1
|
Kennedy DR, Lemiere J, Tan C, Simental E, Braxton J, Maxwell RA, Amine AAA, Al-Sady B. Phosphorylation of HP1/Swi6 relieves competition with Suv39/Clr4 on nucleosomes and enables H3K9 trimethyl spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620326. [PMID: 39554105 PMCID: PMC11565791 DOI: 10.1101/2024.10.25.620326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Heterochromatin formation in Schizosaccharomyces pombe requires the spreading of histone 3 (H3) Lysine 9 (K9) methylation (me) from nucleation centers by the H3K9 methylase, Suv39/Clr4, and the reader protein, HP1/Swi6. To accomplish this, Suv39/Clr4 and HP1/Swi6 have to associate with nucleosomes both nonspecifically, binding DNA and octamer surfaces and specifically, via recognition of methylated H3K9 by their respective chromodomains. However, how both proteins avoid competition for the same nucleosomes in this process is unclear. Here, we show that phosphorylation tunes the nucleosome affinity of HP1/Swi6 such that it preferentially partitions onto Suv39/Clr4's trimethyl product rather than its unmethylated substrates. Preferential partitioning enables efficient conversion from di-to trimethylation on nucleosomes in vitro and H3K9me3 spreading in vivo. Together, our data suggests that phosphorylation of HP1/Swi6 creates a regime that relieves competition with the "read-write" mechanism of Suv39/Clr4 for productive heterochromatin spreading.
Collapse
Affiliation(s)
- Dana R Kennedy
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
- TETRAD graduate program, UCSF
| | | | - Catherine Tan
- Biomedical Sciences graduate program, UCSF
- Department of Cell and Tissue Biology, UCSF
| | - Eric Simental
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
- TETRAD graduate program, UCSF
| | - Julian Braxton
- Chemistry and Chemical Biology graduate program, UCSF
- Institute for Neurodegenerative Diseases, UCSF
| | - Robert A Maxwell
- The Vincent J. Coates Proteomics/Mass Spectrometry Core Laboratory, University of California, Berkeley, CA, USA
| | - Ahmed AA Amine
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
| | - Bassem Al-Sady
- Department of Microbiology and Immunology and GW Hooper Foundation, UCSF
| |
Collapse
|
2
|
Chen Z, Seman M, Fyodorova Y, Farhat A, Ames A, Levashkevich A, Biswas S, Huang F, Freddolino L, Biteen J, Ragunathan K. Tracking live-cell single-molecule dynamics enables measurements of heterochromatin-associated protein-protein interactions. Nucleic Acids Res 2024; 52:10731-10746. [PMID: 39142658 PMCID: PMC11472046 DOI: 10.1093/nar/gkae692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in single-molecule super-resolution microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression, but several important mechanistic details of this process remain unexplored. Here, we extended live-cell single-molecule tracking studies in fission yeast to determine how HP1 proteins interact with their binding partners in the nucleus. We measured how genetic perturbations that affect H3K9me alter the diffusive properties of HP1 proteins and their binding partners, and we inferred their most likely interaction sites. Our results demonstrate that H3K9 methylation spatially restricts HP1 proteins and their interactors, thereby promoting ternary complex formation on chromatin while simultaneously suppressing off-chromatin binding. As opposed to being an inert platform to direct HP1 binding, our studies propose a novel function for H3K9me in promoting ternary complex formation by enhancing the specificity and stimulating the assembly of HP1-protein complexes in living cells.
Collapse
Affiliation(s)
- Ziyuan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa Seman
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | | - Ali Farhat
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amanda Ames
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | | - Saikat Biswas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengting Huang
- Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | - Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Julie S Biteen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
3
|
Lou J, Deng Q, Zhang X, Bell C, Das A, Bediaga N, Zlatic C, Johanson T, Allan R, Griffin MW, Paradkar P, Harvey K, Dawson M, Hinde E. Heterochromatin protein 1 alpha (HP1α) undergoes a monomer to dimer transition that opens and compacts live cell genome architecture. Nucleic Acids Res 2024; 52:10918-10933. [PMID: 39193905 PMCID: PMC11472067 DOI: 10.1093/nar/gkae720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state. Specifically, we found HP1α monomers to impart a previously undescribed global nucleosome spacing throughout genome architecture that is mediated by trimethylation on lysine 9 of histone H3 (H3K9me3) and locally reduced upon HP1α dimerisation. Collectively, these results demonstrate HP1α to impart a dual action on chromatin that increases the dynamic range of nucleosome proximity. We anticipate that this finding will have important implications for our understanding of how live cell heterochromatin structure regulates genome function.
Collapse
Affiliation(s)
- Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Xiaomeng Zhang
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Andrew B Das
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naiara G Bediaga
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - PrasadN Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong3220, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
4
|
Jones CE, Forsburg SL. Impact of 1,6-hexanediol on Schizosaccharomyces pombe genome stability. G3 (BETHESDA, MD.) 2023; 13:jkad123. [PMID: 37284815 PMCID: PMC10411564 DOI: 10.1093/g3journal/jkad123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023]
Abstract
Phase separation is a major mechanism of macromolecular condensation within cells. A frequently chosen tool for global disruption of phase separation via weak hydrophobic interactions is treatment with 1,6-hexanediol. This study evaluates the cytotoxic and genotoxic effects of treating live fission yeast with 1,6-hexanediol. We find that 1,6-hexanediol causes a drastic decrease in cell survival and growth rate. We also see a reduction in HP1 protein foci and increase in DNA damage foci. However, there is no evidence for increased genomic instability in two classically phase-separated domains, the heterochromatic pericentromere and the nucleolar rDNA repeats. This study reveals that 1,6-hexanediol is a blunt tool for phase separation inhibition and its secondary effects must be taken into consideration during its in vivo use.
Collapse
Affiliation(s)
- Chance E Jones
- Section of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan L Forsburg
- Section of Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Yamamoto T, Asanuma T, Murakami Y. Polymeric nature of tandemly repeated genes enhances assembly of constitutive heterochromatin in fission yeast. Commun Biol 2023; 6:796. [PMID: 37542144 PMCID: PMC10403545 DOI: 10.1038/s42003-023-05154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023] Open
Abstract
Motivated by our recent experiments that demonstrate that the tandemly repeated genes become heterochromatin, here we show a theory of heterochromatin assembly by taking into account the connectivity of these genes along the chromatin in the kinetic equations of small RNA production and histone methylation, which are the key biochemical reactions involved in the heterochromatin assembly. Our theory predicts that the polymeric nature of the tandemly repeated genes ensures the steady production of small RNAs because of the stable binding of nascent RNAs produced from the genes to RDRC/Dicers at the surface of nuclear membrane. This theory also predicts that the compaction of the tandemly repeated genes suppresses the production of small RNAs, consistent with our recent experiments. This theory can be extended to the small RNA-dependent gene silencing in higher organisms.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, 001-0021, Hokkaido, Japan.
| | - Takahiro Asanuma
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Hokkaido, Japan
| | - Yota Murakami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Hokkaido, Japan
| |
Collapse
|
6
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Biswas S, Chen Z, Karslake JD, Farhat A, Ames A, Raiymbek G, Freddolino PL, Biteen JS, Ragunathan K. HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a tunable mechanism for heterochromatin-specific localization. SCIENCE ADVANCES 2022; 8:eabk0793. [PMID: 35857444 PMCID: PMC9269880 DOI: 10.1126/sciadv.abk0793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 05/24/2022] [Indexed: 05/31/2023]
Abstract
HP1 proteins traverse a complex and crowded chromatin landscape to bind with low affinity but high specificity to histone H3K9 methylation (H3K9me) and form transcriptionally inactive genomic compartments called heterochromatin. Here, we visualize single-molecule dynamics of an HP1 homolog, the fission yeast Swi6, in its native chromatin environment. By tracking single Swi6 molecules, we identify mobility states that map to discrete biochemical intermediates. Using Swi6 mutants that perturb H3K9me recognition, oligomerization, or nucleic acid binding, we determine how each biochemical property affects protein dynamics. We estimate that Swi6 recognizes H3K9me3 with ~94-fold specificity relative to unmodified nucleosomes in living cells. While nucleic acid binding competes with Swi6 oligomerization, as few as four tandem chromodomains can overcome these inhibitory effects to facilitate Swi6 localization at heterochromatin formation sites. Our studies indicate that HP1 oligomerization is essential to form dynamic, higher-order complexes that outcompete nucleic acid binding to enable specific H3K9me recognition.
Collapse
Affiliation(s)
- Saikat Biswas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ziyuan Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48104, USA
| | - Joshua D. Karslake
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48104, USA
| | - Ali Farhat
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda Ames
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L. Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Julie S. Biteen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48104, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48104, USA
| | - Kaushik Ragunathan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Liu Y, Yang X, Zhou M, Yang Y, Li F, Yan X, Zhang M, Wei Z, Qin S, Min J. Structural basis for the recognition of methylated histone H3 by the Arabidopsis LHP1 chromodomain. J Biol Chem 2022; 298:101623. [PMID: 35074427 PMCID: PMC8861120 DOI: 10.1016/j.jbc.2022.101623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown. In this study, we characterized the binding ability of LHP1 to histone H3K9 and H3K27 peptides and found that the chromodomain of LHP1 binds to histone H3K9me2/3 and H3K27me2/3 peptides with comparable affinities, although it exhibited no binding or weak binding to unmodified or monomethylated H3K9/K27 peptides. Our crystal structures of the LHP1 chromodomain in peptide-free and peptide-bound forms coupled with mutagenesis studies reveal that the chromodomain of LHP1 bears a slightly different chromodomain architecture and recognizes methylated H3K9 and H3K27 peptides via a hydrophobic clasp, similar to the chromodomains of human Polycomb proteins, which could not be explained only based on primary structure analysis. Our binding and structural studies of the LHP1 chromodomain illuminate a conserved ligand interaction mode between chromodomains of both animals and plants, and shed light on further functional study of the LHP1 protein.
Collapse
Affiliation(s)
- Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, PR China.
| | - Xiajie Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Mengqi Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Yinxue Yang
- College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, PR China
| | - Fangzhou Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xuemei Yan
- College of Pharmaceutical Sciences, Soochow University, Su Zhou, Jiangsu 215021, PR China
| | | | - Zhengguo Wei
- School of Biology and Basic Medical Science, Soochow University, Su Zhou, Jiangsu 215021, PR China
| | - Su Qin
- Life Science Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, PR China
| | - Jinrong Min
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, PR China.
| |
Collapse
|
9
|
Yeom S, Oh J, Lee JS. Spreading-dependent or independent Sir2-mediated gene silencing in budding yeast. Genes Genomics 2022; 44:359-367. [PMID: 35034281 DOI: 10.1007/s13258-021-01203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND In the budding yeast Saccharomyces cerevisiae, a silent chromatin structure is formed at three distinct loci, including telomeres, rDNA, and mating-type loci, which silence the expression of genes within their structures. Sir2 is the only common factor, regulating the three silent chromatin regions. S. cerevisiae has 32 telomeres, but studies on gene silencing in budding yeast have been performed using some reporter genes, artificially inserted in the telomeric regions. Therefore, insights into the global landscape of Sir-dependent silencing of genes within the silent chromatin regions are required. OBJECTIVE This study aimed to obtain global insights into Sir2-dependent gene silencing on all silent chromatin regions in budding yeast. METHODS RNA-sequencing was performed to identify genes that are silenced by Sir2. By comparing with the chromatin immunoprecipitation-sequencing (ChIP-seq) of Sir2 in the wild-type strain, we confirmed Sir2-regulated genes. RESULTS Using Sir2 ChIP-seq data, we identified that the Sir2 binding domain length caused by Sir2 spreading from the chromosomal end is different in each telomere in budding yeast. Expression of most subtelomeric genes increased in the ∆sir2 strain. Some Sir2-regulated subtelomeric genes were positioned within the telomeric Sir2-binding domain, while the others were outside the Sir2-binding domain. In addition, Sir2 was bound to the mating-type loci and rDNA region, and gene expression increased in the ∆sir2 strain. CONCLUSION We concluded that S. cerevisiae has two modes of Sir2-mediated gene silencing: one is dependent on chromatin binding and spreading of Sir2, and the other is independent of spreading of Sir2.
Collapse
Affiliation(s)
- Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
10
|
Pokorná P, Krepl M, Šponer J. Residues flanking the ARK me3T/S motif allow binding of diverse targets to the HP1 chromodomain: Insights from molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2020; 1865:129771. [PMID: 33153976 DOI: 10.1016/j.bbagen.2020.129771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging. METHODS We acquired ~350 μs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields. RESULTS The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A-2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the -3 position. The Q-4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted. CONCLUSIONS The CD reads a longer target segment than previously thought, ranging from positions -7 to +3. The CD anionic clamp can be neutralized not only by the -3 and -1 residues, but also by -7, -6, -5 and +3 residues. GENERAL SIGNIFICANCE Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| |
Collapse
|
11
|
Kochanova NY, Schauer T, Mathias GP, Lukacs A, Schmidt A, Flatley A, Schepers A, Thomae AW, Imhof A. A multi-layered structure of the interphase chromocenter revealed by proximity-based biotinylation. Nucleic Acids Res 2020; 48:4161-4178. [PMID: 32182352 PMCID: PMC7192626 DOI: 10.1093/nar/gkaa145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022] Open
Abstract
During interphase centromeres often coalesce into a small number of chromocenters, which can be visualized as distinct, DAPI dense nuclear domains. Intact chromocenters play a major role in maintaining genome stability as they stabilize the transcriptionally silent state of repetitive DNA while ensuring centromere function. Despite its biological importance, relatively little is known about the molecular composition of the chromocenter or the processes that mediate chromocenter formation and maintenance. To provide a deeper molecular insight into the composition of the chromocenter and to demonstrate the usefulness of proximity-based biotinylation as a tool to investigate those questions, we performed super resolution microscopy and proximity-based biotinylation experiments of three distinct proteins associated with the chromocenter in Drosophila. Our work revealed an intricate internal architecture of the chromocenter suggesting a complex multilayered structure of this intranuclear domain.
Collapse
Affiliation(s)
- Natalia Y Kochanova
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Tamas Schauer
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Grusha Primal Mathias
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Andrea Lukacs
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Andreas Schmidt
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Andrew Flatley
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility and Research Group Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Aloys Schepers
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility and Research Group Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Andreas W Thomae
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center, Chromatin Proteomics Group, Department of Molecular Biology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
- Biomedical Center, Protein Analysis Unit, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Raiymbek G, An S, Khurana N, Gopinath S, Larkin A, Biswas S, Trievel RC, Cho US, Ragunathan K. An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. eLife 2020; 9:53155. [PMID: 32195666 PMCID: PMC7192584 DOI: 10.7554/elife.53155] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
H3K9 methylation (H3K9me) specifies the establishment and maintenance of transcriptionally silent epigenetic states or heterochromatin. The enzymatic erasure of histone modifications is widely assumed to be the primary mechanism that reverses epigenetic silencing. Here, we reveal an inversion of this paradigm where a putative histone demethylase Epe1 in fission yeast, has a non-enzymatic function that opposes heterochromatin assembly. Mutations within the putative catalytic JmjC domain of Epe1 disrupt its interaction with Swi6HP1 suggesting that this domain might have other functions besides enzymatic activity. The C-terminus of Epe1 directly interacts with Swi6HP1, and H3K9 methylation stimulates this protein-protein interaction in vitro and in vivo. Expressing the Epe1 C-terminus is sufficient to disrupt heterochromatin by outcompeting the histone deacetylase, Clr3 from sites of heterochromatin formation. Our results underscore how histone modifying proteins that resemble enzymes have non-catalytic functions that regulate the assembly of epigenetic complexes in cells. A cell’s identity depends on which of its genes are active. One way for cells to control this process is to change how accessible their genes are to the molecular machinery that switches them on and off. Special proteins called histones determine how accessible genes are by altering how loosely or tightly DNA is packed together. Histones can be modified by enzymes, which are proteins that add or remove specific chemical ‘tags’. These tags regulate how accessible genes are and provide cells with a memory of gene activity. For example, a protein found in yeast called Epe1 helps reactivate large groups of genes after cell division, effectively ‘re-setting’ the yeast’s genome and eliminating past memories of the genes being inactive. For a long time, Epe1 was thought to do this by removing methyl groups, a ‘tag’ that indicates a gene is inactive, from histones – that is, by acting like an enzyme. However, no direct evidence to support this hypothesis has been found. Raiymbek et al. therefore set out to determine exactly how Epe1 worked, and whether or not it did indeed behave like an enzyme. Initial experiments testing mutant versions of Epe1 in yeast cells showed that the changes expected to stop Epe1 from removing methyl groups instead prevented the protein from ‘homing’ to the sections of DNA it normally activates. Detailed microscope imaging, using live yeast cells engineered to produce proteins with fluorescent markers, revealed that this inability to ‘home’ was due to a loss of interaction with Epe1’s main partner, a protein called Swi6. This protein recognizes and binds histones that have methyl tags. Swi6 also acts as a docking site for proteins involved in deactivating genes in close proximity to these histones. Further biochemical studies revealed how the interaction between Epe1 and Swi6 can help in gene reactivation. The methyl tag on histones in inactive regions of the genome inadvertently helps Epe1 interact more efficiently with Swi6. Then, Epe1 can simply block every other protein that binds to Swi6 from participating in gene deactivation. This observation contrasts with the prevailing view where the active removal of methyl tags by proteins such as Epe1 switches genes from an inactive to an active state. This work shows for the first time that Epe1 influences the state of the genome through a process that does not involve enzyme activity. In other words, although the protein may ‘moonlight’ as an enzyme, its main job uses a completely different mechanism. More broadly, these results increase the understanding of the many different ways that gene activity, and ultimately cell identity, can be controlled.
Collapse
Affiliation(s)
- Gulzhan Raiymbek
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Sojin An
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Nidhi Khurana
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Saarang Gopinath
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Ajay Larkin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Saikat Biswas
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biophysics, University of Michigan, Ann Arbor, United States
| | - Kaushik Ragunathan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| |
Collapse
|
13
|
Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, Burlingame AL, Griffin PR, Gross JD, Narlikar GJ. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 2019; 575:390-394. [PMID: 31618757 PMCID: PMC7039410 DOI: 10.1038/s41586-019-1669-2] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/17/2019] [Indexed: 12/24/2022]
Abstract
Heterochromatin affects genome function at many levels. It enables heritable gene repression, maintains chromosome integrity and provides mechanical rigidity to the nucleus1,2. These diverse functions are proposed to arise in part from compaction of the underlying chromatin2. A major type of heterochromatin contains at its core the complex formed between HP1 proteins and chromatin that is methylated on histone H3, lysine 9 (H3K9me). HP1 is proposed to use oligomerization to compact chromatin into phase-separated condensates3-6. Yet, how HP1-mediated phase separation relates to chromatin compaction remains unclear. Here we show that chromatin compaction by the Schizosaccharomyces pombe HP1 protein Swi6 results in phase-separated liquid condensates. Unexpectedly, we find that Swi6 substantially increases the accessibility and dynamics of buried histone residues within a nucleosome. Restraining these dynamics impairs compaction of chromatin into liquid droplets by Swi6. Our results indicate that Swi6 couples its oligomerization to the phase separation of chromatin by a counterintuitive mechanism, namely the dynamic exposure of buried nucleosomal regions. We propose that such reshaping of the octamer core by Swi6 increases opportunities for multivalent interactions between nucleosomes, thereby promoting phase separation. This mechanism may more generally drive chromatin organization beyond heterochromatin.
Collapse
Affiliation(s)
- S Sanulli
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - M J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - V Dharmarajan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - R W Tibble
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.,Program in Chemistry and Chemical Biology, University of California San Francisco, San Francisco, CA, USA
| | - B D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - P R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - J D Gross
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - G J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Pokorná P, Krepl M, Bártová E, Šponer J. Role of Fine Structural Dynamics in Recognition of Histone H3 by HP1γ(CSD) Dimer and Ability of Force Fields to Describe Their Interaction Network. J Chem Theory Comput 2019; 15:5659-5673. [DOI: 10.1021/acs.jctc.9b00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
15
|
Abstract
Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Serafin U. Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Gary H. Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
16
|
Al-Sady B, Greenstein RA, El-Samad HJ, Braun S, Madhani HD. Sensitive and Quantitative Three-Color Protein Imaging in Fission Yeast Using Spectrally Diverse, Recoded Fluorescent Proteins with Experimentally-Characterized In Vivo Maturation Kinetics. PLoS One 2016; 11:e0159292. [PMID: 27479698 PMCID: PMC4968791 DOI: 10.1371/journal.pone.0159292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Schizosaccharomyces pombe is an outstanding model organism for cell biological investigations, yet the range of useful and well-characterized fluorescent proteins (XFPs) is limited. We generated and characterized three recoded fluorescent proteins for 3-color analysis in S.pombe, Super-folder GFP, monomeric Kusabira Orange 2 and E2Crimson. Upon optimization and expression in S. pombe, the three proteins enabled sensitive simultaneous 3-color detection capability. Furthermore, we describe a strategy that combines a pulse-chase approach and mathematical modeling to quantify the maturation kinetics of these proteins in vivo. We observed maturation kinetics in S. pombe that are expected from those described for these proteins in vitro and/or in other cell types, but also unpredicted behaviors. Our studies provide a kinetically-characterized, integrated three-color XFP toolbox for S. pombe.
Collapse
Affiliation(s)
- Bassem Al-Sady
- Department of Microbiology and Immunology, the GW Hooper Foundation, University of California San Francisco, San Francisco, California 94143, United States of America
- * E-mail: (BA-S); (HDM)
| | - Rachel A. Greenstein
- Department of Microbiology and Immunology, the GW Hooper Foundation, University of California San Francisco, San Francisco, California 94143, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California 94143, United States of America
| | - Hana J. El-Samad
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, United States of America
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center, Ludwigs-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143, United States of America
- * E-mail: (BA-S); (HDM)
| |
Collapse
|
17
|
Structure and function of histone methylation-binding proteins in plants. Biochem J 2016; 473:1663-80. [DOI: 10.1042/bcj20160123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022]
Abstract
Post-translational modifications of histones play important roles in modulating many essential biological processes in both animals and plants. These covalent modifications, including methylation, acetylation, phosphorylation, ubiquitination, SUMOylation and so on, are laid out and erased by histone-modifying enzymes and read out by effector proteins. Recent studies have revealed that a number of developmental processes in plants are under the control of histone post-translational modifications, such as floral transition, seed germination, organogenesis and morphogenesis. Therefore, it is critical to identify those protein domains, which could specifically recognize these post-translational modifications to modulate chromatin structure and regulate gene expression. In the present review, we discuss the recent progress in understanding the structure and function of the histone methylation readers in plants, by focusing on Arabidopsis thaliana proteins.
Collapse
|
18
|
Hiragami-Hamada K, Soeroes S, Nikolov M, Wilkins B, Kreuz S, Chen C, De La Rosa-Velázquez IA, Zenn HM, Kost N, Pohl W, Chernev A, Schwarzer D, Jenuwein T, Lorincz M, Zimmermann B, Walla PJ, Neumann H, Baubec T, Urlaub H, Fischle W. Dynamic and flexible H3K9me3 bridging via HP1β dimerization establishes a plastic state of condensed chromatin. Nat Commun 2016; 7:11310. [PMID: 27090491 PMCID: PMC4838890 DOI: 10.1038/ncomms11310] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/13/2016] [Indexed: 12/12/2022] Open
Abstract
Histone H3 trimethylation of lysine 9 (H3K9me3) and proteins of the heterochromatin protein 1 (HP1) family are hallmarks of heterochromatin, a state of compacted DNA essential for genome stability and long-term transcriptional silencing. The mechanisms by which H3K9me3 and HP1 contribute to chromatin condensation have been speculative and controversial. Here we demonstrate that human HP1β is a prototypic HP1 protein exemplifying most basal chromatin binding and effects. These are caused by dimeric and dynamic interaction with highly enriched H3K9me3 and are modulated by various electrostatic interfaces. HP1β bridges condensed chromatin, which we postulate stabilizes the compacted state. In agreement, HP1β genome-wide localization follows H3K9me3-enrichment and artificial bridging of chromatin fibres is sufficient for maintaining cellular heterochromatic conformation. Overall, our findings define a fundamental mechanism for chromatin higher order structural changes caused by HP1 proteins, which might contribute to the plastic nature of condensed chromatin. Heterochromatin protein 1 (HP1), including HP1 α, β and γ, is a family of non-histone chromatin factors thought to be involved in chromatin organization. Here, the authors show that dimeric HP1β interacts dynamically with H3K9me3, a hallmark of heterochromatin, and bridges condensed chromatin.
Collapse
Affiliation(s)
- Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Szabolcs Soeroes
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Miroslav Nikolov
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Bryan Wilkins
- Applied Synthetic Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Sarah Kreuz
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Carol Chen
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Inti A De La Rosa-Velázquez
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Hans Michael Zenn
- Biaffin GmbH &Co KG, Heinrich-Plett Strasse 40, 34132 Kassel, Germany
| | - Nils Kost
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Wiebke Pohl
- Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Thomas Jenuwein
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Matthew Lorincz
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | - Peter Jomo Walla
- Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany.,Department of Biophysical Chemistry, Technische Universität Braunschweig, Hans-Sommerstr. 10, 38106 Braunschweig, Germany
| | - Heinz Neumann
- Applied Synthetic Biology, Institute for Microbiology and Genetics, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Tuncay Baubec
- Department of Molecular Mechanisms of Disease, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077, Germany
| |
Collapse
|
19
|
Wang J, Jia ST, Jia S. New Insights into the Regulation of Heterochromatin. Trends Genet 2016; 32:284-294. [PMID: 27005444 DOI: 10.1016/j.tig.2016.02.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/22/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
All living organisms are constantly exposed to stresses from internal biological processes and surrounding environments, which induce many adaptive changes in cellular physiology and gene expression programs. Unexpectedly, constitutive heterochromatin, which is generally associated with the stable maintenance of gene silencing, is also dynamically regulated in response to stimuli. In this review we discuss the mechanism of constitutive heterochromatin assembly, its dynamic nature, and its responses to environmental changes.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sharon T Jia
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
20
|
Li H, Hou J, Bai L, Hu C, Tong P, Kang Y, Zhao X, Shao Z. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE. RNA Biol 2016; 12:525-37. [PMID: 25747261 DOI: 10.1080/15476286.2015.1022704] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The core promoter, which immediately flanks the transcription start site (TSS), plays a critical role in transcriptional regulation of eukaryotes. Recent studies on higher eukaryotes have revealed an unprecedented complexity of core promoter structures that underscores diverse regulatory mechanisms of gene expression. For unicellular eukaryotes, however, the structures of core promoters have not been investigated in detail. As an important model organism, Schizosaccharomyces pombe still lacks the precise annotation for TSSs, thus hampering the analysis of core promoter structures and their relationship to higher eukaryotes. Here we used a deep sequencing-based approach (DeepCAGE) to generate 16 million uniquely mapped tags, corresponding to 93,736 positions in the S. pombe genome. The high-resolution TSS landscape enabled identification of over 8,000 core promoters, characterization of 4 promoter classes and observation of widespread alternative promoters. The landscape also allowed precise determination of the representative TSSs within core promoters, thus redefining the 5' UTR for 82.8% of S. pombe genes. We further identified the consensus initiator (Inr) sequence--PyPyPuN(A/C)(C/A), the TATA-enriched region (between position -25 and -37) and an Inr immediate downstream motif--CC(T/A)(T/C)(T/C/A)(A/G)CCA(A/T/C), all of which were associated with highly expressed promoters. In conclusion, the detailed analysis of core promoters not only significantly improves the genome annotation of S. pombe, but also reveals that this unicellular eukaryote shares a highly similar organization in the core promoters with higher eukaryotes. These findings lend additional evidence for the power of this model system in delineating complex regulatory processes in multicellular organisms, despite its perceived simplicity.
Collapse
Key Words
- 5' UTR annotation
- CAGE, cap analysis of gene expression
- CDS, coding sequence
- DP, broad with a single dominant peak
- DeepCAGE, deep sequencing-based cap analysis of gene expression
- FDR, false discovery rate
- GB, generally broad distribution
- GO, Gene Ontology
- Inr, initiator
- LDP, local-distributed peak
- LUSP, local-ultra-sharp peak
- MP, broad with bi- or multi- peaks
- ORF, open reading frame
- SP, single dominant peak
- TC, tag cluster
- TSS profiling
- TSS, transcription start site
- core promoter structure
- fission yeast
- sequence motif analysis
Collapse
Affiliation(s)
- Hua Li
- a State Key Laboratory on Oncogenes and Bio-ID Center; School of Biomedical Engineering; Shanghai Jiao Tong University ; Shanghai , China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Stunnenberg R, Kulasegaran-Shylini R, Keller C, Kirschmann MA, Gelman L, Bühler M. H3K9 methylation extends across natural boundaries of heterochromatin in the absence of an HP1 protein. EMBO J 2015; 34:2789-803. [PMID: 26438724 PMCID: PMC4682641 DOI: 10.15252/embj.201591320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022] Open
Abstract
Proteins of the conserved HP1 family are elementary components of heterochromatin and are generally assumed to play a central role in the creation of a rigid, densely packed heterochromatic network that is inaccessible to the transcription machinery. Here, we demonstrate that the fission yeast HP1 protein Swi6 exists as a single highly dynamic population that rapidly exchanges in cis and in trans between different heterochromatic regions. Binding to methylated H3K9 or to heterochromatic RNA decelerates Swi6 mobility. We further show that Swi6 is largely dispensable to the maintenance of heterochromatin domains. In the absence of Swi6, H3K9 methylation levels are maintained by a mechanism that depends on polymeric self‐association properties of Tas3, a subunit of the RNA‐induced transcriptional silencing complex. Our results disclose a surprising role for Swi6 dimerization in demarcating constitutive heterochromatin from neighboring euchromatin. Thus, rather than promoting maintenance and spreading of heterochromatin, Swi6 appears to limit these processes and appropriately confine heterochromatin.
Collapse
Affiliation(s)
- Rieka Stunnenberg
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | | | - Claudia Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| | | | - Laurent Gelman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Masgutov RF, Masgutova GA, Zhuravleva MN, Salafutdinov II, Mukhametshina RT, Mukhamedshina YO, Lima LM, Reis HJ, Kiyasov AP, Palotás A, Rizvanov AA. Human adipose-derived stem cells stimulate neuroregeneration. Clin Exp Med 2015; 16:451-61. [DOI: 10.1007/s10238-015-0364-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022]
|
23
|
Chromodomain protein Tcd1 is required for macronuclear genome rearrangement and repair in Tetrahymena. Sci Rep 2015; 5:10243. [PMID: 25989344 PMCID: PMC4437310 DOI: 10.1038/srep10243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/07/2015] [Indexed: 11/25/2022] Open
Abstract
The survival of an organism’s progeny depends on the maintenance of its genome. Programmed DNA rearrangement and repair in Tetrahymena occur during the differentiation of the developing somatic macronuclear genome from the germ line micronuclear genome. Tetrahymena chromodomain protein (Tcd1) exhibited dynamic localization from the parental to the developing macronuclei. In the developing macronuclei, Tcd1 colocalized with Pdd1 and H3K9me3. Furthermore, Tcd1 colocalized with Pdd1 in the conjusome and “donut structure” of DNA elimination heterochromatin region. During the growth and conjugation stages, TCD1 knockout cells appeared normal and similar to wild-type strains. In addition, these knockout cells proceeded to the 2MAC-1MIC stage. However, the progeny of the TCD1 knockout cells did not grow upon return to SPP medium and eventually died. The deletion of the internal elimination sequence R element was partially disrupted in the developing new macronuclei. Gamma H2A staining showed that Tcd1 loss induced the accumulation of DNA double-strand breaks and the failure of genome repair. These results suggest that the chromodomain protein Tcd1 is required for the rearrangement and repair of new macronuclear genome in Tetrahymena.
Collapse
|
24
|
Teif VB, Kepper N, Yserentant K, Wedemann G, Rippe K. Affinity, stoichiometry and cooperativity of heterochromatin protein 1 (HP1) binding to nucleosomal arrays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064110. [PMID: 25563825 DOI: 10.1088/0953-8984/27/6/064110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Heterochromatin protein 1 (HP1) participates in establishing and maintaining heterochromatin via its histone-modification-dependent chromatin interactions. In recent papers HP1 binding to nucleosomal arrays was measured in vitro and interpreted in terms of nearest-neighbour cooperative binding. This mode of chromatin interaction could lead to the spreading of HP1 along the nucleosome chain. Here, we reanalysed previous data by representing the nucleosome chain as a 1D binding lattice and showed how the experimental HP1 binding isotherms can be explained by a simpler model without cooperative interactions between neighboring HP1 dimers. Based on these calculations and spatial models of dinucleosomes and nucleosome chains, we propose that binding stoichiometry depends on the nucleosome repeat length (NRL) rather than protein interactions between HP1 dimers. According to our calculations, more open nucleosome arrays with long DNA linkers are characterized by a larger number of binding sites in comparison to chains with a short NRL. Furthermore, we demonstrate by Monte Carlo simulations that the NRL dependent folding of the nucleosome chain can induce allosteric changes of HP1 binding sites. Thus, HP1 chromatin interactions can be modulated by the change of binding stoichiometry and the type of binding to condensed (methylated) and non-condensed (unmethylated) nucleosome arrays in the absence of direct interactions between HP1 dimers.
Collapse
Affiliation(s)
- Vladimir B Teif
- Deutsches Krebsforschungszentrum & BioQuant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
25
|
Mulligan PJ, Koslover EF, Spakowitz AJ. Thermodynamic model of heterochromatin formation through epigenetic regulation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064109. [PMID: 25563699 DOI: 10.1088/0953-8984/27/6/064109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gene regulation in eukaryotes requires the segregation of silenced genomic regions into densely packed heterochromatin, leaving the active genes in euchromatin regions more accessible. We introduce a model that connects the presence of epigenetically inherited histone marks, methylation at histone 3 lysine-9, to the physical compaction of chromatin fibers via the binding of heterochromatin protein 1 (HP1). Our model demonstrates some of the key physical features that are necessary to explain experimental observations. In particular, we demonstrate that strong cooperative interactions among the HP1 proteins are necessary to see the phase segregation of heterochromatin and euchromatin regions. We also explore how the cell can use the concentration of HP1 to control condensation and under what circumstances there is a threshold of methylation over which the fibers will compact. Finally, we consider how different potential in vivo fiber structures as well as the flexibility of the histone 3 tail can affect the bridging of HP1. Many of the observations that we make about the HP1 system are guided by general thermodynamics principles and thus could play a role in other DNA organizational processes such as the binding of linker histones.
Collapse
Affiliation(s)
- Peter J Mulligan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
26
|
Nishibuchi G, Nakayama JI. Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem 2014; 156:11-20. [DOI: 10.1093/jb/mvu032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Manukyan M, Singh PB. Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Sci Rep 2014; 4:4789. [PMID: 24763337 PMCID: PMC3999444 DOI: 10.1038/srep04789] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2014] [Indexed: 01/08/2023] Open
Abstract
We measured the dynamics of an essential epigenetic modifier, HP1β, in human cells at different stages of differentiation using Fluorescence Recovery After Photobleaching (FRAP). We found that HP1β mobility is similar in human embryonic stem cells (hES) and iPS cells where it is more mobile compared to fibroblasts; HP1β is less mobile in senescent fibroblasts than in young (dividing) fibroblasts. Introduction of "reprogramming factors", Oct4, Sox2, Klf4, cMyc and Lin28, into senescent fibroblasts and measuring the changes in HP1β mobility as reprogramming proceeds shows that the mobility of HP1β in senescent cells increases and by day 9 is the same as that found in young fibroblasts. Thus the dynamics of a key epigenetic modifier can be rejuvenated without de-differentiation through an embryonic stage. Future work will test whether other aspects of cellular physiology that age can be so rejuvenated without de-differentiation.
Collapse
Affiliation(s)
- Maria Manukyan
- Albert-Ludwigs-Universität Freiburg, BIOSS Centre for Biological Signalling Studies, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Prim B. Singh
- Fächerverbund Anatomie, Institut für Zell- und Neurobiologie, Charite – Universitätsmedizin, 10117 Berlin, Germany
| |
Collapse
|
28
|
Canzio D, Larson A, Narlikar GJ. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 2014; 24:377-86. [PMID: 24618358 DOI: 10.1016/j.tcb.2014.01.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
Abstract
Heterochromatin protein 1 (HP1) proteins were originally identified as critical components in heterochromatin-mediated gene silencing and are now recognized to play essential roles in several other processes including gene activation. Several eukaryotes possess more than one HP1 paralog. Despite high sequence conservation, the HP1 paralogs achieve diverse functions. Further, in many cases, the same HP1 paralog is implicated in multiple functions. Recent biochemical studies have revealed interesting paralog-specific biophysical differences and unanticipated conformational versatility in HP1 proteins that may account for this functional promiscuity. Here we review these findings and describe a molecular framework that aims to link the conformational flexibility of HP1 proteins observed in vitro with their functional promiscuity observed in vivo.
Collapse
Affiliation(s)
- Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Adam Larson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
29
|
Wang SH, Nan R, Accardo MC, Sentmanat M, Dimitri P, Elgin SCR. A distinct type of heterochromatin at the telomeric region of the Drosophila melanogaster Y chromosome. PLoS One 2014; 9:e86451. [PMID: 24475122 PMCID: PMC3901700 DOI: 10.1371/journal.pone.0086451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/16/2013] [Indexed: 11/24/2022] Open
Abstract
Heterochromatin assembly and its associated phenotype, position effect variegation (PEV), provide an informative system to study chromatin structure and genome packaging. In the fruit fly Drosophila melanogaster, the Y chromosome is entirely heterochromatic in all cell types except the male germline; as such, Y chromosome dosage is a potent modifier of PEV. However, neither Y heterochromatin composition, nor its assembly, has been carefully studied. Here, we report the mapping and characterization of eight reporter lines that show male-specific PEV. In all eight cases, the reporter insertion sites lie in the telomeric transposon array (HeT-A and TART-B2 homologous repeats) of the Y chromosome short arm (Ys). Investigations of the impact on the PEV phenotype of mutations in known heterochromatin proteins (i.e., modifiers of PEV) show that this Ys telomeric region is a unique heterochromatin domain: it displays sensitivity to mutations in HP1a, EGG and SU(VAR)3-9, but no sensitivity to Su(z)2 mutations. It appears that the endo-siRNA pathway plays a major targeting role for this domain. Interestingly, an ectopic copy of 1360 is sufficient to induce a piRNA targeting mechanism to further enhance silencing of a reporter cytologically localized to the Ys telomere. These results demonstrate the diversity of heterochromatin domains, and the corresponding variation in potential targeting mechanisms.
Collapse
Affiliation(s)
- Sidney H. Wang
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Ruth Nan
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Maria C. Accardo
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Monica Sentmanat
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Patrizio Dimitri
- Dipartimento di Biologia e Biotecnologie “Charles Darwin” and Istituto Pasteur Fondazione Cenci-Bolognetti, Sapienza Università di Roma, Roma, Italy
| | - Sarah C. R. Elgin
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
30
|
Tadeo X, Wang J, Kallgren SP, Liu J, Reddy BD, Qiao F, Jia S. Elimination of shelterin components bypasses RNAi for pericentric heterochromatin assembly. Genes Dev 2014; 27:2489-99. [PMID: 24240238 PMCID: PMC3841737 DOI: 10.1101/gad.226118.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The RNAi pathway is required for heterochromatin assembly, and loss of RNAi causes pericentric heterochromatin defects. Tadeo et al. show that deletion of telomere shelterin components in RNAi mutants restores pericentric heterochromatin. Shelterin component Poz1 mutant analysis reveals that defective telomere silencing, but not telomere length control, is critical for bypassing RNAi. Furthermore, heterochromatin protein Swi6 is redistributed to pericentric regions in RNAi mutants. Heterochromatin domains thus use multiple pathways to restrain Swi6 and avoid promiscuous heterochromatin formation. The RNAi pathway is required for heterochromatin assembly at repetitive DNA elements in diverse organisms. In fission yeast, loss of RNAi causes pericentric heterochromatin defects, compromising gene silencing and chromosome segregation. Here we show that deletion of telomere shelterin components restores pericentric heterochromatin and its functions in RNAi mutants. We further isolated a separation-of-function mutant of Poz1 and revealed that defective telomere silencing, but not telomere length control, is critical for bypassing RNAi. Further analyses demonstrated that compromising shelterin-mediated heterochromatin assembly in RNAi mutants releases heterochromatin protein Swi6, which is redistributed to pericentric regions through RNAi-independent heterochromatin assembly pathways. Given the high mobility of Swi6 protein and that increased levels of Swi6 facilitates heterochromatin spreading as well as ectopic heterochromatin assembly, our results suggest that constitutive heterochromatin domains use multiple pathways to form high-affinity platforms to restrain Swi6, thus limiting its availability and avoiding promiscuous heterochromatin formation.
Collapse
Affiliation(s)
- Xavier Tadeo
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Al-Sady B, Madhani HD, Narlikar GJ. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol Cell 2013; 51:80-91. [PMID: 23849629 DOI: 10.1016/j.molcel.2013.06.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/15/2013] [Accepted: 06/20/2013] [Indexed: 01/22/2023]
Abstract
In Schizosaccharomyces pombe, heterochromatin spread, which is marked by histone 3 lysine 9 methylation (H3K9me), requires the chromodomains (CDs) of the H3K9 methylase Suv39/Clr4 and the HP1/Swi6 protein. It is unclear how the actions of these two H3K9me-recognizing CDs are coordinated. We find that the intrinsic preference of Suv39/Clr4 is to generate dimethylated H3K9 product. The recognition of pre-existing H3K9me marks by the CD of Suv39/Clr4 stimulates overall catalysis, enabling the accumulation of small amounts of trimethylated product in vivo. Coincidentally, the Suv39/Clr4 CD, unlike the HP1/Swi6 CD, has been shown to prefer the trimethyl state over the dimethyl state. We show that this preference enables efficient heterochromatin spread in vivo by reducing competition with HP1 proteins for the more prevalent dimethyl state. Our results reveal a strategy by which "writers" and "readers" of a chromatin mark exploit different methylation states on the same residue in order to facilitate collaboration and avoid competition.
Collapse
Affiliation(s)
- Bassem Al-Sady
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
32
|
Shu H, Wildhaber T, Siretskiy A, Gruissem W, Hennig L. Distinct modes of DNA accessibility in plant chromatin. Nat Commun 2012; 3:1281. [DOI: 10.1038/ncomms2259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 11/05/2012] [Indexed: 01/06/2023] Open
|
33
|
Bühler M, Hiller S. Dynamic nature of heterochromatin highlighted by a HP1Swi6-dependent gene silencing mechanism. Cell Cycle 2012; 11:3907-8. [PMID: 23032265 PMCID: PMC3507478 DOI: 10.4161/cc.22234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Steffen PA, Fonseca JP, Ringrose L. Epigenetics meets mathematics: towards a quantitative understanding of chromatin biology. Bioessays 2012; 34:901-13. [PMID: 22911103 DOI: 10.1002/bies.201200076] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How fast? How strong? How many? So what? Why do numbers matter in biology? Chromatin binding proteins are forever in motion, exchanging rapidly between bound and free pools. How do regulatory systems whose components are in constant flux ensure stability and flexibility? This review explores the application of quantitative and mathematical approaches to mechanisms of epigenetic regulation. We discuss methods for measuring kinetic parameters and protein quantities in living cells, and explore the insights that have been gained by quantifying and modelling dynamics of chromatin binding proteins.
Collapse
|
35
|
Keller C, Adaixo R, Stunnenberg R, Woolcock KJ, Hiller S, Bühler M. HP1(Swi6) mediates the recognition and destruction of heterochromatic RNA transcripts. Mol Cell 2012; 47:215-27. [PMID: 22683269 DOI: 10.1016/j.molcel.2012.05.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/21/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
HP1 proteins are major components of heterochromatin, which is generally perceived to be an inert and transcriptionally inactive chromatin structure. Yet, HP1 binding to chromatin is highly dynamic and robust silencing of heterochromatic genes can involve RNA processing. Here, we demonstrate by a combination of in vivo and in vitro experiments that the fission yeast HP1(Swi6) protein guarantees tight repression of heterochromatic genes through RNA sequestration and degradation. Stimulated by positively charged residues in the hinge region, RNA competes with methylated histone H3K9 for binding to the chromodomain of HP1(Swi6). Hence, HP1(Swi6) binding to RNA is incompatible with stable heterochromatin association. We propose a model in which an ensemble of HP1(Swi6) proteins functions as a heterochromatin-specific checkpoint, capturing and priming heterochromatic RNAs for the RNA degradation machinery. Sustaining a functional checkpoint requires continuous exchange of HP1(Swi6) within heterochromatin, which explains the dynamic localization of HP1 proteins on heterochromatin.
Collapse
Affiliation(s)
- Claudia Keller
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Rapid progress in our understanding of chromatin regulation has fueled considerable interest in epigenetic mechanisms governing the stable inheritance of chromatin states. Findings from several systems reveal small RNAs of the RNAi pathway as critical determinants of epigenetic gene silencing. Notably, recent investigations into the mechanisms of RNAi-mediated heterochromatin assembly in the fission yeast Schizosaccharomyces pombe have yielded new insights regarding the roles of RNAi in chromatin regulation and epigenetic inheritance.
Collapse
Affiliation(s)
- Hugh P Cam
- Boston College, Biology Department, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
37
|
Uncoupling of genomic and epigenetic signals in the maintenance and inheritance of heterochromatin domains in fission yeast. Genetics 2011; 190:549-57. [PMID: 22143918 PMCID: PMC3276613 DOI: 10.1534/genetics.111.137083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many essential aspects of genome function, including gene expression and chromosome segregation, are mediated throughout development and differentiation by changes in the chromatin state. Along with genomic signals encoded in the DNA, epigenetic processes regulate heritable gene expression patterns. Genomic signals such as enhancers, silencers, and repetitive DNA, while required for the establishment of alternative chromatin states, have an unclear role in epigenetic processes that underlie the persistence of chromatin states throughout development. Here, we demonstrate in fission yeast that the maintenance and inheritance of ectopic heterochromatin domains are independent of the genomic sequences necessary for their de novo establishment. We find that both structural heterochromatin and gene silencing can be stably maintained over an ∼10-kb domain for up to hundreds of cell divisions in the absence of genomic sequences required for heterochromatin establishment, demonstrating the long-term persistence and stability of this chromatin state. The de novo heterochromatin, despite the absence of nucleation sequences, is also stably inherited through meiosis. Together, these studies provide evidence for chromatin-dependent, epigenetic control of gene silencing that is heritable, stable, and self-sustaining, even in the absence of the originating genomic signals.
Collapse
|
38
|
Erdel F, Müller-Ott K, Baum M, Wachsmuth M, Rippe K. Dissecting chromatin interactions in living cells from protein mobility maps. Chromosome Res 2011; 19:99-115. [PMID: 20848178 DOI: 10.1007/s10577-010-9155-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The genome of eukaryotes is organized into a dynamic nucleoprotein complex referred to as chromatin, which can adopt different functional states. Both the DNA and the protein component of chromatin are subject to various post-translational modifications that define the cell's gene expression program. Their readout and establishment occurs in a spatio-temporally coordinated manner that is controlled by numerous chromatin-interacting proteins. Binding to chromatin in living cells can be measured by a spatially resolved analysis of protein mobility using fluorescence microscopy based approaches. Recent advancements in the acquisition of protein mobility data using fluorescence bleaching and correlation methods provide data sets on diffusion coefficients, binding kinetics, and cellular concentrations on different time and length scales. The combination of different techniques is needed to dissect the complex interplay of diffusive translocations, binding events, and mobility constraints of the chromatin environment. While bleaching techniques have their strength in the characterization of particles that are immobile on the second/minute time scale, a correlation analysis is advantageous to characterize transient binding events with millisecond residence time. The application and synergy effects of the different approaches to obtain protein mobility and interaction maps in the nucleus are illustrated for the analysis of heterochromatin protein 1.
Collapse
Affiliation(s)
- Fabian Erdel
- Deutsches Krebsforschungszentrum and BioQuant, Research Group Genome Organization and Function, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
39
|
Lenser T, Weisshart K, Ulbricht T, Klement K, Hemmerich P. Fluorescence Fluctuation Microscopy to Reveal 3D Architecture and Function in the Cell Nucleus. Methods Cell Biol 2010; 98:2-33. [DOI: 10.1016/s0091-679x(10)98001-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Müller KP, Erdel F, Caudron-Herger M, Marth C, Fodor BD, Richter M, Scaranaro M, Beaudouin J, Wachsmuth M, Rippe K. Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy. Biophys J 2009; 97:2876-85. [PMID: 19948116 PMCID: PMC2784559 DOI: 10.1016/j.bpj.2009.08.057] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 08/17/2009] [Accepted: 08/27/2009] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin protein 1 (HP1) is a central factor in establishing and maintaining the repressive heterochromatin state. To elucidate its mobility and interactions, we conducted a comprehensive analysis on different time and length scales by fluorescence fluctuation microscopy in mouse cell lines. The local mobility of HP1alpha and HP1beta was investigated in densely packed pericentric heterochromatin foci and compared with other bona fide euchromatin regions of the nucleus by fluorescence bleaching and correlation methods. A quantitative description of HP1alpha/beta in terms of its concentration, diffusion coefficient, kinetic binding, and dissociation rate constants was derived. Three distinct classes of chromatin-binding sites with average residence times t(res)
Collapse
Affiliation(s)
- Katharina P Müller
- Deutsches Krebsforschungszentrum and BioQuant, Research Group Genome Organization and Function, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zemach A, Paul LK, Stambolsky P, Efroni I, Rotter V, Grafi G. The C-terminal domain of the Arabidopsis AtMBD7 protein confers strong chromatin binding activity. Exp Cell Res 2009; 315:3554-62. [PMID: 19647732 DOI: 10.1016/j.yexcr.2009.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/26/2009] [Accepted: 07/27/2009] [Indexed: 12/01/2022]
Abstract
The Arabidopsis MBD7 (AtMBD7) - a naturally occurring poly MBD protein - was previously found to be functional in binding methylated-CpG dinucleotides in vitro and localized to highly methylated chromocenters in vivo. Furthermore, AtMBD7 has significantly lower mobility within the nucleus conferred by cooperative activity of its three MBD motifs. Here we show that besides the MBD motifs, AtMBD7 possesses a strong chromatin binding domain located at its C-terminus designated sticky-C (StkC). Mutational analysis showed that a glutamic acid residue near the C-terminus is essential though not sufficient for the StkC function. Further analysis demonstrated that this motif can render nuclear proteins highly immobile both in plant and animal cells, without affecting their native subnuclear localization. Thus, the C-terminal, StkC motif plays an important role in fastening AtMBD7 to its chromosomal, CpG-methylated sites. It may be possible to utilize this motif for fastening nuclear proteins to their chromosomal sites both in plant and animal cells for research and gene therapy applications.
Collapse
Affiliation(s)
- Assaf Zemach
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Eukaryotic genomes can be organized into distinct domains of heterochromatin or euchromatin. In the fission yeast Schizosaccharomyces pombe, assembly of heterochromatin at the silent mating-type region is critical for cell fate determination in the form of mating-type switching. Here, we report that the ubiquitin ligase, Msc1, is a critical factor required for proper cell fate determination in S. pombe. In the absence of Msc1, the in vivo mobility of Swi6 at heterochromatic foci is compromised, and centromere heterochromatin becomes hyperenriched with the heterochromatin binding protein Swi6/HP1. However, at the mating-type locus, Swi6 recruitment is defective in the absence of Msc1. Therefore, Msc1 links maintaining dynamic heterochromatin with proper heterochromatin assembly and cell fate determination. These findings have implications for understanding mechanisms of differentiation in other organisms.
Collapse
|
43
|
Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res 2008; 19:427-37. [PMID: 19092133 DOI: 10.1101/gr.086231.108] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Both RNAi-dependent and -independent mechanisms have been implicated in the establishment of heterochromatin domains, which may be stabilized by feedback loops involving chromatin proteins and modifications of histones and DNA. Neurospora crassa sports features of heterochromatin found in higher eukaryotes, namely cytosine methylation (5mC), methylation of histone H3 lysine 9 (H3K9me), and heterochromatin protein 1 (HP1), and is a model to investigate heterochromatin establishment and maintenance. We mapped the distribution of HP1, 5mC, H3K9me3, and H3K4me2 at 100 bp resolution and explored their interplay. HP1, H3K9me3, and 5mC were extensively co-localized and defined 44 heterochromatic domains on linkage group VII, all relics of repeat-induced point mutation. Interestingly, the centromere was found in an approximately 350 kb heterochromatic domain with no detectable H3K4me2. 5mC was not found in genes, in contrast to the situation in plants and animals. H3K9me3 is required for HP1 localization and DNA methylation in N. crassa. In contrast, we found that localization of H3K9me3 was independent of 5mC or HP1 at virtually all heterochromatin regions. In addition, we observed complete restoration of DNA methylation patterns after depletion and reintroduction of the H3K9 methylation machinery. These data show that A:T-rich RIP'd DNA efficiently directs methylation of H3K9, which in turn, directs methylation of associated cytosines.
Collapse
|
44
|
Aucott R, Bullwinkel J, Yu Y, Shi W, Billur M, Brown JP, Menzel U, Kioussis D, Wang G, Reisert I, Weimer J, Pandita RK, Sharma GG, Pandita TK, Fundele R, Singh PB. HP1-beta is required for development of the cerebral neocortex and neuromuscular junctions. ACTA ACUST UNITED AC 2008; 183:597-606. [PMID: 19015315 PMCID: PMC2582898 DOI: 10.1083/jcb.200804041] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HP1 proteins are thought to be modulators of chromatin organization in all mammals, yet their exact physiological function remains unknown. In a first attempt to elucidate the function of these proteins in vivo, we disrupted the murine Cbx1 gene, which encodes the HP1-β isotype, and show that the Cbx1−/−-null mutation leads to perinatal lethality. The newborn mice succumbed to acute respiratory failure, whose likely cause is the defective development of neuromuscular junctions within the endplate of the diaphragm. We also observe aberrant cerebral cortex development in Cbx1−/− mutant brains, which have reduced proliferation of neuronal precursors, widespread cell death, and edema. In vitro cultures of neurospheres from Cbx1−/− mutant brains reveal a dramatic genomic instability. Our results demonstrate that HP1 proteins are not functionally redundant and that they are likely to regulate lineage-specific changes in heterochromatin organization.
Collapse
Affiliation(s)
- Rebecca Aucott
- Division of Immunoepigenetics, Department of Immunology and Cell Biology, Research Center Borstel, Borstel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Soutoglou E, Misteli T. Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev 2007; 17:435-42. [PMID: 17905579 PMCID: PMC2118061 DOI: 10.1016/j.gde.2007.08.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 07/16/2007] [Accepted: 08/17/2007] [Indexed: 01/07/2023]
Abstract
Chromatin is increasingly recognized as a highly dynamic entity. Chromosome sites in lower and higher eukaryotes undergo frequent, rapid, and constrained local motion and occasional slow, long-range movements. Recent observations have revealed some of the functional relevance of chromatin mobility. Paradoxically, both the mobility and immobility of chromatin appear to have functional consequences: Local diffusional motion of chromatin is important in gene regulation, but global chromatin immobility plays a key role in maintenance of genomic stability.
Collapse
Affiliation(s)
- Evi Soutoglou
- National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | | |
Collapse
|
46
|
Isaac S, Walfridsson J, Zohar T, Lazar D, Kahan T, Ekwall K, Cohen A. Interaction of Epe1 with the heterochromatin assembly pathway in Schizosaccharomyces pombe. Genetics 2007; 175:1549-60. [PMID: 17449867 PMCID: PMC1855143 DOI: 10.1534/genetics.106.068684] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 01/05/2007] [Indexed: 11/18/2022] Open
Abstract
Epe1 is a JmjC domain protein that antagonizes heterochromatization in Schizosaccharomyces pombe. Related JmjC domain proteins catalyze a histone demethylation reaction that depends on Fe(II) and alpha-ketoglutarate. However, no detectable demethylase activity is associated with Epe1, and its JmjC domain lacks conservation of Fe(II)-binding residues. We report that Swi6 recruits Epe1 to heterochromatin and that overexpression of epe1+, like mutations in silencing genes or overexpression of swi6+, upregulates expression of certain genes. A significant overlap was observed between the lists of genes that are upregulated by overexpression of epe1+ and those that are upregulated by mutations in histone deacetylase genes. However, most of the common genes are not regulated by Clr4 histone methyltransferase. This suggests that Epe1 interacts with the heterochromatin assembly pathway at the stage of histone deacetylation. Mutational inactivation of Epe1 downregulates approximately 12% of S. pombe genes, and the list of these genes overlaps significantly with the lists of genes that are upregulated by mutations in silencing genes and genes that are hyperacetylated at their promoter regions in clr6-1 mutants. We propose that an interplay between the repressive HDACs activity and Epe1 helps to regulate gene expression in S. pombe.
Collapse
Affiliation(s)
- Sara Isaac
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel 91010
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Genomes are more than linear sequences. In vivo they exist as elaborate physical structures, and their functional properties are strongly determined by their cellular organization. I discuss here the functional relevance of spatial and temporal genome organization at three hierarchical levels: the organization of nuclear processes, the higher-order organization of the chromatin fiber, and the spatial arrangement of genomes within the cell nucleus. Recent insights into the cell biology of genomes have overturned long-held dogmas and have led to new models for many essential cellular processes, including gene expression and genome stability.
Collapse
Affiliation(s)
- Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Sugiyama T, Cam HP, Sugiyama R, Noma KI, Zofall M, Kobayashi R, Grewal SIS. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 2007; 128:491-504. [PMID: 17289569 DOI: 10.1016/j.cell.2006.12.035] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/17/2006] [Accepted: 12/28/2006] [Indexed: 12/20/2022]
Abstract
Transcriptional gene silencing (TGS) is the mechanism generally thought by which heterochromatin effects silencing. However, recent discovery in fission yeast of a cis-acting posttranscriptional gene-silencing (cis-PTGS) pathway operated by the RNAi machinery at heterochromatin challenges the role of TGS in heterochromatic silencing. Here, we describe a multienzyme effector complex (termed SHREC) that mediates heterochromatic TGS in fission yeast. SHREC consists of a core quartet of proteins - Clr1, Clr2, Clr3, and Mit1 - which distribute throughout all major heterochromatin domains to effect TGS via distinct activities associated with the histone deacetylase Clr3 and the SNF2 chromatin-remodeling factor homolog Mit1. SHREC is also recruited to the telomeres by multiple independent mechanisms involving telomere binding protein Ccq1 cooperating with Taz1 and the RNAi machinery, and to euchromatic sites, via mechanism(s) distinct from its heterochromatin localization aided by Swi6/HP1. Our analyses suggest that SHREC regulates nucleosome positioning to assemble higher-order chromatin structures critical for heterochromatin functions.
Collapse
Affiliation(s)
- Tomoyasu Sugiyama
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The formation of heterochromatin, which requires methylation of histone H3 at lysine 9 and the subsequent recruitment of chromodomain proteins such as heterochromatin protein HP1, serves as a model for the role of histone modifications and chromatin assembly in epigenetic control of the genome. Recent studies in Schizosaccharomyces pombe indicate that heterochromatin serves as a dynamic platform to recruit and spread a myriad of regulatory proteins across extended domains to control various chromosomal processes, including transcription, chromosome segregation and long-range chromatin interactions.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
50
|
Abstract
One of the oldest unsolved problems in genetics is the observation that gene silencing can 'spread' along a chromosome. Although spreading has been widely perceived as a process of long-range assembly of heterochromatin proteins, such 'oozing' might not apply in most cases. Rather, long-range silencing seems to be a dynamic process, involving local diffusion of histone-modifying enzymes from source binding sites to low-affinity sites nearby. Discontinuous silencing might reflect looping interactions, whereas the spreading of continuous silencing might be driven by the processive movement of RNA or DNA polymerases. We review the evidence for the spreading of silencing in many contexts and organisms and conclude that multiple mechanisms have evolved that silence genes at a distance.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
| | | |
Collapse
|