1
|
O’Neil EV, Dupont SM, Capel B. The basic helix-loop-helix transcription factor TCF4 recruits the Mediator Complex to activate gonadal genes and drive ovarian development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640455. [PMID: 40093061 PMCID: PMC11908221 DOI: 10.1101/2025.02.28.640455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The bipotential gonad is the precursor organ to both the ovary and testis and develops as part of the embryonic urogenital system. In mice, gonadogenesis initiates around embryonic day 9.5 (E9.5), when coelomic epithelial (CE) cells overlaying the mesonephric ducts proliferate and acquire the competence to differentiate into the two main cell types of the embryonic gonad, the pre-supporting cells and interstitial cell lineages. While some transcription factors that drive gonadal cell fate are known, HLH factors have not been investigated in this capacity. In the present study, we found that HLH binding sites are highly represented upstream of gonadal genes. We investigated the HLH factor Transcription Factor 4 (TCF4) which is expressed in the CE and GATA4+ somatic cells in both sexes prior to sex determination. TCF4 is maintained in ovarian pre-supporting cells and interstitial cells of both sexes but is silenced specifically in male pre-supporting cells. To characterize TCF4's role in gonad differentiation in vivo, we acquired a mutant mouse model that lacks the TCF4 DNA-binding domain and assessed morphology of the gonads at E15.5. While mutants develop gonads, we observed sex-specific effects on the gonads. Relative to wildtype littermates, SOX9 expression was higher in the Sertoli cells of XY Tcf4 STOP/STOP mutant testes, while FOXL2 and NR2F2 were reduced in the supporting and interstitial cell lineages of XX Tcf4 STOP/STOP mutant ovaries, respectively. Furthermore, the supporting: interstitial cell ratio was altered in XX Tcf4 STOP/STOP ovaries. These effects may occur downstream of changes to epigenetic programming or gene expression in somatic gonadal cells in mutant mice, as TCF4 binds the Mediator complex, RNA polymerase holoenzyme, and chromatin remodelers in early somatic cells. We hypothesize that TCF4 drives a gonadal program that advances female fate but is specifically silenced in male supporting cells as these pathways diverge.
Collapse
Affiliation(s)
- EV O’Neil
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| | - SM Dupont
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| | - B Capel
- Department of Cell Biology, Duke University School of Medicine, Durham NC 27710
| |
Collapse
|
2
|
Correa-Lara MVM, Lara-Vega I, Nájera-Martínez M, Domínguez-López ML, Reyes-Maldonado E, Vega-López A. Tumor-Infiltrating iNKT Cells Activated through c-Kit/Sca-1 Are Induced by Pentoxifylline, Norcantharidin, and Their Mixtures for Killing Murine Melanoma Cells. Pharmaceuticals (Basel) 2023; 16:1472. [PMID: 37895943 PMCID: PMC10610189 DOI: 10.3390/ph16101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The involvement of NK and other cytotoxic cells is considered the first defense line against cancer. However, a significant lack of information prevails on the possible roles played by factors considered characteristic of primitive cells, such as c-kit and Sca-1, in activating these cells, particularly in melanoma models subjected to treatments with substances under investigation, such as the case of norcantharidin. In this study, B16F1 murine melanoma cells were used to induce tumors in DBA/2 mice, estimating the proportions of NK and iNKT cells; the presence of activation (CD107a+) and primitive/activation (c-kit+/Lya6A+) markers and some tumor parameters, such as the presence of mitotic bodies, nuclear factor area, NK and iNKT cell infiltration in the tumor, infiltrated tumor area, and infiltrating lymphocyte count at 10x and 40x in specimens treated with pentoxifylline, norcantharidin, and the combination of both drugs. Possible correlations were estimated with Pearson's correlation analysis. It should be noted that, despite having demonstrated multiple correlations, immaturity/activation markers were related to these cells' activation. At the tumor site, iNKT cells are the ones that exert the cytotoxic potential on tumor cells, but they are confined to specific sites in the tumor. Due to the higher number of interactions of natural killer cells with tumor cells, it is concluded that the most effective treatment was PTX at 60 mg/kg + NCTD at 0.75 mg/kg.
Collapse
Affiliation(s)
- Maximiliano V. M. Correa-Lara
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City CP 07738, Mexico (M.N.-M.)
| | - Israel Lara-Vega
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City CP 07738, Mexico (M.N.-M.)
| | - Minerva Nájera-Martínez
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City CP 07738, Mexico (M.N.-M.)
| | - María Lilia Domínguez-López
- Laboratorio de Inmunoquímica I, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City CP 11340, Mexico
| | - Elba Reyes-Maldonado
- Laboratorio de Hemopatología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City CP 11340, Mexico
| | - Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City CP 07738, Mexico (M.N.-M.)
| |
Collapse
|
3
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
LDB1 Enforces Stability on Direct and Indirect Oncoprotein Partners in Leukemia. Mol Cell Biol 2020; 40:MCB.00652-19. [PMID: 32229578 DOI: 10.1128/mcb.00652-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/14/2020] [Indexed: 12/22/2022] Open
Abstract
The LMO2/LDB1 macromolecular complex is critical in hematopoietic stem and progenitor cell specification and in the development of acute leukemia. This complex is comprised of core subunits of LMO2 and LDB1 as well as single-stranded DNA-binding protein (SSBP) cofactors and DNA-binding basic helix-loop-helix (bHLH) and GATA transcription factors. We analyzed the steady-state abundance and kinetic stability of LMO2 and its partners via Halo protein tagging in conjunction with variant proteins deficient in binding their respective direct protein partners. We discovered a hierarchy of protein stabilities (with half-lives in descending order) as follows: LDB1 > SSBP > LMO2 > TAL1. Importantly, LDB1 is a remarkably stable protein that confers enhanced stability upon direct and indirect partners, thereby nucleating the formation of the multisubunit protein complex. The data imply that free subunits are more rapidly degraded than those incorporated within the LMO2/LDB1 complex. Our studies provided significant insights into LMO2/LDB1 macromolecular protein complex assembly and stability, which has implications for understanding its role in blood cell formation and for therapeutically targeting this complex in human leukemias.
Collapse
|
5
|
TWIST1 Homodimers and Heterodimers Orchestrate Lineage-Specific Differentiation. Mol Cell Biol 2020; 40:MCB.00663-19. [PMID: 32179550 DOI: 10.1128/mcb.00663-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/27/2020] [Indexed: 01/09/2023] Open
Abstract
The extensive array of basic helix-loop-helix (bHLH) transcription factors and their combinations as dimers underpin the diversity of molecular function required for cell type specification during embryogenesis. The bHLH factor TWIST1 plays pleiotropic roles during development. However, which combinations of TWIST1 dimers are involved and what impact each dimer imposes on the gene regulation network controlled by TWIST1 remain elusive. In this work, proteomic profiling of human TWIST1-expressing cell lines and transcriptome analysis of mouse cranial mesenchyme have revealed that TWIST1 homodimers and heterodimers with TCF3, TCF4, and TCF12 E-proteins are the predominant dimer combinations. Disease-causing mutations in TWIST1 can impact dimer formation or shift the balance of different types of TWIST1 dimers in the cell, which may underpin the defective differentiation of the craniofacial mesenchyme. Functional analyses of the loss and gain of TWIST1-E-protein dimer activity have revealed previously unappreciated roles in guiding lineage differentiation of embryonic stem cells: TWIST1-E-protein heterodimers activate the differentiation of mesoderm and neural crest cells, which is accompanied by the epithelial-to-mesenchymal transition. At the same time, TWIST1 homodimers maintain the stem cells in a progenitor state and block entry to the endoderm lineage.
Collapse
|
6
|
Vega-López A, Pagadala NS, López-Tapia BP, Madera-Sandoval RL, Rosales-Cruz E, Nájera-Martínez M, Reyes-Maldonado E. Is related the hematopoietic stem cells differentiation in the Nile tilapia with GABA exposure? FISH & SHELLFISH IMMUNOLOGY 2019; 93:801-814. [PMID: 31419534 DOI: 10.1016/j.fsi.2019.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The signaling mediated by small non-proteinogenic molecules, which probably have the capacity to serve as a bridge amongst complex systems is one of the most exiting challenges for the study. In the current report, stem cells differentiation of the immune system in Nile tilapia treated with sub-basal doses of GABA evaluated as c-kit+ and Sca-1+ cells disappearance on pronephros, thymus, spleen and peripheral blood mononuclear cells by flow cytometry was assessed. Explanation of biological response was performed by molecular docking approach and multiparametric analysis. Stem cell differentiation depends on a delicate balance of negative and positive interactions of this neurotransmitter with receptors and transcription factors involved in this process. This in turn depends on the type of interaction with hematopoietic niche to differentiate into primordial, early or late hematopoiesis as well as from the dose delivery. In fish treated with the low doses of GABA (0.1% over basal value) primordial hematopoiesis is regulated by interaction of glutamate (Glu) with the Ly-6 antigen. Early hematopoiesis was influenced by the bond of GABA near or adjacent to turns of FLTR3-Ig-IV domain. During late hematopoiesis, negative regulation by structural modifications on PU.1/IRF-4 complex, IL-7Rα and GM-CSFR mainly prevails. Results of molecular docking were in agreement with the percentages of the main blood cells lineages estimated in pronephros by flow cytometry. Current study provides the first evidences about the role of inhibitory and excitatory neurotransmitters such as GABA and Glu, respectively with the most transcriptional factors and receptors involved on hematopoiesis in adult Nile tilapia.
Collapse
Affiliation(s)
- Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico.
| | | | - Brenda P López-Tapia
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Ruth L Madera-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Erika Rosales-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Citología, Carpio y Plan de Ayala S/n, Casco de Santo Tomás, México, CP 11340, Mexico
| | - Minerva Nájera-Martínez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Elba Reyes-Maldonado
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Citología, Carpio y Plan de Ayala S/n, Casco de Santo Tomás, México, CP 11340, Mexico
| |
Collapse
|
7
|
Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, Gray N, Waithe D, Clark K, Hublitz P, Repapi E, Otto G, Sopp P, Taylor S, Thongjuea S, Vyas P, Porcher C. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun 2018; 9:5375. [PMID: 30560907 PMCID: PMC6299140 DOI: 10.1038/s41467-018-07787-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 11/23/2018] [Indexed: 01/03/2023] Open
Abstract
During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.
Collapse
Affiliation(s)
- Hedia Chagraoui
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Maiken S Kristiansen
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Medimmune, Granta Park, CB21 6GH, Cambridge, UK
| | - Juan Pablo Ruiz
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Haematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ana Serra-Barros
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Johanna Richter
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Elisa Hall-Ponselé
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Centre for Regenerative Medicine, SCRM Building, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominic Waithe
- Wolfson Imaging Centre, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kevin Clark
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Philip Hublitz
- Genome Engineering Facility, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Emmanouela Repapi
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Georg Otto
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Paul Sopp
- FACS Facility, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Supat Thongjuea
- Computational Biology Research Group, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Paresh Vyas
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- Oxford National Institute for Health Research, Biomedical Research Centre, Haematology Theme, Oxford University Hospital, Oxford, OX3 9DU, UK
| | - Catherine Porcher
- Medical Research Council Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| |
Collapse
|
8
|
Stanulovic VS, Cauchy P, Assi SA, Hoogenkamp M. LMO2 is required for TAL1 DNA binding activity and initiation of definitive haematopoiesis at the haemangioblast stage. Nucleic Acids Res 2017; 45:9874-9888. [PMID: 28973433 PMCID: PMC5622341 DOI: 10.1093/nar/gkx573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
LMO2 is a bridging factor within a DNA binding complex and is required for definitive haematopoiesis to occur. The developmental stage of the block in haematopoietic specification is not known. We show that Lmo2−/− mouse embryonic stem cells differentiated to Flk-1+ haemangioblasts, but less efficiently to haemogenic endothelium, which only produced primitive haematopoietic progenitors. Genome-wide approaches indicated that LMO2 is required at the haemangioblast stage to position the TAL1/LMO2/LDB1 complex to regulatory elements that are important for the establishment of the haematopoietic developmental program. In the absence of LMO2, the target site recognition of TAL1 is impaired. The lack of LMO2 resulted in altered gene expression levels already at the haemangioblast stage, with transcription factor genes accounting for ∼15% of affected genes. Comparison of Lmo2−/− with Tal1−/− Flk-1+ cells further showed that TAL1 was required to initiate or sustain Lmo2 expression.
Collapse
Affiliation(s)
- Vesna S Stanulovic
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
9
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
10
|
LMO2 Oncoprotein Stability in T-Cell Leukemia Requires Direct LDB1 Binding. Mol Cell Biol 2015; 36:488-506. [PMID: 26598604 DOI: 10.1128/mcb.00901-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
LMO2 is a component of multisubunit DNA-binding transcription factor complexes that regulate gene expression in hematopoietic stem and progenitor cell development. Enforced expression of LMO2 causes leukemia by inducing hematopoietic stem cell-like features in T-cell progenitor cells, but the biochemical mechanisms of LMO2 function have not been fully elucidated. In this study, we systematically dissected the LMO2/LDB1-binding interface to investigate the role of this interaction in T-cell leukemia. Alanine scanning mutagenesis of the LIM interaction domain of LDB1 revealed a discrete motif, R(320)LITR, required for LMO2 binding. Most strikingly, coexpression of full-length, wild-type LDB1 increased LMO2 steady-state abundance, whereas coexpression of mutant proteins deficient in LMO2 binding compromised LMO2 stability. These mutant LDB1 proteins also exerted dominant negative effects on growth and transcription in diverse leukemic cell lines. Mass spectrometric analysis of LDB1 binding partners in leukemic lines supports the notion that LMO2/LDB1 function in leukemia occurs in the context of multisubunit complexes, which also protect the LMO2 oncoprotein from degradation. Collectively, these data suggest that the assembly of LMO2 into complexes, via direct LDB1 interaction, is a potential molecular target that could be exploited in LMO2-driven leukemias resistant to existing chemotherapy regimens.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW KIT tyrosine kinase receptor is essential for several tissue stem cells, especially for hematopoietic stem cells (HSCs). Moderately decreased KIT signaling is well known to cause anemia and defective HSC self-renewal, whereas gain-of-function mutations are infrequently found in leukemias. Thus, maintaining KIT signal strength is critically important for homeostasis. KIT signaling in HSCs involves effectors such as SHP2 and PTPN11. This review summarizes the recent developments on the novel mechanisms regulating or reinforcing KIT signal strength in HSCs and its perturbation in polycythemia vera. RECENT FINDINGS Stem cell leukemia (SCL) is a transcription factor that is essential for HSC development. Genetic experiments indicate that Kit, protein tyrosine phosphatase, nonreceptor type 11 (Ptpn11), or Scl control long-term HSC self-renewal, survival, and quiescence in adults. Kit is now shown to be centrally involved in two feedforward loops in HSCs, one with Ptpn11 and the other with Scl. SUMMARY Knowledge of the regulatory mechanisms that favor self-renewal divisions or a lineage determination process is central to the design of strategies to expand HSCs for the purpose of cell therapy. In addition, transcriptome and phosphoproteome analyses of erythroblasts in polycythemia vera identified lower SCL expression and hypophosphorylated KIT, suggesting that the KIT-SCL loop is relevant to the pathophysiology of human blood disorders as well.
Collapse
|
12
|
SCL, LMO1 and Notch1 reprogram thymocytes into self-renewing cells. PLoS Genet 2014; 10:e1004768. [PMID: 25522233 PMCID: PMC4270438 DOI: 10.1371/journal.pgen.1004768] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/22/2014] [Indexed: 12/30/2022] Open
Abstract
The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network described here may be relevant to a majority of human T-ALL. Deciphering the initiating events in lymphoid leukemia is important for the development of new therapeutic strategies. In this manuscript, we define oncogenic reprogramming as the process through which non-self-renewing progenitors are converted into pre-leukemic stem cells with sustained self-renewal capacities. We provide strong genetic evidence that this step is rate-limiting in leukemogenesis and requires the activation of a self-renewal program by oncogenic transcription factors, as exemplified by SCL and LMO1. Furthermore, NOTCH1 is a pathway that drives cell fate in the thymus. We demonstrate that homeostatic NOTCH1 levels that are highest in specific thymocyte subsets determine their susceptibilities to oncogenic reprogramming by SCL and LMO1. Our data provide novel insight into the acquisition of self-renewal as a critical first step in lymphoid cell transformation, requiring the synergistic interaction of oncogenic transcription factors with a cellular context controlled by high physiological NOTCH1.
Collapse
|
13
|
El Omari K, Hoosdally SJ, Tuladhar K, Karia D, Hall-Ponselé E, Platonova O, Vyas P, Patient R, Porcher C, Mancini EJ. Structural basis for LMO2-driven recruitment of the SCL:E47bHLH heterodimer to hematopoietic-specific transcriptional targets. Cell Rep 2013; 4:135-47. [PMID: 23831025 PMCID: PMC3714592 DOI: 10.1016/j.celrep.2013.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/23/2013] [Accepted: 06/06/2013] [Indexed: 01/25/2023] Open
Abstract
Cell fate is governed by combinatorial actions of transcriptional regulators assembling into multiprotein complexes. However, the molecular details of how these complexes form are poorly understood. One such complex, which contains the basic-helix-loop-helix heterodimer SCL:E47 and bridging proteins LMO2:LDB1, critically regulates hematopoiesis and induces T cell leukemia. Here, we report the crystal structure of (SCL:E47)bHLH:LMO2:LDB1LID bound to DNA, providing a molecular account of the network of interactions assembling this complex. This reveals an unexpected role for LMO2. Upon binding to SCL, LMO2 induces new hydrogen bonds in SCL:E47, thereby strengthening heterodimer formation. This imposes a rotation movement onto E47 that weakens the heterodimer:DNA interaction, shifting the main DNA-binding activity onto additional protein partners. Along with biochemical analyses, this illustrates, at an atomic level, how hematopoietic-specific SCL sequesters ubiquitous E47 and associated cofactors and supports SCL's reported DNA-binding-independent functions. Importantly, this work will drive the design of small molecules inhibiting leukemogenic processes.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Angiopoietin-2 is a direct transcriptional target of TAL1, LYL1 and LMO2 in endothelial cells. PLoS One 2012; 7:e40484. [PMID: 22792348 PMCID: PMC3391236 DOI: 10.1371/journal.pone.0040484] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
The two related basic helix–loop-helix, TAL1 and LYL1, and their cofactor LIM-only-2 protein (LMO2) are present in blood and endothelial cells. While their crucial role in early hematopoiesis is well established, their function in endothelial cells and especially in angiogenesis is less understood. Here, we identified ANGIOPOIETIN-2 (ANG-2), which encodes a major regulator of angiogenesis, as a direct transcriptional target of TAL1, LYL1 and LMO2. Knockdown of any of the three transcription factors in human blood and lymphatic endothelial cells caused ANG-2 mRNA and protein down-regulation. Transient transfections showed that the full activity of the ANG-2 promoter required the integrity of a highly conserved Ebox-GATA composite element. Accordingly, chromatin immunoprecipitation assays demonstrated that TAL1, LYL1, LMO2 and GATA2 occupied this region of ANG-2 promoter in human endothelial cells. Furthermore, we showed that LMO2 played a central role in assembling TAL1-E47, LYL1-LYL1 or/and LYL1-TAL1 dimers with GATA2. The resulting complexes were able to activate endogenous ANG-2 expression in endothelial cells as well as in non-endothelial cells. Finally, we showed that ANG-2 gene activation during angiogenesis concurred with the up-regulation of TAL1 and LMO2. Altogether, we identified ANG-2 as a bona fide target gene of LMO2-complexes with TAL1 and/or LYL1, highlighting a new function of the three hematopoietic factors in the endothelial lineage.
Collapse
|
15
|
Curtis DJ, Salmon JM, Pimanda JE. Concise Review: Blood Relatives: Formation and regulation of hematopoietic stem cells by the basic helix-loop-helix transcription factors stem cell leukemia and lymphoblastic leukemia-derived sequence 1. Stem Cells 2012; 30:1053-8. [DOI: 10.1002/stem.1093] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Capron C, Lacout C, Lécluse Y, Wagner-Ballon O, Kaushik AL, Cramer-Bordé E, Sablitzky F, Duménil D, Vainchenker W. LYL-1 deficiency induces a stress erythropoiesis. Exp Hematol 2011; 39:629-42. [PMID: 21420467 DOI: 10.1016/j.exphem.2011.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/02/2011] [Accepted: 02/26/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE LYL-1 is a transcription factor containing a basic helix-loop-helix motif closely related to SCL/TAL-1, a regulator of erythroid differentiation. Because LYL-1 is expressed in erythroid cell populations, we addressed its role in erythropoiesis using knockin mice. MATERIALS AND METHODS Erythropoiesis of LYL-1(-/-) mice was studied by progenitor assays, flow cytometry, reconstitution assays, and functional tests. Expression of LYL-1, SCL, and GATA-1 was assessed at messenger RNA level by quantitative reverse transcription polymerase chain reaction. RESULTS LYL-1(-/-) mice displayed decreased erythropoiesis with a partial arrest in differentiation, and enhanced apoptosis associated with decreased Bcl-x(L) expression in the bone marrow (BM). In addition, LYL-1(-/-) BM cells were severely impaired in their abilities to reconstitute the erythroid lineage in competitive assays, suggesting a cell autonomous abnormality of erythropoiesis. In parallel, erythroid progenitor and precursor cells were significantly increased in the spleen of LYL-1(-/-) mice. Expression of LYL-1 was differentially regulated during maturation of erythroblasts and strikingly different between spleen- and BM-derived erythroblasts. Expression of LYL-1 decreased during erythroid differentiation in the spleen whereas it increased in the BM to reach the same level in mature erythroblasts as in the soleen. Loss of Lyl-1 expression was accompanied with an increase of SCL/TAL-1 and GATA-1 transcripts in spleen but not in BM-derived erythroblasts. Furthermore, phenylhydrazine-induced stress erythropoiesis was elevated in LYL-1(-/-) mice and mutant BM and spleen erythroid progenitors were hypersensitive to erythropoietin. CONCLUSIONS Taken together, these results suggest that LYL-1 plays a definite role in erythropoiesis, albeit with different effects in BM specifically regulating basal erythropoiesis, and spleen, controlling stress-induced erythropoiesis.
Collapse
Affiliation(s)
- Claude Capron
- INSERM U1009, IFR 54, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex. Blood 2010; 117:2146-56. [PMID: 21076045 DOI: 10.1182/blood-2010-07-293357] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The LIM only protein 2 (LMO2) is a key regulator of hematopoietic stem cell development whose ectopic expression in T cells leads to the onset of acute lymphoblastic leukemia. Through its LIM domains, LMO2 is thought to function as the scaffold for a DNA-binding transcription regulator complex, including the basic helix-loop-helix proteins SCL/TAL1 and E47, the zinc finger protein GATA-1, and LIM-domain interacting protein LDB1. To understand the role of LMO2 in the formation of this complex and ultimately to dissect its function in normal and aberrant hematopoiesis, we solved the crystal structure of LMO2 in complex with the LID domain of LDB1 at 2.4 Å resolution. We observe a largely unstructured LMO2 kept in register by the LID binding both LIM domains. Comparison of independently determined crystal structures of LMO2 reveals large movements around a conserved hinge between the LIM domains. We demonstrate that such conformational flexibility is necessary for binding of LMO2 to its partner protein SCL/TAL1 in vitro and for the function of this complex in vivo. These results, together with molecular docking and analysis of evolutionarily conserved residues, yield the first structural model of the DNA-binding complex containing LMO2, LDB1, SCL/TAL1, and GATA-1.
Collapse
|
18
|
Abstract
The most common translocation in childhood T-cell acute lymphoblastic leukemia (T-ALL) involves the LMO2 locus, resulting in ectopic expression of the LMO2 gene in human thymocytes. The LMO2 gene was also activated in patients with X-linked Severe Combined Immune Deficiency treated with gene therapy because of retroviral insertion in the LMO2 locus. The LMO2 insertions predisposed these children to T-ALL, yet how LMO2 contributes to T cell transformation remains unclear. The LIM (Lin 11, Isl-1, Mec-3) domain containing LMO2 protein regulates erythropoiesis as part of a large transcriptional complex consisting of LMO2, TAL1, E47, GATA1 and LDB1 that recognizes bipartite E-box-GATA1 sites on target genes. Similarly, a TAL1/E47/LMO2/LDB1 complex is observed in human T-ALL and Tal1 and Lmo2 expression in mice results in disease acceleration. To address the mechanism(s) of Tal1/Lmo2 synergy in leukemia, we generated Lmo2 transgenic mice and mated them with mice that express wild-type Tal1 or a DNA-binding mutant of TAL1. Tal1/Lmo2 and MutTAL1/Lmo2 bitransgenic mice exhibit perturbations in thymocyte development due to reduced E47/HEB transcriptional activity and develop leukemia with identical kinetics. These data demonstrate that the DNA-binding activity of Tal1 is not required to cooperate with Lmo2 to cause leukemia in mice and suggest that Lmo2 may cooperate with Tal1 to interfere with E47/HEB function(s).
Collapse
|
19
|
El Omari K, Porcher C, Mancini EJ. Purification, crystallization and preliminary X-ray analysis of a fusion of the LIM domains of LMO2 and the LID domain of Ldb1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1466-9. [PMID: 21045296 DOI: 10.1107/s1744309110032872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/16/2010] [Indexed: 11/11/2022]
Abstract
LMO2 (LIM domain only 2), also known as rhombotin-2, is a transcriptional regulator that is essential for normal haematopoietic development. In malignant haematopoiesis, its ectopic expression in T cells is involved in the pathogenesis of leukaemia. LMO2 contains four zinc-finger domains and binds to the ubiquitous nuclear adaptor protein Ldb1 via the LIM-interaction domain (LID). Together, they act as scaffolding proteins and bridge important haematopoietic transcription factors such as SCL/Tal1, E2A and GATA-1. Solving the structure of the LMO2:Ldb1-LID complex would therefore be a first step towards understanding how haematopoietic specific protein complexes form and would also provide an attractive target for drug development in anticancer therapy, especially for T-cell leukaemia. Here, the expression, purification, crystallization and data collection of a fusion protein consisting of the two LIM domains of LMO2 linked to the LID domain of Ldb1 via a flexible linker is reported. The crystals belonged to space group C2, with unit-cell parameters a = 179.9, b = 51.5, c = 114.7 Å, β = 90.1°, and contained five molecules in the asymmetric unit. Multiple-wavelength anomalous dispersion (MAD) data have been collected at the zinc X-ray absorption edge to a resolution of 2.8 Å and the data were used to solve the structure of the LMO2:Ldb1-LID complex. Refinement and analysis of the electron-density map is in progress.
Collapse
Affiliation(s)
- Kamel El Omari
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | | | | |
Collapse
|
20
|
Abstract
The 2 related basic helix loop helix genes, LYL1 and TAL-1 are active in hematopoietic and endothelial lineages. While Tal-1 is essential for both hematopoietic and vascular development, the role of Lyl1 appears to be distinct as deficient mice are viable and display modest hematopoietic defects. Here, we reveal a role for Lyl1 as a major regulator of adult neovascularization. Tumors implanted into Lyl1-deficient mice showed higher proliferation and angiogenesis, as evidenced by enlarged lumens, reduced pericyte coverage and increased permeability, compared with wild type littermates. Of note, Lyl1-deficient tumor vessels exhibited an up-regulation of Tal-1, the VE-Cadherin target gene, as well as Angiopoietin-2, 3 major actors in angiogenesis. Hematopoietic reconstitution experiments demonstrated that this sustained tumor angiogenesis was of endothelial origin. Moreover, the angiogenic phenotype observed in the absence of Lyl1 function was not tumor-restricted as microvessels forming in Matrigel or originating from aortic explants were also more numerous and larger than their wild-type counterparts. Finally, LYL1 depletion in human endothelial cells revealed that LYL1 controls the expression of molecules involved in the stabilization of vascular structures. Together, our data show a role for LYL1 in the postnatal maturation of newly formed blood vessels.
Collapse
|
21
|
Tremblay CS, Hoang T, Hoang T. Early T cell differentiation lessons from T-cell acute lymphoblastic leukemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:121-56. [PMID: 20800819 DOI: 10.1016/s1877-1173(10)92006-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T cells develop from bone marrow-derived self-renewing hematopoietic stem cells (HSC). Upon entering the thymus, these cells undergo progressive commitment and differentiation driven by the thymic stroma and the pre-T cell receptor (pre-TCR). These processes are disrupted in T-cell acute lymphoblastic leukemia (T-ALL). More than 70% of recurring chromosomal rearrangements in T-ALL activate the expression of oncogenic transcription factors, belonging mostly to three families, basic helix-loop-helix (bHLH), homeobox (HOX), and c-MYB. This prevalence is indicative of their importance in the T lineage, and their dominant mechanisms of transformation. For example, bHLH oncoproteins inhibit E2A and HEB, revealing their tumor suppressor function in the thymus. The induction of T-ALL, nonetheless, requires collaboration with constitutive NOTCH1 signaling and the pre-TCR, as well as loss-of-function mutations for CDKN2A and PTEN. Significantly, NOTCH1, the pre-TCR pathway, and E2A/HEB proteins control critical checkpoints and branchpoints in early thymocyte development whereas several oncogenic transcription factors, HOXA9, c-MYB, SCL, and LYL-1 control HSC self-renewal. Together, these genetic lesions alter key regulatory processes in the cell, favoring self-renewal and subvert the normal control of thymocyte homeostasis.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Institute of Research in Immunology and Cancer, University of Montreal, Montréal, Québec, Canada
| | | | | |
Collapse
|
22
|
Mathieu D. [The bHLH TAL1 protein: a key molecule in the hematopoietic and endothelial systems]. JOURNAL DE LA SOCIETE DE BIOLOGIE 2009; 203:143-53. [PMID: 19527627 DOI: 10.1051/jbio/2009017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The formation of blood cells and vascular networks occurs simultaneously during development, and both lineages remain in close association in all adult tissues. The functional setting of both systems within the embryo and their renewal during adult life are highly complex processes, and require the involvement of numerous molecular actors, the activities of which are often overlapping. Here, I review the activity of TAL-1, a basic-helix-loop-helix transcription factor, which plays a key role in the formation and functioning of both blood and endothelial systems, with a particular emphasis on recent data that associate TAL-1 with angiogenesis.
Collapse
Affiliation(s)
- Danièle Mathieu
- Institut de Génétique Moléculaire, CNRS-UMR 5535, Universités de Montpellier 1 et Montpellier 2, 1919 route de Mende, 34293 Montpellier Cedex 1, France.
| |
Collapse
|
23
|
A common bipotent progenitor generates the erythroid and megakaryocyte lineages in embryonic stem cell-derived primitive hematopoiesis. Blood 2009; 114:1506-17. [PMID: 19478046 DOI: 10.1182/blood-2008-09-178863] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The megakaryocytic (MK) and erythroid lineages are tightly associated during differentiation and are generated from a bipotent megakaryocyte-erythroid progenitor (MEP). In the mouse, a primitive MEP has been demonstrated in the yolk sac. In human, it is not known whether the primitive MK and erythroid lineages are generated from a common progenitor or independently. Using hematopoietic differentiation of human embryonic stem cells on the OP9 cell line, we identified a primitive MEP in a subset of cells coexpressing glycophorin A (GPA) and CD41 from day 9 to day 12 of coculturing. This MEP differentiates into primitive erythroid (GPA(+)CD41(-)) and MK (GPA(-)CD41(+)) lineages. In contrast to erythropoietin (EPO)-dependent definitive hematopoiesis, KIT was not detected during erythroid differentiation. A molecular signature for the commitment and differentiation toward both the erythroid and MK lineages was detected by assessing expression of transcription factors, thrombopoietin receptor (MPL) and erythropoietin receptor (EPOR). We showed an inverse correlation between FLI1 and both KLF1 and EPOR during primitive erythroid and MK differentiation, similar to definitive hematopoiesis. This novel MEP differentiation system may allow an in-depth exploration of the molecular bases of erythroid and MK commitment and differentiation.
Collapse
|
24
|
Joshi K, Lee S, Lee B, Lee JW, Lee SK. LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 2009; 62:641-54. [PMID: 19323994 DOI: 10.1016/j.neuron.2009.04.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/08/2009] [Accepted: 04/30/2009] [Indexed: 11/15/2022]
Abstract
Multiple excitatory and inhibitory interneurons form the motor circuit with motor neurons in the ventral spinal cord. Notch signaling initiates the diversification of immature V2-interneurons into excitatory V2a-interneurons and inhibitory V2b-interneurons. Here, we provide a transcriptional regulatory mechanism underlying their balanced production. LIM-only protein LMO4 controls this binary cell fate choice by regulating the activity of V2a- and V2b-specific LIM complexes inversely. In the spinal cord, LMO4 induces GABAergic V2b-interneurons in collaboration with SCL and inhibits Lhx3 from generating glutamatergic V2a-interneuons. In LMO4;SCL compound mutant embryos, V2a-interneurons increase markedly at the expense of V2b-interneurons. We further demonstrate that LMO4 nucleates the assembly of a novel LIM-complex containing SCL, Gata2, and NLI. This complex activates specific enhancers in V2b-genes consisting of binding sites for SCL and Gata2, thereby promoting V2b-interneuron fate. Thus, LMO4 plays essential roles in directing a balanced generation of inhibitory and excitatory neurons in the ventral spinal cord.
Collapse
Affiliation(s)
- Kaumudi Joshi
- Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
25
|
Joshi K, Lee S, Lee B, Lee JW, Lee SK. LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 2009; 61:839-51. [PMID: 19323994 DOI: 10.1016/j.neuron.2009.02.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/29/2008] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Multiple excitatory and inhibitory interneurons form the motor circuit with motor neurons in the ventral spinal cord. Notch signaling initiates the diversification of immature V2-interneurons into excitatory V2a-interneurons and inhibitory V2b-interneurons. Here, we provide a transcriptional regulatory mechanism underlying their balanced production. LIM-only protein LMO4 controls this binary cell fate choice by regulating the activity of V2a- and V2b-specific LIM complexes inversely. In the spinal cord, LMO4 induces GABAergic V2b-interneurons in collaboration with SCL and inhibits Lhx3 from generating glutamatergic V2a-interneuons. In LMO4;SCL compound mutant embryos, V2a-interneurons increase markedly at the expense of V2b-interneurons. We further demonstrate that LMO4 nucleates the assembly of a novel LIM-complex containing SCL, Gata2, and NLI. This complex activates specific enhancers in V2b-genes consisting of binding sites for SCL and Gata2, thereby promoting V2b-interneuron fate. Thus, LMO4 plays essential roles in directing a balanced generation of inhibitory and excitatory neurons in the ventral spinal cord.
Collapse
Affiliation(s)
- Kaumudi Joshi
- Department of Molecular Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Tanaka A, Itoh F, Itoh S, Kato M. TAL1/SCL relieves the E2-2-mediated repression of VEGFR2 promoter activity. J Biochem 2008; 145:129-35. [PMID: 19029143 DOI: 10.1093/jb/mvn158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The basic helix-loop-helix (bHLH) protein TAL1/SCL is essential for embryonic-vascular development. TAL1/SCL regulates the activation of endothelial cells by binding directly or indirectly to DNA sequences in critical target genes. We recently demonstrated that E-box protein E2-2 blocks endothelial cell activation via perturbation of VEGFR2 promoter activity. Herein, we report that TAL1/SCL interacts with E2-2 and inhibits E2-2-mediated effects on reporter activity. Mutational analysis revealed that the HLH domain of TAL1/SCL, but not its basic region, is required for interaction with E2-2. Importantly, TAL1/SCL relieves the E2-2-mediated repression of VEGFR2 reporter activity in endothelial cells. Our data elaborate on the bHLH protein interactions that regulate endothelial cell activation.
Collapse
Affiliation(s)
- Aya Tanaka
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding-independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.
Collapse
|
28
|
San-Marina S, Han Y, Suarez Saiz F, Trus MR, Minden MD. Lyl1 interacts with CREB1 and alters expression of CREB1 target genes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:503-17. [PMID: 18160048 DOI: 10.1016/j.bbamcr.2007.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 11/19/2007] [Accepted: 11/20/2007] [Indexed: 11/26/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor family contains key regulators of cellular proliferation and differentiation as well as the suspected oncoproteins Tal1 and Lyl1. Tal1 and Lyl1 are aberrantly over-expressed in leukemia as a result of chromosomal translocations, or other genetic or epigenetic events. Protein-protein and protein-DNA interactions described so far are mediated by their highly homologous bHLH domains, while little is known about the function of other protein domains. Hetero-dimers of Tal1 and Lyl1 with E2A or HEB, decrease the rate of E2A or HEB homo-dimer formation and are poor activators of transcription. In vitro, these hetero-dimers also recognize different binding sites from homo-dimer complexes, which may also lead to inappropriate activation or repression of promoters in vivo. Both mechanisms are thought to contribute to the oncogenic potential of Tal1 and Lyl1. Despite their bHLH structural similarity, accumulating evidence suggests that Tal1 and Lyl1 target different genes. This raises the possibility that domains flanking the bHLH region, which are distinct in the two proteins, may participate in target recognition. Here we report that CREB1, a widely-expressed transcription factor and a suspected oncogene in acute myelogenous leukemia (AML) was identified as a binding partner for Lyl1 but not for Tal1. The interaction between Lyl1 and CREB1 involves the N terminal domain of Lyl1 and the Q2 and KID domains of CREB1. The histone acetyl-transferases p300 and CBP are recruited to these complexes in the absence of CREB1 Ser 133 phosphorylation. In the Id1 promoter, Lyl1 complexes direct transcriptional activation. We also found that in addition to Id1, over-expressed Lyl1 can activate other CREB1 target promoters such as Id3, cyclin D3, Brca1, Btg2 and Egr1. Moreover, approximately 50% of all gene promoters identified by ChIP-chip experiments were jointly occupied by CREB1 and Lyl1, further strengthening the association of Lyl1 with Cre binding sites. Given the newly recognized importance of CREB1 in AML, the ability of Lyl1 to modulate promoter responses to CREB1 suggests that it plays a role in the malignant phenotype by occupying different promoters than Tal1.
Collapse
Affiliation(s)
- Serban San-Marina
- Ontario Cancer Institute/Princess Margaret Hospital, 610 University Avenue 9-111, Toronto, Ontario, Canada M5G 2M9
| | | | | | | | | |
Collapse
|
29
|
Lécuyer E, Larivière S, Sincennes MC, Haman A, Lahlil R, Todorova M, Tremblay M, Wilkes BC, Hoang T. Protein Stability and Transcription Factor Complex Assembly Determined by the SCL-LMO2 Interaction. J Biol Chem 2007; 282:33649-33658. [PMID: 17878155 DOI: 10.1074/jbc.m703939200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene expression programs are established by networks of interacting transcription factors. The basic helix-loop-helix factor SCL and the LIM-only protein LMO2 are components of transcription factor complexes that are essential for hematopoiesis. Here we show that LMO2 and SCL are predominant interaction partners in hematopoietic cells and that this interaction occurs through a conserved interface residing in the loop and helix 2 of SCL. This interaction nucleates the assembly of SCL complexes on DNA and is required for target gene induction and for the stimulation of erythroid and megakaryocytic differentiation. We also demonstrate that SCL determines LMO2 protein levels in hematopoietic cells and reveal that interaction with SCL prevents LMO2 degradation by the proteasome. We propose that the SCL-LMO2 interaction couples protein stabilization with higher order protein complex assembly, thus providing a powerful means of modulating the stoichiometry and spatiotemporal activity of SCL complexes. This interaction likely provides a rate-limiting step in the transcriptional control of hematopoiesis and leukemia, and similar mechanisms may operate to control the assembly of diverse protein modules.
Collapse
Affiliation(s)
- Eric Lécuyer
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Simon Larivière
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Marie-Claude Sincennes
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - André Haman
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Rachid Lahlil
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Margarita Todorova
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Mathieu Tremblay
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada
| | - Brian C Wilkes
- Institut de Recherche Clinique de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Trang Hoang
- Institut de Recherche en Immunologie et Cancérologie and the Departments of, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Molecular Biology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Pharmacology, Université de Montréal, Montréal, Québec, H3C 2J7, Canada; Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 2J7, Canada.
| |
Collapse
|
30
|
Deleuze V, Chalhoub E, El-Hajj R, Dohet C, Le Clech M, Couraud PO, Huber P, Mathieu D. TAL-1/SCL and its partners E47 and LMO2 up-regulate VE-cadherin expression in endothelial cells. Mol Cell Biol 2007; 27:2687-97. [PMID: 17242194 PMCID: PMC1899886 DOI: 10.1128/mcb.00493-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The basic helix-loop-helix TAL-1/SCL essential for hematopoietic development is also required during vascular development for embryonic angiogenesis. We reported that TAL-1 acts positively on postnatal angiogenesis by stimulating endothelial morphogenesis. Here, we investigated the functional consequences of TAL-1 silencing in human primary endothelial cells. We found that TAL-1 knockdown caused the inhibition of in vitro tubulomorphogenesis, which was associated with a dramatic reduction in vascular endothelial cadherin (VE-cadherin) at intercellular junctions. Consistently, silencing of TAL-1 as well as of its cofactors E47 and LMO2 down-regulated VE-cadherin at both the mRNA and the protein level. Endogenous VE-cadherin transcription could be activated in nonendothelial HEK-293 cells by the sole concomitant ectopic expression of TAL-1, E47, and LMO2. Transient transfections in human primary endothelial cells derived from umbilical vein (HUVECs) demonstrated that VE-cadherin promoter activity was dependent on the integrity of a specialized E-box associated with a GATA motif and was maximal with the coexpression of the different components of the TAL-1 complex. Finally, chromatin immunoprecipitation assays showed that TAL-1 and its cofactors occupied the VE-cadherin promoter in HUVECs. Together, these data identify VE-cadherin as a bona fide target gene of the TAL-1 complex in the endothelial lineage, providing a first clue to TAL-1 function in angiogenesis.
Collapse
Affiliation(s)
- Virginie Deleuze
- Institut de Génétique Moléculaire de Montpellier CNRS, UMR5535, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaillie CM, Ekker SC, Patient R. The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood 2006; 109:2389-98. [PMID: 17090656 DOI: 10.1182/blood-2006-02-003087] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe transcription factors Scl and Lmo2 are crucial for development of all blood. An important early requirement for Scl in endothelial development has also been revealed recently in zebrafish embryos, supporting previous findings in scl−/− embryoid bodies. Scl depletion culminates most notably in failure of dorsal aorta formation, potentially revealing a role in the formation of hemogenic endothelium. We now present evidence that the requirements for Lmo2 in zebrafish embryos are essentially the same as for Scl. The expression of important hematopoietic regulators is lost, reduced, or delayed, panendothelial gene expression is down-regulated, and aorta-specific marker expression is lost. The close similarity of the phenotypes for Scl and Lmo2 suggest that they perform these early functions in hemangioblast development within a multiprotein complex, as shown for erythropoiesis. Consistent with this, we find that scl morphants cannot be rescued by a non-Lmo2–binding form of Scl but can be rescued by non-DNA–binding forms, suggesting tethering to target genes through DNA-binding partners linked via Lmo2. Interestingly, unlike other hematopoietic regulators, the Scl/Lmo2 complex does not appear to autoregulate, as neither gene's expression is affected by depletion of the other. Thus, expression of these critical regulators is dependent on continued expression of upstream regulators, which may include cell-extrinsic signals.
Collapse
Affiliation(s)
- Lucy J Patterson
- Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Chang PY, Draheim K, Kelliher MA, Miyamoto S. NFKB1 is a direct target of the TAL1 oncoprotein in human T leukemia cells. Cancer Res 2006; 66:6008-13. [PMID: 16778171 DOI: 10.1158/0008-5472.can-06-0194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently showed that a subset of human T acute lymphoblastic leukemia (T-ALL) cell lines expresses low basal levels of p50, a nuclear factor-kappaB (NF-kappaB)/Rel family member, resulting in their capacity to activate the atypical p65:cRel complex rather than the classic p50:p65 dimer. Here, we show that the transcription factor TAL1 (also known as SCL) binds to the promoter of the NFKB1 gene that encodes p50 and represses its transcription to set up this unique response in T-ALL cells. When TAL1 expression is reduced in CEM T leukemia cells, basal NFKB1 expression is increased, and the levels of p65:cRel complex and transcription of its target gene, such as intercellular adhesion molecule-1 (ICAM-1), are reduced in response to etoposide treatment. Moreover, a significant negative correlation between NFKB1 and TAL1 or LMO1 was found in primary human TAL1/LMO1 double-positive T-ALL samples previously described by Ferrando et al. Thus, TAL1 modulates NFKB1 expression and an NF-kappaB-dependent transcriptional program in a subset of human T-cell leukemia cells.
Collapse
Affiliation(s)
- Pei-Yun Chang
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
33
|
Capron C, Lécluse Y, Kaushik AL, Foudi A, Lacout C, Sekkai D, Godin I, Albagli O, Poullion I, Svinartchouk F, Schanze E, Vainchenker W, Sablitzky F, Bennaceur-Griscelli A, Duménil D. The SCL relative LYL-1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Blood 2006; 107:4678-86. [PMID: 16514064 DOI: 10.1182/blood-2005-08-3145] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractHematopoietic stem cells (HSCs) arise, self-renew, or give rise to all hematopoietic lineages through the effects of transcription factors activated by signaling cascades. Lyl-1 encodes a transcription factor containing a basic helix-hoop-helix (bHLH) motif closely related to scl/tal, which controls numerous decisions in embryonic and adult hematopoiesis. We report here that Lyl-1 null mice are viable and display normal blood cell counts, except for a reduced number of B cells resulting from a partial block after the pro-B stage. Nevertheless, the deletion of Lyl-1 results in a diminution in the frequency of immature progenitors (Lin–, CD34–, sca-1+, c-kit+ [LSK], and LSK-side population [LSK-SP]) and in S12 colony-forming unit (CFU-S12) and long-term culture-initiating cell (LTC-IC) content in embryonic day 14 fetal liver (E14 FL) and adult bone marrow (BM). More important, Lyl-1–/– E14 FL cells and BM are severely impaired in their competitive reconstituting abilities, especially with respect to B and T lineage reconstitution. Thus, ablation of Lyl-1 quantitatively and functionally affects HSCs, a cell population that transcribes Lyl-1 more actively than their differentiated progenies. Our results demonstrate for the first time that Lyl-1 functions are important for HSC properties and B-cell differentiation and that they are largely distinct from scl functions.
Collapse
Affiliation(s)
- Claude Capron
- Institut National de la Santé et de la Recherche Médicicale (INSERM) U362, Institut Gustave Roussy, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schuh AH, Tipping AJ, Clark AJ, Hamlett I, Guyot B, Iborra FJ, Rodriguez P, Strouboulis J, Enver T, Vyas P, Porcher C. ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol Cell Biol 2005; 25:10235-50. [PMID: 16287841 PMCID: PMC1291220 DOI: 10.1128/mcb.25.23.10235-10250.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/07/2005] [Accepted: 09/14/2005] [Indexed: 12/19/2022] Open
Abstract
Lineage specification and cellular maturation require coordinated regulation of gene expression programs. In large part, this is dependent on the activator and repressor functions of protein complexes associated with tissue-specific transcriptional regulators. In this study, we have used a proteomic approach to characterize multiprotein complexes containing the key hematopoietic regulator SCL in erythroid and megakaryocytic cell lines. One of the novel SCL-interacting proteins identified in both cell types is the transcriptional corepressor ETO-2. Interaction between endogenous proteins was confirmed in primary cells. We then showed that SCL complexes are shared but also significantly differ in the two cell types. Importantly, SCL/ETO-2 interacts with another corepressor, Gfi-1b, in red cells but not megakaryocytes. The SCL/ETO-2/Gfi-1b association is lost during erythroid differentiation of primary fetal liver cells. Genetic studies of erythroid cells show that ETO-2 exerts a repressor effect on SCL target genes. We suggest that, through its association with SCL, ETO-2 represses gene expression in the early stages of erythroid differentiation and that alleviation/modulation of the repressive state is then required for expression of genes necessary for terminal erythroid maturation to proceed.
Collapse
Affiliation(s)
- Anna H Schuh
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Muroyama Y, Fujiwara Y, Orkin SH, Rowitch DH. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 2005; 438:360-3. [PMID: 16292311 DOI: 10.1038/nature04139] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 08/19/2005] [Indexed: 11/09/2022]
Abstract
Astrocytes are the most abundant and functionally diverse glial population in the vertebrate central nervous system (CNS). However, the mechanisms underlying astrocyte specification are poorly understood. It is well established that cellular diversification of neurons in the embryo is generated by position-dependent extrinsic signals and combinatorial interactions of transcription factors that direct specific cell fates by suppressing alternative fates. It is unknown whether a comparable process determines embryonic astrocyte identity. Indeed, astrocyte development is generally thought to take place in a position-independent manner. Here we show multiple functions of Stem cell leukaemia (Scl, also known as Tal1), which encodes a basic helix-loop-helix (bHLH) transcription factor, in the regulation of both astrocyte versus oligodendrocyte cell fate acquisition and V2b versus V2a interneuron cell fate acquisition in the p2 domain of the developing vertebrate spinal cord. Our findings demonstrate a regionally restricted transcriptional programme necessary for astrocyte and V2b interneuron development, with striking parallels to the involvement of SCL in haematopoiesis. They further indicate that acquisition of embryonic glial subtype identity might be regulated by genetic interactions between SCL and the transcription factor Olig2 in the ventral neural tube.
Collapse
Affiliation(s)
- Yuko Muroyama
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
36
|
Drynan LF, Pannell R, Forster A, Chan NMM, Cano F, Daser A, Rabbitts TH. Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J 2005; 24:3136-46. [PMID: 16096649 PMCID: PMC1201345 DOI: 10.1038/sj.emboj.7600760] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 07/08/2005] [Indexed: 11/09/2022] Open
Abstract
Chromosomal translocations are primary events in tumorigenesis. Those involving the mixed lineage leukaemia (MLL) gene are found in various guises and it is unclear whether MLL fusions can affect haematopoietic differentiation. We have used a model in which chromosomal translocations are generated in mice de novo by Cre-loxP-mediated recombination (translocator mice) to compare the functionally relevant haematopoietic cell contexts for Mll fusions, namely pluripotent stem cells, semicommitted progenitors or committed cells. Translocations between Mll and Enl or Af9 cause myeloid neoplasias, initiating in pluripotent stem cells or multipotent myeloid progenitors. However, while Mll-Enl translocations can also cause leukaemia from T-cell progenitors, no tumours arose with Mll-Af9 translocations in the T-cell compartment. Furthermore, Mll-Enl translocations in T-cell progenitors can cause lineage reassignment into myeloid tumours. Therefore, a permissive cellular environment is required for oncogenicity of Mll-associated translocations and Mll fusions can influence haematopoietic lineage commitment.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Lineage/physiology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Histone-Lysine N-Methyltransferase
- Integrases/genetics
- Integrases/metabolism
- Leukemia, Lymphoid/metabolism
- Leukemia, Lymphoid/pathology
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Mice
- Multipotent Stem Cells/metabolism
- Multipotent Stem Cells/pathology
- Myeloid Progenitor Cells/metabolism
- Myeloid Progenitor Cells/pathology
- Myeloid-Lymphoid Leukemia Protein
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Pluripotent Stem Cells/metabolism
- Pluripotent Stem Cells/pathology
- Proto-Oncogenes/genetics
- Recombination, Genetic
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Translocation, Genetic/genetics
- Translocation, Genetic/physiology
Collapse
Affiliation(s)
| | | | - Alan Forster
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Terence H Rabbitts
- MRC Laboratory of Molecular Biology, Cambridge, UK
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK. Tel.: +44 1223 402286; Fax: +44 1223 412178; E-mail:
| |
Collapse
|