1
|
Bilkis R, Lake RJ, Fan HY. ATP-Dependent Chromatin Remodeler CSB Couples DNA Repair Pathways to Transcription with Implications for Cockayne Syndrome and Cancer Therapy. Cells 2025; 14:239. [PMID: 39996712 PMCID: PMC11852979 DOI: 10.3390/cells14040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Efficient DNA lesion repair is crucial for cell survival, especially within actively transcribed DNA regions that contain essential genetic information. Additionally, DNA breaks in regions of active transcription are prone to generating insertions and deletions, which are hallmark features of cancer genomes. Cockayne syndrome protein B (CSB) is the sole ATP-dependent chromatin remodeler that is essential for coupling DNA repair pathways with transcription, leading to more efficient DNA repair in regions of active transcription. CSB is best known for its essential function in transcription-coupled nucleotide excision repair (TC-NER), a process that rapidly removes helix-distorting DNA lesions that stall RNA polymerase II, such as those created by chemotherapeutic platinum compounds and UV irradiation. In addition to NER, CSB has also been reported to couple homologous recombination to transcription. Most recently, CSB has also been shown to couple single-strand DNA break repair to transcription. In this review, we will discuss the overlapping and distinct mechanisms by which CSB couples these different DNA repair pathways to transcription. We will also discuss how these CSB functions may account for Cockayne syndrome and the emerging roles of CSB as an innovative target for cancer therapy.
Collapse
Affiliation(s)
- Rabeya Bilkis
- Biomedical Sciences Graduate Program, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA;
| | - Robert J. Lake
- Program in Cell and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA;
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Hua-Ying Fan
- Program in Cell and Molecular Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA;
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Cordero C, Mehta KPM, Weaver TM, Ling JA, Freudenthal BD, Cortez D, Roberts SA. Contributing factors to the oxidation-induced mutational landscape in human cells. Nat Commun 2024; 15:10722. [PMID: 39715760 DOI: 10.1038/s41467-024-55497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
8-oxoguanine (8-oxoG) is a common oxidative DNA lesion that causes G > T substitutions. Determinants of local and regional differences in 8-oxoG-induced mutability across genomes are currently unknown. Here, we show DNA oxidation induces G > T substitutions and insertion/deletion (INDEL) mutations in human cells and cancers. Potassium bromate (KBrO3)-induced 8-oxoGs occur with similar sequence preferences as their derived substitutions, indicating that the reactivity of specific oxidants dictates mutation sequence specificity. While 8-oxoG occurs uniformly across chromatin, 8-oxoG-induced mutations are elevated in compact genomic regions, within nucleosomes, and at inward facing guanines within strongly positioned nucleosomes. Cryo-electron microscopy structures of OGG1-nucleosome complexes indicate that these effects originate from OGG1's ability to flip outward positioned 8-oxoG lesions into the catalytic pocket while inward facing lesions are occluded by the histone octamer. Mutation spectra from human cells with DNA repair deficiencies reveals contributions of a DNA repair network limiting 8-oxoG mutagenesis, where OGG1- and MUTYH-mediated base excision repair is supplemented by the replication-associated factors Pol η and HMCES. Transcriptional asymmetry of KBrO3-induced mutations in OGG1- and Pol η-deficient cells also demonstrates transcription-coupled repair can prevent 8-oxoG-induced mutation. Thus, oxidant chemistry, chromatin structures, and DNA repair processes combine to dictate the oxidative mutational landscape in human genomes.
Collapse
Affiliation(s)
- Cameron Cordero
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Kavi P M Mehta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA.
| | - Tyler M Weaver
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA
| | - Justin A Ling
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, Kansas City, KS, 66160, USA.
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| | - Steven A Roberts
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA.
- University of Vermont Cancer Center, University of Vermont, Burlington, VT, 05405, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
3
|
Yang D, Lai A, Davies A, Janssen AF, Ellis MO, Larrieu D. A novel role for CSA in the regulation of nuclear envelope integrity: uncovering a non-canonical function. Life Sci Alliance 2024; 7:e202402745. [PMID: 39209536 PMCID: PMC11361374 DOI: 10.26508/lsa.202402745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cockayne syndrome (CS) is a premature ageing condition characterized by microcephaly, growth failure, and neurodegeneration. It is caused by mutations in ERCC6 or ERCC8 encoding for Cockayne syndrome B (CSB) and A (CSA) proteins, respectively. CSA and CSB have well-characterized roles in transcription-coupled nucleotide excision repair, responsible for removing bulky DNA lesions, including those caused by UV irradiation. Here, we report that CSA dysfunction causes defects in the nuclear envelope (NE) integrity. NE dysfunction is characteristic of progeroid disorders caused by a mutation in NE proteins, such as Hutchinson-Gilford progeria syndrome. However, it has never been reported in Cockayne syndrome. We observed CSA dysfunction affected LEMD2 incorporation at the NE and increased actin stress fibers that contributed to enhanced mechanical stress to the NE. Altogether, these led to NE abnormalities associated with the activation of the cGAS/STING pathway. Targeting the linker of the nucleoskeleton and cytoskeleton complex was sufficient to rescue these phenotypes. This work reveals NE dysfunction in a progeroid syndrome caused by mutations in a DNA damage repair protein, reinforcing the connection between NE deregulation and ageing.
Collapse
Affiliation(s)
- Denny Yang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Island Research Building, Cambridge, UK
| | - Austin Lai
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| | - Amelie Davies
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anne Fj Janssen
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| | - Matthew O Ellis
- UK Dementia Research Institute, Island Research Building, Cambridge, UK
| | - Delphine Larrieu
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| |
Collapse
|
4
|
Amadio F, Bongiorni S, Varalda GM, Marcon F, Meschini R. Di(2-ethylexyl) phthalate and chromosomal damage: Insight on aneugenicity from the cytochalasin-block micronucleus assay. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503791. [PMID: 39147443 DOI: 10.1016/j.mrgentox.2024.503791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Bis(2-ethylhexyl) phthalate is the most abundant phthalate used as plasticizer to soften plastics and polymers included in medical devices. Human and environmental exposure may occur because DEHP is not chemically bound to plastics and can easily leach out of the materials. This phthalate is classified as reproductive toxicant and possible carcinogen to humans. The genotoxic potential has still to be clarified, but there are indications suggesting that DEHP may have aneugenic effects. To further investigate DEHP genotoxicity, the cytochalasin-block micronucleus assay was applied and combined with the CREST staining to characterise micronucleus content and gain insights on its genotoxic mode of action. Chromosomal damage was also analysed in metaphase and ana-telophase cells and the morphology of the mitotic spindle was investigated to evaluate the possible involvement of this cellular apparatus as a target of DEHP. Our findings indicated that DEHP induced a statistically significant increase in the frequency of micronuclei as well as in the frequency of CREST-positive micronuclei. Consistently, disturbance of chromosome segregation and induction of numerical chromosome changes were observed together with changes in spindle morphology, formation of multipolar spindles and alteration of the microtubule network. Experiments performed without metabolic activation demonstrated a direct action of DEHP on chromosome segregation not mediated by its metabolites. In conclusion, there is consistent evidence for an aneugenic activity of DEHP. A thresholded genotoxic activity was identified for DEHP, disclosing possible implications for risk assessment.
Collapse
Affiliation(s)
- Francesco Amadio
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| | - Giorgia Maria Varalda
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy; Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Roberta Meschini
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy.
| |
Collapse
|
5
|
Donnio LM, Cerutti E, Magnani C, Neuillet D, Mari PO, Giglia-Mari G. XAB2 dynamics during DNA damage-dependent transcription inhibition. eLife 2022; 11:77094. [PMID: 35880862 PMCID: PMC9436415 DOI: 10.7554/elife.77094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Xeroderma Pigmentosum group A-binding protein 2 (XAB2) is a multifunctional protein playing a critical role in distinct cellular processes including transcription, splicing, DNA repair, and messenger RNA export. In this study, we demonstrate that XAB2 is involved specifically and exclusively in Transcription-Coupled Nucleotide Excision Repair (TC-NER) reactions and solely for RNA polymerase 2 (RNAP2)-transcribed genes. Surprisingly, contrary to all the other NER proteins studied so far, XAB2 does not accumulate on the local UV-C damage; on the contrary, it becomes more mobile after damage induction. XAB2 mobility is restored when DNA repair reactions are completed. By scrutinizing from which cellular complex/partner/structure XAB2 is released, we have identified that XAB2 is detached after DNA damage induction from DNA:RNA hybrids, commonly known as R-loops, and from the CSA and XPG proteins. This release contributes to the DNA damage recognition step during TC-NER, as in the absence of XAB2, RNAP2 is blocked longer on UV lesions. Moreover, we also demonstrate that XAB2 has a role in retaining RNAP2 on its substrate without any DNA damage.
Collapse
Affiliation(s)
- Lise-Marie Donnio
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Elena Cerutti
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Charlene Magnani
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Neuillet
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre-Olivier Mari
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Giuseppina Giglia-Mari
- Institut NeuroMyogène (INMG), CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
6
|
Gaul L, Svejstrup JQ. Transcription-coupled repair and the transcriptional response to UV-Irradiation. DNA Repair (Amst) 2021; 107:103208. [PMID: 34416541 DOI: 10.1016/j.dnarep.2021.103208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Lesions in genes that result in RNA polymerase II (RNAPII) stalling or arrest are particularly toxic as they are a focal point of genome instability and potently block further transcription of the affected gene. Thus, cells have evolved the transcription-coupled nucleotide excision repair (TC-NER) pathway to identify damage-stalled RNAPIIs, so that the lesion can be rapidly repaired and transcription can continue. However, despite the identification of several factors required for TC-NER, how RNAPII is remodelled, modified, removed, or whether this is even necessary for repair remains enigmatic, and theories are intensely contested. Recent studies have further detailed the cellular response to UV-induced ubiquitylation and degradation of RNAPII and its consequences for transcription and repair. These advances make it pertinent to revisit the TC-NER process in general and with specific discussion of the fate of RNAPII stalled at DNA lesions.
Collapse
Affiliation(s)
- Liam Gaul
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, Blegdamsvej 3B, University of Copenhagen, 2200, Copenhagen N, Denmark.
| |
Collapse
|
7
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
8
|
Functional interplay between the oxidative stress response and DNA damage checkpoint signaling for genome maintenance in aerobic organisms. J Microbiol 2019; 58:81-91. [DOI: 10.1007/s12275-020-9520-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
|
9
|
Wu Z, Zhu X, Yu Q, Xu Y, Wang Y. Multisystem analyses of two Cockayne syndrome associated proteins CSA and CSB reveal shared and unique functions. DNA Repair (Amst) 2019; 83:102696. [PMID: 31546172 DOI: 10.1016/j.dnarep.2019.102696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Mutations in the CSA and CSB genes are causative of Cockayne syndrome neurological disorder. Since the identification of indispensable functions of these two proteins in transcription-coupled repair and restoring RNA synthesis following DNA damage, the paradoxical less severe clinical symptoms reported in some CS-A patients have been puzzling. In this study we compared the effects of a CSA or a CSB defect at the levels of the cell and the intact organism. We showed that CSA-deficient zebrafish embryos exhibited modest hypersensitive to UV damage than CSB depletion. We found that loss of CSA can effectively release aggregation of mutant crystallin proteins in vitro. We described the opposite effect of CSA and CSB on neuritogenesis and elucidated the differentiated gene expression pathways regulated by these two proteins. Our data demonstrate convergent and divergent roles for CSA and CSB in DNA repair and transcription regulation and provide potential explanations for the observed differences between CS-A and CS-B patients.
Collapse
Affiliation(s)
- Zhenzhen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xun Zhu
- The Sixth Affiliated Hospital, Guangzhou Medical University, Qingyuan, 511518, China
| | - Qian Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yingying Xu
- School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
10
|
Sassa A, Fukuda T, Ukai A, Nakamura M, Takabe M, Takamura-Enya T, Honma M, Yasui M. Comparative study of cytotoxic effects induced by environmental genotoxins using XPC- and CSB-deficient human lymphoblastoid TK6 cells. Genes Environ 2019; 41:15. [PMID: 31346351 PMCID: PMC6636061 DOI: 10.1186/s41021-019-0130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background The human genome is constantly exposed to numerous environmental genotoxicants. To prevent the detrimental consequences induced by the expansion of damaged cells, cellular protective systems such as nucleotide excision repair (NER) exist and serve as a primary pathway for repairing the various helix-distorting DNA adducts induced by genotoxic agents. NER is further divided into two sub-pathways, namely, global genomic NER (GG-NER) and transcription-coupled NER (TC-NER). Both NER sub-pathways are reportedly involved in the damage response elicited by exposure to genotoxins. However, how disruption of these sub-pathways impacts the toxicity of different types of environmental mutagens in human cells is not well understood. Results To evaluate the role of NER sub-pathways on the cytotoxic effects of mutagens, we disrupted XPC and CSB to selectively inactivate GG-NER and TC-NER, respectively, in human lymphoblastoid TK6 cells, a standard cell line used in genotoxicity studies. Using these cells, we then comparatively assessed their respective sensitivities to representative genotoxic agents, including ultraviolet C (UVC) light, benzo [a] pyrene (B(a)P), 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (MeIQx), 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP), γ-ray, and 2-acetylaminofluorene (2-AAF). CSB−/− cells exhibited a hyper-sensitivity to UVC, B(a)P, and MeIQx. On the other hand, XPC−/− cells were highly sensitive to UVC, but not to B(a)P and MeIQx, compared with wild-type cells. In contrast with other genotoxins, the sensitivity of XPC−/− cells against PhIP was significantly higher than CSB−/− cells. The toxicity of γ-ray and 2-AAF was not enhanced by disruption of either XPC or CSB in the cells. Conclusions Based on our findings, genetically modified TK6 cells appear to be a useful tool for elucidating the detailed roles of the various repair factors that exist to combat genotoxic agents, and should contribute to the improved risk assessment of environmental chemical contaminants.
Collapse
Affiliation(s)
- Akira Sassa
- 1Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522 Japan
| | - Takayuki Fukuda
- 2Tokyo Laboratory, BoZo Research Center Inc, 1-3-11, Hanegi, Setagaya-ku, Tokyo, 156-0042 Japan
| | - Akiko Ukai
- 3Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501 Japan
| | - Maki Nakamura
- 2Tokyo Laboratory, BoZo Research Center Inc, 1-3-11, Hanegi, Setagaya-ku, Tokyo, 156-0042 Japan
| | - Michihito Takabe
- 2Tokyo Laboratory, BoZo Research Center Inc, 1-3-11, Hanegi, Setagaya-ku, Tokyo, 156-0042 Japan
| | - Takeji Takamura-Enya
- 4Department of Chemistry, Kanagawa Institute of Technology, 1030, Shimoogino, Atsugi, Kanagawa 243-0292 Japan
| | - Masamitsu Honma
- 3Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501 Japan
| | - Manabu Yasui
- 3Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501 Japan
| |
Collapse
|
11
|
Faridounnia M, Folkers GE, Boelens R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018; 23:E3205. [PMID: 30563071 PMCID: PMC6320978 DOI: 10.3390/molecules23123205] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.
Collapse
Affiliation(s)
- Maryam Faridounnia
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Gert E Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
12
|
Limpose KL, Corbett AH, Doetsch PW. BERing the burden of damage: Pathway crosstalk and posttranslational modification of base excision repair proteins regulate DNA damage management. DNA Repair (Amst) 2017. [PMID: 28629773 DOI: 10.1016/j.dnarep.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA base damage and non-coding apurinic/apyrimidinic (AP) sites are ubiquitous types of damage that must be efficiently repaired to prevent mutations. These damages can occur in both the nuclear and mitochondrial genomes. Base excision repair (BER) is the frontline pathway for identifying and excising damaged DNA bases in both of these cellular compartments. Recent advances demonstrate that BER does not operate as an isolated pathway but rather dynamically interacts with components of other DNA repair pathways to modulate and coordinate BER functions. We define the coordination and interaction between DNA repair pathways as pathway crosstalk. Numerous BER proteins are modified and regulated by post-translational modifications (PTMs), and PTMs could influence pathway crosstalk. Here, we present recent advances on BER/DNA repair pathway crosstalk describing specific examples and also highlight regulation of BER components through PTMs. We have organized and reported functional interactions and documented PTMs for BER proteins into a consolidated summary table. We further propose the concept of DNA repair hubs that coordinate DNA repair pathway crosstalk to identify central protein targets that could play a role in designing future drug targets.
Collapse
Affiliation(s)
- Kristin L Limpose
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States.
| | - Paul W Doetsch
- Graduate Program in Cancer Biology, Emory University, Atlanta, GA, 30322, United States; Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States; Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States; Department of Biochemistry, Emory University, Atlanta, GA, 30322, United States.
| |
Collapse
|
13
|
Brennan-Minnella AM, Arron ST, Chou KM, Cunningham E, Cleaver JE. Sources and consequences of oxidative damage from mitochondria and neurotransmitter signaling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:322-330. [PMID: 27311994 DOI: 10.1002/em.21995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 06/06/2023]
Abstract
Cancer and neurodegeneration represent the extreme responses of growing and terminally differentiated cells to cellular and genomic damage. The damage recognition mechanisms of nucleotide excision repair, epitomized by xeroderma pigmentosum (XP), and Cockayne syndrome (CS), lie at these extremes. Patients with mutations in the DDB2 and XPC damage recognition steps of global genome repair exhibit almost exclusively actinic skin cancer. Patients with mutations in the RNA pol II cofactors CSA and CSB, that regulate transcription coupled repair, exhibit developmental and neurological symptoms, but not cancer. The absence of skin cancer despite increased photosensitivity in CS implies that the DNA repair deficiency is not associated with increased ultraviolet (UV)-induced mutagenesis, unlike DNA repair deficiency in XP that leads to high levels of UV-induced mutagenesis. One attempt to explain the pathology of CS is to attribute genomic damage to endogenously generated reactive oxygen species (ROS). We show that inhibition of complex I of the mitochondria generates increased ROS, above an already elevated level in CSB cells, but without nuclear DNA damage. CSB, but not CSA, quenches ROS liberated from complex I by rotenone. Extracellular signaling by N-methyl-D-aspartic acid in neurons, however, generates ROS enzymatically through oxidase that does lead to oxidative damage to nuclear DNA. The pathology of CS may therefore be caused by impaired oxidative phosphorylation or nuclear damage from neurotransmitters, but without damage-specific mutagenesis. Environ. Mol. Mutagen. 57:322-330, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela M Brennan-Minnella
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California
| | - Sarah T Arron
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, San Francisco, California
| | - Kai-Ming Chou
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Room MS 552, Indianapolis, Indiana
| | - Eric Cunningham
- Torrey Pines High School, 3710 Del Mar Heights Road, San Diego, California, 92130
| | - James E Cleaver
- Department of Dermatology, University of California San Francisco, 2340 Sutter Street, San Francisco, California
| |
Collapse
|
14
|
Cipollini M, Figlioli G, Maccari G, Garritano S, De Santi C, Melaiu O, Barone E, Bambi F, Ermini S, Pellegrini G, Cristaudo A, Foddis R, Bonotti A, Romei C, Vivaldi A, Agate L, Molinari E, Barale R, Forsti A, Hemminki K, Elisei R, Gemignani F, Landi S. Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma. DNA Repair (Amst) 2016; 41:27-31. [PMID: 27062014 DOI: 10.1016/j.dnarep.2016.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak.
Collapse
Affiliation(s)
| | | | - Giuseppe Maccari
- Center for Nanotechnology and Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro Pisa, Italy
| | - Sonia Garritano
- Center for Integrated Biology, University of Trento, Trento, Italy
| | | | | | - Elisa Barone
- Department of Biology, University of Pisa, Pisa, Italy
| | - Franco Bambi
- Blood Centre of University Hospital of Meyer, Florence, Italy
| | - Stefano Ermini
- Blood Centre of University Hospital of Meyer, Florence, Italy
| | - Giovanni Pellegrini
- Operative Unit of laboratory of Clinical Chemistry Analyses, University Hospital of Cisanello, Pisa, Italy
| | - Alfonso Cristaudo
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Rudy Foddis
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Bonotti
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Cristina Romei
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Agnese Vivaldi
- Operative Unit of laboratory of Clinical Chemistry Analyses, University Hospital of Cisanello, Pisa, Italy
| | - Laura Agate
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Molinari
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | | | - Asta Forsti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden
| | - Rossella Elisei
- Department of Endocrinology and Metabolism, Orthopaedics and Traumatology, Occupational Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
15
|
Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26. DNA Repair (Amst) 2015; 36:43-48. [DOI: 10.1016/j.dnarep.2015.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Iyama T, Wilson DM. Elements That Regulate the DNA Damage Response of Proteins Defective in Cockayne Syndrome. J Mol Biol 2015; 428:62-78. [PMID: 26616585 DOI: 10.1016/j.jmb.2015.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Cockayne syndrome (CS) is a premature aging disorder characterized by developmental defects, multisystem progressive degeneration and sensitivity to ultraviolet light. CS is divided into two primary complementation groups, A and B, with the CSA and CSB proteins presumably functioning in DNA repair and transcription. Using laser microirradiation and confocal microscopy, we characterized the nature and regulation of the CS protein response to oxidative DNA damage, double-strand breaks (DSBs), angelicin monoadducts and trioxsalen interstrand crosslinks (ICLs). Our data indicate that CSB recruitment is influenced by the type of DNA damage and is most rapid and robust as follows: ICLs>DSBs>monoadducts>oxidative lesions. Transcription inhibition reduced accumulation of CSB at sites of monoadducts and ICLs, but it did not affect recruitment to (although slightly affected retention at) oxidative damage. Inhibition of histone deacetylation altered the dynamics of CSB assembly, suggesting a role for chromatin status in the response to DNA damage, whereas the proteasome inhibitor MG132 had no effect. The C-terminus of CSB and, in particular, its ubiquitin-binding domain were critical to recruitment, while the N-terminus and a functional ATPase domain played a minor role at best in facilitating protein accumulation. Although the absence of CSA had no effect on CSB recruitment, CSA itself localized at sites of ICLs, DSBs and monoadducts but not at oxidative lesions. Our results reveal molecular components of the CS protein response and point to a major involvement of complex lesions in the pathology of CS.
Collapse
Affiliation(s)
- Teruaki Iyama
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
17
|
Forestier A, Douki T, De Rosa V, Béal D, Rachidi W. Combination of Aβ Secretion and Oxidative Stress in an Alzheimer-Like Cell Line Leads to the Over-Expression of the Nucleotide Excision Repair Proteins DDB2 and XPC. Int J Mol Sci 2015; 16:17422-44. [PMID: 26263968 PMCID: PMC4581200 DOI: 10.3390/ijms160817422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/19/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022] Open
Abstract
Repair of oxidative DNA damage, particularly Base Excision Repair (BER), impairment is often associated with Alzheimer’s disease pathology. Here, we aimed at investigating the complete Nucleotide Excision Repair (NER), a DNA repair pathway involved in the removal of bulky DNA adducts, status in an Alzheimer-like cell line. The level of DNA damage was quantified using mass spectrometry, NER gene expression was assessed by qPCR, and the NER protein activity was analysed through a modified version of the COMET assay. Interestingly, we found that in the presence of the Amyloid β peptide (Aβ), NER factors were upregulated at the mRNA level and that NER capacities were also specifically increased following oxidative stress. Surprisingly, NER capacities were not differentially improved following a typical NER-triggering of ultraviolet C (UVC) stress. Oxidative stress generates a differential and specific DNA damage response in the presence of Aβ. We hypothesized that the release of NER components such as DNA damage binding protein 2 (DDB2) and Xeroderma Pigmentosum complementation group C protein (XPC) following oxidative stress might putatively involve their apoptotic role rather than DNA repair function.
Collapse
Affiliation(s)
- Anne Forestier
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Thierry Douki
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Viviana De Rosa
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - David Béal
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| | - Walid Rachidi
- Laboratoire Lésions des Acides Nucléiques, Université Joseph Fourier-Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, UMR-E3, Grenoble, France.
| |
Collapse
|
18
|
Dizdaroglu M, Coskun E, Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic Res 2015; 49:525-48. [PMID: 25812590 DOI: 10.3109/10715762.2015.1014814] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidatively induced damage caused by free radicals and other DNA-damaging agents generate a plethora of products in the DNA of living organisms. There is mounting evidence for the involvement of this type of damage in the etiology of numerous diseases including carcinogenesis. For a thorough understanding of the mechanisms, cellular repair, and biological consequences of DNA damage, accurate measurement of resulting products must be achieved. There are various analytical techniques, with their own advantages and drawbacks, which can be used for this purpose. Mass spectrometric techniques with isotope dilution, which include gas chromatography (GC) and liquid chromatography (LC), provide structural elucidation of products and ascertain accurate quantification, which are absolutely necessary for reliable measurement. Both gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), in single or tandem versions, have been used for the measurement of numerous DNA products such as sugar and base lesions, 8,5'-cyclopurine-2'-deoxynucleosides, base-base tandem lesions, and DNA-protein crosslinks, in vitro and in vivo. This article reviews these techniques and their applications in the measurement of oxidatively induced DNA damage and its repair.
Collapse
Affiliation(s)
- M Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology , Gaithersburg, MD , USA
| | | | | |
Collapse
|
19
|
Hosseini M, Ezzedine K, Taieb A, Rezvani HR. Oxidative and Energy Metabolism as Potential Clues for Clinical Heterogeneity in Nucleotide Excision Repair Disorders. J Invest Dermatol 2015; 135:341-351. [DOI: 10.1038/jid.2014.365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 08/01/2013] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
|
20
|
Richardson C, Yan S, Vestal CG. Oxidative stress, bone marrow failure, and genome instability in hematopoietic stem cells. Int J Mol Sci 2015; 16:2366-85. [PMID: 25622253 PMCID: PMC4346841 DOI: 10.3390/ijms16022366] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease.
Collapse
Affiliation(s)
- Christine Richardson
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| | - Shan Yan
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| | - C Greer Vestal
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| |
Collapse
|
21
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
22
|
Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genet 2014; 10:e1004686. [PMID: 25299392 PMCID: PMC4191938 DOI: 10.1371/journal.pgen.1004686] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 08/19/2014] [Indexed: 01/15/2023] Open
Abstract
As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4–5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg−/− mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging. Accumulation of DNA damage has been implicated in aging. Many premature aging syndromes are due to defective DNA repair systems. The endonuclease XPG is involved in repair of helix-distorting DNA lesions, and XPG defects cause the cancer-prone condition xeroderma pigmentosum (XP) alone or combined with the severe neurodevelopmental progeroid disorder Cockayne syndrome (CS). Here, we present a novel (conditional) Xpg−/− mouse model which -in a C57BL6/FVB F1 hybrid background- displays many progressive progeroid features, including early cessation of growth, cachexia, kyphosis, osteoporosis, neurodegeneration, liver aging, retinal degeneration, and reduced lifespan. In a constitutive mutant with a complex phenotype it is difficult to dissect cause and consequence. We have therefore generated liver- and forebrain-specific Xpg mutants and demonstrate that they exhibit progressive anisokaryosis and neurodegeneration, respectively, indicating that a cell-intrinsic repair defect in neurons can account for neuronal degeneration. These findings strengthen the link between DNA damage and the complex process of aging.
Collapse
|
23
|
Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 2014; 15:465-81. [PMID: 24954209 DOI: 10.1038/nrm3822] [Citation(s) in RCA: 824] [Impact Index Per Article: 74.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleotide excision repair (NER) eliminates various structurally unrelated DNA lesions by a multiwise 'cut and patch'-type reaction. The global genome NER (GG-NER) subpathway prevents mutagenesis by probing the genome for helix-distorting lesions, whereas transcription-coupled NER (TC-NER) removes transcription-blocking lesions to permit unperturbed gene expression, thereby preventing cell death. Consequently, defects in GG-NER result in cancer predisposition, whereas defects in TC-NER cause a variety of diseases ranging from ultraviolet radiation-sensitive syndrome to severe premature ageing conditions such as Cockayne syndrome. Recent studies have uncovered new aspects of DNA-damage detection by NER, how NER is regulated by extensive post-translational modifications, and the dynamic chromatin interactions that control its efficiency. Based on these findings, a mechanistic model is proposed that explains the complex genotype-phenotype correlations of transcription-coupled repair disorders.
Collapse
|
24
|
Aamann MD, Hvitby C, Popuri V, Muftuoglu M, Lemminger L, Skeby CK, Keijzers G, Ahn B, Bjørås M, Bohr VA, Stevnsner T. Cockayne Syndrome group B protein stimulates NEIL2 DNA glycosylase activity. Mech Ageing Dev 2014; 135:1-14. [PMID: 24406253 DOI: 10.1016/j.mad.2013.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 12/13/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Cockayne Syndrome is a segmental premature aging syndrome, which can be caused by loss of function of the CSB protein. CSB is essential for genome maintenance and has numerous interaction partners with established roles in different DNA repair pathways including transcription coupled nucleotide excision repair and base excision repair. Here, we describe a new interaction partner for CSB, the DNA glycosylase NEIL2. Using both cell extracts and recombinant proteins, CSB and NEIL2 were found to physically interact independently of DNA. We further found that CSB is able to stimulate NEIL2 glycosylase activity on a 5-hydroxyl uracil lesion in a DNA bubble structure substrate in vitro. A novel 4,6-diamino-5-formamidopyrimidine (FapyA) specific incision activity of NEIL2 was also stimulated by CSB. To further elucidate the biological role of the interaction, immunofluorescence studies were performed, showing an increase in cytoplasmic CSB and NEIL2 co-localization after oxidative stress. Additionally, stalling of the progression of the transcription bubble with α-amanitin resulted in increased co-localization of CSB and NEIL2. Finally, CSB knockdown resulted in reduced incision of 8-hydroxyguanine in a DNA bubble structure using whole cell extracts. Taken together, our data supports a biological role for CSB and NEIL2 in transcription associated base excision repair.
Collapse
Affiliation(s)
- Maria D Aamann
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christina Hvitby
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Meltem Muftuoglu
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Lemminger
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Cecilie K Skeby
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Guido Keijzers
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Byungchan Ahn
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; University of Ulsan, Republic of Korea
| | - Magnar Bjørås
- Laboratory for Molecular Biology, Center for Molecular Biology and Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Brooks PJ. Blinded by the UV light: how the focus on transcription-coupled NER has distracted from understanding the mechanisms of Cockayne syndrome neurologic disease. DNA Repair (Amst) 2013; 12:656-71. [PMID: 23683874 PMCID: PMC4240003 DOI: 10.1016/j.dnarep.2013.04.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cockayne syndrome (CS) is a devastating neurodevelopmental disorder, with growth abnormalities, progeriod features, and sun sensitivity. CS is typically considered to be a DNA repair disorder, since cells from CS patients have a defect in transcription-coupled nucleotide excision repair (TC-NER). However, cells from UV-sensitive syndrome patients also lack TC-NER, but these patients do not suffer from the neurologic and other abnormalities that CS patients do. Also, the neurologic abnormalities that affect CS patients (CS neurologic disease) are qualitatively different from those seen in NER-deficient XP patients. Therefore, the TC-NER defect explains the sun sensitive phenotype common to both CS and UVsS, but cannot explain CS neurologic disease. However, as CS neurologic disease is of much greater clinical significance than the sun sensitivity, there is a pressing need to understand its molecular basis. While there is evidence for defective repair of oxidative DNA damage and mitochondrial abnormalities in CS cells, here I propose that the defects in transcription by both RNA polymerases I and II that have been documented in CS cells provide a better explanation for many of the severe growth and neurodevelopmental defects in CS patients than defective DNA repair. The implications of these ideas for interpreting results from mouse models of CS, and for the development of treatments and therapies for CS patients are discussed.
Collapse
Affiliation(s)
- P J Brooks
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, 3S-32, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Abstract
SIGNIFICANCE Oxidative DNA damage is repaired by multiple, overlapping DNA repair pathways. Accumulating evidence supports the hypothesis that nucleotide excision repair (NER), besides base excision repair (BER), is also involved in neutralizing oxidative DNA damage. RECENT ADVANCES NER includes two distinct sub-pathways: transcription-coupled NER (TC-NER) and global genome repair (GG-NER). The CSA and CSB proteins initiate the onset of TC-NER. Recent findings show that not only CSB, but also CSA is involved in the repair of oxidative DNA lesions, in the nucleus as well as in mitochondria. The XPG protein is also of importance for the removal of oxidative DNA lesions, as it may enhance the initial step of BER. Substantial evidence exists that support a role for XPC in NER and BER. XPC deficiency not only results in decreased repair of oxidative lesions, but has also been linked to disturbed redox homeostasis. CRITICAL ISSUES The role of NER proteins in the regulation of the cellular response to oxidative (mitochondrial and nuclear) DNA damage may be the underlying mechanism of the pathology of accelerated aging in Cockayne syndrome patients, a driving force for internal cancer development in XP-A and XP-C patients, and a contributor to the mixed exhibited phenotypes of XP-G patients. FUTURE DIRECTIONS Accumulating evidence indicates that DNA repair factors can be involved in multiple DNA repair pathways. However, the distinct detailed mechanism and consequences of these additional functions remain to be elucidated and can possibly shine a light on clinically related issues.
Collapse
Affiliation(s)
- Joost P M Melis
- Leiden University Medical Center, Department of Toxicogenetics, Leiden, The Netherlands
| | | | | |
Collapse
|
27
|
UVSSA and USP7, a new couple in transcription-coupled DNA repair. Chromosoma 2013; 122:275-84. [PMID: 23760561 PMCID: PMC3714559 DOI: 10.1007/s00412-013-0420-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/23/2023]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) specifically removes transcription-blocking lesions from our genome. Defects in this pathway are associated with two human disorders: Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS). Despite a similar cellular defect in the UV DNA damage response, patients with these syndromes exhibit strikingly distinct symptoms; CS patients display severe developmental, neurological, and premature aging features, whereas the phenotype of UVSS patients is mostly restricted to UV hypersensitivity. The exact molecular mechanism behind these clinical differences is still unknown; however, they might be explained by additional functions of CS proteins beyond TC-NER. A short overview of the current hypotheses addressing possible molecular mechanisms and the proteins involved are presented in this review. In addition, we will focus on two new players involved in TC-NER which were recently identified: UV-stimulated scaffold protein A (UVSSA) and ubiquitin-specific protease 7 (USP7). UVSSA has been found to be the causative gene for UVSS and, together with USP7, is implicated in regulating TC-NER activity. We will discuss the function of UVSSA and USP7 and how the discovery of these proteins contributes to a better understanding of the molecular mechanisms underlying the clinical differences between UVSS and the more severe CS.
Collapse
|
28
|
Jaarsma D, van der Pluijm I, van der Horst GT, Hoeijmakers JH. Cockayne syndrome pathogenesis: Lessons from mouse models. Mech Ageing Dev 2013; 134:180-95. [DOI: 10.1016/j.mad.2013.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/04/2013] [Accepted: 04/08/2013] [Indexed: 10/27/2022]
|
29
|
Aamann MD, Muftuoglu M, Bohr VA, Stevnsner T. Multiple interaction partners for Cockayne syndrome proteins: implications for genome and transcriptome maintenance. Mech Ageing Dev 2013; 134:212-24. [PMID: 23583689 DOI: 10.1016/j.mad.2013.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/17/2022]
Abstract
Cockayne syndrome (CS) is characterized by progressive multisystem degeneration and is classified as a segmental premature aging syndrome. The majority of CS cases are caused by defects in the CS complementation group B (CSB) protein and the rest are mainly caused by defects in the CS complementation group A (CSA) protein. Cells from CS patients are sensitive to UV light and a number of other DNA damaging agents including various types of oxidative stress. The cells also display transcription deficiencies, abnormal apoptotic response to DNA damage, and DNA repair deficiencies. Herein we have critically reviewed the current knowledge about known protein interactions of the CS proteins. The review focuses on the participation of the CSB and CSA proteins in many different protein interactions and complexes, and how these interactions inform us about pathways that are defective in the disease.
Collapse
Affiliation(s)
- Maria D Aamann
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | | |
Collapse
|
30
|
Vélez-Cruz R, Egly JM. Cockayne syndrome group B (CSB) protein: at the crossroads of transcriptional networks. Mech Ageing Dev 2013; 134:234-42. [PMID: 23562425 DOI: 10.1016/j.mad.2013.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Cockayne syndrome (CS) is a rare genetic disorder characterized by a variety of growth and developmental defects, photosensitivity, cachectic dwarfism, hearing loss, skeletal abnormalities, progressive neurological degeneration, and premature aging. CS arises due to mutations in the CSA and CSB genes. Both gene products are required for the transcription-coupled (TC) branch of the nucleotide excision repair (NER) pathway, however, the severe phenotype of CS patients is hard to reconcile with a sole defect in TC-NER. Studies using cells from patients and mouse models have shown that the CSB protein is involved in a variety of cellular pathways and plays a major role in the cellular response to stress. CSB has been shown to regulate processes such as the transcriptional recovery after DNA damage, the p53 transcriptional response, the response to hypoxia, the response to insulin-like growth factor-1 (IGF-1), transactivation of nuclear receptors, transcription of housekeeping genes and the transcription of rDNA. Some of these processes are also affected in combined XP/CS patients. These new advances in the function(s) of CSB shed light onto the etiology of the clinical features observed in CS patients and could potentially open therapeutic avenues for these patients in the future. Moreover, the study of CS could further our knowledge of the aging process.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, C. U. Strasbourg, France.
| | | |
Collapse
|
31
|
Khobta A, Epe B. Repair of oxidatively generated DNA damage in Cockayne syndrome. Mech Ageing Dev 2013; 134:253-60. [PMID: 23518175 DOI: 10.1016/j.mad.2013.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/12/2013] [Accepted: 03/01/2013] [Indexed: 11/16/2022]
Abstract
Defects in the repair of endogenously (especially oxidatively) generated DNA modifications and the resulting genetic instability can potentially explain the clinical symptoms of Cockayne syndrome (CS), a hereditary disease characterized by developmental defects and neurological degeneration. In this review, we describe the evidence for the involvement of CSA and CSB proteins, which are mutated in most of the CS patients, in the repair and processing of DNA damage induced by reactive oxygen species and the implications for the induction of cell death and mutations. Taken together, the data demonstrate that CSA and CSB, in addition to their established role in transcription-coupled nucleotide excision repair, can modulate the base excision repair (BER) of oxidized DNA bases both directly (by interaction with BER proteins) and indirectly (by modulating the expression of the DNA repair genes). Both nuclear and mitochondrial DNA repair is affected by mutations in CSA and CSB genes. However, the observed retardations of repair and the resulting accumulation of unrepaired endogenously generated DNA lesions are often mild, thus pointing to the relevance of additional roles of the CS proteins, e.g. in the mitochondrial response to oxidatively generated DNA damage and in the maintenance of gene transcription.
Collapse
Affiliation(s)
- Andriy Khobta
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| | | |
Collapse
|
32
|
Conceptual developments in the causes of Cockayne syndrome. Mech Ageing Dev 2013; 134:284-90. [PMID: 23428417 DOI: 10.1016/j.mad.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/30/2013] [Accepted: 02/08/2013] [Indexed: 11/23/2022]
Abstract
Cockayne syndrome is an autosomal recessive disease that covers a wide range of symptoms, from mild photosensitivity to severe neonatal lethal disorder. The pathology of Cockayne syndrome may be caused by several mechanisms such as a DNA repair deficiency, transcription dysregulation, altered redox balance and mitochondrial dysfunction. Conceivably each of these mechanisms participates during a different stage in life of a Cockayne syndrome patient. Endogenous reactive oxygen is considered as an ultimate cause of DNA damage that contributes to Cockayne syndrome pathology. Here we demonstrate that mitochondrial reactive oxygen does not cause detectable nuclear DNA damage. This observation implies that a significant component of Cockayne syndrome pathology may be due to abnormal mitochondrial function independent of nuclear DNA damage. The source of nuclear DNA damage to central nervous system tissue most likely occurs from extrinsic neurotransmitter signaling.
Collapse
|
33
|
McKenna DJ, Doherty BA, Downes CS, McKeown SR, McKelvey-Martin VJ. Use of the comet-FISH assay to compare DNA damage and repair in p53 and hTERT genes following ionizing radiation. PLoS One 2012; 7:e49364. [PMID: 23145163 PMCID: PMC3492288 DOI: 10.1371/journal.pone.0049364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/09/2012] [Indexed: 12/02/2022] Open
Abstract
The alkaline single cell gel electrophoresis (comet) assay can be combined with fluorescent in situ hybridisation (FISH) methodology in order to investigate the localisation of specific gene domains within an individual cell. The number and position of the fluorescent signal(s) provides information about the relative damage and subsequent repair that is occurring in the targeted gene domain(s). In this study, we have optimised the comet-FISH assay to detect and compare DNA damage and repair in the p53 and hTERT gene regions of bladder cancer cell-lines RT4 and RT112, normal fibroblasts and Cockayne Syndrome (CS) fibroblasts following γ-radiation. Cells were exposed to 5Gy γ-radiation and repair followed for up to 60 minutes. At each repair time-point, the number and location of p53 and hTERT hybridisation spots was recorded in addition to standard comet measurements. In bladder cancer cell-lines and normal fibroblasts, the p53 gene region was found to be rapidly repaired relative to the hTERT gene region and the overall genome, a phenomenon that appeared to be independent of hTERT transcriptional activity. However, in the CS fibroblasts, which are defective in transcription coupled repair (TCR), this rapid repair of the p53 gene region was not observed when compared to both the hTERT gene region and the overall genome, proving the assay can detect variations in DNA repair in the same gene. In conclusion, we propose that the comet-FISH assay is a sensitive and rapid method for detecting differences in DNA damage and repair between different gene regions in individual cells in response to radiation. We suggest this increases its potential for measuring radiosensitivity in cells and may therefore have value in a clinical setting.
Collapse
Affiliation(s)
- Declan J McKenna
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, United Kingdom.
| | | | | | | | | |
Collapse
|
34
|
Differential DNA damage response to UV and hydrogen peroxide depending of differentiation stage in a neuroblastoma model. Neurotoxicology 2012; 33:1086-95. [DOI: 10.1016/j.neuro.2012.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/26/2012] [Accepted: 05/30/2012] [Indexed: 01/28/2023]
|
35
|
Dysmyelination not demyelination causes neurological symptoms in preweaned mice in a murine model of Cockayne syndrome. Proc Natl Acad Sci U S A 2012; 109:4627-32. [PMID: 22393014 DOI: 10.1073/pnas.1202621109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cockayne syndrome (CS) is a rare autosomal recessive neurodegenerative disease that is associated with mutations in either of two transcription-coupled DNA repair genes, CSA or CSB. Mice with a targeted mutation in the Csb gene (Cs-b(m/m)) exhibit a milder phenotype compared with human patients with mutations in the orthologous CSB gene. Mice mutated in Csb were crossed with mice lacking Xpc (Xp-c(-/-)), the global genome repair gene, to enhance the pathological symptoms. These Cs-b(m/m).Xp-c(-/-) mice were normal at birth but exhibited progressive failure to thrive, whole-body wasting, and ataxia and died at approximately postnatal day 21. Characterization of Cs-b(m/m).Xp-c(-/-) brains at postnatal stages demonstrated widespread reduction of myelin basic protein (MBP) and myelin in the sensorimotor cortex, the stratum radiatum, the corpus callosum, and the anterior commissure. Quantification of individual axons by electron microscopy showed a reduction in both the number of myelinated axons and the average diameter of myelin surrounding the axons. There were no significant differences in proliferation or oligodendrocyte differentiation between Cs-b(m/m).Xp-c(-/-) and Cs-b(m/+).Xp-c(-/-) mice. Rather, Cs-b(m/m).Xp-c(-/-) oligodendrocytes were unable to generate sufficient MBP or to maintain the proper myelination during early development. Csb is a multifunctional protein regulating both repair and the transcriptional response to reactive oxygen through its interaction with histone acetylase p300 and the hypoxia-inducible factor (HIF)1 pathway. On the basis of our results, combined with that of others, we suggest that in Csb the transcriptional response predominates during early development, whereas a neurodegenerative response associated with repair deficits predominates in later life.
Collapse
|
36
|
Agnez-Lima LF, Melo JTA, Silva AE, Oliveira AHS, Timoteo ARS, Lima-Bessa KM, Martinez GR, Medeiros MHG, Di Mascio P, Galhardo RS, Menck CFM. DNA damage by singlet oxygen and cellular protective mechanisms. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:15-28. [PMID: 22266568 DOI: 10.1016/j.mrrev.2011.12.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species, as singlet oxygen ((1)O(2)) and hydrogen peroxide, are continuously generated by aerobic organisms, and react actively with biomolecules. At excessive amounts, (1)O(2) induces oxidative stress and shows carcinogenic and toxic effects due to oxidation of lipids, proteins and nucleic acids. Singlet oxygen is able to react with DNA molecule and may induce G to T transversions due to 8-oxodG generation. The nucleotide excision repair, base excision repair and mismatch repair have been implicated in the correction of DNA lesions induced by (1)O(2) both in prokaryotic and in eukaryotic cells. (1)O(2) is also able to induce the expression of genes involved with the cellular responses to oxidative stress, such as NF-κB, c-fos and c-jun, and genes involved with tissue damage and inflammation, as ICAM-1, interleukins 1 and 6. The studies outlined in this review reinforce the idea that (1)O(2) is one of the more dangerous reactive oxygen species to the cells, and deserves our attention.
Collapse
Affiliation(s)
- Lucymara F Agnez-Lima
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Age-related neuronal degeneration: complementary roles of nucleotide excision repair and transcription-coupled repair in preventing neuropathology. PLoS Genet 2011; 7:e1002405. [PMID: 22174697 PMCID: PMC3234220 DOI: 10.1371/journal.pgen.1002405] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/17/2011] [Indexed: 12/11/2022] Open
Abstract
Neuronal degeneration is a hallmark of many DNA repair syndromes. Yet, how DNA damage causes neuronal degeneration and whether defects in different repair systems affect the brain differently is largely unknown. Here, we performed a systematic detailed analysis of neurodegenerative changes in mouse models deficient in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively, and that are associated with the UV-sensitive syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS). TCR–deficient Csa−/− and Csb−/− CS mice showed activated microglia cells surrounding oligodendrocytes in regions with myelinated axons throughout the nervous system. This white matter microglia activation was not observed in NER–deficient Xpa−/− and Xpc−/− XP mice, but also occurred in XpdXPCS mice carrying a point mutation (G602D) in the Xpd gene that is associated with a combined XPCS disorder and causes a partial NER and TCR defect. The white matter abnormalities in TCR–deficient mice are compatible with focal dysmyelination in CS patients. Both TCR–deficient and NER–deficient mice showed no evidence for neuronal degeneration apart from p53 activation in sporadic (Csa−/−, Csb−/−) or highly sporadic (Xpa−/−, Xpc−/−) neurons and astrocytes. To examine to what extent overlap occurs between both repair systems, we generated TCR–deficient mice with selective inactivation of NER in postnatal neurons. These mice develop dramatic age-related cumulative neuronal loss indicating DNA damage substrate overlap and synergism between TCR and NER pathways in neurons, and they uncover the occurrence of spontaneous DNA injury that may trigger neuronal degeneration. We propose that, while Csa−/− and Csb−/− TCR–deficient mice represent powerful animal models to study the mechanisms underlying myelin abnormalities in CS, neuron-specific inactivation of NER in TCR–deficient mice represents a valuable model for the role of NER in neuronal maintenance and survival. Metabolism produces reactive oxygen species that damage our DNA and other cellular components, and as such it contributes to the aging process, including neuronal degeneration. Accordingly, genetic disorders associated with impaired DNA damage repair are frequently associated with premature onset of aging pathology in a variety of tissues, including the brain. This is well-illustrated by the progeroid DNA repair syndromes xeroderma pigmentosum (XP) and Cockayne syndrome (CS), in which patients suffer from defects in nucleotide excision repair (NER) and transcription-coupled repair (TCR), two partially overlapping DNA repair systems that remove helix-distorting and transcription-blocking lesions, respectively. We have used a panel of XP and CS mice (including conditional double-mutant animals) to systematically investigate the impact of NER and TCR defects on neuronal degeneration. We have shown that, whereas a TCR defect causes white matter pathology, a NER defect can result in age related cumulative loss of neurons. These findings well match the neuropathology observed in CS and XP patients, underscoring the impact of spontaneous DNA damage in the onset of neuronal aging. Therefore, the XP and CS mouse models serve as valuable tools to delineate intervention strategies that combat age-associated pathology of the brain.
Collapse
|
38
|
Wei L, Lan L, Yasui A, Tanaka K, Saijo M, Matsuzawa A, Kashiwagi R, Maseki E, Hu Y, Parvin JD, Ishioka C, Chiba N. BRCA1 contributes to transcription-coupled repair of DNA damage through polyubiquitination and degradation of Cockayne syndrome B protein. Cancer Sci 2011; 102:1840-7. [PMID: 21756275 PMCID: PMC11159811 DOI: 10.1111/j.1349-7006.2011.02037.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BRCA1 is an important gene involved in susceptibility to breast and ovarian cancer and its product regulates the cellular response to DNA double-strand breaks. Here, we present evidence that BRCA1 also contributes to the transcription-coupled repair (TCR) of ultraviolet (UV) light-induced DNA damage. BRCA1 immediately accumulates at the sites of UV irradiation-mediated damage in cell nuclei in a manner that is fully dependent on both Cockayne syndrome B (CSB) protein and active transcription. Suppression of BRCA1 expression inhibits the TCR of UV lesions and increases the UV sensitivity of cells proficient in TCR. BRCA1 physically interacts with CSB protein. BRCA1 polyubiquitinates CSB and this polyubiquitination and subsequent degradation of CSB occur following UV irradiation, even in the absence of Cockayne syndrome A (CSA) protein. The depletion of BRCA1 expression increases the UV sensitivity of CSA-deficient cells. These results indicate that BRCA1 is involved in TCR and that a BRCA1-dependent polyubiquitination pathway for CSB exists alongside the CSA-dependent pathway to yield more efficient excision repair of lesions on the transcribed DNA strand.
Collapse
Affiliation(s)
- Leizhen Wei
- Department of Molecular Immunology, Tohoku University, Sendai
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pascucci B, D'Errico M, Parlanti E, Giovannini S, Dogliotti E. Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating. BIOCHEMISTRY (MOSCOW) 2011; 76:4-15. [PMID: 21568835 DOI: 10.1134/s0006297911010032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA repair is a crucial factor in maintaining a low steady-state level of oxidative DNA damage. Base excision repair (BER) has an important role in preventing the deleterious effects of oxidative DNA damage, but recent evidence points to the involvement of several repair pathways in this process. Oxidative damage may arise from endogenous and exogenous sources and may target nuclear and mitochondrial DNA as well as RNA and proteins. The importance of preventing mutations associated with oxidative damage is shown by a direct association between defects in BER (i.e. MYH DNA glycosylase) and colorectal cancer, but it is becoming increasingly evident that damage by highly reactive oxygen species plays also central roles in aging and neurodegeneration. Mutations in genes of the nucleotide excision repair (NER) pathway are associated with diseases, such as xeroderma pigmentosum and Cockayne syndrome, that involve increased skin cancer and/or developmental and neurological symptoms. In this review we will provide an updating of the current evidence on the involvement of NER factors in the control of oxidative DNA damage and will attempt to address the issue of whether this unexpected role may unlock the difficult puzzle of the pathogenesis of these syndromes.
Collapse
Affiliation(s)
- B Pascucci
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Monterotondo Stazione, Rome, Italy.
| | | | | | | | | |
Collapse
|
40
|
DNA binding proteins: outline of functional classification. Biomol Concepts 2011; 2:293-303. [DOI: 10.1515/bmc.2011.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/23/2011] [Indexed: 01/12/2023] Open
Abstract
AbstractDNA-binding proteins composed of DNA-binding domains directly affect genomic functions, mainly by performing transcription, DNA replication or DNA repair. Here, we briefly describe the DNA-binding proteins according to these three major functions. Transcription factors that usually bind to specific sequences of DNA could be classified based on their sequence similarity and the structure of the DNA-binding domains, such as basic, zinc-coordinating, helix-turn-helix domains, etc. Most DNA replication factors do not need a specific sequence of DNA, but instead mainly depend on a DNA structure, with the exception of the origin recognition complex in yeast or Escherichia coli that recognizes the DNA sequences at particular origins. DNA replication includes initiation and elongation. The major DNA-binding proteins involved in these two steps are briefly described. DNA repair proteins bound to DNA depend on the damaged DNA structure. They are classified to base excision repair, DNA mismatch repair, nucleotide excision repair, homologous recombination repair and non-homologous end joining. The major DNA-binding proteins involved in these pathways are briefly described. Histone and high mobility group are two examples of DNA-binding proteins that do not belong to the three categories above and are briefly described. Finally, we warn that the non-specific binding proteins might have an affinity to some non-specific medium materials such as protein A or G beads that are commonly used for immune precipitation, which can easily generate false positive signals while detecting protein-protein interaction; therefore, the results need to be carefully analyzed using positive/negative controls.
Collapse
|
41
|
McCallum GP, Wong AW, Wells PG. Cockayne syndrome B protects against methamphetamine-enhanced oxidative DNA damage in murine fetal brain and postnatal neurodevelopmental deficits. Antioxid Redox Signal 2011; 14:747-56. [PMID: 20673160 PMCID: PMC3116650 DOI: 10.1089/ars.2009.2946] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Methamphetamine (METH) increases the oxidative DNA lesion 8-oxoguanine (8-oxoG) in fetal mouse brain, and causes postnatal motor coordination deficits after in utero exposure. Like oxoguanine glycosylase 1 (OGG1), the Cockayne syndrome B (CSB) protein is involved in the repair of oxidatively damaged DNA, although its function is unclear. Here we used CSB-deficient Csb(m/m) knockout mice to investigate the developmental role of DNA oxidation and CSB in METH-initiated neurodevelopmental deficits. METH (40 mg/kg intraperitoneally) administration to pregnant Csb females on gestational day 17 increased 8-oxoG levels in Csb(m/m) fetal brains (p < 0.05). CSB modulated 8-oxoG levels independent of OGG1 activity, as 8-oxoG incision activity in fetal nuclear extracts was identical in Csb(m/m) and Csb(+/+)mice. This CSB effect was evident despite 7.1-fold higher OGG1 activity in Csb(+/+) mice compared to outbred CD-1 mice. Female Csb(m/m) offspring exposed in utero to METH exhibited motor coordination deficits postnatally (p < 0.05). In utero METH exposure did not cause dopaminergic nerve terminal degeneration, in contrast to adult exposures. This is the first evidence that CSB protects the fetus from xenobiotic-enhanced DNA oxidation and postnatal functional deficits, suggesting that oxidatively damaged DNA is developmentally pathogenic, and that fetal CSB activity may modulate the risk of reactive oxygen species-mediated adverse developmental outcomes.
Collapse
Affiliation(s)
- Gordon P McCallum
- Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
42
|
Wang J, Yuan B, Guerrero C, Bahde R, Gupta S, Wang Y. Quantification of oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope-dilution method. Anal Chem 2011; 83:2201-9. [PMID: 21323344 DOI: 10.1021/ac103099s] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of our study was to develop suitable methods to quantify oxidative DNA lesions in the setting of transition metal-related diseases. Transition metal-driven Fenton reactions constitute an important endogenous source of reactive oxygen species (ROS). In genetic diseases with accumulation of transition metal ions, excessive ROS production causes pathophysiological changes, including DNA damage. Wilson's disease is an autosomal recessive disorder with copper toxicosis due to deficiency of ATP7B protein needed for excreting copper into bile. The Long-Evans Cinnamon (LEC) rat bears a deletion in Atp7b gene and serves as an excellent model for hepatic Wilson's disease. We used a sensitive capillary liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS/MS) method in conjunction with the stable isotope-dilution technique to quantify several types of oxidative DNA lesions in the liver and brain of LEC rats. These lesions included 5-formyl-2'-deoxyuridine, 5-hydroxymethyl-2'-deoxyuridine, and the 5'R and 5'S diastereomers of 8,5'-cyclo-2'-deoxyguanosine and 8,5'-cyclo-2'-deoxyadenosine. Moreover, the levels of these DNA lesions in the liver and brain increased with age and correlated with age-dependent regulation of the expression of DNA repair genes in LEC rats. These results provide significant new knowledge for better understanding the implications of oxidative DNA lesions in transition metal-induced diseases, such as Wilson's disease, as well as in aging and aging-related pathological conditions.
Collapse
Affiliation(s)
- Jin Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | | | | | | | | | | |
Collapse
|
43
|
Horibata K, Saijo M, Bay MN, Lan L, Kuraoka I, Brooks PJ, Honma M, Nohmi T, Yasui A, Tanaka K. Mutant Cockayne syndrome group B protein inhibits repair of DNA topoisomerase I-DNA covalent complex. Genes Cells 2010; 16:101-14. [PMID: 21143350 DOI: 10.1111/j.1365-2443.2010.01467.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two UV-sensitive syndrome patients who have mild photosensitivity without detectable somatic abnormalities lack detectable Cockayne syndrome group B (CSB) protein because of a homozygous null mutation in the CSB gene. In contrast, mutant CSB proteins are produced in CS-B patients with the severe somatic abnormalities of Cockayne syndrome and photosensitivity. It is known that the piggyBac transposable element derived 3 is integrated within the CSB intron 5, and that CSB-piggyBac transposable element derived 3 fusion (CPFP) mRNA is produced by alternative splicing. We found that CPFP or truncated CSB protein derived from CPFP mRNA was stably produced in CS-B patients, and that wild-type CSB, CPFP, and truncated CSB protein interacted with DNA topoisomerase I. We also found that CPFP inhibited repair of a camptothecin-induced topoisomerase I-DNA covalent complex. The inhibition was suppressed by the presence of wild-type CSB, consistent with the autosomal recessive inheritance of Cockayne syndrome. These results suggested that reduced repair of a DNA topoisomerase I-DNA covalent complex because of truncated CSB proteins is involved in the pathogenesis of CS-B.
Collapse
Affiliation(s)
- Katsuyoshi Horibata
- Human Cell Biology Group, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cameroni E, Stettler K, Suter B. On the traces of XPD: cell cycle matters - untangling the genotype-phenotype relationship of XPD mutations. Cell Div 2010; 5:24. [PMID: 20840796 PMCID: PMC2949746 DOI: 10.1186/1747-1028-5-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 11/28/2022] Open
Abstract
Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Elisabetta Cameroni
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
45
|
Katafuchi A, Nohmi T. DNA polymerases involved in the incorporation of oxidized nucleotides into DNA: their efficiency and template base preference. Mutat Res 2010; 703:24-31. [PMID: 20542140 DOI: 10.1016/j.mrgentox.2010.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/04/2010] [Indexed: 11/25/2022]
Abstract
Genetic information must be duplicated with precision and accurately passed on to daughter cells and later generations. In order to achieve this goal, DNA polymerases (Pols) have to faithfully execute DNA synthesis during chromosome replication and repair. However, the conditions under which Pols synthesize DNA are not always optimal; the template DNA can be damaged by various endogenous and exogenous genotoxic agents including reactive oxygen species (ROS), and ROS oxidize dNTPs in the nucleotide pool from which Pols elongate DNA strands. Both damaged DNA and oxidized dNTPs interfere with faithful DNA synthesis by Pols, inducing various cellular abnormalities, such as mutations, cancer, neurological diseases, and cellular senescence. In this review, we focus on the process by which Pols incorporate oxidized dNTPs into DNA and compare the properties of Pols: efficiency, i.e., k(cat)/K(m), k(pol)/K(d) or V(max)/K(m), and template base preference for the incorporation of 8-oxo-dGTP, an oxidized form of dGTP. In general, Pols involved in chromosome replication, the A- and B-family Pols, are resistant to the incorporation of 8-oxo-dGTP, whereas Pols involved in repair and/or translesion synthesis, the X- and Y-family Pols, incorporate nucleotides in a relatively efficient manner and tend to incorporate it opposite template dA rather than template dC, though there are several exceptions. We discuss the molecular mechanisms by which Pols exhibit different template base preferences for the incorporation of 8-oxo-dGTP and how Pols are involved in the induction of mutations via the incorporation of oxidized nucleotides under oxidative stress.
Collapse
Affiliation(s)
- Atsushi Katafuchi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | |
Collapse
|
46
|
Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 2009; 10:756-68. [PMID: 19809470 DOI: 10.1038/nrg2663] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in genes on the nucleotide excision repair pathway are associated with diseases, such as xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, that involve skin cancer and developmental and neurological symptoms. These mutations cause the defective repair of damaged DNA and increased transcription arrest but, except for skin cancer, the links between repair and disease have not been obvious. Widely different clinical syndromes seem to result from mutations in the same gene, even when the mutations result in complete loss of function. The mapping of mutations in recently solved protein structures has begun to clarify the links between the molecular defects and phenotypes, but the identification of additional sources of clinical variability is still necessary.
Collapse
|
47
|
Janssen RJ, Distelmaier F, Smeets R, Wijnhoven T, Ostergaard E, Jaspers NG, Raams A, Kemp S, Rodenburg RJ, Willems PH, van den Heuvel LP, Smeitink JA, Nijtmans LG. Contiguous gene deletion of ELOVL7, ERCC8 and NDUFAF2 in a patient with a fatal multisystem disorder. Hum Mol Genet 2009; 18:3365-74. [DOI: 10.1093/hmg/ddp276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
48
|
Susa D, Mitchell JR, Verweij M, van de Ven M, Roest H, van den Engel S, Bajema I, Mangundap K, Ijzermans JNM, Hoeijmakers JHJ, de Bruin RWF. Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice. Aging Cell 2009; 8:192-200. [PMID: 19338497 DOI: 10.1111/j.1474-9726.2009.00463.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cockayne syndrome and other segmental progerias with inborn defects in DNA repair mechanisms are thought to be due in part to hypersensitivity to endogenous oxidative DNA damage. The accelerated aging-like symptoms of this disorder include dysmyelination within the central nervous system, progressive sensineuronal hearing loss and retinal degeneration. We tested the effects of congenital nucleotide excision DNA repair deficiency on acute oxidative stress sensitivity in vivo. Surprisingly, we found mouse models of Cockayne syndrome less susceptible than wild type animals to surgically induced renal ischemia reperfusion injury, a multifactorial injury mediated in part by oxidative damage. Renal failure-related mortality was significantly reduced in Csb(-/-) mice, kidney function was improved and proliferation was significantly higher in the regenerative phase following ischemic injury. Protection from ischemic damage correlated with improved baseline glucose tolerance and insulin sensitivity and a reduced inflammatory response following injury. Protection was further associated with genetic ablation of a different Cockayne syndrome-associated gene, Csa. Our data provide the first functional in vivo evidence that congenital DNA repair deficiency can induce protection from acute stress in at least one organ. This suggests that while specific types of unrepaired endogenous DNA damage may lead to detrimental effects in certain tissues, they may at the same time elicit beneficial adaptive changes in others and thus contribute to the tissue specificity of disease symptoms.
Collapse
Affiliation(s)
- Denis Susa
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Muftuoglu M, de Souza-Pinto NC, Dogan A, Aamann M, Stevnsner T, Rybanska I, Kirkali G, Dizdaroglu M, Bohr VA. Cockayne syndrome group B protein stimulates repair of formamidopyrimidines by NEIL1 DNA glycosylase. J Biol Chem 2009; 284:9270-9. [PMID: 19179336 DOI: 10.1074/jbc.m807006200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cockayne syndrome (CS) is a premature aging condition characterized by sensitivity to UV radiation. However, this phenotype does not explain the progressive neurodegeneration in CS patients. It could be due to the hypersensitivity of CSB-deficient cells to oxidative stress. So far most studies on the role of CSB in repair of oxidatively induced DNA lesions have focused on 7,8-dihydro-8-oxoguanine. This study examines the role of CSB in the repair of formamidopyrimidines 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4,6-diamino-5-formamidopyrimidine (FapyAde), which are substrates for endonuclease VIII-like (NEIL1) DNA glycosylase. Results presented here show that csb(-/-) mice have a higher level of endogenous FapyAde and FapyGua in DNA from brain and kidney than wild type mice as well as higher levels of endogenous FapyAde in genomic DNA and mtDNA from liver. In addition, CSB stimulates NEIL1 incision activity in vitro, and CSB and NEIL1 co-immunoprecipitate and co-localize in HeLa cells. When CSB and NEIL1 are depleted from HeLa cells by short hairpin RNA knockdown, repair of induced FapyGua is strongly inhibited. These results suggest that CSB plays a role in repair of formamidopyrimidines, possibly by interacting with and stimulating NEIL1, and that accumulation of such modifications may have a causal role in the pathogenesis of CS.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Laboratory of Molecular Gerontology, NIA Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
An Xpb mouse model for combined xeroderma pigmentosum and cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol Cell Biol 2008; 29:1276-90. [PMID: 19114557 DOI: 10.1128/mcb.01229-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Patients carrying mutations in the XPB helicase subunit of the basal transcription and nucleotide excision repair (NER) factor TFIIH display the combined cancer and developmental-progeroid disorder xeroderma pigmentosum/Cockayne syndrome (XPCS). Due to the dual transcription repair role of XPB and the absence of animal models, the underlying molecular mechanisms of XPB(XPCS) are largely uncharacterized. Here we show that severe alterations in Xpb cause embryonic lethality and that knock-in mice closely mimicking an XPCS patient-derived XPB mutation recapitulate the UV sensitivity typical for XP but fail to show overt CS features unless the DNA repair capacity is further challenged by crossings to the NER-deficient Xpa background. Interestingly, the Xpb(XPCS) Xpa double mutants display a remarkable interanimal variance, which points to stochastic DNA damage accumulation as an important determinant of clinical diversity in NER syndromes. Furthermore, mice carrying the Xpb(XPCS) mutation together with a point mutation in the second TFIIH helicase Xpd are healthy at birth but display neonatal lethality, indicating that transcription efficiency is sufficient to permit embryonal development even when both TFIIH helicases are crippled. The double-mutant cells exhibit sensitivity to oxidative stress, suggesting a role for endogenous DNA damage in the onset of XPB-associated CS.
Collapse
|