1
|
Boudia F, Baille M, Babin L, Aid Z, Robert E, Rivière J, Galant K, Alonso-Pérez V, Anselmi L, Arkoun B, Abermil N, Marzac C, Bertuccio SN, de Prémesnil A, Lopez CK, Eeckhoutte A, Naimo A, Leite B, Catelain C, Metereau C, Gonin P, Gaspar N, Schwaller J, Bernard OA, Raslova H, Gaudry M, Marchais A, Lapillonne H, Petit A, Pflumio F, Arcangeli ML, Brunet E, Mercher T. Progressive chromatin rewiring by ETO2::GLIS2 revealed in a genome-edited human iPSC model of pediatric leukemia initiation. Blood 2025; 145:1510-1525. [PMID: 39656971 DOI: 10.1182/blood.2024024505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Pediatric acute myeloid leukemia frequently harbors fusion oncogenes associated with poor prognosis, including KMT2A, NUP98, and GLIS2 rearrangements. Although murine models have demonstrated their leukemogenic activities, the steps from a normal human cell to leukemic blasts remain unclear. Here, we precisely reproduced the inversion of chromosome 16 resulting in the ETO2::GLIS2 fusion in human induced pluripotent stem cells (iPSCs). iPSC-derived ETO2::GLIS2-expressing hematopoietic cells showed differentiation alterations in vitro and efficiently induced in vivo development of leukemia that closely phenocopied human acute megakaryoblastic leukemia (AMKL), reflected by flow cytometry and single-cell transcriptomes. Comparison of iPS-derived cells with patient-derived cells revealed altered chromatin accessibility at early and later bona fide leukemia stages, with aberrantly higher accessibility and expression of the osteogenic homeobox factor DLX3 that preceded increased accessibility to ETS factors. DLX3 overexpression in normal CD34+ cells increased accessibility to ETS motifs and reduced accessibility to GATA motifs. A DLX3 transcriptional module was globally enriched in both ETO2::GLIS2 AMKL and some aggressive pediatric osteosarcoma. Importantly, DLX3 knockout abrogated leukemia initiation in this ETO2::GLIS2 iPSC model. Collectively, the characterization of a novel human iPSC-derived AMKL model revealed that hijacking of the osteogenic homeobox transcription factor DLX3 is an essential early step in chromatin changes and leukemogenesis driven by the ETO2::GLIS2 fusion oncogene.
Collapse
MESH Headings
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Chromatin/metabolism
- Chromatin/genetics
- Animals
- Mice
- Gene Editing
- Child
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Fabien Boudia
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Marie Baille
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Loélia Babin
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Zakia Aid
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Elie Robert
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Julie Rivière
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Klaudia Galant
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Verónica Alonso-Pérez
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Laura Anselmi
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- University of Bologna, Bologna, Italy
| | - Brahim Arkoun
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Nassera Abermil
- Laboratoire d'Hématologie Biologique, Hôpital Universitaire Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christophe Marzac
- Department of Hematology, Leukemia Interception Program, Personalized Cancer Prevention Center, Gustave Roussy, Villejuif, France
| | | | - Alexia de Prémesnil
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Université Paris Cité, Paris, France
| | - Cécile K Lopez
- Department of Haematology, University of Cambridge, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Alexandre Eeckhoutte
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Audrey Naimo
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Betty Leite
- Gustave Roussy, Genomic Platform, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Cyril Catelain
- Gustave Roussy, Plateforme Imagerie et Cytométrie, Université Paris-Saclay, Unité Mixte de Service AMMICA, INSERM US23, Centre National de la Recherche Scientifique UMS 3655, Villejuif, France
| | - Christophe Metereau
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Patrick Gonin
- Gustave Roussy Cancer Center, Université Paris-Saclay, UMS AMMICA, Villejuif, France
| | - Nathalie Gaspar
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Jürg Schwaller
- University Children's Hospital Beider Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Olivier A Bernard
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Hana Raslova
- Gustave Roussy, INSERM U1287, Université Paris-Saclay, Équipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Muriel Gaudry
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Antonin Marchais
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Hélène Lapillonne
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, Laboratory of Hematology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, INSERM, UMRS_938, Centre de Recherche Saint-Antoine, Paris, France
- OPALE Carnot Institute, Paris, France
| | - Françoise Pflumio
- UMR-E008, Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, France
- OPALE Carnot Institute, Paris, France
| | - Marie-Laure Arcangeli
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
| | - Erika Brunet
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- Université Paris Cité, Paris, France
- Laboratory of the Genome Dynamics in the Immune System, Institut Imagine, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Paris, France
| | - Thomas Mercher
- Gustave Roussy, PEDIAC program, INSERM U1170, Université Paris-Saclay, Villejuif, France
- Equipe labellisée Ligue Contre le Cancer, Paris, France
- OPALE Carnot Institute, Paris, France
| |
Collapse
|
2
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
3
|
Venkatasubramanian D, Senevirathne G, Capellini TD, Craft AM. Leveraging single cell multiomic analyses to identify factors that drive human chondrocyte cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598666. [PMID: 38915712 PMCID: PMC11195167 DOI: 10.1101/2024.06.12.598666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cartilage plays a crucial role in skeletal development and function, and abnormal development contributes to genetic and age-related skeletal disease. To better understand how human cartilage develops in vivo , we jointly profiled the transcriptome and open chromatin regions in individual nuclei recovered from distal femurs at 2 fetal timepoints. We used these multiomic data to identify transcription factors expressed in distinct chondrocyte subtypes, link accessible regulatory elements with gene expression, and predict transcription factor-based regulatory networks that are important for growth plate or epiphyseal chondrocyte differentiation. We developed a human pluripotent stem cell platform for interrogating the function of predicted transcription factors during chondrocyte differentiation and used it to test NFATC2 . We expect new regulatory networks we uncovered using multiomic data to be important for promoting cartilage health and treating disease, and our platform to be a useful tool for studying cartilage development in vitro . Statement of Significance The identity and integrity of the articular cartilage lining our joints are crucial to pain-free activities of daily living. Here we identified a gene regulatory landscape of human chondrogenesis at single cell resolution, which is expected to open new avenues of research aimed at mitigating cartilage diseases that affect hundreds of millions of individuals world-wide.
Collapse
|
4
|
Morsczeck C, De Pellegrin M, Reck A, Reichert TE. Evaluation of Current Studies to Elucidate Processes in Dental Follicle Cells Driving Osteogenic Differentiation. Biomedicines 2023; 11:2787. [PMID: 37893160 PMCID: PMC10604663 DOI: 10.3390/biomedicines11102787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
When research on osteogenic differentiation in dental follicle cells (DFCs) began, projects focused on bone morphogenetic protein (BMP) signaling. The BMP pathway induces the transcription factor DLX3, whichh in turn induces the BMP signaling pathway via a positive feedback mechanism. However, this BMP2/DLX3 signaling pathway only seems to support the early phase of osteogenic differentiation, since simultaneous induction of BMP2 or DLX3 does not further promote differentiation. Recent data showed that inhibition of classical protein kinase C (PKCs) supports the mineralization of DFCs and that osteogenic differentiation is sensitive to changes in signaling pathways, such as protein kinase B (PKB), also known as AKT. Small changes in the lipidome seem to confirm the participation of AKT and PKC in osteogenic differentiation. In addition, metabolic processes, such as fatty acid biosynthesis, oxidative phosphorylation, or glycolysis, are essential for the osteogenic differentiation of DFCs. This review article attempts not only to bring the various factors into a coherent picture of osteogenic differentiation in DFCs, but also to relate them to recent developments in other types of osteogenic progenitor cells.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany (A.R.); (T.E.R.)
| | | | | | | |
Collapse
|
5
|
Morsczeck C, Pieles O, Beck HC. Analysis of the phosphoproteome in human dental follicle cells during osteogenic differentiation. Eur J Oral Sci 2023; 131:e12952. [PMID: 37664892 DOI: 10.1111/eos.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Dental follicle cells (DFCs) are osteogenic progenitor cells and are well suited for molecular studies of differentiation of alveolar osteoblasts. A recent study examined the metabolism in DFCs during osteogenic differentiation and showed that energy metabolism is increased after 14 days of differentiation (mid phase). However, previous studies have examined proteomes at early (2 h, 24 h) or very late (28 days) stages of differentiation, but not during the phase of increased metabolic activity. In this study, we examined the phosphoproteome at the mid phase (14 days) of osteogenic differentiation. Analysis of DFC phosphoproteomes showed that during this phase of osteogenic differentiation, proteins that are part of signal transduction are significantly regulated. Proteins involved in the regulation of the cytoskeleton and apoptosis were also increased in expression. As osteogenic differentiation induced oxidative stress and apoptosis in DFCs, the oxidative stress defense protein, catalase, was also upregulated during osteogenic differentiation, which supports the biomineralization of DFCs. In summary, this study revealed that during the middle phase (14 days) of osteogenic differentiation, processes in DFCs related to the control of cell organization, apoptosis, and oxidative stress are regulated.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Pieles
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Christian Beck
- Department of Clinical Biochemistry and Pharmacology, Centre for Clinical Proteomics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Huang YX, Tian T, Huang JX, Wang J, Sui C, Ni J. A shared genetic contribution to osteoarthritis and COVID-19 outcomes: a large-scale genome-wide cross-trait analysis. Front Immunol 2023; 14:1184958. [PMID: 37398645 PMCID: PMC10311546 DOI: 10.3389/fimmu.2023.1184958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background Patients with osteoarthritis (OA) are exposed to an increased risk of adverse outcomes of COVID-19, and they tend to experience disruption in access to healthcare services and exercise facilities. However, a deep understanding of this comorbidity phenomenon and the underlying genetic architecture of the two diseases is still unclear. In this study, we aimed to untangle the relationship between OA and COVID-19 outcomes by conducting a large-scale genome-wide cross-trait analysis. Methods Genetic correlation and causal relationships between OA and COVID-19 outcomes (critical COVID-19, COVID-19 hospitalization, and COVID-19 infection) were estimated by linkage disequilibrium score regression and Mendelian Randomization approaches. We further applied Multi-Trait Analysis of GWAS and colocalization analysis to identify putative functional genes associated with both OA and COVID-19 outcomes. Results Significant positive genetic correlations between OA susceptibility and both critical COVID-19 (rg=0.266, P=0.0097) and COVID-19 hospitalization (rg=0.361, P=0.0006) were detected. However, there was no evidence to support causal genetic relationships between OA and critical COVID-19 (OR=1.17[1.00-1.36], P=0.049) or OA and COVID-19 hospitalization OR=1.08[0.97-1.20], P=0.143). These results were robustly consistent after the removal of obesity-related single nucleotide polymorphisms (SNPs). Moreover, we identified a strong association signal located near the FYCO1 gene (lead SNPs: rs71325101 for critical COVID-19, Pmeta=1.02×10-34; rs13079478 for COVID-19 hospitalization, Pmeta=1.09×10-25). Conclusion Our findings further confirmed the comorbidity of OA and COVID-19 severity, but indicate a non-causal impact of OA on COVID-19 outcomes. The study offers an instructive perspective that OA patients did not generate negative COVID-19 outcomes during the pandemic in a causal way. Further clinical guidance can be formulated to enhance the quality of self-management in vulnerable OA patients.
Collapse
Affiliation(s)
- Yi-Xuan Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ji-Xiang Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Cong Sui
- Department of Orthopedics Trauma, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
7
|
Park J, Jeong K, Kim M, Kim W, Park JH. Enhanced osteogenesis of human urine-derived stem cells by direct delivery of 30Kc19α-Lin28A protein. Front Bioeng Biotechnol 2023; 11:1215087. [PMID: 37383520 PMCID: PMC10293758 DOI: 10.3389/fbioe.2023.1215087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Urine-derived stem cells (USCs) are a promising source for regenerative medicine because of their advantages such as easy and non-invasive collection from the human body, stable expansion, and the potential to differentiate into multiple lineages, including osteoblasts. In this study, we propose a strategy to enhance the osteogenic potential of human USCs using Lin28A, a transcription factor that inhibits let-7 miRNA processing. To address concerns regarding the safety of foreign gene integration and potential risk of tumorigenicity, we intracellularly delivered Lin28A as a recombinant protein fused with a cell-penetrating and protein-stabilizing protein, 30Kc19α. 30Kc19α-Lin28A fusion protein exhibited improved thermal stability and was delivered into USCs without significant cytotoxicity. 30Kc19α-Lin28A treatment elevated calcium deposition and upregulated several osteoblast-specific gene expressions in USCs derived from multiple donors. Our results indicate that intracellularly delivered 30Kc19α-Lin28A enhances the osteoblastic differentiation of human USCs by affecting the transcriptional regulatory network involved in metabolic reprogramming and stem cell potency. Therefore, 30Kc19α-Lin28A may provide a technical advancement toward developing clinically feasible strategies for bone regeneration.
Collapse
|
8
|
Bloch-Zupan A, Rey T, Jimenez-Armijo A, Kawczynski M, Kharouf N, O-Rare consortium, Dure-Molla MDL, Noirrit E, Hernandez M, Joseph-Beaudin C, Lopez S, Tardieu C, Thivichon-Prince B, ERN Cranio Consortium, Dostalova T, Macek M, International Consortium, Alloussi ME, Qebibo L, Morkmued S, Pungchanchaikul P, Orellana BU, Manière MC, Gérard B, Bugueno IM, Laugel-Haushalter V. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification. Front Physiol 2023; 14:1130175. [PMID: 37228816 PMCID: PMC10205041 DOI: 10.3389/fphys.2023.1130175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.
Collapse
Affiliation(s)
- Agnes Bloch-Zupan
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut d’études avancées (USIAS), Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Tristan Rey
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Alexandra Jimenez-Armijo
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Marzena Kawczynski
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Naji Kharouf
- Université de Strasbourg, Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Strasbourg, France
| | | | - Muriel de La Dure-Molla
- Rothschild Hospital, Public Assistance-Paris Hospitals (AP-HP), Reference Center for Rare Oral and Den-tal Diseases (O-Rares), Paris, France
| | - Emmanuelle Noirrit
- Centre Hospitalier Universitaire (CHU) Rangueil, Toulouse, Competence Center for Rare Oral and Den-tal Diseases, Toulouse, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Competence Center for Rare Oral and Dental Diseases, Nancy, France
| | - Clara Joseph-Beaudin
- Centre Hospitalier Universitaire de Nice, Competence Center for Rare Oral and Dental Diseases, Nice, France
| | - Serena Lopez
- Centre Hospitalier Universitaire de Nantes, Competence Center for Rare Oral and Dental Diseases, Nantes, France
| | - Corinne Tardieu
- APHM, Hôpitaux Universitaires de Marseille, Hôpital Timone, Competence Center for Rare Oral and Dental Diseases, Marseille, France
| | - Béatrice Thivichon-Prince
- Centre Hospitalier Universitaire de Lyon, Competence Center for Rare Oral and Dental Diseases, Lyon, France
| | | | - Tatjana Dostalova
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Milan Macek
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | | | - Mustapha El Alloussi
- Faculty of Dentistry, International University of Rabat, CReSS Centre de recherche en Sciences de la Santé, Rabat, Morocco
| | - Leila Qebibo
- Unité de génétique médicale et d’oncogénétique, CHU Hassan II, Fes, Morocco
| | | | | | - Blanca Urzúa Orellana
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Bénédicte Gérard
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| |
Collapse
|
9
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Saini A, Rawat Y, Jain K, Mani I. State-of-the-art techniques to study epigenetics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:23-50. [PMID: 37019594 DOI: 10.1016/bs.pmbts.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The epigenome consists of all the epigenetic alterations like DNA methylation, the histone modifications and non-coding RNAs which change the gene expression and have a role in diseases like cancer and other processes. Epigenetic modifications can control gene expression through variable gene activity at various levels which affects various cellular phenomenon such as cell differentiations, variability, morphogenesis, and the adaptability of an organism. Various factors such as food, pollutants, drugs, stress etc., impact the epigenome. Epigenetic mechanisms mainly involve various post-translational alteration of histones and DNA methylation. Numerous methods have been utilized to study these epigenetic marks. Various histone modifications and binding of histone modifier proteins can be analyzed using chromatin immunoprecipitation (ChIP) which is one of broadly utilized method. Other modified forms of the ChIP have been developed such as reverse chromatin immunoprecipitation (R-ChIP); sequential ChIP (ChIP-re-ChIP) and some high-throughput modified forms of ChIP such as ChIP-seq and ChIP-on-chip. Another epigenetic mechanism is DNA methylation, in which DNA methyltransferases (DNMTs) add a methyl group to the C-5 position of the cytosine. Bisulfite sequencing is the oldest and usually utilized method to measure the DNA methylation status. Other techniques have been established are whole genome bisulfite sequencing (WGBS), methylated DNA immune-precipitation based methods (MeDIP), methylation sensitive restriction enzyme digestion followed by sequencing (MRE-seq) and methylation BeadChip to study the methylome. This chapter briefly discusses the key principles and methods used to study epigenetics in health and disease conditions.
Collapse
Affiliation(s)
- Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India.
| | | | - Kritika Jain
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
11
|
Razghonova Y, Zymovets V, Wadelius P, Rakhimova O, Manoharan L, Brundin M, Kelk P, Romani Vestman N. Transcriptome Analysis Reveals Modulation of Human Stem Cells from the Apical Papilla by Species Associated with Dental Root Canal Infection. Int J Mol Sci 2022; 23:ijms232214420. [PMID: 36430898 PMCID: PMC9695896 DOI: 10.3390/ijms232214420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Interaction of oral bacteria with stem cells from the apical papilla (SCAP) can negatively affect the success of regenerative endodontic treatment (RET). Through RNA-seq transcriptomic analysis, we studied the effect of the oral bacteria Fusobacterium nucleatum and Enterococcus faecalis, as well as their supernatants enriched by bacterial metabolites, on the osteo- and dentinogenic potential of SCAPs in vitro. We performed bulk RNA-seq, on the basis of which differential expression analysis (DEG) and gene ontology enrichment analysis (GO) were performed. DEG analysis showed that E. faecalis supernatant had the greatest effect on SCAPs, whereas F. nucleatum supernatant had the least effect (Tanimoto coefficient = 0.05). GO term enrichment analysis indicated that F. nucleatum upregulates the immune and inflammatory response of SCAPs, and E. faecalis suppresses cell proliferation and cell division processes. SCAP transcriptome profiles showed that under the influence of E. faecalis the upregulation of VEGFA, Runx2, and TBX3 genes occurred, which may negatively affect the SCAP's osteo- and odontogenic differentiation. F. nucleatum downregulates the expression of WDR5 and TBX2 and upregulates the expression of TBX3 and NFIL3 in SCAPs, the upregulation of which may be detrimental for SCAPs' differentiation potential. In conclusion, the present study shows that in vitro, F. nucleatum, E. faecalis, and their metabolites are capable of up- or downregulating the expression of genes that are necessary for dentinogenic and osteogenic processes to varying degrees, which eventually may result in unsuccessful RET outcomes. Transposition to the clinical context merits some reservations, which should be approached with caution.
Collapse
Affiliation(s)
- Yelyzaveta Razghonova
- Department of Microbiology, Virology and Biotechnology, Mechnikov National University, 65000 Odesa, Ukraine
| | - Valeriia Zymovets
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
- Correspondence:
| | - Philip Wadelius
- Department of Endodontics, Region of Västerbotten, 90189 Umeå, Sweden
| | - Olena Rakhimova
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), Lund University, 22362 Lund, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology (IMB), Umeå University, 90187 Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
12
|
Zhang Y, Yang J, Yao H, Zhang Z, Song Y. CRISPR
/Cas9‐mediated deletion of
Fam83h
induces defective tooth mineralization and hair development in rabbits. J Cell Mol Med 2022; 26:5670-5679. [DOI: 10.1111/jcmm.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/16/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yuxin Zhang
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University Changchun China
| | - Jie Yang
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University Changchun China
| | - Haobin Yao
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University Changchun China
| | - Zhongtian Zhang
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University Changchun China
| | - Yuning Song
- Key Laboratory of Zoonosis Research Ministry of Education College of Veterinary Medicine Jilin University Changchun China
| |
Collapse
|
13
|
Salt Dependence of DNA Binding Activity of Human Transcription Factor Dlx3. Int J Mol Sci 2022; 23:ijms23169497. [PMID: 36012753 PMCID: PMC9409194 DOI: 10.3390/ijms23169497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Distal-less 3 (Dlx3) is a homeobox-containing transcription factor and plays a crucial role in the development and differentiation process. Human Dlx3 consists of two transactivation domains and a homeobox domain (HD) that selectively binds to the consensus site (5'-TAATT-3') of the DNA duplex. Here, we performed chemical shift perturbation experiments on Dlx3-HD in a complex with a 10-base-paired (10-bp) DNA duplex under various salt conditions. We also acquired the imino proton spectra of the 10-bp DNA to monitor the changes in base-pair stabilities during titration with Dlx3-HD. Our study demonstrates that Dlx3-HD selectively recognizes its consensus DNA sequences through the α3 helix and L1 loop regions with a unique dynamic feature. The dynamic properties of the binding of Dlx3-HD to its consensus DNA sequence can be modulated by varying the salt concentrations. Our study suggested that this unique structural and dynamic feature of Dlx3-HD plays an important role in target DNA recognition, which might be associated with tricho-dento-osseous syndrome.
Collapse
|
14
|
Lef1 and Dlx3 May Facilitate the Maturation of Secondary Hair Follicles in the Skin of Gansu Alpine Merino. Genes (Basel) 2022; 13:genes13081326. [PMID: 35893063 PMCID: PMC9394301 DOI: 10.3390/genes13081326] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Lymphatic enhancer factor 1 (Lef1) and distal-less homeobox 3 (Dlx3) are the transcription factors involved in regulating hair follicle development in mice, goats, and other animals. Their deletion can lead to hair follicle deficiency. In this study, hematoxylin−eosin staining (HE), real-time quantitative PCR (RT-qPCR), immunohistochemistry, and immunofluorescence were used to analyze the expression, location, and biological functions of Lef1 and Dlx3 in the lateral skin of Gansu Alpine Merino aged 1, 30, 60, and 90 days. The results revealed that the number of hair follicles decreased with age and was significantly higher at 1 day than in the other three age groups (p < 0.05). The mRNA levels of Lef1 and Dlx3 in the skin of 30-day old Gansu Alpine Merino were significantly higher than those in the other three age groups (p < 0.05). Protein expression of Lef1 and Dlx3 was lowest at 1 day (p < 0.05) and peaked at 60 days. Lef1 and Dlx3 exhibited a high density and strong positive expression in the dermal papillae; additionally, Dlx3 exhibited a high density and strong positive expression in the inner and outer root sheaths. Collectively, Lef1 and Dlx3 may facilitate the maturation of secondary hair follicles, which is mainly achieved through the dermal papillae and inner and outer root sheaths.
Collapse
|
15
|
Liu H, Wang Y, Liu H, Yu M, Zheng J, Feng H, Liu Y, Han D. Novel DLX3 variant identified in a family with tricho-dento-osseous syndrome. Arch Oral Biol 2022; 141:105479. [PMID: 35714441 DOI: 10.1016/j.archoralbio.2022.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES To identify DLX3 variants in a Chinese family with typical clinical manifestations of tricho-dento-osseous syndrome (TDO). DESIGN Sanger sequencing was performed to detect DLX3 variants in the TDO family. Three-dimensional laser scanning microscopy, bioinformatic and conformational analyses were employed to explore the phenotypic characterization and the functional impact. RESULTS We identified a novel heterozygous variant in the DLX3 gene (c.534G>C; p.Gln178His). Familial co-segregation verified an autosomal dominant inheritance pattern. Bioinformatic prediction demonstrated the deleterious effects of the variant, and DLX3 structure changes suggested the corresponding functional impairments. CONCLUSIONS We identified a variant in the DLX3 gene in an integrated family of Han nationality for the first time. This study expands the variant spectrum of DLX3 and phenotype spectrum of TDO syndrome.
Collapse
Affiliation(s)
- Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yue Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China; Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jinglei Zheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
16
|
Morsczeck C. Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. Int J Mol Sci 2022; 23:5945. [PMID: 35682637 PMCID: PMC9180518 DOI: 10.3390/ijms23115945] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells are also very useful in basic research and here, for example, for the elucidation of molecular processes in the differentiation into mineralizing cells. This article summarizes the molecular mechanisms driving osteogenic differentiation of DFCs. The positive feedback loop of bone morphogenetic protein (BMP) 2 and homeobox protein DLX3 and a signaling pathway associated with protein kinase B (AKT) and protein kinase C (PKC) are presented and further insights related to other signaling pathways such as the WNT signaling pathway are explained. Subsequently, some works are presented that have investigated epigenetic modifications and non-coding ncRNAs and their connection with the osteogenic differentiation of DFCs. In addition, studies are presented that have shown the influence of extracellular matrix molecules or fundamental biological processes such as cellular senescence on osteogenic differentiation. The putative role of factors associated with inflammatory processes, such as interleukin 8, in osteogenic differentiation is also briefly discussed. This article summarizes the most important insights into the mechanisms of osteogenic differentiation in DFCs and is intended to be a small help in the direction of new research projects in this area.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Hojo H, Ohba S. Sp7 Action in the Skeleton: Its Mode of Action, Functions, and Relevance to Skeletal Diseases. Int J Mol Sci 2022; 23:5647. [PMID: 35628456 PMCID: PMC9143072 DOI: 10.3390/ijms23105647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoblast differentiation is a tightly regulated process in which key transcription factors (TFs) and their target genes constitute gene regulatory networks (GRNs) under the control of osteogenic signaling pathways. Among these TFs, Sp7 works as an osteoblast determinant critical for osteoblast differentiation. Following the identification of Sp7 and a large number of its functional studies, recent genome-scale analyses have made a major contribution to the identification of a "non-canonical" mode of Sp7 action as well as "canonical" ones. The analyses have not only confirmed known Sp7 targets but have also uncovered its additional targets and upstream factors. In addition, biochemical analyses have demonstrated that Sp7 actions are regulated by chemical modifications and protein-protein interaction with other transcriptional regulators. Sp7 is also involved in chondrocyte differentiation and osteocyte biology as well as postnatal bone metabolism. The critical role of SP7 in the skeleton is supported by its relevance to human skeletal diseases. This review aims to overview the Sp7 actions in skeletal development and maintenance, particularly focusing on recent advances in our understanding of how Sp7 functions in the skeleton under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Eggers B, Wagenheim AM, Jung S, Kleinheinz J, Nokhbehsaim M, Kramer FJ, Sielker S. Effect of Cold Atmospheric Plasma (CAP) on Osteogenic Differentiation Potential of Human Osteoblasts. Int J Mol Sci 2022; 23:ijms23052503. [PMID: 35269642 PMCID: PMC8910241 DOI: 10.3390/ijms23052503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Bone regeneration after oral and maxillofacial surgery is a long-term process, which involves various mechanisms. Recently, cold atmospheric plasma (CAP) has become known to accelerate wound healing and have an antimicrobial effect. Since the use of CAP in dentistry is not yet established, the aim of the present study was to investigate the effect of CAP on human calvaria osteoblasts (HCO). HCO were treated with CAP for different durations of time and distances to the cells. Cell proliferation was determined by MTT assay and cell toxicity by LDH assay. Additionally, RT-qPCR was used to investigate effects on osteogenic markers, such as alkaline phosphatase (ALP), bone morphogenic protein (BMP)2, collagen (COL)1A1, osteonectin (SPARC), osteoprotegerin (OPG), osterix (OSX), receptor activator of NF-κB (RANK), RANK Ligand (RANKL), and Runt-related transcription factor (RUNX)2. There were small differences in cell proliferation and LDH release regarding treatment duration and distance to the cells. However, an increase in the expression of RANK and RANKL was observed at longer treatment times. Additionally, CAP caused a significant increase in mRNA expression of genes relevant to osteogenesis. In conclusion, CAP has a stimulating effect on osteoblasts and may thus represent a potential therapeutic approach in the regeneration of hard tissue defects.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
- Correspondence: (B.E.); (S.S.); Tel.: +49-(0)228-287-22407 (B.E.); +49-251-83-47007 (S.S.)
| | - Anna-Maria Wagenheim
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Münster, Germany; (A.-M.W.); (S.J.); (J.K.)
| | - Susanne Jung
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Münster, Germany; (A.-M.W.); (S.J.); (J.K.)
| | - Johannes Kleinheinz
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Münster, Germany; (A.-M.W.); (S.J.); (J.K.)
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111 Bonn, Germany;
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
| | - Sonja Sielker
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Münster, Germany; (A.-M.W.); (S.J.); (J.K.)
- Correspondence: (B.E.); (S.S.); Tel.: +49-(0)228-287-22407 (B.E.); +49-251-83-47007 (S.S.)
| |
Collapse
|
19
|
Shabir U, Bhat IA, Pir BA, Bharti MK, Pandey S, SaiKumar G, Sarkar M, Thirupathi Y, Chandra V, Sonewane A, Sharma GT. Smad4 and γ-secretase knock-down effect on osteogenic differentiation mediated via Runx2 in canine mesenchymal stem cells. Res Vet Sci 2022; 145:116-124. [DOI: 10.1016/j.rvsc.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
|
20
|
Ohba S. Genome-scale actions of master regulators directing skeletal development. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:217-223. [PMID: 34745394 PMCID: PMC8556520 DOI: 10.1016/j.jdsr.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/14/2021] [Accepted: 10/10/2021] [Indexed: 11/03/2022] Open
Abstract
The mammalian skeleton develops through two distinct modes of ossification: intramembranous ossification and endochondral ossification. During the process of skeletal development, SRY-box containing gene 9 (Sox9), runt-related transcription factor 2 (Runx2), and Sp7 work as master transcription factors (TFs) or transcriptional regulators, underlying cell fate specification of the two distinct populations: bone-forming osteoblasts and cartilage-forming chondrocytes. In the past two decades, core transcriptional circuits underlying skeletal development have been identified mainly through mouse genetics and biochemical approaches. Recently emerging next-generation sequencer (NGS)-based studies have provided genome-scale views on the gene regulatory landscape programmed by the master TFs/transcriptional regulators. With particular focus on Sox9, Runx2, and Sp7, this review aims to discuss the gene regulatory landscape in skeletal development, which has been identified by genome-scale data, and provide future perspectives in this field.
Collapse
Affiliation(s)
- Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
21
|
Lai AN, Zhou R, Chen B, Guo L, Dai YY, Jia YP. MiR-149-3p can improve the osteogenic differentiation of human adipose-derived stem cells via targeting AKT1. Kaohsiung J Med Sci 2021; 37:1077-1088. [PMID: 34382740 DOI: 10.1002/kjm2.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
The study aims to investigate the role of microRNA-149-3p (miR-149-3p) in regulating osteogenic differentiation of human adipose-derived stem cells (hADSCs) by targeting v-akt murine thymoma viral oncogene homolog 1 (AKT1). Bioinformatics websites and a dual luciferase reporter assay were used to predict and verify the targeting relationship between miR-149-3p and AKT1. The hADSCs were divided into the blank, negative control (NC), mimic, control siRNA, AKT1 siRNA, and miR-149-3p inhibitors + AKT1 siRNA groups and then subjected to Alizarin Red staining, Alkaline phosphatase (ALP) staining, ALP activity detections, MTT assay, and EdU cell proliferation assay. Gene or protein expression was quantified using quantitative real-time PCR (qRT-PCR) or Western blotting, respectively. The miR-149-3p expression increased gradually and AKT1 expression decreased gradually during osteogenic differentiation of hADSCs. The prediction of bioinformatics websites miRTarBase and TargetScan and the dual luciferase reporter assay indicated that miR-149-3p can directly target AKT1. After hADSCs were transfected with miR-149-3p mimic, AKT1 expression was significantly downregulated. However, transfection with AKT1 siRNA did not have an impact on miR-149-3p in hADSCs. In comparison with the AKT1 siRNA group, the miR-149-3p inhibitors + AKT1 siRNA group showed decreased miR-149-3p expression but increased AKT1 expression. In addition, AKT1 siRNA enhanced the cell viability and proliferation of hADSCs and increased mineral calcium deposition and ALP activity, resulting in higher expression of osteogenic differentiation-related genes, which was reversed by miR-149-3p inhibition. The miR-149-3p can increase the expression of osteogenic differentiation-related genes by targeting AKT1 and thereby enhance the osteogenic differentiation of hADSCs.
Collapse
Affiliation(s)
- Ai-Ning Lai
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Rong Zhou
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Bin Chen
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Long Guo
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Yu-Ya Dai
- Section II, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| | - Yong-Peng Jia
- Section V, Department of Orthopaedics, The 72nd Army Hospital of PLA, Zhejiang, China
| |
Collapse
|
22
|
Zhang J, Wu J, Chen Y, Zhang W. Dlx5 promotes cancer progression through regulation of CCND1 in oral squamous cell carcinoma (OSCC). Biochem Cell Biol 2021; 99:424-434. [PMID: 34283652 DOI: 10.1139/bcb-2020-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have revealed a critical role of the distal-less homeobox gene 5 (Dlx5) in the pathogenesis of ovarian cancer, lung cancer, and T-cell lymphoma; however, the role and underlying mechanisms of Dlx5 in oral squamous cell carcinoma (OSCC) are largely unknown. In this study, we demonstrated that Dlx5 is up-regulated in OSCC tissues and cell lines, compared with their control groups. The results from our immunohistochemistry (IHC) analyses show that high expression levels of Dlx5 correlated with advanced TNM stages (P = 0.0001), lymph node metastasis (P = 0.0049), poor cellular differentiation (P = 0.0491), location of the tumors (P = 0.0132), and poor prognosis for the patient. We also demonstrated that knockdown of Dlx5 inhibited the viability, proliferation, and colony formation of OSCC cell lines CAL-27 and WSU-HN6 cells, probably by blocking cell cycle in the G1 phase. Furthermore, we revealed that Dlx5 exerts its biological functions via direct regulation of CCND1 in CAL-27 and WSU-HN6 cells. Ultimately, we have demonstrated that silencing of Dlx5 inhibits the growth of xenograft tumors in vivo, and that Dlx5 affects the progression of OSCC both in vitro and in vivo via directly regulating CCND1, providing a potential diagnostic biomarker and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Jianfei Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Jinyang Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Yang Chen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenbin Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China.,Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
23
|
Lin B, Zhu J, Yin G, Liao M, Lin G, Yan Y, Huang D, Lu S. Transcription Factor DLX5 Promotes Hair Follicle Stem Cell Differentiation by Regulating the c-MYC/microRNA-29c-3p/NSD1 Axis. Front Cell Dev Biol 2021; 9:554831. [PMID: 34336814 PMCID: PMC8319474 DOI: 10.3389/fcell.2021.554831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 03/10/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction Adult stem cell function has been one of the most intensively explored areas of biological and biomedical research, with hair follicle stem cells serving as one of the best model systems. This study explored the role of the transcription factor DLX5 in regulating hair follicle stem cell (HFSC) differentiation. Methods HFSCs were isolated, characterized, and assessed for their expression of DLX5, c-MYC, NSD1, and miR-29c-3p using RT-qPCR, Western blot analysis, or immunofluorescence. Next, the ability of HFSCs to proliferate as well as differentiate into either sebaceous gland cells or epidermal cells was determined. The binding of DLX5 to the c-MYC promoter region, the binding of c-MYC to the miR-29c-3p promoter region, and the binding of miR-29c-3p to the 3′-UTR of NSD1 mRNA were verified by luciferase activity assay and ChIP experiments. Results DLX5 was highly expressed in differentiated HFSCs. DLX5 transcriptionally activated c-MYC expression to induce HFSC differentiation. c-MYC was able to bind the miR-29c-3p promoter and thus suppressed its expression. Without miR-29c-3p mediated suppression, NSD1 was then able to promote HFSC differentiation. These in vitro experiments suggested that DLX5 could promote HFSC differentiation via the regulation of the c-MYC/miR-29c-3p/NSD1 axis. Discussion This study demonstrates that DLX5 promotes HFSC differentiation by modulating the c-MYC/miR-29c-3p/NSD1 axis and identifies a new mechanism regulating HFSC differentiation.
Collapse
Affiliation(s)
- Bojie Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiangying Zhu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Academy of Humanities and Social Sciences, Guangxi Medical University, Nanning, China
| | - Guoqian Yin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingde Liao
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guanyu Lin
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuyong Yan
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Huang
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siding Lu
- Department of Plastic and Aesthetic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
24
|
Marofi F, Choupani J, Solali S, Vahedi G, Hassanzadeh A, Gharibi T, Hagh MF. ATF4, DLX3, FRA1, MSX2, C/EBP-ζ, and C/EBP-α Shape the Molecular Basis of Therapeutic Effects of Zoledronic Acid in Bone Disorders. Anticancer Agents Med Chem 2021; 20:2274-2284. [PMID: 32698734 DOI: 10.2174/1871520620666200721101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Zoledronic Acid (ZA) is one of the common treatment choices used in various boneassociated conditions. Also, many studies have investigated the effect of ZA on Osteoblastic-Differentiation (OSD) of Mesenchymal Stem Cells (MSCs), but its clear molecular mechanism(s) has remained to be understood. It seems that the methylation of the promoter region of key genes might be an important factor involved in the regulation of genes responsible for OSD. The present study aimed to evaluate the changes in the mRNA expression and promoter methylation of central Transcription Factors (TFs) during OSD of MSCs under treatment with ZA. MATERIALS AND METHODS MSCs were induced to be differentiated into the osteoblastic cell lineage using routine protocols. MSCs received ZA during OSD and then the methylation and mRNA expression levels of target genes were measured by Methylation Specific-quantitative Polymerase Chain Reaction (MS-qPCR) and real-time PCR, respectively. The osteoblastic differentiation was confirmed by Alizarin Red Staining and the related markers to this stage. RESULTS Gene expression and promoter methylation level for DLX3, FRA1, ATF4, MSX2, C/EBPζ, and C/EBPa were up or down-regulated in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21. ATF4, DLX3, and FRA1 genes were significantly up-regulated during the OSD processes, while the result for MSX2, C/EBPζ, and C/EBPa was reverse. On the other hand, ATF4 and DLX3 methylation levels gradually reduced in both ZA-treated and untreated cells during the osteodifferentiation process on days 0 to 21, while the pattern was increasing for MSX2 and C/EBPa. The methylation pattern of C/EBPζ was upward in untreated groups while it had a downward pattern in ZA-treated groups at the same scheduled time. The result for FRA1 was not significant in both groups at the same scheduled time (days 0-21). CONCLUSION The results indicated that promoter-hypomethylation of ATF4, DLX3, and FRA1 genes might be one of the mechanism(s) controlling their gene expression. Moreover, we found that promoter-hypermethylation led to the down-regulation of MSX2, C/EBP-ζ and C/EBP-α. The results implicate that ATF4, DLX3 and FRA1 may act as inducers of OSD while MSX2, C/EBP-ζ and C/EBP-α could act as the inhibitor ones. We also determined that promoter-methylation is an important process in the regulation of OSD. However, yet there was no significant difference in the promoter-methylation level of selected TFs in ZA-treated and control cells, a methylation- independent pathway might be involved in the regulation of target genes during OSD of MSCs.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Choupani
- Department of Medical Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid F Hagh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
26
|
Stec M, Seweryn M, Korkosz M, Guła Z, Szatanek R, Węglarczyk K, Rutkowska-Zapała M, Lenart M, Czepiel M, Czyż J, Baran J, Gruca A, Wojnar-Lasoń K, Wołkow P, Siedlar M. Expression of VEGFA-mRNA in classical and MSX2-mRNA in non-classical monocytes in patients with spondyloarthritis is associated with peripheral arthritis. Sci Rep 2021; 11:9693. [PMID: 33958655 PMCID: PMC8102490 DOI: 10.1038/s41598-021-89037-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/19/2021] [Indexed: 11/28/2022] Open
Abstract
Spondyloarthritis (SpA) is characterized by chronic inflammation and structural damage involving spine and peripheral joints. Monocytes, as part of innate immune system, following migration into affected tissue, may play a role in the pathogenesis of SpA. Here, potential associations between osteogenesis-linked gene expression profile in particular monocyte subpopulations and clinical signs of SpA were investigated. The 20 patients with axial and 16 with peripheral SpA were enrolled in the study. Monocyte subpopulations (classical—CD14++CD16−, intermediate—CD14++CD16+ and non-classical—CD14+CD16++) were isolated from blood using flow cytometry and gene expression analysis was performed using real-time PCR method and TaqMan Array, Human Osteogenesis, Fast 96-well plates. Next, the characteristic clinical features shared by axial and peripheral SpA were analyzed in the context of the expression of selected genes in the three subpopulations of monocytes. We demonstrated that expression of VEGFA in classical and MSX2 in non-classical monocytes were associated with the number of swollen and painful peripheral joints of SpA patients. We conclude that monocytes may contribute to the development of peripheral arthritis in SpA patients. This might be possible through subpopulation specific effects, linking number of inflamed joints with expression of VEGFA in classical monocytes and MSX2 in non-classical monocytes.
Collapse
Affiliation(s)
- Małgorzata Stec
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Michał Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kopernika 7c Str., 31-034, Kraków, Poland
| | - Mariusz Korkosz
- Department of Rheumatology and Balneology, Jagiellonian University Medical College, Jakubowskiego 2 Str., Kraków, Poland
| | - Zofia Guła
- Department of Rheumatology and Balneology, Jagiellonian University Medical College, Jakubowskiego 2 Str., Kraków, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Marcin Czepiel
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 Str., Kraków, Poland
| | - Jarosław Baran
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Anna Gruca
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Kamila Wojnar-Lasoń
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland
| | - Paweł Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kopernika 7c Str., 31-034, Kraków, Poland.
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265 Str., 30-663, Kraków, Poland.
| |
Collapse
|
27
|
Histone modifications centric-regulation in osteogenic differentiation. Cell Death Dis 2021; 7:91. [PMID: 33941771 PMCID: PMC8093204 DOI: 10.1038/s41420-021-00472-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Histone modification critically contributes to the epigenetic control of gene expression by changing the configuration of chromatin and modifying the access of transcription factors to gene promoters. Recently, we observed that histone acetylation and crotonylation mediated the expression of endocytosis-related genes and tumor-related immune checkpoint genes by regulating the enrichment of signal transducer and activator of transcription 3 on these gene promoters in Alzheimer's disease and tumorigenesis, suggesting that histone modification plays an important role in disease development. Furthermore, studies performed in the past decade revealed that histone modifications affect osteogenic differentiation by regulating the expression of osteogenic marker genes. In this review, we summarize and discuss the histone modification-centric regulation of osteogenic gene expression. This review improves the understanding of the role of histone modifications in osteogenic differentiation and describes its potential as a therapeutic target for osteogenic differentiation-related diseases.
Collapse
|
28
|
Brennan MÁ, Barilani M, Rusconi F, de Lima J, Vidal L, Lavazza C, Lazzari L, Giordano R, Layrolle P. Chondrogenic and BMP-4 primings confer osteogenesis potential to human cord blood mesenchymal stromal cells delivered with biphasic calcium phosphate ceramics. Sci Rep 2021; 11:6751. [PMID: 33762629 PMCID: PMC7991626 DOI: 10.1038/s41598-021-86147-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BMSCs) show great promise for bone repair, however they are isolated by an invasive bone marrow harvest and their regenerative potential decreases with age. Conversely, cord blood can be collected non-invasively after birth and contains MSCs (CBMSCs) that can be stored for future use. However, whether CBMSCs can replace BMSCs targeting bone repair is unknown. This study evaluates the in vitro osteogenic potential of unprimed, osteogenically primed, or chondrogenically primed CBMSCs and BMSCs and their in vivo bone forming capacity following ectopic implantation on biphasic calcium phosphate ceramics in nude mice. In vitro, alkaline phosphatase (intracellular, extracellular, and gene expression), and secretion of osteogenic cytokines (osteoprotegerin and osteocalcin) was significantly higher in BMSCs compared with CBMSCs, while CBMSCs demonstrated superior chondrogenic differentiation and secretion of interleukins IL-6 and IL-8. BMSCs yielded significantly more cell engraftment and ectopic bone formation compared to CBMSCs. However, priming of CBMSCs with either chondrogenic or BMP-4 supplements led to bone formation by CBMSCs. This study is the first direct quantification of the bone forming abilities of BMSCs and CBMSCs in vivo and, while revealing the innate superiority of BMSCs for bone repair, it provides avenues to induce osteogenesis by CBMSCs.
Collapse
Affiliation(s)
- Meadhbh Á Brennan
- Inserm, UMR 1238, PHY-OS Laboratory, Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
- National University of Ireland (NUIG), Galway, Ireland
| | - Mario Barilani
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Rusconi
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Julien de Lima
- Inserm, UMR 1238, PHY-OS Laboratory, Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - Luciano Vidal
- Inserm, UMR 1238, PHY-OS Laboratory, Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France
- Rapid Manufacturing Platform, GEM Laboratory, Centrale Nantes, Nantes, France
| | - Cristiana Lavazza
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Lazzari
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosaria Giordano
- Laboratory of Regenerative Medicine-Cell Factory, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierre Layrolle
- Inserm, UMR 1238, PHY-OS Laboratory, Bone Sarcomas and Remodelling of Calcified Tissues, Faculty of Medicine, University of Nantes, Nantes, France.
| |
Collapse
|
29
|
Hensley AP, McAlinden A. The role of microRNAs in bone development. Bone 2021; 143:115760. [PMID: 33220505 PMCID: PMC8019264 DOI: 10.1016/j.bone.2020.115760] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation is critical for proper bone development. Evidence from a large body of published literature informs us that microRNAs (miRNAs) are important epigenetic factors that control many aspects of bone development, homeostasis, and repair processes. These small non-coding RNAs function at the post-transcriptional level to suppress expression of specific target genes. Many target genes may be affected by one miRNA resulting in alteration in cellular pathways and networks. Therefore, changes in levels or activity of a specific miRNA (e.g. via genetic mutations, disease scenarios, or by over-expression or inhibition strategies in vitro or in vivo) can lead to substantial changes in cell processes including proliferation, metabolism, apoptosis and differentiation. In this review, Section 1 briefly covers general background information on processes that control bone development as well as the biogenesis and function of miRNAs. In Section 2, we discuss the importance of miRNAs in skeletal development based on findings from in vivo mouse models and human clinical reports. Section 3 focuses on describing more recent data from the last three years related to miRNA regulation of osteoblast differentiation in vitro. Some of these studies also involve utilization of an in vivo rodent model to study the effects of miRNA modulation in scenarios of osteoporosis, bone repair or ectopic bone formation. In Section 4, we provide some recent information from studies analyzing the potential of miRNA-mediated crosstalk in bone and how exosomes containing miRNAs from one bone cell may affect the differentiation or function of another bone cell type. We then conclude by summarizing where the field currently stands with respect to miRNA-mediated regulation of osteogenesis and how information gained from developmental processes can be instructive in identifying potential therapeutic miRNA targets for the treatment of certain bone conditions.
Collapse
Affiliation(s)
- Austin P Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO, United States of America
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
30
|
Li J, Lin Q, Lin Y, Lai R, Zhang W. Effects of DLX3 on the osteogenic differentiation of induced pluripotent stem cell‑derived mesenchymal stem cells. Mol Med Rep 2021; 23:232. [PMID: 33655330 PMCID: PMC7893805 DOI: 10.3892/mmr.2021.11871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a disease characterized by the degeneration of bone structure and decreased bone mass. Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) have multiple advantages that make them ideal seed cells for bone regeneration, including high-level proliferation, multi-differentiation potential and favorable immune compatibility. Distal-less homeobox (DLX)3, an important member of the DLX family, serves a crucial role in osteogenic differentiation and bone formation. The present study aimed to evaluate the effects of DLX3 on the proliferation and osteogenic differentiation of human iPSC-MSCs. iPSC-MSCs were induced from iPSCs, and identified via flow cytometry. Alkaline phosphatase (ALP), Von Kossa, Oil Red O and Alcian blue staining methods were used to evaluate the osteogenic, adipogenic and chondrogenic differentiation of iPSC-MSCs. DLX3 overexpression plasmids were constructed and transfected into iPSC-MSCs to generate iPSC-MSC-DLX3. iPSC-MSC-GFP was used as the control. Reverse transcription-quantitative PCR (RT-qPCR) and western blotting were performed to measure the expression of DLX3 2 days after transfection. Subsequently, cell proliferation was assessed using a Cell Counting Kit-8 assay on days 1, 3, 5 and 7. RT-qPCR and western blotting were used to analyze osteogenic-related gene and protein expression levels on day 7. ALP activity and mineralized nodules were assessed via ALP staining on day 14. Statistical analysis was performed using an unpaired Student's t-test. Flow cytometry results demonstrated that iPSC-MSCs were positive for CD73, CD90 and CD105, but negative for CD34 and CD45. iPSC-MSC-DLX3 had significantly lower proliferation compared with iPSC-MSC-GFP on days 5 and 7 (P<0.05). mRNA expression levels of osteogenic markers, such as ALP, osteopenia (OPN), osteocalcin (OCN) and Collagen Type I (COL-1), were significantly increased in iPSC-MSC-DLX3 compared with iPSC-MSC-GFP on day 7 (P<0.05). Similarly, the protein expression levels of ALP, OCN, OPN and COL-1 were significantly increased in iPSC-MSC-DLX3 compared with iPSC-MSC-GFP on day 7 (P<0.05). The number of mineralized nodules in iPSC-MSC-DLX3 was increased compared with that in iPSC-MSC-GFP on day 14 (P<0.05). Thus, the present study demonstrated that DLX3 serves a negative role in proliferation, but a positive role in the osteogenic differentiation of iPSC-MSCs. This may provide novel insight for treating osteoporosis.
Collapse
Affiliation(s)
- Junyuan Li
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Qiang Lin
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yixin Lin
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Renfa Lai
- The Medical Center of Stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Wen Zhang
- Department of Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
31
|
Busby T, Chen Y, Godfrey TC, Rehan M, Wildman BJ, Smith CM, Hassan Q. Baf45a Mediated Chromatin Remodeling Promotes Transcriptional Activation for Osteogenesis and Odontogenesis. Front Endocrinol (Lausanne) 2021; 12:763392. [PMID: 35046892 PMCID: PMC8762305 DOI: 10.3389/fendo.2021.763392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Chromatin remodeling, specifically the tissue-specific regulation in mineralized tissues, is an understudied avenue of gene regulation. Here we show that Baf45a and Baf45d, two Baf45 homologs belong to ATPase-dependent SWI/SNF chromatin remodeling complex, preferentially expressed in osteoblasts and odontoblasts compared to Baf45b and Baf45c. Recently, biochemical studies revealed that BAF45A associates with Polybromo-associated BAF (PBAF) complex. However, the BAF45D subunit belongs to the polymorphic canonical BRG1-associated factor (cBAF) complex. Protein profiles of osteoblast and odontoblast differentiation uncovered a significant increase of BAF45A and PBAF subunits during early osteoblast and odontoblast maturation. Chromatin immunoprecipitation sequencing (ChIP-seq) during the bone marrow stromal cells (BMSCs) differentiation showed higher histone H3K9 and H3K27 acetylation modifications in the promoter of Baf45a and Baf45d and increased binding of bone and tooth specific transcription factor RUNX2. Overexpression of Baf45a in osteoblasts activates genes essential for the progression of osteoblast maturation and mineralization. Furthermore, shRNA-mediated knockdown of Baf45a in odontoblasts leads to markedly altered genes responsible for the proliferation, apoptosis, DNA repair, and modest decrease in dentinogenic marker gene expression. Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) assay in Baf45a knockout osteoblasts revealed a noticeable reduction in chromatin accessibility of osteoblast and odontoblast specific genes, along with transcription factor Atf4 and Klf4. Craniofacial mesenchyme-specific loss of Baf45a modestly reduced the mineralization of the tooth and mandibular bone. These findings indicated that BAF45A-dependent mineralized tissue-specific chromatin remodeling through PBAF-RUNX2 crosstalk results in transcriptional activation is critical for early differentiation and matrix maturation of mineralized tissues.
Collapse
|
32
|
Khodabandehloo F, Taleahmad S, Aflatoonian R, Rajaei F, Zandieh Z, Nassiri-Asl M, Eslaminejad MB. Microarray analysis identification of key pathways and interaction network of differential gene expressions during osteogenic differentiation. Hum Genomics 2020; 14:43. [PMID: 33234152 PMCID: PMC7687700 DOI: 10.1186/s40246-020-00293-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. RESULTS Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. CONCLUSIONS These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.
Collapse
Affiliation(s)
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
33
|
Hojo H, Ohba S. Gene regulatory landscape in osteoblast differentiation. Bone 2020; 137:115458. [PMID: 32474244 DOI: 10.1016/j.bone.2020.115458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022]
Abstract
The development of osteoblasts, a bone-forming cell population, occurs in conjunction with development of the skeleton, which creates our physical framework and shapes the body. In the past two decades, genetic studies have uncovered the molecular framework of this process-namely, transcriptional regulators and signaling pathways coordinate the cell fate determination and differentiation of osteoblasts in a spatial and temporal manner. Recently emerging genome-wide studies provide additional layers of understanding of the gene regulatory landscape during osteoblast differentiation, allowing us to gain novel insight into the modes of action of the key regulators, functional interaction among the regulator-bound enhancers, epigenetic regulations, and the complex nature of regulatory inputs. In this review, we summarize current understanding of the transcriptional regulation in osteoblasts, in terms of the gene regulatory landscape.
Collapse
Affiliation(s)
- Hironori Hojo
- Department of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinsuke Ohba
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| |
Collapse
|
34
|
Caddy JC, Luoma LM, Berry FB. FOXC1 negatively regulates BMP‐SMAD activity and Id1 expression during osteoblast differentiation. J Cell Biochem 2020; 121:3266-3277. [DOI: 10.1002/jcb.29595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jordan C. Caddy
- Department of Medical GeneticsUniversity of Alberta Edmonton Alberta Canada
| | - Leiah M. Luoma
- Department of Medical GeneticsUniversity of Alberta Edmonton Alberta Canada
- Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
| | - Fred B. Berry
- Department of Medical GeneticsUniversity of Alberta Edmonton Alberta Canada
- Department of SurgeryUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
35
|
Dudakovic A, Samsonraj RM, Paradise CR, Galeano-Garces C, Mol MO, Galeano-Garces D, Zan P, Galvan ML, Hevesi M, Pichurin O, Thaler R, Begun DL, Kloen P, Karperien M, Larson AN, Westendorf JJ, Cool SM, van Wijnen AJ. Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. J Biol Chem 2020; 295:7877-7893. [PMID: 32332097 DOI: 10.1074/jbc.ra119.011685] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Bone-stimulatory therapeutics include bone morphogenetic proteins (e.g. BMP2), parathyroid hormone, and antibody-based suppression of WNT antagonists. Inhibition of the epigenetic enzyme enhancer of zeste homolog 2 (EZH2) is both bone anabolic and osteoprotective. EZH2 inhibition stimulates key components of bone-stimulatory signaling pathways, including the BMP2 signaling cascade. Because of high costs and adverse effects associated with BMP2 use, here we investigated whether BMP2 dosing can be reduced by co-treatment with EZH2 inhibitors. Co-administration of BMP2 with the EZH2 inhibitor GSK126 enhanced differentiation of murine (MC3T3) osteoblasts, reflected by increased alkaline phosphatase activity, Alizarin Red staining, and expression of bone-related marker genes (e.g. Bglap and Phospho1). Strikingly, co-treatment with BMP2 (10 ng/ml) and GSK126 (5 μm) was synergistic and was as effective as 50 ng/ml BMP2 at inducing MC3T3 osteoblastogenesis. Similarly, the BMP2-GSK126 co-treatment stimulated osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells, reflected by induction of key osteogenic markers (e.g. Osterix/SP7 and IBSP). A combination of BMP2 (300 ng local) and GSK126 (5 μg local and 5 days of 50 mg/kg systemic) yielded more consistent bone healing than single treatments with either compound in a mouse calvarial critical-sized defect model according to results from μCT, histomorphometry, and surgical grading of qualitative X-rays. We conclude that EZH2 inhibition facilitates BMP2-mediated induction of osteogenic differentiation of progenitor cells and maturation of committed osteoblasts. We propose that epigenetic priming, coupled with bone anabolic agents, enhances osteogenesis and could be leveraged in therapeutic strategies to improve bone mass.
Collapse
Affiliation(s)
- Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Christopher R Paradise
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Merel O Mol
- Department of Orthopedic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | | - Pengfei Zan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Orthopedic Surgery, School of Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou, China.,Department of Orthopedic Surgery, School of Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Oksana Pichurin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Dana L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter Kloen
- Department of Orthopedic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon M Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA .,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
36
|
Sinha S, Biswas M, Chatterjee SS, Kumar S, Sengupta A. Pbrm1 Steers Mesenchymal Stromal Cell Osteolineage Differentiation by Integrating PBAF-Dependent Chromatin Remodeling and BMP/TGF-β Signaling. Cell Rep 2020; 31:107570. [DOI: 10.1016/j.celrep.2020.107570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/17/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
|
37
|
Rahimzadeh S, Rahbarghazi R, Aslani S, Rajabi H, Latifi Z, Farshdousti Hagh M, Nourazarian A, Nozad Charoudeh H, Nouri M, Abhari A. Promoter methylation and expression pattern of DLX3, ATF4, and FRA1 genes during osteoblastic differentiation of adipose-derived mesenchymal stem cells. ACTA ACUST UNITED AC 2019; 10:243-250. [PMID: 32983940 PMCID: PMC7502906 DOI: 10.34172/bi.2020.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Nowadays, mesenchymal stem cells are touted as suitable cell supply for the restoration of injured bone tissue. The existence of osteogenic differentiation makes these cells capable of replenishing damaged cells in the least possible time. It has been shown that epigenetic modifications, especially DNA methylation, contribute to the regulation of various transcription factors during phenotype acquisition. Hence, we concentrated on the correlation between the promoter methylation and the expression of genes DLX3, ATF4 , and FRA1 during osteoblastic differentiation of adipose-derived mesenchymal stem cells in vitro after 21 days.
Methods: Adipose-derived mesenchymal stem cells were cultured in osteogenesis differentiation medium supplemented with 0.1 µM dexamethasone, 10 mM β-glycerol phosphate, and 50 µM ascorbate-2-phosphate for 21 days. RNA and DNA extraction was done on days 0, 7, 14, and 21. Promoter methylation and expression levels of genes DLX3 , ATF4 , and FRA1 were analyzed by methylation-specific quantitative PCR and real-time PCR assays, respectively.
Results: We found an upward expression trend with the increasing time for genes DLX3, ATF4, and FRA1 in stem cells committed to osteoblast-like lineage compared to the control group (P <0.05). On the contrary, methylation-specific quantitative PCR displayed decreased methylation rates of DLX3 and ATF4 genes, but not FRA1 , over time compared to the non-treated control cells (P <0.05). Bright-field images exhibited red-colored calcified deposits around Alizarin Red S-stained cells after 21 days compared to the control group. Statistical analysis showed a strong correlation between the transcription of genes DLX3 and ATF4 and methylation rate (P <0.05).
Conclusion: In particular, osteoblastic differentiation of adipose-derived mesenchymal stem cells enhances DLX3 and ATF4 transcriptions by reducing methylation rate for 21 days.
Collapse
Affiliation(s)
- Sevda Rahimzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Aslani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Latifi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Zhao X, Xu H, Zhao C, Li L. Developmental retardation due to paternal 5q/11q translocation in a Chinese infant: clinical, chromosomal and microarray characterization. J Genet 2019; 98:77. [PMID: 31544782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although it is known that the parental carriers of chromosomal translocation are considered to be at high risk for spontaneous abortion and embryonic death, normal gestation and delivery remain possible. This study aims to investigate the genetic factors of a Chinese infant with multiple malformations and severe postnatal development retardation. In this study, the routine cytogenetic analysis, chromosomal microarray analysis (CMA) and fluorescence in situ hybridization (FISH) analysis were performed. Conventional karyotype analyses revealed normal karyotypes of all family members. CMA of the DNA of the proband revealed a 8.3 Mb duplication of 5q35.1-qter and a 6.9 Mb deletion of 11q24.3-qter. FISH analyses verified a paternal tiny translocation between the long arm of chromosomes 5 and 11. Our investigation serves to provide important information on genetic counselling for the patient and future pregnancies in this family. Moreover, the combined use of CMA and FISH is effective for clarifying pathogenically submicroscopic copy number variants.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Medical Genetics, Linyi People's Hospital, Linyi 276003, Shandong, People's Republic of China.
| | | | | | | |
Collapse
|
39
|
Zhao X, Xu H, Zhao C, Li L. Developmental retardation due to paternal 5q/11q translocation in a Chinese infant: clinical, chromosomal and microarray characterization. J Genet 2019. [DOI: 10.1007/s12041-019-1120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
40
|
Makoukji J. Chromatin Immunoprecipitation Assay for Analyzing Transcription Factor Activity at the Level of Peripheral Myelin Gene Promoters. Methods Mol Biol 2019; 2011:647-658. [PMID: 31273726 DOI: 10.1007/978-1-4939-9554-7_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Disruption of epigenetic regulators of transcription is a central mechanism of oncogenesis. Differential gene expression is facilitated by transcriptional regulatory mechanisms and chromatin modifications through DNA-protein interactions. One of the widely used assays to study this is chromatin immunoprecipitation (ChIP) assay, which enables the analysis of association between regulatory molecules, specific promoters, and histone modifications within the context of the cell. This is of immense value as ChIP assays can provide a glimpse of the regulatory mechanisms involved in gene expression in vivo. It is also a powerful technique for analyzing histone modifications as well as binding sites for proteins that bind either directly or indirectly to DNA. The basic steps in this protocol are fixation, sonication, immunoprecipitation, and analysis of the immunoprecipitated DNA. Although ChIP is a versatile tool, this procedure requires the optimization of the various reaction conditions. Here, we present a detailed application of the ChIP assay to study the differential recruitment of transcriptional factors at the level of peripheral myelin gene promoters.
Collapse
Affiliation(s)
- Joelle Makoukji
- Neurogenetics Program, Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, AUBMC Special Kids Clinic, American University of Beirut Medical Center, Beirut, Lebanon.
- Department of Biochemistry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
41
|
DLX3 regulates osteogenic differentiation of bone marrow mesenchymal stem cells via Wnt/β-catenin pathway mediated histone methylation of DKK4. Biochem Biophys Res Commun 2019; 516:171-176. [PMID: 31202458 DOI: 10.1016/j.bbrc.2019.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Distal-less homeobox 3 (DLX3) is an important transcription factor involved in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, the underlying mechanism is not clear. This study investigated the underlying mechanism of DLX3 in osteogenic differentiation. METHODS DLX3 overexpression and knockdown in cells were achieved using lentiviruses. The osteogenic differentiation of BMSCs was detected using alkaline phosphatase expression, alizarin red staining, real-time quantitative polymerase chain reaction (RT-qPCR), Western blotting, and chromatin immunoprecipitation (ChIP) assays. RESULTS DLX3 overexpression promoted the osteogenic differentiation of BMSCs, whereas DLX3 knockdown reduced the osteogenic differentiation of BMSCs. RT-qPCR and Western blotting assays showed that DLX3 modulated osteogenic differentiation via the Wnt/β-catenin pathway. ChIP-qPCR showed that DLX3 knockdown promoted DKK4 expression by decreasing the enrichment of histone H3 lysine 27 trimethylation (H3K27me3) in the promotor region of DKK4. CONCLUSION Our data implied that DLX3 regulated Wnt/β-catenin pathway through histone modification of DKK4 during the osteogenic differentiation of BMSCs.
Collapse
|
42
|
Zeng L, Sun S, Dong L, Liu Y, Liu H, Han D, Ma Z, Wang Y, Feng H. DLX3 epigenetically regulates odontoblastic differentiation of hDPCs through H19/miR-675 axis. Arch Oral Biol 2019; 102:155-163. [PMID: 31029881 DOI: 10.1016/j.archoralbio.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/17/2019] [Accepted: 04/14/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES A novel mutation (c.533 A > G; Q178R) in DLX3 gene is responsible for Tricho-Dento-Osseous (TDO) syndrome. As one of features of TDO syndrome is dentin hypoplasia, we explored the mechanism regarding dentin defects in TDO syndrome. DESIGN hDPCs were obtained from the healthy premolars, stably expressing hDPCs were generated using recombinant lentiviruses. Quantitative methylation analysis, DNMT3B activity, CHIP, and evaluation of odonto-differentiation ability of hDPCs assays were performed. RESULTS Novel mutant DLX3 (MU-DLX3) significantly inhibited the expression of long non-coding RNA H19 and resulted in hyper-methylation of H19 in MU group, rescue studies showed that up-regulation the expression of H19 and demethylation of H19 in MU group were able to rescue the effect of MU-DLX3. Subsequently, miR-675, encoded by H19, was also able to rescue the above effects of MU-DLX3. Thus, we proposed that MU-DLX3 regulated odontoblastic differentiation of hDPCs through H19/miR-675 axis. Through CHIP and DNMT3B activity assays disclosed the underlying mechanism by which MU-DLX3 altered H19 expression and methylation status in MU group by increasing H3K9me3 enrichment and DNMT3B activity. CONCLUSIONS Our new findings, for the first time, suggest that MU-DLX3 significantly inhibits hDPCs differentiation via H19/miR-675 axis and provides a new mechanism insight into how MU-DLX3 epigenetically alters H19 methylation status and expression contributes to dentin hypoplasia in TDO syndrome.
Collapse
Affiliation(s)
- Li Zeng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Shichen Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Liying Dong
- Department of Oral & Maxillofacial Surgery, PR China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China.
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, PR China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Bejing, PR China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, PR China
| |
Collapse
|
43
|
MacKenzie RK, Sankar PR, Bendall AJ. Dlx5 and Dlx6 can antagonize cell division at the G 1/S checkpoint. BMC Mol Cell Biol 2019; 20:8. [PMID: 31041891 PMCID: PMC6460778 DOI: 10.1186/s12860-019-0191-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
Background Dlx5 and Dlx6 stimulate differentiation of diverse progenitors during embryonic development. Their actions as pro-differentiation transcription factors includes the up-regulation of differentiation markers but the extent to which differentiation may also be stimulated by regulation of the cell cycle has not been addressed. Results We document that expression of Dlx5 and Dlx6 antagonizes cell proliferation in a variety of cell types without inducing apoptosis or promoting cell cycle exit. Rather, a variety of evidence indicates that elevated Dlx5 and Dlx6 expression reduces the proportion of cells in S phase and affects the length of the cell cycle. Conclusions Antagonism of S-phase entry by Dlx5 and Dlx6 proteins likely represents a lineage-independent function to effect Dlx-mediated differentiation in multiple progenitor cell types.
Collapse
Affiliation(s)
- Rachel K MacKenzie
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Parvathy Ravi Sankar
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada
| | - Andrew J Bendall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd East, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
44
|
Overexpression of Dlx2 enhances osteogenic differentiation of BMSCs and MC3T3-E1 cells via direct upregulation of Osteocalcin and Alp. Int J Oral Sci 2019; 11:12. [PMID: 30880332 PMCID: PMC6421343 DOI: 10.1038/s41368-019-0046-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/17/2023] Open
Abstract
Genetic studies have revealed a critical role of Distal-homeobox (Dlx) genes in bone formation, and our previous study showed that Dlx2 overexpressing in neural crest cells leads to profound abnormalities of the craniofacial tissues. The aim of this study was to investigate the role and the underlying molecular mechanisms of Dlx2 in osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) and pre-osteoblast MC3T3-E1 cells. Initially, we observed upregulation of Dlx2 during the early osteogenesis in BMSCs and MC3T3-E1 cells. Moreover, Dlx2 overexpression enhanced alkaline phosphatase (ALP) activity and extracellular matrix mineralization in BMSCs and MC3T3-E1 cell line. In addition, micro-CT of implanted tissues in nude mice confirmed that Dlx2 overexpression in BMSCs promoted bone formation in vivo. Unexpectedly, Dlx2 overexpression had little impact on the expression level of the pivotal osteogenic transcription factors Runx2, Dlx5, Msx2, and Osterix, but led to upregulation of Alp and Osteocalcin (OCN), both of which play critical roles in promoting osteoblast maturation. Importantly, luciferase analysis showed that Dlx2 overexpression stimulated both OCN and Alp promoter activity. Through chromatin-immunoprecipitation assay and site-directed mutagenesis analysis, we provide molecular evidence that Dlx2 transactivates OCN and Alp expression by directly binding to the Dlx2-response cis-acting elements in the promoter of the two genes. Based on these findings, we demonstrate that Dlx2 overexpression enhances osteogenic differentiation in vitro and accelerates bone formation in vivo via direct upregulation of the OCN and Alp gene, suggesting that Dlx2 plays a crucial role in osteogenic differentiation and bone formation. The distal-less homeobox (Dlx) gene family is related to various features of bone development, and the Dlx2 member of that family has been found to play a crucial role in bone formation. A team headed by Steve Guofang Shen at the Shanghai Jiao Tong University School of Medicine in China investigated the function of Dlx2 in osteogenic (bone development) differentiation of mouse bone marrow stromal cells (BMSCs) and MC3T3-E1 cells (precursors of osteoblasts, the major cellular component of bone). The team found that overexpression of Dlx2 promotes osteogenic differentiation in vitro and accelerates bone formation in vivo by enhancing Osteocalcin and Alp genes (both of which play critical roles in promoting osteoblast maturation). The authors conclude that their results suggest a promising future strategy for treating bone defects where BMSCs overexpress Dlx2.
Collapse
|
45
|
Gérard D, Schmidt F, Ginolhac A, Schmitz M, Halder R, Ebert P, Schulz MH, Sauter T, Sinkkonen L. Temporal enhancer profiling of parallel lineages identifies AHR and GLIS1 as regulators of mesenchymal multipotency. Nucleic Acids Res 2019; 47:1141-1163. [PMID: 30544251 PMCID: PMC6380961 DOI: 10.1093/nar/gky1240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023] Open
Abstract
Temporal data on gene expression and context-specific open chromatin states can improve identification of key transcription factors (TFs) and the gene regulatory networks (GRNs) controlling cellular differentiation. However, their integration remains challenging. Here, we delineate a general approach for data-driven and unbiased identification of key TFs and dynamic GRNs, called EPIC-DREM. We generated time-series transcriptomic and epigenomic profiles during differentiation of mouse multipotent bone marrow stromal cell line (ST2) toward adipocytes and osteoblasts. Using our novel approach we constructed time-resolved GRNs for both lineages and identifed the shared TFs involved in both differentiation processes. To take an alternative approach to prioritize the identified shared regulators, we mapped dynamic super-enhancers in both lineages and associated them to target genes with correlated expression profiles. The combination of the two approaches identified aryl hydrocarbon receptor (AHR) and Glis family zinc finger 1 (GLIS1) as mesenchymal key TFs controlled by dynamic cell type-specific super-enhancers that become repressed in both lineages. AHR and GLIS1 control differentiation-induced genes and their overexpression can inhibit the lineage commitment of the multipotent bone marrow-derived ST2 cells.
Collapse
Affiliation(s)
- Deborah Gérard
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Florian Schmidt
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Aurélien Ginolhac
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Martine Schmitz
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, L-4362, Luxembourg
| | - Peter Ebert
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Marcel H Schulz
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany
- Computational Biology & Applied Algorithmics, Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Thomas Sauter
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Lasse Sinkkonen
- Life Sciences Research Unit, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
46
|
Qadir AS, Lee J, Lee YS, Woo KM, Ryoo HM, Baek JH. Distal-less homeobox 3, a negative regulator of myogenesis, is downregulated by microRNA-133. J Cell Biochem 2019; 120:2226-2235. [PMID: 30277585 DOI: 10.1002/jcb.27533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/24/2023]
Abstract
Distal-less homeobox 3 (Dlx3), a member of the Dlx family of homeobox proteins, is a transcriptional activator of runt-related transcription factor 2 (Runx2) during osteogenic differentiation. It has been demonstrated that forced expression of Runx2 induces an osteogenic program and ectopic calcification in muscles. Therefore, it would be reasonable to predict that Dlx3 also affects myogenic differentiation. The relationship between Dlx3 and myogenesis, however, remains poorly understood. Therefore, in this study, the role and regulation of Dlx3 during myogenic differentiation were investigated. Expression level of Dlx3 was downregulated in human mesenchymal stem cells (MSCs), mouse MSCs, and C2C12 cells cultured in myogenic medium. Dlx3 level was inversely correlated with myogenic differentiation 1 and the muscle-specific microRNA, microRNA-133 (miR-133). The expression level of Runx2 was closely regulated by Dlx3 even under myogenic conditions. Overexpression of Dlx3 markedly downregulated expression levels of myogenic transcription factors and myotube formation in C2C12 cells, whereas Dlx3 knockdown enhanced myogenic differentiation. The Dlx3 3'-untranslated region (3'-UTR) has two potential binding sites for miR-133. Luciferase reporter assays demonstrated that Dlx3 is a direct target of miR-133a and miR-133b, and that the two target sites are redundantly active. Taken together, these results suggest that Dlx3 is a negative regulator of myogenic differentiation and that miR-133a and miR-133b enhance myogenic differentiation, partly through inhibition of Dlx3 expression via direct targeting of the Dlx3 3'-UTR.
Collapse
Affiliation(s)
- Abdul S Qadir
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea.,Present address: Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeeyong Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
47
|
Whitehouse LLE, Smith CEL, Poulter JA, Brown CJ, Patel A, Lamb T, Brown LR, O’Sullivan EA, Mitchell RE, Berry IR, Charlton R, Inglehearn CF, Mighell AJ. Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho-dento-osseous syndrome. Oral Dis 2019; 25:182-191. [PMID: 30095208 PMCID: PMC6334507 DOI: 10.1111/odi.12955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Variants in DLX3 cause tricho-dento-osseous syndrome (TDO, MIM #190320), a systemic condition with hair, nail and bony changes, taurodontism and amelogenesis imperfecta (AI), inherited in an autosomal dominant fashion. Different variants found within this gene are associated with different phenotypic presentations. To date, six different DLX3 variants have been reported in TDO. The aim of this paper was to explore and discuss three recently uncovered new variants in DLX3. SUBJECTS AND METHODS Whole-exome sequencing identified a new DLX3 variant in one family, recruited as part of an ongoing study of genetic variants associated with AI. Targeted clinical exome sequencing of two further families revealed another new variant of DLX3 and complete heterozygous deletion of DLX3. For all three families, the phenotypes were shown to consist of AI and taurodontism, together with other attenuated features of TDO. RESULTS c.574delG p.(E192Rfs*66), c.476G>T (p.R159L) and a heterozygous deletion of the entire DLX3 coding region were identified in our families. CONCLUSION These previously unreported variants add to the growing literature surrounding AI, allowing for more accurate genetic testing and better understanding of the associated clinical consequences.
Collapse
Affiliation(s)
| | - Claire E. L. Smith
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical SciencesUniversity of LeedsLeedsUK
| | | | | | - Anesha Patel
- Birmingham Dental Hospital and School of DentistryBirminghamUK
| | - Teresa Lamb
- Oxford University Hospitals NHS Foundation TrustOxfordUK
| | | | | | | | - Ian R. Berry
- Leeds Genetics LaboratorySt James’s University HospitalLeedsUK
| | - Ruth Charlton
- Leeds Genetics LaboratorySt James’s University HospitalLeedsUK
| | - Chris F. Inglehearn
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical SciencesUniversity of LeedsLeedsUK
| | | |
Collapse
|
48
|
Costa RA, Martins RST, Capilla E, Anjos L, Power DM. Vertebrate SLRP family evolution and the subfunctionalization of osteoglycin gene duplicates in teleost fish. BMC Evol Biol 2018; 18:191. [PMID: 30545285 PMCID: PMC6293640 DOI: 10.1186/s12862-018-1310-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteoglycin (OGN, a.k.a. mimecan) belongs to cluster III of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). In vertebrates OGN is a characteristic ECM protein of bone. In the present study we explore the evolution of SLRP III and OGN in teleosts that have a skeleton adapted to an aquatic environment. Results The SLRP gene family has been conserved since the separation of chondrichthyes and osteichthyes. Few gene duplicates of the SLRP III family exist even in the teleosts that experienced a specific whole genome duplication. One exception is ogn for which duplicate copies were identified in fish genomes. The ogn promoter sequence and in vitro mesenchymal stem cell (MSC) cultures suggest the duplicate ogn genes acquired divergent functions. In gilthead sea bream (Sparus aurata) ogn1 was up-regulated during osteoblast and myocyte differentiation in vitro, while ogn2 was severely down-regulated during bone-derived MSCs differentiation into adipocytes in vitro. Conclusions Overall, the phylogenetic analysis indicates that the SLRP III family in vertebrates has been under conservative evolutionary pressure. The retention of the ogn gene duplicates in teleosts was linked with the acquisition of different functions. The acquisition by OGN of functions other than that of a bone ECM protein occurred early in the vertebrate lineage. Electronic supplementary material The online version of this article (10.1186/s12862-018-1310-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - L Anjos
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - D M Power
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
49
|
Lee KM, Park KH, Hwang JS, Lee M, Yoon DS, Ryu HA, Jung HS, Park KW, Kim J, Park SW, Kim SH, Chun YM, Choi WJ, Lee JW. Inhibition of STAT5A promotes osteogenesis by DLX5 regulation. Cell Death Dis 2018; 9:1136. [PMID: 30429452 PMCID: PMC6235898 DOI: 10.1038/s41419-018-1184-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022]
Abstract
The regulation of osteogenesis is important for bone formation and fracture healing. Despite advances in understanding the molecular mechanisms of osteogenesis, crucial modulators in this process are not well-characterized. Here we demonstrate that suppression of signal transducer and activator of transcription 5A (STAT5A) activates distal-less homeobox 5 (DLX5) in human bone marrow-derived stromal cells (hBMSCs) and enhances osteogenesis in vitro and in vivo. We show that STAT5A negatively regulates expression of Dlx5 in vitro and that STAT5A deletion results in increased trabecular and cortical bone mass and bone mineral density in mice. Additionally, STAT5A deletion prevents age-related bone loss. In a murine fracture model, STAT5A deletion was found to significantly enhance bone remodeling by stimulating the formation of a fracture callus. Our findings indicate that STAT5A inhibition enhances bone formation by promoting osteogenesis of BMSCs.
Collapse
Affiliation(s)
- Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji Suk Hwang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Moses Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Dong Suk Yoon
- Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Hyun Aae Ryu
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ho Sun Jung
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ki Won Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jihyun Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Sung-Hwan Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Yong-Min Chun
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Woo Jin Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei -ro, Seodaemun-gu, Seoul, 03722, South Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|
50
|
Godfrey TC, Wildman BJ, Beloti MM, Kemper AG, Ferraz EP, Roy B, Rehan M, Afreen LH, Kim E, Lengner CJ, Hassan Q. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem 2018; 293:17646-17660. [PMID: 30242124 DOI: 10.1074/jbc.ra118.003052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) and Hox transcription factors have decisive roles in postnatal bone formation and homeostasis. In silico analysis identified extensive interaction between HOXA cluster mRNA and microRNAs from the miR-23a cluster. However, Hox regulation by the miR-23a cluster during osteoblast differentiation remains undefined. We examined this regulation in preosteoblasts and in a novel miR-23a cluster knockdown mouse model. Overexpression and knockdown of the miR-23a cluster in preosteoblasts decreased and increased, respectively, the expression of the proteins HOXA5, HOXA10, and HOXA11; these proteins' mRNAs exhibited significant binding with the miR-23a cluster miRNAs, and miRNA 3'-UTR reporter assays confirmed repression. Importantly, during periods correlating with development and differentiation of bone cells, we found an inverse pattern of expression between HoxA factors and members of the miR-23a cluster. HOXA5 and HOXA11 bound to bone-specific promoters, physically interacted with transcription factor RUNX2, and regulated bone-specific genes. Depletion of HOXA5 or HOXA11 in preosteoblasts also decreased cellular differentiation. Additionally, stable overexpression of the miR-23a cluster in osteoblasts decreased the recruitment of HOXA5 and HOXA11 to osteoblast gene promoters, significantly inhibiting histone H3 acetylation. Heterozygous miR-23a cluster knockdown female mice (miR-23a ClWT/ZIP) had significantly increased trabecular bone mass when compared with WT mice. Furthermore, miR-23a cluster knockdown in calvarial osteoblasts of these mice increased the recruitment of HOXA5 and HOXA11, with a substantial enrichment of promoter histone H3 acetylation. Taken together, these findings demonstrate that the miR-23a cluster is required for maintaining stage-specific HoxA factor expression during osteogenesis.
Collapse
Affiliation(s)
- Tanner C Godfrey
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Benjamin J Wildman
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Marcio M Beloti
- the School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil, and
| | - Austin G Kemper
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Emanuela P Ferraz
- the School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil, and
| | - Bhaskar Roy
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Mohammad Rehan
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Lubana H Afreen
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Eddy Kim
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Christopher J Lengner
- the Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Quamarul Hassan
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|