1
|
Ayers KL, Eggers S, Rollo BN, Smith KR, Davidson NM, Siddall NA, Zhao L, Bowles J, Weiss K, Zanni G, Burglen L, Ben-Shachar S, Rosensaft J, Raas-Rothschild A, Jørgensen A, Schittenhelm RB, Huang C, Robevska G, van den Bergen J, Casagranda F, Cyza J, Pachernegg S, Wright DK, Bahlo M, Oshlack A, O'Brien TJ, Kwan P, Koopman P, Hime GR, Girard N, Hoffmann C, Shilon Y, Zung A, Bertini E, Milh M, Ben Rhouma B, Belguith N, Bashamboo A, McElreavey K, Banne E, Weintrob N, BenZeev B, Sinclair AH. Variants in SART3 cause a spliceosomopathy characterised by failure of testis development and neuronal defects. Nat Commun 2023; 14:3403. [PMID: 37296101 PMCID: PMC10256788 DOI: 10.1038/s41467-023-39040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.
Collapse
Affiliation(s)
- Katie L Ayers
- The Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Stefanie Eggers
- The Victorian Clinical Genetics Services, Melbourne, Australia
| | - Ben N Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Katherine R Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Nadia M Davidson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Institute of Technology, Haifa, Israel
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Et Laboratoire de Neurogénétique Moléculaire, Département de Génétique et Embryologie Médicale, APHP. Sorbonne Université, Hôpital Trousseau, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Shay Ben-Shachar
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Annick Raas-Rothschild
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | | | - Franca Casagranda
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Justyna Cyza
- The Murdoch Children's Research Institute, Melbourne, Australia
| | - Svenja Pachernegg
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Melanie Bahlo
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Alicia Oshlack
- The Peter MacCallum Cancer Centre, Melbourne, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Terrence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Nadine Girard
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Chen Hoffmann
- Radiology Department, Sheba medical Centre, Tel Aviv, Israel
| | - Yuval Shilon
- Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Amnon Zung
- Pediatrics Department, Kaplan Medical Center, Rehovot, 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mathieu Milh
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Bochra Ben Rhouma
- Higher Institute of Nursing Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Neila Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon, 58100, Israel
| | - Naomi Weintrob
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology Unit, Dana-Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Andrew H Sinclair
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
2
|
Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA (NEW YORK, N.Y.) 2023; 29:531-550. [PMID: 36737103 PMCID: PMC10158995 DOI: 10.1261/rna.079273.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 05/06/2023]
Abstract
Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.
Collapse
Affiliation(s)
- Corbin S Black
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada H3A 0C7
| | - Thomas A Whelan
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Erin L Garside
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Naomi M Fast
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
3
|
Klimešová K, Petržílková H, Bařinka C, Staněk D. SART3 associates with a post-splicing complex. J Cell Sci 2023; 136:jcs260380. [PMID: 36620952 DOI: 10.1242/jcs.260380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
SART3 is a multifunctional protein that acts in several steps of gene expression, including assembly and recycling of the spliceosomal U4/U6 small nuclear ribonucleoprotein particle (snRNP). In this work, we provide evidence that SART3 associates via its N-terminal HAT domain with the 12S U2 snRNP. Further analysis showed that SART3 associates with the post-splicing complex containing U2 and U5 snRNP components. In addition, we observed an interaction between SART3 and the RNA helicase DHX15, which disassembles post-splicing complexes. Based on our data, we propose a model that SART3 associates via its N-terminal HAT domain with the post-splicing complex, where it interacts with U6 snRNA to protect it and to initiate U6 snRNA recycling before a next round of splicing.
Collapse
MESH Headings
- RNA Splicing/genetics
- Spliceosomes/genetics
- Spliceosomes/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
Collapse
Affiliation(s)
- Klára Klimešová
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Hana Petržílková
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague, Czech Republic
| | - David Staněk
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
4
|
The spliceosome factor sart3 regulates hematopoietic stem/progenitor cell development in zebrafish through the p53 pathway. Cell Death Dis 2021; 12:906. [PMID: 34611130 PMCID: PMC8492694 DOI: 10.1038/s41419-021-04215-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem cells (HSCs) possess the potential for self-renew and the capacity, throughout life, to differentiate into all blood cell lineages. Yet, the mechanistic basis for HSC development remains largely unknown. In this study, we characterized a zebrafish smu471 mutant with hematopoietic stem/progenitor cell (HSPC) defects and found that sart3 was the causative gene. RNA expression profiling of the sart3smu471 mutant revealed spliceosome and p53 signaling pathway to be the most significantly enriched pathways in the sart3smu471 mutant. Knock down of p53 rescued HSPC development in the sart3smu471 mutant. Interestingly, the p53 inhibitor, mdm4, had undergone an alternative splicing event in the mutant. Restoration of mdm4 partially rescued HSPC deficiency. Thus, our data suggest that HSPC proliferation and maintenance require sart3 to ensure the correct splicing and expression of mdm4, so that the p53 pathway is properly inhibited to prevent definitive hematopoiesis failure. This study expands our knowledge of the regulatory mechanisms that impact HSPC development and sheds light on the mechanistic basis and potential therapeutic use of sart3 in spliceosome-mdm4-p53 related disorders.
Collapse
|
5
|
Maxwell DW, O'Keefe RT, Roy S, Hentges KE. The role of splicing factors in retinitis pigmentosa: links to cilia. Biochem Soc Trans 2021; 49:1221-1231. [PMID: 34060618 DOI: 10.1042/bst20200798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023]
Abstract
Cilia are critical to numerous biological functions, both in development and everyday homeostatic processes. Diseases arising from genetic mutations that cause cilia dysfunction are termed ciliopathies. Several ubiquitously expressed splicing factors have been implicated in the condition Retinitis Pigmentosa (RP), a group of diseases characterised by the progressive degeneration of the retina. In many types of RP the disease affects the modified primary cilium of the photoreceptor cells and thus, these types of RP are considered ciliopathies. Here, we discuss sequence variants found within a number of these splicing factors, the resulting phenotypes, and the mechanisms underpinning disease pathology. Additionally, we discuss recent evidence investigating why RP patients with mutations in globally expressed splicing factors present with retina-specific phenotypes.
Collapse
Affiliation(s)
- Dale W Maxwell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Raymond T O'Keefe
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Department of Pediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Kathryn E Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| |
Collapse
|
6
|
Hasler D, Meister G, Fischer U. Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biol 2020; 18:290-303. [PMID: 32401147 DOI: 10.1080/15476286.2020.1767952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.
Collapse
Affiliation(s)
- Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Mora Gallardo C, Sánchez de Diego A, Gutiérrez Hernández J, Talavera-Gutiérrez A, Fischer T, Martínez-A C, van Wely KHM. Dido3-dependent SFPQ recruitment maintains efficiency in mammalian alternative splicing. Nucleic Acids Res 2019; 47:5381-5394. [PMID: 30931476 PMCID: PMC6547428 DOI: 10.1093/nar/gkz235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing is facilitated by accessory proteins that guide spliceosome subunits to the primary transcript. Many of these splicing factors recognize the RNA polymerase II tail, but SFPQ is a notable exception even though essential for mammalian RNA processing. This study reveals a novel role for Dido3, one of three Dido gene products, in alternative splicing. Binding of the Dido3 amino terminus to histones and to the polymerase jaw domain was previously reported, and here we show interaction between its carboxy terminus and SFPQ. We generated a mutant that eliminates Dido3 but preserves other Dido gene products, mimicking reduced Dido3 levels in myeloid neoplasms. Dido mutation suppressed SFPQ binding to RNA and increased skipping for a large group of exons. Exons bearing recognition sequences for alternative splicing factors were nonetheless included more efficiently. Reduced SFPQ recruitment may thus account for increased skipping of SFPQ-dependent exons, but could also generate a splicing factor surplus that becomes available to competing splice sites. Taken together, our data indicate that Dido3 is an adaptor that controls SFPQ utilization in RNA splicing. Distributing splicing factor recruitment over parallel pathways provides mammals with a simple mechanism to regulate exon usage while maintaining RNA splicing efficiency.
Collapse
Affiliation(s)
- Carmen Mora Gallardo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Ainhoa Sánchez de Diego
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Julio Gutiérrez Hernández
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Amaia Talavera-Gutiérrez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Thierry Fischer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Karel H M van Wely
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Sherman EJ, Mitchell DC, Garner AL. The RNA-binding protein SART3 promotes miR-34a biogenesis and G 1 cell cycle arrest in lung cancer cells. J Biol Chem 2019; 294:17188-17196. [PMID: 31619517 PMCID: PMC6873168 DOI: 10.1074/jbc.ac119.010419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are small, noncoding RNAs that are implicated in the regulation of most biological processes. Global miRNA biogenesis is altered in many cancers, and RNA-binding proteins play a role in miRNA biogenesis, presenting a promising avenue for targeting miRNA dysregulation in diseases. miR-34a exhibits tumor-suppressive activities by targeting cell cycle regulators CDK4/6 and anti-apoptotic factor BCL-2, among other regulatory pathways such as Wnt, TGF-β, and Notch signaling. Many cancers exhibit down-regulation or loss of miR-34a, and synthetic miR-34a supplementation has been shown to inhibit tumor growth in vivo However, the post-transcriptional mechanisms that cause miR-34a loss in cancer are not entirely understood. Here, using a proteomics-mediated approach in non-small-cell lung cancer (NSCLC) cells, we identified squamous cell carcinoma antigen recognized by T-cells 3 (SART3) as a putative pre-miR-34a-binding protein. SART3 is a spliceosome recycling factor and nuclear RNA-binding protein with no previously reported role in miRNA regulation. We found that SART3 binds pre-miR-34a with higher specificity than pre-let-7d (used as a negative control) and elucidated a new functional role for SART3 in NSCLC cells. SART3 overexpression increased miR-34a levels, down-regulated the miR-34a target genes CDK4/6, and caused a cell cycle arrest in the G1 phase. In vitro binding experiments revealed that the RNA-recognition motifs within the SART3 sequence are responsible for selective pre-miR-34a binding. Our results provide evidence for a significant role of SART3 in miR-34a biogenesis and cell cycle progression in NSCLC cells.
Collapse
Affiliation(s)
- Emily J Sherman
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Dylan C Mitchell
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Amanda L Garner
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
9
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Chen Z, Gui B, Zhang Y, Xie G, Li W, Liu S, Xu B, Wu C, He L, Yang J, Yi X, Yang X, Sun L, Liang J, Shang Y. Identification of a 35S U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP) complex intermediate in spliceosome assembly. J Biol Chem 2017; 292:18113-18128. [PMID: 28878014 DOI: 10.1074/jbc.m117.797357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Indexed: 11/06/2022] Open
Abstract
The de novo assembly and post-splicing reassembly of the U4/U6.U5 tri-snRNP remain to be investigated. We report here that ZIP, a protein containing a CCCH-type zinc finger and a G-patch domain, as characterized by us previously, regulates pre-mRNA splicing independent of RNA binding. We found that ZIP physically associates with the U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP). Remarkably, the ZIP-containing tri-snRNP, which has a sedimentation coefficient of ∼35S, is a tri-snRNP that has not been described previously. We also found that the 35S tri-snRNP contains hPrp24, indicative of a state in which the U4/U6 di-snRNP is integrating with the U5 snRNP. We found that the 35S tri-snRNP is enriched in the Cajal body, indicating that it is an assembly intermediate during 25S tri-snRNP maturation. We showed that the 35S tri-snRNP also contains hPrp43, in which ATPase/RNA helicase activities are stimulated by ZIP. Our study identified, for the first time, a tri-snRNP intermediate, shedding new light on the de novo assembly and recycling of the U4/U6.U5 tri-snRNP.
Collapse
Affiliation(s)
- Zhe Chen
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bin Gui
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shumeng Liu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bosen Xu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chongyang Wu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xia Yi
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohan Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Shang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China, .,the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China, and.,the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
11
|
Bang KM, Cho NY, Kim WJ, Kim AR, Song HK, Kim EE, Kim NK. Structural Characterization of RNA Recognition Motif-2 Domain of SART3. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyeong-Mi Bang
- Advanced Analysis Center; Korea Institute of Science and Technology; Seoul 02792 Korea
- Department of Life Sciences; Korea University; Seoul 02841 Korea
| | - Na Youn Cho
- Advanced Analysis Center; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Won-Je Kim
- Advanced Analysis Center; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Ae-Ryung Kim
- Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Hyun Kyu Song
- Department of Life Sciences; Korea University; Seoul 02841 Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 02792 Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center; Korea Institute of Science and Technology; Seoul 02792 Korea
| |
Collapse
|
12
|
Park JK, Das T, Song EJ, Kim EE. Structural basis for recruiting and shuttling of the spliceosomal deubiquitinase USP4 by SART3. Nucleic Acids Res 2016; 44:5424-37. [PMID: 27060135 PMCID: PMC4914101 DOI: 10.1093/nar/gkw218] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/21/2016] [Indexed: 12/23/2022] Open
Abstract
Squamous cell carcinoma antigen recognized by T-cells 3 (SART3) is a U4/U6 recycling factor as well as a targeting factor of USP4 and USP15. However, the details of how SART3 recognizes these deubiquitinases and how they get subsequently translocated into the nucleus are not known. Here, we present the crystal structures of the SART3 half-a-tetratricopeptide (HAT) repeat domain alone and in complex with the domain present in ubiquitin-specific protease (DUSP)-ubiquitin-like (UBL) domains of ubiquitin specific protease 4 (USP4). The 12 HAT repeats of SART3 are in two sub-domains (HAT-N and HAT-C) forming a dimer through HAT-C. USP4 binds SART3 at the opposite surface of the HAT-C dimer interface utilizing the β-structured linker between the DUSP and the UBL domains. The binding affinities of USP4 and USP15 to SART3 are 0.9 μM and 0.2 μM, respectively. The complex structure of SART3 nuclear localization signal (NLS) and importin-α reveals bipartite binding, and removal of SART3 NLS prevents the entry of USP4 (and USP15) into the nucleus and abrogates the subsequent deubiquitinase activity of USP4.
Collapse
Affiliation(s)
- Joon Kyu Park
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Tanuza Das
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| |
Collapse
|
13
|
Whitmill A, Timani KA, Liu Y, He JJ. Tip110: Physical properties, primary structure, and biological functions. Life Sci 2016; 149:79-95. [PMID: 26896687 DOI: 10.1016/j.lfs.2016.02.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
HIV-1 Tat-interacting protein of 110kDa (Tip110), also referred to as squamous cell carcinoma antigen recognized by T cells 3 (Sart3), p110 or p110(nrb), was initially identified as a cDNA clone (KIAA0156) without annotated functions. Over the past twenty years, several functions have been attributed to this protein. The proposed biological functions include roles for Tip110 in pre-mRNA splicing, gene transcription, stem cell biology, and development. Dysregulation of Tip110 is also a contributing factor in the development of cancer and other human diseases. It is clear that our understanding of this protein is rapidly evolving. In this review, we aimed to provide a summary of all the existing literature on this gene/protein and its proposed biological functions.
Collapse
Affiliation(s)
- Amanda Whitmill
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Khalid Amine Timani
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Ying Liu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
14
|
Liu Y, Liu J, Wang Z, He JJ. Tip110 binding to U6 small nuclear RNA and its participation in pre-mRNA splicing. Cell Biosci 2015. [PMID: 26203351 PMCID: PMC4511435 DOI: 10.1186/s13578-015-0032-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background RNA–protein interactions play important roles in gene expression control. These interactions are mediated by several recurring RNA-binding motifs including a well-known and characterized ribonucleoprotein motif or so-called RNA recognition motif (RRM). Results In the current study, we set out to identify the RNA ligand(s) of a RRM-containing protein Tip110, also known as p110nrb, SART3, or p110, using a RNA-based yeast three-hybrid cloning strategy. Six putative RNA targets were isolated and found to contain a consensus sequence that was identical to nucleotides 34–46 of U6 small nuclear RNA. Tip110 binding to U6 was confirmed to be specific and RRM-dependent in an electrophoretic mobility shift assay. Both in vitro pre-mRNA splicing assay and in vivo splicing-dependent reporter gene assay showed that the pre-mRNA splicing was correlated with Tip110 expression. Moreover, Tip110 was found in the spliceosomes containing pre-spliced pre-mRNA and spliced mRNA products. Nonetheless, the RRM-deleted mutant (ΔRRM) that did not bind to U6 showed promotion in vitro pre-mRNA splicing, whereas the nuclear localization signal (NLS)-deleted mutant ΔNLS that bound to U6 promoted the pre-mRNA splicing both in vitro and in vivo. Lastly, RNA-Seq analysis confirmed that Tip110 regulated a number of gene pre-mRNA splicing including several splicing factors. Conclusions Taken together, these results demonstrate that Tip110 is directly involved in constitutive eukaryotic pre-mRNA splicing, likely through its binding to U6 and regulation of other splicing factors, and provide further evidence to support the global roles of Tip110 in regulation of host gene expression.
Collapse
Affiliation(s)
- Ying Liu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| | - Jinfeng Liu
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA ; Department of Infectious Diseases, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Zenyuan Wang
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA ; Department of Forensic Science, College of Medicine, Xi'an Jiaotong University, Xi'an, 710061 Shaanxi China
| | - Johnny J He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 USA
| |
Collapse
|
15
|
Rüegger S, Miki TS, Hess D, Großhans H. The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling. Nucleic Acids Res 2015; 43:3344-57. [PMID: 25753661 PMCID: PMC4381082 DOI: 10.1093/nar/gkv196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/24/2015] [Indexed: 02/02/2023] Open
Abstract
The spliceosome is a large molecular machine that serves to remove the intervening sequences that are present in most eukaryotic pre-mRNAs. At its core are five small nuclear ribonucleoprotein complexes, the U1, U2, U4, U5 and U6 snRNPs, which undergo dynamic rearrangements during splicing. Their reutilization for subsequent rounds of splicing requires reversion to their original configurations, but little is known about this process. Here, we show that ZK863.4/USIP-1 (U Six snRNA-Interacting Protein-1) is a ribonucleotidyl transferase that promotes accumulation of the Caenorhabditis elegans U6 snRNA. Endogenous USIP-1–U6 snRNA complexes lack the Lsm proteins that constitute the protein core of the U6 snRNP, but contain the U6 snRNP recycling factor SART3/B0035.12. Furthermore, co-immunoprecipitation experiments suggest that SART3 but not USIP-1 occurs also in a separate complex containing both the U4 and U6 snRNPs. Based on this evidence, genetic interaction between usip-1 and sart-3, and the apparent dissociation of Lsm proteins from the U6 snRNA during spliceosome activation, we propose that USIP-1 functions upstream of SART3 to promote U6 snRNA recycling.
Collapse
Affiliation(s)
- Stefan Rüegger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Takashi S Miki
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
16
|
SART3-Dependent Accumulation of Incomplete Spliceosomal snRNPs in Cajal Bodies. Cell Rep 2015; 10:429-440. [PMID: 25600876 DOI: 10.1016/j.celrep.2014.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/18/2014] [Accepted: 12/13/2014] [Indexed: 12/16/2022] Open
Abstract
Cajal bodies (CBs) are evolutionarily conserved nuclear structures involved in the metabolism of spliceosomal small nuclear ribonucleoprotein particles (snRNPs). CBs are not present in all cell types, and the trigger for their formation is not yet known. Here, we depleted cells of factors required for the final steps of snRNP assembly and assayed for the presence of stalled intermediates in CBs. We show that depletion induces formation of CBs in cells that normally lack these nuclear compartments, suggesting that CB nucleation is triggered by an imbalance in snRNP assembly. Accumulation of stalled intermediates in CBs depends on the di-snRNP assembly factor SART3. SART3 is required for both the induction of CB formation as well as the tethering of incomplete snRNPs to coilin, the CB scaffolding protein. We propose a model wherein SART3 monitors tri-snRNP assembly and sequesters incomplete particles in CBs, thereby allowing cells to maintain a homeostatic balance of mature snRNPs in the nucleoplasm.
Collapse
|
17
|
Zhao W, Liu Y, Timani KA, He JJ. Tip110 protein binds to unphosphorylated RNA polymerase II and promotes its phosphorylation and HIV-1 long terminal repeat transcription. J Biol Chem 2013; 289:190-202. [PMID: 24217245 DOI: 10.1074/jbc.m113.529784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription plays an important role in both HIV-1 gene expression and replication and mandates complicated but coordinated interactions between the host and virus. Our previous studies have shown that an HIV-1 Tat-interacting protein of 110 kDa, Tip110, binds to and enhances Tat function in Tat-mediated HIV-1 gene transcription and replication (Liu, Y., Li, J., Kim, B. O., Pace, B. S., and He, J. J. (2002) HIV-1 Tat protein-mediated transactivation of the HIV-1 long terminal repeat promoter is potentiated by a novel nuclear Tat-interacting protein of 110 kDa, Tip110. J. Biol. Chem. 277, 23854-23863). However, the underlying molecular mechanisms by which this takes place were not understood. In this study, we demonstrated that Tip110 bound to unphosphorylated RNA polymerase II (RNAPII) in a direct and specific manner. In addition, we detected Tip110 at the HIV-1 long terminal repeat (LTR) promoter and found that Tip110 expression was associated with increased phosphorylation of serine 2 of the heptapeptide repeats within the RNAPII C-terminal domain and increased recruitment of positive transcription elongation factor b to the LTR promoter. Consistent with these findings, we showed that Tip110 interaction with Tat directly enhanced transcription elongation of the LTR promoter. Taken together, these findings have provided additional and mechanistic evidence to support Tip110 function in HIV-1 transcription.
Collapse
Affiliation(s)
- Weina Zhao
- From the Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| | | | | | | |
Collapse
|
18
|
Sad1 counteracts Brr2-mediated dissociation of U4/U6.U5 in tri-snRNP homeostasis. Mol Cell Biol 2013; 34:210-20. [PMID: 24190974 DOI: 10.1128/mcb.00837-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Sad1 protein was previously identified in a screen for factors involved in the assembly of the U4/U6 di-snRNP particle. Sad1 is required for pre-mRNA splicing both in vivo and in vitro, and its human orthologue has been shown to associate with U4/U6.U5 tri-snRNP. We show here that Sad1 plays a role in maintaining a functional form of the tri-snRNP by promoting the association of U5 snRNP with U4/U6 di-snRNP. In the absence of Sad1, the U4/U6.U5 tri-snRNP dissociates into U5 and U4/U6 upon ATP hydrolysis and cannot bind to the spliceosome. The separated U4/U6 and U5 can reassociate upon incubation more favorably in the absence of ATP and in the presence of Sad1. Brr2 is responsible for mediating ATP-dependent dissociation of the tri-snRNP. Our results demonstrate a role of Sad1 in maintaining the integrity of the tri-snRNP by counteracting Brr2-mediated dissociation of tri-snRNP and provide insights into homeostasis of the tri-snRNP.
Collapse
|
19
|
Timani KA, Liu Y, He JJ. Tip110 interacts with YB-1 and regulates each other's function. BMC Mol Biol 2013; 14:14. [PMID: 23822148 PMCID: PMC3716619 DOI: 10.1186/1471-2199-14-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/02/2013] [Indexed: 12/02/2022] Open
Abstract
Background Tip110 plays important roles in tumor immunobiology, pre-mRNA splicing, expression regulation of viral and host genes, and possibly protein turnover. It is clear that our understanding of Tip110 biological function remains incomplete. Results Herein, we employed an immunoaffinity-based enrichment approach combined with protein mass spectrometry and attempted to identify Tip110-interacting cellular proteins. A total of 13 major proteins were identified to be complexed with Tip110. Among them was Y-box binding protein 1 (YB-1). The interaction of Tip110 with YB-1 was further dissected and confirmed to be specific and involve the N-terminal of both Tip110 and YB-1 proteins. A HIV-1 LTR promoter-driven reporter gene assay and a CD44 minigene in vivo splicing assay were chosen to evaluate the functional relevance of the Tip110/YB-1 interaction. We showed that YB-1 potentiates the Tip110/Tat-mediated transactivation of the HIV-1 LTR promoter while Tip110 promotes the inclusion of the exon 5 in CD44 minigene alternative splicing. Conclusions Tip110 and YB-1 interact to form a complex and mutually regulate each other’s biological functions.
Collapse
|
20
|
Proteomic profiling of the human cytomegalovirus UL35 gene products reveals a role for UL35 in the DNA repair response. J Virol 2011; 86:806-20. [PMID: 22072767 DOI: 10.1128/jvi.05442-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus infections involve the extensive modification of host cell pathways, including cell cycle control, the regulation of the DNA damage response, and averting promyelocytic leukemia (PML)-mediated antiviral responses. The UL35 gene from human cytomegalovirus is important for viral gene expression and efficient replication and encodes two proteins, UL35 and UL35a, whose mechanism of action is not well understood. Here, affinity purification coupled with mass spectrometry was used to identify previously unknown human cellular targets of UL35 and UL35a. We demonstrate that both viral proteins interact with the ubiquitin-specific protease USP7, and that UL35 expression can alter USP7 subcellular localization. In addition, UL35 (but not UL35a) was found to associate with three components of the Cul4(DCAF1) E3 ubiquitin ligase complex (DCAF1, DDB1, and DDA1) previously shown to be targeted by the HIV-1 Vpr protein. The coimmunoprecipitation and immunofluorescence microscopy of DCAF1 mutants revealed that the C-terminal region of DCAF1 is required for association with UL35 and mediates the dramatic relocalization of DCAF1 to UL35 nuclear bodies, which also contain conjugated ubiquitin. As previously reported for the Vpr-DCAF1 interaction, UL35 (but not UL35a) expression resulted in the accumulation of cells in the G(2) phase of the cell cycle, which is typical of a DNA damage response, and activated the G(2) checkpoint in a DCAF1-dependent manner. In addition, UL35 (but not UL35a) induced γ-H2AX and 53BP1 foci, indicating the activation of DNA damage and repair responses. Therefore, the identified interactions suggest that UL35 can contribute to viral replication through the manipulation of host responses.
Collapse
|
21
|
Magee TR, Tafti SA, Desai M, Liu Q, Ross MG, Nast CC. Maternal undernourished fetal kidneys exhibit differential regulation of nephrogenic genes including downregulation of the Notch signaling pathway. Reprod Sci 2011; 18:563-76. [PMID: 21273641 DOI: 10.1177/1933719110393025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Maternal undernutrition results in offspring nephron number reduction and hypertension that are hypothesized to begin as compensatory changes in fetal gene expression during gestation. To evaluate mechanisms of dysregulated nephrogenesis, pregnant Sprague Dawley rats were 50% food restricted from embryonic day (E) 10 to E20. At E20, fetal male kidneys were examined by microarray analysis. A total of 476 differentially expressed transcripts were detected including those regulating development and differentiation, mitosis and cell cycle, chromatin assembly, and steroid hormone regulation. Differentially regulated genes were detected in MAPK/ERK, Wnt, and Notch signaling pathways. Validation of the microarray results was performed for the Notch signaling pathway, an important pathway in nephron formation. Protein expression of Notch pathway factors by Western blotting showed significantly decreased Notch2 and downstream effector Hey1 protein expression, while Ctbp1 co-repressor was increased. These data together show that maternal undernutrition results in developmental disruption in fetal nephrogenesis gene expression signaling.
Collapse
Affiliation(s)
- Thomas R Magee
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Temporal and tissue specific regulation of RP-associated splicing factor genes PRPF3, PRPF31 and PRPC8--implications in the pathogenesis of RP. PLoS One 2011; 6:e15860. [PMID: 21283520 PMCID: PMC3023711 DOI: 10.1371/journal.pone.0015860] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells. CONCLUSIONS/SIGNIFICANCE Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein.
Collapse
|
23
|
Hofmann JC, Husedzinovic A, Gruss OJ. The function of spliceosome components in open mitosis. Nucleus 2010; 1:447-59. [PMID: 21327086 DOI: 10.4161/nucl.1.6.13328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022] Open
Abstract
Spatial separation of eukaryotic cells into the nuclear and cytoplasmic compartment permits uncoupling of DNA transcription from translation of mRNAs and allows cells to modify newly transcribed pre mRNAs extensively. Intronic sequences (introns), which interrupt the coding elements (exons), are excised ("spliced") from pre-mRNAs in the nucleus to yield mature mRNAs. This not only enables alternative splicing as an important source of proteome diversity, but splicing is also an essential process in all eukaryotes and knock-out or knock-down of splicing factors frequently results in defective cell proliferation and cell division. However, higher eukaryotes progress through cell division only after breakdown of the nucleus ("open mitosis"). Open mitosis suppresses basic nuclear functions such as transcription and splicing, but allows separate, mitotic functions of nuclear proteins in cell division. Mitotic defects arising after loss-of-function of splicing proteins therefore could be an indirect consequence of compromised splicing in the closed nucleus of the preceding interphase or reflect a direct contribution of splicing proteins to open mitosis. Although experiments to directly distinguish between these two alternatives have not been reported, indirect evidence exists for either hypotheses. In this review, we survey published data supporting an indirect function of splicing in open mitosis or arguing for a direct function of spliceosomal proteins in cell division.
Collapse
|
24
|
Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Genes Dev 2010; 24:1434-47. [PMID: 20595234 DOI: 10.1101/gad.1925010] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spliceosome, a dynamic assembly of proteins and RNAs, catalyzes the excision of intron sequences from nascent mRNAs. Recent work has suggested that the activity and composition of the spliceosome are regulated by ubiquitination, but the underlying mechanisms have not been elucidated. Here, we report that the spliceosomal Prp19 complex modifies Prp3, a component of the U4 snRNP, with nonproteolytic K63-linked ubiquitin chains. The K63-linked chains increase the affinity of Prp3 for the U5 snRNP component Prp8, thereby allowing for the stabilization of the U4/U6.U5 snRNP. Prp3 is deubiquitinated by Usp4 and its substrate targeting factor, the U4/U6 recycling protein Sart3, which likely facilitates ejection of U4 proteins from the spliceosome during maturation of its active site. Loss of Usp4 in cells interferes with the accumulation of correctly spliced mRNAs, including those for alpha-tubulin and Bub1, and impairs cell cycle progression. We propose that the reversible ubiquitination of spliceosomal proteins, such as Prp3, guides rearrangements in the composition of the spliceosome at distinct steps of the splicing reaction.
Collapse
Affiliation(s)
- Eun Joo Song
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Erben P, Gosenca D, Müller MC, Reinhard J, Score J, Del Valle F, Walz C, Mix J, Metzgeroth G, Ernst T, Haferlach C, Cross NCP, Hochhaus A, Reiter A. Screening for diverse PDGFRA or PDGFRB fusion genes is facilitated by generic quantitative reverse transcriptase polymerase chain reaction analysis. Haematologica 2010; 95:738-44. [PMID: 20107158 DOI: 10.3324/haematol.2009.016345] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Rapid identification of diverse fusion genes with involvement of PDGFRA or PDGFRB in eosinophilia-associated myeloproliferative neoplasms is essential for adequate clinical management but is complicated by the multitude and heterogeneity of partner genes and breakpoints. DESIGN AND METHODS We established a generic quantitative reverse transcriptase polymerase chain reaction to detect overexpression of the 3'-regions of PDGFRA or PDGFRB as a possible indicator of an underlying fusion. RESULTS At diagnosis, all patients with known fusion genes involving PDGFRA (n=5; 51 patients) or PDGFRB (n=5; 7 patients) showed significantly increased normalized expression levels compared to 191 patients with fusion gene-negative eosinophilia or healthy individuals (PDGFRA/ABL: 0.73 versus 0.0066 versus 0.0064, P<0.0001; PDGFRB/ABL: 196 versus 3.8 versus 5.85, P<0.0001). The sensitivity and specificity of the activation screening test were, respectively, 100% and 88.4% for PDGFRA and 100% and 94% for PDGFRB. Furthermore, significant overexpression of PDGFRB was found in a patient with an eosinophilia-associated myeloproliferative neoplasm with uninformative cytogenetics and an excellent response to imatinib. Subsequently, a new SART3-PDGFRB fusion gene was identified by 5'-rapid amplification of cDNA ends polymerase chain reaction (5'-RACE-PCR). CONCLUSIONS Quantitative reverse transcriptase polymerase chain reaction analysis is a simple and useful adjunct to standard diagnostic assays to detect clinically significant overexpression of PDGFRA and PDGFRB in eosinophilia-associated myeloproliferative neoplasms or related disorders.
Collapse
Affiliation(s)
- Philipp Erben
- III. Medizinische Klinik, Universitätsmedizin Mannheim Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Trede NS, Ota T, Kawasaki H, Paw BH, Katz T, Demarest B, Hutchinson S, Zhou Y, Hersey C, Zapata A, Amemiya CT, Zon LI. Zebrafish mutants with disrupted early T-cell and thymus development identified in early pressure screen. Dev Dyn 2009; 237:2575-84. [PMID: 18729230 DOI: 10.1002/dvdy.21683] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Generation of mature T lymphocytes requires an intact hematopoietic stem cell compartment and functional thymic epithelium. We used the zebrafish (Danio rerio) to isolate mutations that affect the earliest steps in T lymphopoiesis and thymic organogenesis. Here we describe the results of a genetic screen in which gynogenetic diploid offspring from heterozygous females were analyzed by whole-mount in situ hybridization for the expression of rag-1. To assess immediately if a global defect in hematopoiesis resulted in the mutant phenotype, alpha-embryonic globin expression was simultaneously assayed for multilineage defects. In this report, we present the results obtained with this strategy and show representative mutant phenotypes affecting early steps in T-cell development and/or thymic epithelial cell development. We discuss the advantage of this strategy and the general usefulness of the zebrafish as a model system for vertebrate lymphopoiesis and thymic organogenesis.
Collapse
Affiliation(s)
- Nikolaus S Trede
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Licht K, Medenbach J, Lührmann R, Kambach C, Bindereif A. 3'-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins. RNA (NEW YORK, N.Y.) 2008; 14:1532-8. [PMID: 18567812 PMCID: PMC2491463 DOI: 10.1261/rna.1129608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 05/09/2008] [Indexed: 05/08/2023]
Abstract
Pre-mRNA splicing proceeds through assembly of the spliceosome complex, catalysis, and recycling. During each cycle the U4/U6.U5 tri-snRNP is disrupted and U4/U6 snRNA base-pairing unwound, releasing separate post-spliceosomal U4, U5, and U6 snRNPs, which have to be recycled to the splicing-competent tri-snRNP. Previous work implicated p110--the human ortholog of the yeast Prp24 protein--and the LSm2-8 proteins of the U6 snRNP in U4/U6 recycling. Here we show in vitro that these proteins bind synergistically to U6 snRNA: Both purified and recombinant LSm2-8 proteins are able to recruit p110 protein to U6 snRNA via interaction with the highly conserved C-terminal region of p110. Furthermore, the presence of a 2',3'-cyclic phosphate enhances the affinity of U6 snRNA for the LSm2-8 proteins and inversely reduces La protein binding, suggesting a direct role of the 3'-terminal phosphorylation in RNP remodeling during U6 biogenesis.
Collapse
Affiliation(s)
- Konstantin Licht
- Institute of Biochemistry, Justus-Liebig-University of Giessen, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
28
|
Jenkins LMM, Mazur SJ, Rossi M, Gaidarenko O, Xu Y, Appella E. Quantitative proteomics analysis of the effects of ionizing radiation in wild type and p53 K317R knock-in mouse thymocytes. Mol Cell Proteomics 2008; 7:716-27. [PMID: 18178582 DOI: 10.1074/mcp.m700482-mcp200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor protein p53 is a sequence-specific transcription factor that has crucial roles in apoptosis, cell cycle arrest, cellular senescence, and DNA repair. Following exposure to a variety of stresses, p53 becomes post-translationally modified with concomitant increases in activity and stability. To better understand the role of acetylation of Lys-317 in mouse p53, the effect of ionizing radiation (IR) on the thymocytes of p53(K317R) knock-in mice was studied at the global level. Using cleavable ICAT quantitative mass spectrometry, the effect of IR on protein levels in either the wild type or p53(K317R) thymocytes was determined. We found 102 proteins to be significantly affected by IR in the wild type thymocytes, including several whose expression has been shown to be directly regulated by p53. When the effects of IR in the wild type and p53(K317R) samples were compared, 46 proteins were found to be differently affected (p < 0.05). The p53(K317R) mutation has widespread effects on specific protein levels following IR, including the levels of proteins involved in apoptosis, transcription, and translation. Pathway analysis of the differently regulated proteins suggests an increase in p53 activity in the p53(K317R) thymocytes as well as a decrease in tumor necrosis factor alpha signaling. These results suggest that acetylation of Lys-317 modulates the functions of p53 and influences the cross-talk between the DNA damage response and other signaling pathways.
Collapse
Affiliation(s)
- Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Gonzalez-Santos JM, Cao H, Duan RC, Hu J. Mutation in the splicing factor Hprp3p linked to retinitis pigmentosa impairs interactions within the U4/U6 snRNP complex. Hum Mol Genet 2007; 17:225-39. [PMID: 17932117 DOI: 10.1093/hmg/ddm300] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in PRPF3, a gene encoding the essential pre-mRNA splicing factor Hprp3p, have been identified in patients with autosomal dominant retinitis pigmentosa type 18 (RP18). Patients with RP18 have one of two single amino acid substitutions, Pro493Ser or Thr494Met, at the highly conserved Hprp3p C-terminal region. Pro493Ser occurs sporadically, whereas Thr494Met is observed in several unlinked RP families worldwide. The latter mutation also alters a potential recognition motif for phosphorylation by casein kinase II (CKII). To understand the molecular basis of RP18, we examined the consequences of Thr494Met mutation on Hprp3p molecular interactions with components of the U4/U6.U5 small nuclear ribonucleoprotein particles (snRNPs) complex. Since numerous mutations causing human diseases change pre-mRNA splice sites, we investigated whether Thr494Met substitution affects the processing of PRPF3 mRNA. We found that Thr494Met does not affect PRPF3 mRNA processing, indicating that the mutation may exert its effect primarily at the protein level. We used small hairpin RNAs to specifically silence the endogenous PRPF3 while simultaneously expressing HA-tagged Thr494Met. We demonstrated that the C- but not N-terminal region of Hprp3p is indeed phosphorylated by CKII in vitro and in cells. CKII-mediated Hprp3p phosphorylation was significantly reduced by Thr494Met mutation. Consequently, the Hprp3p C-terminal region is rendered partially defective in its association with itself, Hprp4p, and U4/U6 snRNA. Our findings provide new insights into the biology of Hprp3p and suggest that the loss of Hprp3p phosphorylation at Thr494 is a key step for initiating Thr494Met aberrant interactions within U4/U6 snRNP complex and that these are likely linked to the RP18 phenotype.
Collapse
|
30
|
Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH, Coulombe B. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 2007; 27:262-274. [PMID: 17643375 PMCID: PMC4498903 DOI: 10.1016/j.molcel.2007.06.027] [Citation(s) in RCA: 355] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 05/16/2007] [Accepted: 06/22/2007] [Indexed: 01/20/2023]
Abstract
We have performed a survey of soluble human protein complexes containing components of the transcription and RNA processing machineries using protein affinity purification coupled to mass spectrometry. Thirty-two tagged polypeptides yielded a network of 805 high-confidence interactions. Remarkably, the network is significantly enriched in proteins that regulate the formation of protein complexes, including a number of previously uncharacterized proteins for which we have inferred functions. The RNA polymerase II (RNAP II)-associated proteins (RPAPs) are physically and functionally associated with RNAP II, forming an interface between the enzyme and chaperone/scaffolding proteins. BCDIN3 is the 7SK snRNA methylphosphate capping enzyme (MePCE) present in an snRNP complex containing both RNA processing and transcription factors, including the elongation factor P-TEFb. Our results define a high-density protein interaction network for the mammalian transcription machinery and uncover multiple regulatory factors that target the transcription machinery.
Collapse
Affiliation(s)
- Célia Jeronimo
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Diane Forget
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Annie Bouchard
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Qintong Li
- Biochemistry Department, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Gordon Chua
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Christian Poitras
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Cynthia Thérien
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Dominique Bergeron
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Sylvie Bourassa
- Centre hospitalier universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Benoit Chabot
- Département de microbiologie et infectiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Guy G Poirier
- Centre hospitalier universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Timothy R Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Mathieu Blanchette
- McGill Centre for Bioinformatics, McGill University, Montréal, QC H3A 2B4, Canada
| | - David H Price
- Biochemistry Department, University of Iowa, Iowa City, IA 52242-1109, USA
| | - Benoit Coulombe
- Laboratory of Gene Transcription and Proteomics Discovery Platform, Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
31
|
Trede NS, Medenbach J, Damianov A, Hung LH, Weber GJ, Paw BH, Zhou Y, Hersey C, Zapata A, Keefe M, Barut BA, Stuart AB, Katz T, Amemiya CT, Zon LI, Bindereif A. Network of coregulated spliceosome components revealed by zebrafish mutant in recycling factor p110. Proc Natl Acad Sci U S A 2007; 104:6608-13. [PMID: 17416673 PMCID: PMC1871833 DOI: 10.1073/pnas.0701919104] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization. U4/U6 snRNPs were disrupted in egy mutant embryos, demonstrating the importance of p110 for U4/U6 snRNP recycling in vivo. Surprisingly, expression profiling of the egy mutant revealed an extensive network of coordinately up-regulated components of the spliceosome cycle, providing a mechanism compensating for the recycling defect. Together, our data demonstrate that a mutation in a general splicing factor can lead to distinct defects in organ development and cause disease.
Collapse
Affiliation(s)
- Nikolaus S. Trede
- *Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jan Medenbach
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Andrey Damianov
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Lee-Hsueh Hung
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Gerhard J. Weber
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Barry H. Paw
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Yi Zhou
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Candace Hersey
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Agustin Zapata
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; and
| | - Matthew Keefe
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Bruce A. Barut
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Andrew B. Stuart
- Benaroya Research Institute at Virginia Mason, Department of Biology, University of Washington, Seattle, WA 98101
| | - Tammisty Katz
- *Department of Pediatrics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Chris T. Amemiya
- Benaroya Research Institute at Virginia Mason, Department of Biology, University of Washington, Seattle, WA 98101
| | - Leonard I. Zon
- Howard Hughes Medical Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
- **To whom correspondence may be addressed at:
Howard Hughes Medical Institute, Department of Hematology/Oncology, Children's Hospital, Harvard Medical School, Karp Family Research Laboratories, 300 Longwood Avenue, Boston, MA 02115. E-mail:
| | - Albrecht Bindereif
- Institute of Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
- To whom correspondence may be addressed at:
Institute of Biochemistry, Justus-Liebig-University, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany. E-mail:
| |
Collapse
|
32
|
Matlin AJ, Moore MJ. Spliceosome assembly and composition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:14-35. [PMID: 18380338 DOI: 10.1007/978-0-387-77374-2_2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells control alternative splicing by modulating assembly of the pre-mRNA splicing machinery at competing splice sites. Therefore, a working knowledge of spliceosome assembly is essential for understanding how alternative splice site choices are achieved. In this chapter, we review spliceosome assembly with particular emphasis on the known steps and factors subject to regulation during alternative splice site selection in mammalian cells. We also review recent advances regarding similarities and differences between the in vivo and in vitro assembly pathways, as well as proofreading mechanisms contributing to the fidelity of splice site selection.
Collapse
Affiliation(s)
- Arianne J Matlin
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
33
|
Chen CH, Kao DI, Chan SP, Kao TC, Lin JY, Cheng SC. Functional links between the Prp19-associated complex, U4/U6 biogenesis, and spliceosome recycling. RNA (NEW YORK, N.Y.) 2006; 12:765-74. [PMID: 16540691 PMCID: PMC1440898 DOI: 10.1261/rna.2292106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Prp19-associated complex, consisting of at least eight protein components, is involved in spliceosome activation by specifying the interaction of U5 and U6 with pre-mRNA for their stable association with the spliceosome after U4 dissociation. We show here that yeast cells depleted of one or two of the Prp19-associated components, accumulate the free form of U4. In NTC25-deleted cells, the level of U6 was also reduced. Extracts prepared from NTC25-deleted cells contained neither free U4 nor U6 and were ineffective in spliceosome recycling in the in vitro splicing reaction. Overexpression of U6 partially rescued the temperature-sensitive growth defect and decreased the relative amount of free U4 in NTC25-deleted cells, indicating that the accumulation of free U4 was a consequence of insufficient amounts of U6 snRNA. Extracts prepared from U6-overproducing NTC25-deleted cells containing free-form U6 were capable of spliceosome recycling, suggesting a role of free U6 RNP in spliceosome recycling. Our results demonstrate that in addition to direct participation in spliceosome activation, the Prp19-associated complex has an indirect role in spliceosome recycling through affecting the biogenesis of U4/U6 snRNP in the in vivo splicing reaction.
Collapse
Affiliation(s)
- Chun-Hong Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Stanek D, Neugebauer KM. The Cajal body: a meeting place for spliceosomal snRNPs in the nuclear maze. Chromosoma 2006; 115:343-54. [PMID: 16575476 DOI: 10.1007/s00412-006-0056-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/27/2006] [Accepted: 01/29/2006] [Indexed: 10/24/2022]
Abstract
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are essential pre-mRNA splicing factors that consist of small nuclear RNAs (snRNAs) complexed with specific sets of proteins. A considerable body of evidence has established that snRNP assembly is accomplished after snRNA synthesis in the nucleus through a series of steps involving cytoplasmic and nuclear phases. Recent work indicates that snRNPs transiently localize to the Cajal body (CB), a nonmembrane-bound inclusion present in the nuclei of most cells, for the final steps in snRNP maturation, including snRNA base modification, U4/U6 snRNA annealing, and snRNA-protein assembly. Here, we review these findings that suggest a crucial role for CBs in the spliceosome cycle in which production of new snRNPs--and perhaps regenerated snRNPs after splicing--is promoted by the concentration of substrates in this previously mysterious subnuclear organelle. These insights allow us to speculate on the role of nuclear bodies in regulating the dynamics of RNP assembly to maintain a functional pool of factors available for key steps in gene expression.
Collapse
Affiliation(s)
- David Stanek
- Department of Cellular Biology and Pathology, First Medical Faculty, Institute of Physiology, Charles University, Academy of Sciences of the Czech Republic, Albertov 4, Prague 2, 128 00, Czech Republic.
| | | |
Collapse
|
35
|
Kwan SS, Brow DA. The N- and C-terminal RNA recognition motifs of splicing factor Prp24 have distinct functions in U6 RNA binding. RNA (NEW YORK, N.Y.) 2005; 11:808-20. [PMID: 15811912 PMCID: PMC1370765 DOI: 10.1261/rna.2010905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Prp24 is an essential yeast U6 snRNP protein with four RNA recognition motifs (RRMs) that facilitates the association of U4 and U6 snRNPs during spliceosome assembly. Genetic interactions led to the proposal that RRMs 2 and 3 of Prp24 bind U6 RNA, while RRMs 1 and 4 bind U4 RNA. However, the function of each RRM has yet to be established through biochemical means. We compared the binding of recombinant full-length Prp24 and truncated forms lacking RRM 1 or RRM 4 with U6 RNA. Contrary to expectations, we found that the N-terminal segment containing RRM 1 is important for high-affinity binding to U6 RNA and for discrimination between wild-type U6 RNA and U6 with point mutations in the 3' intramolecular stem-loop. In contrast, deletion of RRM 4 and the C terminus did not significantly alter the affinity for U6 RNA, but resulted in the formation of higher order Prp24.U6 complexes. Truncation and internal deletion of U6 RNA mapped three Prp24-binding sites, with the central site providing most of the affinity for Prp24. A newly identified temperature-sensitive lethal point mutation in RRM 1 is exacerbated by mutations in the U6 RNA telestem, as is a mutation in RRM 2, but not one in RRM 3. We propose that RRMs 1 and 2 of yeast Prp24 bind the same central site in U6 RNA that is bound by the two RRMs of human Prp24, and that RRMs 3 and 4 bind lower affinity flanking sites, thereby restricting the stoichiometry of Prp24 binding.
Collapse
Affiliation(s)
- Sharon S Kwan
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Ave, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
36
|
Stanĕk D, Neugebauer KM. Detection of snRNP assembly intermediates in Cajal bodies by fluorescence resonance energy transfer. ACTA ACUST UNITED AC 2004; 166:1015-25. [PMID: 15452143 PMCID: PMC2172029 DOI: 10.1083/jcb.200405160] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spliceosomal small nuclear ribonucleoprotein particles (snRNPs) are required for pre-mRNA splicing throughout the nucleoplasm, yet snRNPs also concentrate in Cajal bodies (CBs). To address a proposed role of CBs in snRNP assembly, we have used fluorescence resonance energy transfer (FRET) microscopy to investigate the subnuclear distribution of specific snRNP intermediates. Two distinct complexes containing the protein SART3 (p110), required for U4/U6 snRNP assembly, were localized: SART3•U6 snRNP and SART3•U4/U6 snRNP. These complexes segregated to different nuclear compartments, with SART3•U6 snRNPs exclusively in the nucleoplasm and SART3•U4/U6 snRNPs preferentially in CBs. Mutant cells lacking the CB-specific protein coilin and consequently lacking CBs exhibited increased nucleoplasmic levels of SART3•U4/U6 snRNP complexes. Reconstitution of CBs in these cells by expression of exogenous coilin restored accumulation of SART3•U4/U6 snRNP in CBs. Thus, while some U4/U6 snRNP assembly can occur in the nucleoplasm, these data provide evidence that SART3•U6 snRNPs form in the nucleoplasm and translocate to CBs where U4/U6 snRNP assembly occurs.
Collapse
Affiliation(s)
- David Stanĕk
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|