRG cells with all-trans-retinoic acid resulted in a strong decrease in CYP4A11 gene expression and apoprotein content and, furthermore, was associated with a 50% decrease in the microsomal lauric acid hydroxylation activity. Such a strong suppression of CYP4A11 expression by retinoids could have a major impact on fatty acid metabolism in the liver.
Collapse
Affiliation(s)
- Joseph Antoun
- EA-948 Laboratoire de Biochimie, Faculté de Médecine et des Sciences de la Santé, CS 93837, Brest, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kitajima K, Tanaka M, Zheng J, Yen H, Sato A, Sugiyama D, Umehara H, Sakai E, Nakano T. Redirecting differentiation of hematopoietic progenitors by a transcription factor, GATA-2. Blood 2006; 107:1857-63. [PMID: 16254139 DOI: 10.1182/blood-2005-06-2527] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
GATA-2 is a zinc finger transcription factor essential for differentiation of immature hematopoietic cells. We analyzed the function of GATA-2 by a combined method of tetracycline-dependent conditional gene expression and in vitro hematopoietic differentiation from mouse embryonic stem (ES) cells using OP9 stroma cells (OP9 system). In the presence of macrophage colony-stimulating factor (M-CSF), the OP9 system induced macrophage differentiation. GATA-2 expression in this system inhibited macrophage differentiation and redirected the fate of hematopoietic differentiation to other hematopoietic lineages. GATA-2 expression commencing at day 5 or day 6 induced megakaryocytic or erythroid differentiation, respectively. Expression levels of PU.1, a hematopoietic transcription factor that interferes with GATA-2, appeared to play a critical role in differentiation to megakaryocytic or erythroid lineages. Transcription of PU.1 was affected by histone acetylation induced by binding of GATA-2 to the PU.1 promoter region. This study demonstrates that the function of GATA-2 is modified in a context-dependent manner by expression of PU.1, which in turn is regulated by GATA-2.
Collapse
Affiliation(s)
- Kenji Kitajima
- Department of Pathology, Medical School and Graduate School of Frontier Biosciences, Osaka University, Yamada-oka 2-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martins Cavagis AD, Ferreira CV, Versteeg HH, Assis CF, Bos CL, Bleuming SA, Diks SH, Aoyama H, Peppelenbosch MP. Tetrahydroxyquinone induces apoptosis of leukemia cells through diminished survival signaling. Exp Hematol 2006; 34:188-96. [PMID: 16459187 DOI: 10.1016/j.exphem.2005.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 10/05/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Tetrahydroxyquinone is a molecule best known as a primitive anticataract drug but is also a highly redox active molecule that can take part in a redox cycle with semiquinone radicals, leading to the formation of reactive oxygen species (ROS). Its potential as an anticancer drug has not been investigated. METHODS The effects of tetrahydroxyquinone on HL60 leukemia cells are investigated using fluorescein-activated cell sorting-dependent detection of phosphatidylserine exposure combined with 7-amino-actinomycin D exclusion, via Western blotting using phosphospecific antibodies, and by transfection of constitutively active protein kinase B. RESULTS We observe that in HL60 leukemia cells tetrahydroxyquinone causes ROS production followed by apoptosis through the mitochondrial pathway, whereas cellular physiology of normal human blood leukocytes was not affected by tetrahydroxyquinone. The antileukemic effect of tetrahydroxyquinone is accompanied by reduced activity of various antiapoptotic survival molecules including the protein kinase B pathway. Importantly, transfection of protein kinase B into HL60 cells and thus artificially increasing protein kinase B activity inhibits tetrahydroxyquinone-dependent cytotoxicity. CONCLUSION Tetrahydroxyquinone provokes cytotoxic effects on leukemia cells by reduced protein kinase B-dependent survival signaling followed by apoptosis through the mitochondrial pathway. Thus, tetrahydroxyquinone may be representative of a novel class of chemotherapeutic drugs, inducing apoptosis in cancer cells through diminished survival signaling possibly as a consequence of ROS generation.
Collapse
Affiliation(s)
- Alexandre D Martins Cavagis
- Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The discovery that retinoic acid efficiently stimulates the terminal differentiation of granulocytic leukemia cells had a major impact on clinical hematology, but has also inspired research into the normal function of the retinoid signaling pathway during hematopoiesis. New animal models and loss-of-function approaches have successfully revealed requirements for the pathway at defined embryonic stages that are relevant for distinct hematopoietic cell populations. For example, novel insight has been gained regarding the function of retinoids in yolk sac hematovascular development, fetal erythropoiesis, T-cell homing, and hematopoietic stem and progenitor cell biology. The lessons learned so far indicate that future development of sophisticated animal models will be needed to fully understand the intricacy and specificity of this complex signaling pathway, but that this effort will be productive and continue to inform both basic and clinical research on many fronts.
Collapse
Affiliation(s)
- Todd Evans
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
32
|
Jeong JW, Lee KY, Kwak I, White LD, Hilsenbeck SG, Lydon JP, DeMayo FJ. Identification of murine uterine genes regulated in a ligand-dependent manner by the progesterone receptor. Endocrinology 2005; 146:3490-505. [PMID: 15845616 DOI: 10.1210/en.2005-0016] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progesterone (P4) acting through its cognate receptor, the progesterone receptor (PR), plays an important role in uterine physiology. The PR knockout (PRKO) mouse has demonstrated the importance of the P4-PR axis in the regulation of uterine function. To define the molecular pathways regulated by P4-PR in the mouse uterus, Affymetrix MG U74Av2 oligonucleotide arrays were used to identify alterations in gene expression after acute and chronic P4 treatments. PRKO and wild-type mice were ovariectomized and then treated with vehicle or 1 mg P4 every 12 h. Mice were killed either 4 h after the first injection (acute P4 treatment) or after the fourth injection of P4 (chronic P4 treatment). At the genomic level, the major change in gene expression after acute P4 treatment was an increase in the expression of 55 genes. Conversely, the major change in gene expression after chronic P4 treatment was an overall reduction in the expression of 102 genes. In the analysis, retinoic acid metabolic genes, cytochrome P 450 26a1 (Cyp26a1), alcohol dehydrogenase 5, and aldehyde dehydrogenase 1a1 (Aldh1a1); kallikrein genes, Klk5 and Klk6; and specific transcription factors, GATA-2 and Cited2 [cAMP-corticosterone-binding protein/p300-interacting transactivator with glutamic acid (E) and aspartic acid (D)-rich tail], were validated as regulated by the P4-PR axis. Identification and analysis of these responsive genes will help define the role of PR in regulating uterine biology.
Collapse
Affiliation(s)
- Jae-Wook Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Mårtensson UEA, Bristulf J, Owman C, Olde B. The mouse chemerin receptor gene, mcmklr1, utilizes alternative promoters for transcription and is regulated by all-trans retinoic acid. Gene 2005; 350:65-77. [PMID: 15792532 DOI: 10.1016/j.gene.2005.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/31/2004] [Accepted: 02/08/2005] [Indexed: 11/23/2022]
Abstract
CMKLR1 (chemoattractant-like receptor 1) is a G-protein-coupled receptor implicated in cartilage and bone development and is expressed in organs like the parathyroid gland, brain, and lung. The receptor is also expressed in dendritic cells and in macrophages where it acts as a co-receptor for entry of HIV/SIV isolates into human CD4(+) cells. Recently, a protein named "chemerin" (also known as TIG2) was isolated from human inflammatory fluids and hemofiltrate and found to be the endogenous ligand for CMKLR1. We have previously described the genomic organization of the cmklr1 gene and characterized its promoter in mouse neuroblastoma NB4 1A3 cells. In the present study we identify a second transcript, cmklr1b, in mouse microglia BV2 cells. Cmklr1b is transcribed from an alternative promoter with a transcription start site located 6780 bp downstream of the previously identified exon 1 (cmklr1a). The cmklr1b promoter lacks a TATA box but contains two CCAAT boxes in opposite directions. 5' Deletion analysis of the promoter region in BV2 cells using a luciferase reporter gene assay indicates two regions, between 623-755 bp and 56-125 bp upstream of transcription start site, to be important for promoter function. The proximal promoter region includes both CCAAT boxes, and site-directed mutagenesis separately within these elements revealed that only the forward CCAAT element was important for transcription. Although the forward CCAAT element is essential for transcription electrophoretic mobility shift and super-shift assays demonstrated that both CCAAT elements actually bind nuclear proteins from BV2 cells and identified the binding factor as NFY. Real-time reverse transcriptase-PCR experiments of cmklr1b expression in all-trans retinoic acid (ATRA)- stimulated BV2 cells showed strong up-regulation of receptor transcript. Luciferase reporter gene assay of the promoter in ATRA-stimulated BV2 cells confirmed that transcriptional activity of the cmklr1b promoter is increased by ATRA. However, deletion analysis could not identify an ATRA-responsive element within the promoter region suggesting that gene activation is likely to occur through alternative mechanisms. The results emphasise a possible role of cmklr1 in bone modelling.
Collapse
Affiliation(s)
- Ulrika E A Mårtensson
- Division of Molecular Neurobiology, Wallenberg Neuroscience Center, BMC A12, SE-221 84 Lund, Sweden.
| | | | | | | |
Collapse
|