1
|
Liu K, Wang M, Wang L, Wang X, Feng H, Dai Q, Zhang C, Yu H. RMI1 is essential for maintaining rice genome stability at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1735-1750. [PMID: 39569466 DOI: 10.1111/tpj.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Heat is a critical environmental stress for plant survival. One of its harmful effects on the cells is the disruption of genome integrity. However, the mechanisms by which plants cope with heat-induced DNA damage remain largely unknown. RMI1, a component of the RTR (RECQ4-TOP3α-RMI1) complex, plays a pivotal role in maintaining genome stability. In this study, we identified the target gene RMI1 by characterizing a high-temperature-sensitive mutant. The growth and development of rmi1-1 seedlings carrying a non-frameshift mutation in RMI1 were hindered at 38°C. Abnormal mitotic chromosome behaviours ultimately led to the cell death of root tips. Additionally, the presence of chromosome fragments during anaphase I caused pollen abortion and sterility in rmi1-1 plants. Yeast two-hybrid assays revealed that the interactions between RMI1-1 and RECQ4 or TOP3α were weakened with increasing temperature and entirely ceased at 36°C. In contrast, the functional RMI1 maintained its interactions with RECQ4 or TOP3α under the same conditions. These results indicate that the non-frameshift mutation in RMI1 disrupts the formation of the RTR complex at high temperatures, leading to defects in DNA repair and increased sensitivity of rmi1-1 under heat stress. However, embryos of the rmi1-cr2 mutant with a frameshift mutation in RMI1 exhibited complete lethality. In addition, the overexpression of RMI1 enhanced the heat tolerance in rice. These findings provide insights into the molecular mechanisms that RMI1 responds to high temperatures by maintaining genome stability in rice.
Collapse
Affiliation(s)
- Kangwei Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Mengna Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lengjing Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaofeng Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Haiyang Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qiang Dai
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Chao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
2
|
Pannafino G, Chen JJ, Mithani V, Payero L, Gioia M, Crickard JB, Alani E. The Dmc1 recombinase physically interacts with and promotes the meiotic crossover functions of the Mlh1-Mlh3 endonuclease. Genetics 2024; 227:iyae066. [PMID: 38657110 PMCID: PMC11228845 DOI: 10.1093/genetics/iyae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80% of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution. We performed a gene dosage screen in baker's yeast to identify novel genetic interactors with Mlh1-Mlh3. Specifically, we looked for genes whose lowered dosage reduced meiotic crossing over using sensitized mlh3 alleles that disrupt the stability of the Mlh1-Mlh3 complex and confer defects in mismatch repair but do not disrupt meiotic crossing over. To our surprise we identified genetic interactions between MLH3 and DMC1, the recombinase responsible for recombination between homologous chromosomes during meiosis. We then showed that Mlh3 physically interacts with Dmc1 in vitro and in vivo. Partial complementation of Mlh3 crossover functions was observed when MLH3 was expressed under the control of the CLB1 promoter (NDT80 regulon), suggesting that Mlh3 function can be provided late in meiotic prophase at some functional cost. A model for how Dmc1 could facilitate Mlh1-Mlh3's role in crossover resolution is presented.
Collapse
Affiliation(s)
- Gianno Pannafino
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jun Jie Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Viraj Mithani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Lisette Payero
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Michael Gioia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - J Brooks Crickard
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Altmannova V, Firlej M, Müller F, Janning P, Rauleder R, Rousova D, Schäffler A, Bange T, Weir JR. Biochemical characterisation of Mer3 helicase interactions and the protection of meiotic recombination intermediates. Nucleic Acids Res 2023; 51:4363-4384. [PMID: 36942481 PMCID: PMC10201424 DOI: 10.1093/nar/gkad175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Crossing over between homologs is critical for the stable segregation of chromosomes during the first meiotic division. Saccharomyces cerevisiae Mer3 (HFM1 in mammals) is a SF2 helicase and member of the ZMM group of proteins, that facilitates the formation of the majority of crossovers during meiosis. Here, we describe the structural organisation of Mer3 and using AlphaFold modelling and XL-MS we further characterise the previously described interaction with Mlh1-Mlh2. We find that Mer3 also forms a previously undescribed complex with the recombination regulating factors Top3 and Rmi1 and that this interaction is competitive with Sgs1BLM helicase. Using in vitro reconstituted D-loop assays we show that Mer3 inhibits the anti-recombination activity of Sgs1 helicase, but only in the presence of Dmc1. Thus we provide a mechanism whereby Mer3 interacts with a network of proteins to protect Dmc1 derived D-loops from dissolution.
Collapse
Affiliation(s)
- Veronika Altmannova
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Magdalena Firlej
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Rahel Rauleder
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Dorota Rousova
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Andreas Schäffler
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Tanja Bange
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany
| | - John R Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Chen P, De Winne N, De Jaeger G, Ito M, Heese M, Schnittger A. KNO1‐mediated autophagic degradation of the Bloom syndrome complex component RMI1 promotes homologous recombination. EMBO J 2023; 42:e111980. [PMID: 36970874 PMCID: PMC10183828 DOI: 10.15252/embj.2022111980] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/30/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
Homologous recombination (HR) is a key DNA damage repair pathway that is tightly adjusted to the state of a cell. A central regulator of homologous recombination is the conserved helicase-containing Bloom syndrome complex, renowned for its crucial role in maintaining genome integrity. Here, we show that in Arabidopsis thaliana, Bloom complex activity is controlled by selective autophagy. We find that the recently identified DNA damage regulator KNO1 facilitates K63-linked ubiquitination of RMI1, a structural component of the complex, thereby triggering RMI1 autophagic degradation and resulting in increased homologous recombination. Conversely, reduced autophagic activity makes plants hypersensitive to DNA damage. KNO1 itself is also controlled at the level of proteolysis, in this case mediated by the ubiquitin-proteasome system, becoming stabilized upon DNA damage via two redundantly acting deubiquitinases, UBP12 and UBP13. These findings uncover a regulatory cascade of selective and interconnected protein degradation steps resulting in a fine-tuned HR response upon DNA damage.
Collapse
|
5
|
Song Q, Hu Y, Yin A, Wang H, Yin Q. DNA Holliday Junction: History, Regulation and Bioactivity. Int J Mol Sci 2022; 23:9730. [PMID: 36077130 PMCID: PMC9456528 DOI: 10.3390/ijms23179730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
DNA Holliday junction (HJ) is a four-way stranded DNA intermediate that formed in replication fork regression, homology-dependent repair and mitosis, performing a significant role in genomic stability. Failure to remove HJ can induce an acceptable replication fork stalling and DNA damage in normal cells, leading to a serious chromosomal aberration and even cell death in HJ nuclease-deficient tumor cells. Thus, HJ is becoming an attractive target in cancer therapy. However, the development of HJ-targeting ligand faces great challenges because of flexile cavities on the center of HJs. This review introduces the discovery history of HJ, elucidates the formation and dissociation procedures of HJ in corresponding bio-events, emphasizes the importance of prompt HJ-removing in genome stability, and summarizes recent advances in HJ-based ligand discovery. Our review indicate that target HJ is a promising approach in oncotherapy.
Collapse
Affiliation(s)
- Qinqin Song
- State/Key Laboratory of Microbial Technology, Shandong University, 72 Jimo Binhai Road, Qingdao 266237, China
| | - Yuemiao Hu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Anqi Yin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Qikun Yin
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, 30 Qingquan Road, Yantai 264005, China
- Bohai Rim Advanced Research Institute for Drug Discovery, 198 Binhai East Road, Yantai 264005, China
| |
Collapse
|
6
|
Hodson C, Low JKK, van Twest S, Jones SE, Swuec P, Murphy V, Tsukada K, Fawkes M, Bythell-Douglas R, Davies A, Holien JK, O'Rourke JJ, Parker BL, Glaser A, Parker MW, Mackay JP, Blackford AN, Costa A, Deans AJ. Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability. Proc Natl Acad Sci U S A 2022; 119:e2109093119. [PMID: 35115399 PMCID: PMC8832983 DOI: 10.1073/pnas.2109093119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.
Collapse
Affiliation(s)
- Charlotte Hodson
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Samuel E Jones
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | - Paolo Swuec
- Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Vincent Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Kaima Tsukada
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Matthew Fawkes
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| | | | - Jessica K Holien
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
- School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Michael W Parker
- Structural Biology Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew N Blackford
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia;
- Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
7
|
Duplex DNA and BLM regulate gate opening by the human TopoIIIα-RMI1-RMI2 complex. Nat Commun 2022; 13:584. [PMID: 35102151 PMCID: PMC8803869 DOI: 10.1038/s41467-022-28082-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Topoisomerase IIIα is a type 1A topoisomerase that forms a complex with RMI1 and RMI2 called TRR in human cells. TRR plays an essential role in resolving DNA replication and recombination intermediates, often alongside the helicase BLM. While the TRR catalytic cycle is known to involve a protein-mediated single-stranded (ss)DNA gate, the detailed mechanism is not fully understood. Here, we probe the catalytic steps of TRR using optical tweezers and fluorescence microscopy. We demonstrate that TRR forms an open gate in ssDNA of 8.5 ± 3.8 nm, and directly visualize binding of a second ssDNA or double-stranded (ds)DNA molecule to the open TRR-ssDNA gate, followed by catenation in each case. Strikingly, dsDNA binding increases the gate size (by ~16%), while BLM alters the mechanical flexibility of the gate. These findings reveal an unexpected plasticity of the TRR-ssDNA gate size and suggest that TRR-mediated transfer of dsDNA may be more relevant in vivo than previously believed. Here the authors probe the cleavage and gate opening of single-stranded DNA by the human topoisomerase TRR using a unique single-molecule strategy to reveal structural plasticity in response to both double-stranded DNA and the helicase BLM.
Collapse
|
8
|
Gupta SV, Schmidt KH. Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases. Genes (Basel) 2020; 11:E205. [PMID: 32085395 PMCID: PMC7074392 DOI: 10.3390/genes11020205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
| | - Kristina Hildegard Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South, Florida, Tampa, FL 33620, USA;
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research, Institute, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Kaur H, Gn K, Lichten M. Unresolved Recombination Intermediates Cause a RAD9-Dependent Cell Cycle Arrest in Saccharomyces cerevisiae. Genetics 2019; 213:805-818. [PMID: 31562181 PMCID: PMC6827386 DOI: 10.1534/genetics.119.302632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are crossover precursors. In vitro studies have suggested that this may be due to dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation. To ask whether dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth (RTG), a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during RTG delayed joint molecule resolution, but, ultimately, most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9 ∆ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in Rmi1-depleted rad9 ∆ cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Krishnaprasad Gn
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
10
|
Wild P, Susperregui A, Piazza I, Dörig C, Oke A, Arter M, Yamaguchi M, Hilditch AT, Vuina K, Chan KC, Gromova T, Haber JE, Fung JC, Picotti P, Matos J. Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis. Mol Cell 2019; 75:859-874.e4. [PMID: 31351878 PMCID: PMC6715774 DOI: 10.1016/j.molcel.2019.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Aitor Susperregui
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ilaria Piazza
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Christian Dörig
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ashwini Oke
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Meret Arter
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Miyuki Yamaguchi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Alexander T Hilditch
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Karla Vuina
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ki Choi Chan
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Tatiana Gromova
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Jennifer C Fung
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Paola Picotti
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
11
|
Genome Instability Is Promoted by the Chromatin-Binding Protein Spn1 in Saccharomyces cerevisiae. Genetics 2018; 210:1227-1237. [PMID: 30301740 DOI: 10.1534/genetics.118.301600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023] Open
Abstract
Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.
Collapse
|
12
|
Upregulation of dNTP Levels After Telomerase Inactivation Influences Telomerase-Independent Telomere Maintenance Pathway Choice in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018; 8:2551-2558. [PMID: 29848621 PMCID: PMC6071591 DOI: 10.1534/g3.118.200280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In 10–15% of cancers, telomere length is maintained by a telomerase-independent, recombination-mediated pathway called alternative lengthening of telomeres (ALT). ALT mechanisms were first seen, and have been best studied, in telomerase-null Saccharomyces cerevisiae cells called “survivors”. There are two main types of survivors. Type I survivors amplify Y′ subtelomeric elements while type II survivors, similar to the majority of human ALT cells, amplify the terminal telomeric repeats. Both types of survivors require Rad52, a key homologous recombination protein, and Pol32, a non-essential subunit of DNA polymerase δ. A number of additional proteins have been reported to be important for either type I or type II survivor formation, but it is still unclear how these two pathways maintain telomeres. In this study, we performed a genome-wide screen to identify novel genes that are important for the formation of type II ALT-like survivors. We identified 23 genes that disrupt type II survivor formation when deleted. 17 of these genes had not been previously reported to do so. Several of these genes (DUN1, CCR4, and MOT2) are known to be involved in the regulation of dNTP levels. We find that dNTP levels are elevated early after telomerase inactivation and that this increase favors the formation of type II survivors.
Collapse
|
13
|
Garnier F, Debat H, Nadal M. Type IA DNA Topoisomerases: A Universal Core and Multiple Activities. Methods Mol Biol 2018; 1703:1-20. [PMID: 29177730 DOI: 10.1007/978-1-4939-7459-7_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All the type IA topoisomerases display universal characteristics relying on a core region basically responsible for the transesterification and the strand passage reaction. First limited to the bacterial domain for a long time, these enzymes were further retrieved in Archaea and Eukarya as well. This is representative of an extremely ancient origin, probably due to an inheritance from the RNA world. As remaining evidence, some current topoisomerases IA have retained a RNA topoisomerase activity. Despite the presence of this core region in all of these TopoIAs, some differences exist and are originated from variable regions, located essentially within both extremities, conferring on them their specificities. During the last 2 decades the evidence of multiple activities and dedicated roles highlighted the importance of the topoisomerases IA. It is now obvious that topoisomerases IA are key enzymes involved in the maintenance of the genome stability. The discovery of these new activities was done thanks to the use of more accurate assays, based on new sophisticated DNA substrates.
Collapse
Affiliation(s)
- Florence Garnier
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Hélène Debat
- Université Versailles St-Quentin, Institut Jacques Monod, UMR 7592 CNRS-Univ. Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France
| | - Marc Nadal
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, 15, rue Hélène Brion, Paris, 75013, France.
| |
Collapse
|
14
|
Claussin C, Porubský D, Spierings DCJ, Halsema N, Rentas S, Guryev V, Lansdorp PM, Chang M. Genome-wide mapping of sister chromatid exchange events in single yeast cells using Strand-seq. eLife 2017; 6:e30560. [PMID: 29231811 PMCID: PMC5734873 DOI: 10.7554/elife.30560] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Homologous recombination involving sister chromatids is the most accurate, and thus most frequently used, form of recombination-mediated DNA repair. Despite its importance, sister chromatid recombination is not easily studied because it does not result in a change in DNA sequence, making recombination between sister chromatids difficult to detect. We have previously developed a novel DNA template strand sequencing technique, called Strand-seq, that can be used to map sister chromatid exchange (SCE) events genome-wide in single cells. An increase in the rate of SCE is an indicator of elevated recombination activity and of genome instability, which is a hallmark of cancer. In this study, we have adapted Strand-seq to detect SCE in the yeast Saccharomyces cerevisiae. We provide the first quantifiable evidence that most spontaneous SCE events in wild-type cells are not due to the repair of DNA double-strand breaks.
Collapse
Affiliation(s)
- Clémence Claussin
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - David Porubský
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Nancy Halsema
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | | | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
- Terry Fox LaboratoryBC Cancer AgencyVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University Medical Center GroningenUniversity of GroningenGroningenNetherlands
| |
Collapse
|
15
|
Sgs1 Binding to Rad51 Stimulates Homology-Directed DNA Repair in Saccharomyces cerevisiae. Genetics 2017; 208:125-138. [PMID: 29162625 PMCID: PMC5753853 DOI: 10.1534/genetics.117.300545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/16/2017] [Indexed: 12/23/2022] Open
Abstract
Accurate repair of DNA breaks is essential to maintain genome integrity and cellular fitness. Sgs1, the sole member of the RecQ family of DNA helicases in Saccharomyces cerevisiae, is important for both early and late stages of homology-dependent repair. Its large number of physical and genetic interactions with DNA recombination, repair, and replication factors has established Sgs1 as a key player in the maintenance of genome integrity. To determine the significance of Sgs1 binding to the strand-exchange factor Rad51, we have identified a single amino acid change at the C-terminal of the helicase core of Sgs1 that disrupts Rad51 binding. In contrast to an SGS1 deletion or a helicase-defective sgs1 allele, this new separation-of-function allele, sgs1-FD, does not cause DNA damage hypersensitivity or genome instability, but exhibits negative and positive genetic interactions with sae2Δ, mre11Δ, exo1Δ, srs2Δ, rrm3Δ, and pol32Δ that are distinct from those of known sgs1 mutants. Our findings suggest that the Sgs1-Rad51 interaction stimulates homologous recombination (HR). However, unlike sgs1 mutations, which impair the resection of DNA double-strand ends, negative genetic interactions of the sgs1-FD allele are not suppressed by YKU70 deletion. We propose that the Sgs1-Rad51 interaction stimulates HR by facilitating the formation of the presynaptic Rad51 filament, possibly by Sgs1 competing with single-stranded DNA for replication protein A binding during resection.
Collapse
|
16
|
Li F, Ball LG, Fan L, Hanna M, Xiao W. Sgs1 helicase is required for efficient PCNA monoubiquitination and translesion DNA synthesis in Saccharomyces cerevisiae. Curr Genet 2017; 64:459-468. [DOI: 10.1007/s00294-017-0753-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
|
17
|
Bermúdez-López M, Villoria MT, Esteras M, Jarmuz A, Torres-Rosell J, Clemente-Blanco A, Aragon L. Sgs1's roles in DNA end resection, HJ dissolution, and crossover suppression require a two-step SUMO regulation dependent on Smc5/6. Genes Dev 2017; 30:1339-56. [PMID: 27298337 PMCID: PMC4911932 DOI: 10.1101/gad.278275.116] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 01/10/2023]
Abstract
In this study, Bermudez-Lopez et al. investigated the molecular regulation of the RecQ helicase (Bloom/Sgs1), which plays critical roles during DNA repair by homologous recombination. The authors provide new insights into the regulation of recruitment and activation of Sgs1 at damaged sites by showing that the Sgs1 is recruited and activated at sites of DNA damage by the Smc5/6 complex through SUMOylation. The RecQ helicase Sgs1 plays critical roles during DNA repair by homologous recombination, from end resection to Holliday junction (HJ) dissolution. Sgs1 has both pro- and anti-recombinogenic roles, and therefore its activity must be tightly regulated. However, the controls involved in recruitment and activation of Sgs1 at damaged sites are unknown. Here we show a two-step role for Smc5/6 in recruiting and activating Sgs1 through SUMOylation. First, auto-SUMOylation of Smc5/6 subunits leads to recruitment of Sgs1 as part of the STR (Sgs1–Top3–Rmi1) complex, mediated by two SUMO-interacting motifs (SIMs) on Sgs1 that specifically recognize SUMOylated Smc5/6. Second, Smc5/6-dependent SUMOylation of Sgs1 and Top3 is required for the efficient function of STR. Sgs1 mutants impaired in recognition of SUMOylated Smc5/6 (sgs1-SIMΔ) or SUMO-dead alleles (sgs1-KR) exhibit unprocessed HJs at damaged replication forks, increased crossover frequencies during double-strand break repair, and severe impairment in DNA end resection. Smc5/6 is a key regulator of Sgs1's recombination functions.
Collapse
Affiliation(s)
- Marcelino Bermúdez-López
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom; Deptartment of Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - María Teresa Villoria
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Esteras
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom
| | - Adam Jarmuz
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom
| | - Jordi Torres-Rosell
- Deptartment of Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, 25198 Lleida, Spain
| | - Andres Clemente-Blanco
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | - Luis Aragon
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, United Kingdom
| |
Collapse
|
18
|
DNA Damage Tolerance Pathway Choice Through Uls1 Modulation of Srs2 SUMOylation in Saccharomyces cerevisiae. Genetics 2017; 206:513-525. [PMID: 28341648 DOI: 10.1534/genetics.116.196568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/09/2017] [Indexed: 01/24/2023] Open
Abstract
DNA damage tolerance and homologous recombination pathways function to bypass replication-blocking lesions and ensure completion of DNA replication. However, inappropriate activation of these pathways may lead to increased mutagenesis or formation of deleterious recombination intermediates, often leading to cell death or cancer formation in higher organisms. Post-translational modifications of PCNA regulate the choice of repair pathways at replication forks. Its monoubiquitination favors translesion synthesis, while polyubiquitination stimulates template switching. Srs2 helicase binds to small ubiquitin-related modifier (SUMO)-modified PCNA to suppress a subset of Rad51-dependent homologous recombination. Conversely, SUMOylation of Srs2 attenuates its interaction with PCNA Sgs1 helicase and Mus81 endonuclease are crucial for disentanglement of repair intermediates at the replication fork. Deletion of both genes is lethal and can be rescued by inactivation of Rad51-dependent homologous recombination. Here we show that Saccharomyces cerevisiae Uls1, a member of the Swi2/Snf2 family of ATPases and a SUMO-targeted ubiquitin ligase, physically interacts with both PCNA and Srs2, and promotes Srs2 binding to PCNA by downregulating Srs2-SUMO levels at replication forks. We also identify deletion of ULS1 as a suppressor of mus81Δ sgs1Δ synthetic lethality and hypothesize that uls1Δ mutation results in a partial inactivation of the homologous recombination pathway, detrimental in cells devoid of both Sgs1 and Mus81 We thus propose that Uls1 contributes to the pathway where intermediates generated at replication forks are dismantled by Srs2 bound to SUMO-PCNA. Upon ULS1 deletion, accumulating Srs2-SUMO-unable to bind PCNA-takes part in an alternative PCNA-independent recombination repair salvage pathway(s).
Collapse
|
19
|
Goto-Ito S, Yamagata A, Takahashi TS, Sato Y, Fukai S. Structural basis of the interaction between Topoisomerase IIIβ and the TDRD3 auxiliary factor. Sci Rep 2017; 7:42123. [PMID: 28176834 PMCID: PMC5296760 DOI: 10.1038/srep42123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Topoisomerase IIIβ (TOP3β) is a DNA/RNA topoisomerase that has been implicated in epigenetic or translational control of gene expression. In cells, TOP3β co-exists with its specific auxiliary factor, TDRD3. TDRD3 serves as a scaffold protein to recruit TOP3β to its DNA/RNA substrates accumulating in specific cellular sites such as methylated chromatins or neural stress granules. Here we report the crystal structures of the catalytic domain of TOP3β, the DUF1767–OB-fold domains of TDRD3 and their complex at 3.44 Å, 1.62 Å and 3.6 Å resolutions, respectively. The toroidal-shaped catalytic domain of TOP3β binds the OB-fold domain of TDRD3. The TDRD3 OB-fold domain harbors the insertion loop, which is protruding from the core structure. Both the insertion loop and core region interact with TOP3β. Our pull-down binding assays showed that hydrophobic characters of the core surface and the amino- and carboxy-terminal regions of the insertion loop are essential for the interaction. Furthermore, by comparison with the structure of the homologous Topoisomerase IIIα (TOP3α)–RMI1 complex, we identified Arg96, Val109, Phe139 and the short insertion loop of TDRD3 as the critical structural elements for the specific interaction with TOP3β to avoid the non-cognate interaction with TOP3α.
Collapse
Affiliation(s)
- Sakurako Goto-Ito
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan
| | - Atsushi Yamagata
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan
| | - Tomio S Takahashi
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan
| | - Yusuke Sato
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan
| | - Shuya Fukai
- Structural Biology Laboratory, Structural Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,CREST, JST, Saitama 332-0012, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan
| |
Collapse
|
20
|
Bermúdez-López M, Aragon L. Smc5/6 complex regulates Sgs1 recombination functions. Curr Genet 2016; 63:381-388. [PMID: 27664093 PMCID: PMC5422486 DOI: 10.1007/s00294-016-0648-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 11/07/2022]
Abstract
The family of RecQ helicases is evolutionary conserved from bacteria to humans and play key roles in genome stability. The budding yeast RecQ helicase Sgs1 has been implicated in several key processes during the repair of DNA damage by homologous recombination as part of the STR complex (Sgs1-Top3-Rmi1). Limited information on how is Sgs1 recruited and regulated at sites of damage is available. Recently, we and others have uncover a direct link between the Smc5/6 complex and Sgs1. Most roles of Sgs1 during recombination, including DNA end resection, Holiday junction dissolution, and crossover suppression, are regulated through Mms21-dependent SUMOylation. Smc5/6 first acts as a recruiting platform for STR and then SUMOylates STR components to regulate their function. Importantly, the assembly of STR is totally independent of Smc5/6. Here, we provide a brief overview of STR regulation by Smc5/6.
Collapse
Affiliation(s)
| | - Luis Aragon
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
21
|
Martino J, Bernstein KA. The Shu complex is a conserved regulator of homologous recombination. FEMS Yeast Res 2016; 16:fow073. [PMID: 27589940 DOI: 10.1093/femsyr/fow073] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2016] [Indexed: 02/06/2023] Open
Abstract
Homologous recombination (HR) is an error-free DNA repair mechanism that maintains genome integrity by repairing double-strand breaks (DSBs). Defects in HR lead to genomic instability and are associated with cancer predisposition. A key step in HR is the formation of Rad51 nucleoprotein filaments which are responsible for the homology search and strand invasion steps that define HR. Recently, the budding yeast Shu complex has emerged as an important regulator of Rad51 along with the other Rad51 mediators including Rad52 and the Rad51 paralogs, Rad55-Rad57. The Shu complex is a heterotetramer consisting of two novel Rad51 paralogs, Psy3 and Csm2, along with Shu1 and a SWIM domain-containing protein, Shu2. Studies done primarily in yeast have provided evidence that the Shu complex regulates HR at several types of DNA DSBs (i.e. replication-associated and meiotic DSBs) and that its role in HR is highly conserved across eukaryotic lineages. This review highlights the main findings of these studies and discusses the proposed specific roles of the Shu complex in many aspects of recombination-mediated DNA repair.
Collapse
Affiliation(s)
- Julieta Martino
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| |
Collapse
|
22
|
Ahmad M, Xue Y, Lee SK, Martindale JL, Shen W, Li W, Zou S, Ciaramella M, Debat H, Nadal M, Leng F, Zhang H, Wang Q, Siaw GEL, Niu H, Pommier Y, Gorospe M, Hsieh TS, Tse-Dinh YC, Xu D, Wang W. RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res 2016; 44:6335-49. [PMID: 27257063 PMCID: PMC4994864 DOI: 10.1093/nar/gkw508] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022] Open
Abstract
DNA Topoisomerases are essential to resolve topological problems during DNA metabolism in all species. However, the prevalence and function of RNA topoisomerases remain uncertain. Here, we show that RNA topoisomerase activity is prevalent in Type IA topoisomerases from bacteria, archaea, and eukarya. Moreover, this activity always requires the conserved Type IA core domains and the same catalytic residue used in DNA topoisomerase reaction; however, it does not absolutely require the non-conserved carboxyl-terminal domain (CTD), which is necessary for relaxation reactions of supercoiled DNA. The RNA topoisomerase activity of human Top3β differs from that of Escherichia coli topoisomerase I in that the former but not the latter requires the CTD, indicating that topoisomerases have developed distinct mechanisms during evolution to catalyze RNA topoisomerase reactions. Notably, Top3β proteins from several animals associate with polyribosomes, which are units of mRNA translation, whereas the Top3 homologs from E. coli and yeast lack the association. The Top3β-polyribosome association requires TDRD3, which directly interacts with Top3β and is present in animals but not bacteria or yeast. We propose that RNA topoisomerases arose in the early RNA world, and that they are retained through all domains of DNA-based life, where they mediate mRNA translation as part of polyribosomes in animals.
Collapse
Affiliation(s)
- Muzammil Ahmad
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Yutong Xue
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Seung Kyu Lee
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- RNA Regulation Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Weiping Shen
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Wen Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PeKing University, Beijing 1000871, China
| | - Sige Zou
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Maria Ciaramella
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples 80131, Italy
| | - Hélène Debat
- Institut Jacques Monod, CNRS-Université Paris Diderot-UMR7592, 15 rue Hélène Brion, 75205 Paris Cedex, France
| | - Marc Nadal
- Institut Jacques Monod, CNRS-Université Paris Diderot-UMR7592, 15 rue Hélène Brion, 75205 Paris Cedex, France
| | - Fenfei Leng
- Department of Chemistry & Biochemistry, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Quan Wang
- Molecular and Cellular Biochemistry Department, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Grace Ee-Lu Siaw
- Institute of Cellular Organistic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hengyao Niu
- Molecular and Cellular Biochemistry Department, Indiana University, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Myriam Gorospe
- RNA Regulation Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Tao-Shih Hsieh
- Institute of Cellular Organistic Biology, Academia Sinica, Taipei 11529, Taiwan Department of Biochemistry, Duke University Medical Center, Durham, NC 73532, USA
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry & Biochemistry, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PeKing University, Beijing 1000871, China
| | - Weidong Wang
- Genome Instability and Chromatin Remodeling Section, Lab of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
23
|
Jagut M, Hamminger P, Woglar A, Millonigg S, Paulin L, Mikl M, Dello Stritto MR, Tang L, Habacher C, Tam A, Gallach M, von Haeseler A, Villeneuve AM, Jantsch V. Separable Roles for a Caenorhabditis elegans RMI1 Homolog in Promoting and Antagonizing Meiotic Crossovers Ensure Faithful Chromosome Inheritance. PLoS Biol 2016; 14:e1002412. [PMID: 27011106 PMCID: PMC4807110 DOI: 10.1371/journal.pbio.1002412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/19/2016] [Indexed: 11/30/2022] Open
Abstract
During the first meiotic division, crossovers (COs) between homologous chromosomes ensure their correct segregation. COs are produced by homologous recombination (HR)-mediated repair of programmed DNA double strand breaks (DSBs). As more DSBs are induced than COs, mechanisms are required to establish a regulated number of COs and to repair remaining intermediates as non-crossovers (NCOs). We show that the Caenorhabditis elegans RMI1 homolog-1 (RMH-1) functions during meiosis to promote both CO and NCO HR at appropriate chromosomal sites. RMH-1 accumulates at CO sites, dependent on known pro-CO factors, and acts to promote CO designation and enforce the CO outcome of HR-intermediate resolution. RMH-1 also localizes at NCO sites and functions in parallel with SMC-5 to antagonize excess HR-based connections between chromosomes. Moreover, RMH-1 also has a major role in channeling DSBs into an NCO HR outcome near the centers of chromosomes, thereby ensuring that COs form predominantly at off-center positions. A nematode homolog of the conserved DNA repair factor RMI1 plays multiple genetically separable roles that together ensure the faithful inheritance of intact genomes during sexual reproduction. During meiosis, faithful separation of chromosomes into gametes is essential for fertility and healthy progeny. During the first meiotic division, crossovers (CO) between parental homologs ensure their correct segregation. Programmed DNA double strand breaks (DSBs) and resection steps generate single-stranded overhangs that invade a sister chromatid of the homolog to initiate homologous recombination. This culminates in the generation of a DNA double Holliday junction (dHJ). This can be acted upon by resolvases to produce CO and non-crossover (NCO) products, depending on where the resolvases cut the DNA. Alternatively, NCOs can also be produced by decatenation via the RecQ helicase–topoisomeraseIII–Rmi1 (RTR) complex. The mammalian RTR contains a topoisomerase, Bloom’s helicase, and RMI1/2 scaffolding components. It disassembles dHJs in vitro and contributes the major NCO activity in mitosis. Here, we provide evidence that the Caenorhabditis elegans RMH-1 functions in distinct complexes during meiosis to produce both COs and NCOs in an in vivo animal model system. Strikingly, RMH-1 spatially regulates the distribution of COs on chromosomes, demonstrating that the RTR complex can act locally within specific chromosome domains.
Collapse
Affiliation(s)
- Marlène Jagut
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Alexander Woglar
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sophia Millonigg
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Luis Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Martin Mikl
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Maria Rosaria Dello Stritto
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Lois Tang
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Cornelia Habacher
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Angela Tam
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Miguel Gallach
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna and Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Austria
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
24
|
Manhart CM, Alani E. Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair (Amst) 2016; 38:84-93. [PMID: 26686657 PMCID: PMC4740264 DOI: 10.1016/j.dnarep.2015.11.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/14/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
Abstract
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.
Collapse
Affiliation(s)
- Carol M Manhart
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 457 Biotechnology Building, Ithaca, NY 14853-2703, USA.
| |
Collapse
|
25
|
Kennedy JA, Syed S, Schmidt KH. Structural Motifs Critical for In Vivo Function and Stability of the RecQ-Mediated Genome Instability Protein Rmi1. PLoS One 2015; 10:e0145466. [PMID: 26717309 PMCID: PMC4696737 DOI: 10.1371/journal.pone.0145466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
Rmi1 is a member of the Sgs1/Top3/Rmi1 (STR) complex of Saccharomyces cerevisiae and has been implicated in binding and catalytic enhancement of Top3 in the dissolution of double Holliday junctions. Deletion of RMI1 results in a severe growth defect resembling that of top3Δ. Despite the importance of Rmi1 for cell viability, little is known about its functional domains, particularly in Rmi1 of S. cerevisiae, which does not have a resolved crystal structure and the primary sequence is poorly conserved. Here, we rationally designed point mutations based on bioinformatics analysis of order/disorder and helical propensity to define three functionally important motifs in yeast Rmi1 outside of the proposed OB-fold core. Replacing residues F63, Y218 and E220 with proline, designed to break predicted N-terminal and C-terminal α-helices, or with lysine, designed to eliminate hydrophobic residues at positions 63 and 218, while maintaining α-helical structure, caused hypersensitivity to hydroxyurea. Further, Y218P and E220P mutations, but not F63P and F63K mutations, led to reduced Rmi1 levels compared to wild type Rmi1, suggesting a role of the C-terminal α-helix in Rmi1 stabilization, most likely by protecting the integrity of the OB-fold core. Our bioinformatics analysis also suggests the presence of a disordered linker between the N-terminal α-helix and the OB fold core; a P88A mutation, designed to increase helicity in this linker, also impaired Rmi1 function in vivo. In conclusion, we propose a model that maps all functionally important structural features for yeast Rmi1 based on biological findings in yeast and structure-prediction-based alignment with the recently established crystal structure of the N-terminus of human Rmi1.
Collapse
Affiliation(s)
- Jessica A Kennedy
- Department of Cell Biology, Molecular Biology, and Microbiology, University of South Florida, Tampa, Florida, 33620, United States of America.,Graduate Program in Cell and Molecular Biology, H. Lee Moffitt Cancer Center, Tampa, Florida, 33612, United States of America
| | - Salahuddin Syed
- Department of Cell Biology, Molecular Biology, and Microbiology, University of South Florida, Tampa, Florida, 33620, United States of America.,Graduate Program in Cell and Molecular Biology, H. Lee Moffitt Cancer Center, Tampa, Florida, 33612, United States of America
| | - Kristina H Schmidt
- Department of Cell Biology, Molecular Biology, and Microbiology, University of South Florida, Tampa, Florida, 33620, United States of America.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, Florida, 33612, United States of America
| |
Collapse
|
26
|
A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae. Genetics 2015; 202:525-40. [PMID: 26680658 DOI: 10.1534/genetics.115.184093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022] Open
Abstract
Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker's yeast, the Msh DNA mismatch recognition complex and the Sgs1 helicase act to suppress SSA between divergent sequences by binding to mismatches present in heteroduplex DNA intermediates and triggering a DNA unwinding mechanism known as heteroduplex rejection. Using baker's yeast as a model, we have identified new factors and regulatory steps in heteroduplex rejection during SSA. First we showed that Top3-Rmi1, a topoisomerase complex that interacts with Sgs1, is required for heteroduplex rejection. Second, we found that the replication processivity clamp proliferating cell nuclear antigen (PCNA) is dispensable for heteroduplex rejection, but is important for repairing mismatches formed during SSA. Third, we showed that modest overexpression of Msh6 results in a significant increase in heteroduplex rejection; this increase is due to a compromise in Msh2-Msh3 function required for the clipping of 3' tails. Thus 3' tail clipping during SSA is a critical regulatory step in the repair vs. rejection decision; rejection is favored before the 3' tails are clipped. Unexpectedly, Msh6 overexpression, through interactions with PCNA, disrupted heteroduplex rejection between divergent sequences in another recombination substrate. These observations illustrate the delicate balance that exists between repair and replication factors to optimize genome stability.
Collapse
|
27
|
Kowalczykowski SC. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb Perspect Biol 2015; 7:a016410. [PMID: 26525148 PMCID: PMC4632670 DOI: 10.1101/cshperspect.a016410] [Citation(s) in RCA: 331] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recombinational DNA repair is a universal aspect of DNA metabolism and is essential for genomic integrity. It is a template-directed process that uses a second chromosomal copy (sister, daughter, or homolog) to ensure proper repair of broken chromosomes. The key steps of recombination are conserved from phage through human, and an overview of those steps is provided in this review. The first step is resection by helicases and nucleases to produce single-stranded DNA (ssDNA) that defines the homologous locus. The ssDNA is a scaffold for assembly of the RecA/RAD51 filament, which promotes the homology search. On finding homology, the nucleoprotein filament catalyzes exchange of DNA strands to form a joint molecule. Recombination is controlled by regulating the fate of both RecA/RAD51 filaments and DNA pairing intermediates. Finally, intermediates that mature into Holliday structures are disjoined by either nucleolytic resolution or topological dissolution.
Collapse
Affiliation(s)
- Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics and Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616
| |
Collapse
|
28
|
Cejka P. DNA End Resection: Nucleases Team Up with the Right Partners to Initiate Homologous Recombination. J Biol Chem 2015; 290:22931-8. [PMID: 26231213 DOI: 10.1074/jbc.r115.675942] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repair of DNA double-strand breaks by homologous recombination commences by nucleolytic degradation of the 5'-terminated strand of the DNA break. This leads to the formation of 3'-tailed DNA, which serves as a substrate for the strand exchange protein Rad51. The nucleoprotein filament then invades homologous DNA to drive template-directed repair. In this review, I discuss mainly the mechanisms of DNA end resection in Saccharomyces cerevisiae, which includes short-range resection by Mre11-Rad50-Xrs2 and Sae2, as well as processive long-range resection by Sgs1-Dna2 or Exo1 pathways. Resection mechanisms are highly conserved between yeast and humans, and analogous machineries are found in prokaryotes as well.
Collapse
Affiliation(s)
- Petr Cejka
- From the Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
29
|
Tang S, Wu MKY, Zhang R, Hunter N. Pervasive and essential roles of the Top3-Rmi1 decatenase orchestrate recombination and facilitate chromosome segregation in meiosis. Mol Cell 2015; 57:607-621. [PMID: 25699709 DOI: 10.1016/j.molcel.2015.01.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/03/2014] [Accepted: 01/12/2015] [Indexed: 11/30/2022]
Abstract
The Bloom's helicase ortholog, Sgs1, plays central roles to coordinate the formation and resolution of joint molecule intermediates (JMs) during meiotic recombination in budding yeast. Sgs1 can associate with type-I topoisomerase Top3 and its accessory factor Rmi1 to form a conserved complex best known for its unique ability to decatenate double-Holliday junctions. Contrary to expectations, we show that the strand-passage activity of Top3-Rmi1 is required for all known functions of Sgs1 in meiotic recombination, including channeling JMs into physiological crossover and noncrossover pathways, and suppression of non-allelic recombination. We infer that Sgs1 always functions in the context of the Sgs1-Top3-Rmi1 complex to regulate meiotic recombination. In addition, we reveal a distinct late role for Top3-Rmi1 in resolving recombination-dependent chromosome entanglements to allow segregation at anaphase. Surprisingly, Sgs1 does not share this essential role of Top3-Rmi1. These data reveal an essential and pervasive role for the Top3-Rmi1 decatenase during meiosis.
Collapse
Affiliation(s)
- Shangming Tang
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Michelle Ka Yan Wu
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Ruoxi Zhang
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Neil Hunter
- Howard Hughes Medical Institute and the Departments of Microbiology & Molecular Genetics, Molecular & Cellular Biology and Cell Biology & Human Anatomy, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Kaur H, De Muyt A, Lichten M. Top3-Rmi1 DNA single-strand decatenase is integral to the formation and resolution of meiotic recombination intermediates. Mol Cell 2015; 57:583-594. [PMID: 25699707 DOI: 10.1016/j.molcel.2015.01.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/06/2014] [Accepted: 01/12/2015] [Indexed: 11/26/2022]
Abstract
The topoisomerase III (Top3)-Rmi1 heterodimer, which catalyzes DNA single-strand passage, forms a conserved complex with the Bloom's helicase (BLM, Sgs1 in budding yeast). This complex has been proposed to regulate recombination by disassembling double Holliday junctions in a process called dissolution. Top3-Rmi1 has been suggested to act at the end of this process, resolving hemicatenanes produced by earlier BLM/Sgs1 activity. We show here that, to the contrary, Top3-Rmi1 acts in all meiotic recombination functions previously associated with Sgs1, most notably as an early recombination intermediate chaperone, promoting regulated crossover and noncrossover recombination and preventing aberrant recombination intermediate accumulation. In addition, we show that Top3-Rmi1 has important Sgs1-independent functions that ensure complete recombination intermediate resolution and chromosome segregation. These findings indicate that Top3-Rmi1 activity is important throughout recombination to resolve strand crossings that would otherwise impede progression through both early steps of pathway choice and late steps of intermediate resolution.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Arnaud De Muyt
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Fasching CL, Cejka P, Kowalczykowski SC, Heyer WD. Top3-Rmi1 dissolve Rad51-mediated D loops by a topoisomerase-based mechanism. Mol Cell 2015; 57:595-606. [PMID: 25699708 PMCID: PMC4338411 DOI: 10.1016/j.molcel.2015.01.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/03/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022]
Abstract
The displacement loop (D loop) is a DNA strand invasion product formed during homologous recombination. Disruption of nascent D loops prevents recombination, and during synthesis-dependent strand annealing (SDSA), disruption of D loops extended by DNA polymerase ensures a non-crossover outcome. The proteins implicated in D loop disruption are DNA motor proteins/helicases that act by moving DNA junctions. Here we report that D loops can also be disrupted by DNA topoisomerase 3 (Top3), and this disruption depends on Top3's catalytic activity. Yeast Top3 specifically disrupts D loops mediated by yeast Rad51/Rad54; protein-free D loops or D loop mediated by bacterial RecA protein or human RAD51/RAD54 resist dissolution. Also, the human Topoisomerase IIIa-RMI1-RMI2 complex is capable of dissolving D loops. Consistent with genetic data, we suggest that the extreme growth defect and hyper-recombination phenotype of Top3-deficient yeast cells is partially a result of unprocessed D loops.
Collapse
Affiliation(s)
- Clare L Fasching
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Petr Cejka
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | - Stephen C Kowalczykowski
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA 95616-8665, USA.
| |
Collapse
|
32
|
DNA double-strand breaks and telomeres play important roles in trypanosoma brucei antigenic variation. EUKARYOTIC CELL 2015; 14:196-205. [PMID: 25576484 DOI: 10.1128/ec.00207-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.
Collapse
|
33
|
Chen CF, Brill SJ. Multimerization domains are associated with apparent strand exchange activity in BLM and WRN DNA helicases. DNA Repair (Amst) 2014; 22:137-46. [PMID: 25198671 DOI: 10.1016/j.dnarep.2014.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/10/2014] [Accepted: 07/22/2014] [Indexed: 12/11/2022]
Abstract
BLM and WRN are members of the RecQ family of DNA helicases that act to suppress genome instability and cancer predisposition. In addition to a RecQ helicase domain, each of these proteins contains an N-terminal domain of approximately 500 amino acids (aa) that is incompletely characterized. Previously, we showed that the N-terminus of Sgs1, the yeast ortholog of BLM, contains a physiologically important 200 aa domain (Sgs1103-322) that displays single-stranded DNA (ssDNA) binding, strand annealing (SA), and apparent strand-exchange (SE) activities in vitro. Here we used a genetic assay to search for heterologous proteins that could functionally replace this domain of Sgs1 in vivo. In contrast to Rad59, the oligomeric Rad52 protein provided in vivo complementation, suggesting that multimerization is functionally important. An N-terminal domain of WRN was also identified that could replace Sgs1103-322 in yeast. This domain, WRN235-526, contains a known coiled coil and displays the same SA and SE activities as Sgs1103-322. The coiled coil domain of WRN235-526 is required for both its in vivo activity and its in vitro SE activity. Based on this result, a potential coiled coil was identified within Sgs1103-322. This 25 amino acid region was similarly essential for wt Sgs1 activity in vivo and was replaceable by a heterologous coiled coil. Taken together, the results indicate that a coiled coil and a closely linked apparent SE activity are conserved features of the BLM and WRN DNA helicases.
Collapse
Affiliation(s)
- Chi-Fu Chen
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States
| | - Steven J Brill
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
34
|
Bauknecht M, Kobbe D. AtGEN1 and AtSEND1, two paralogs in Arabidopsis, possess holliday junction resolvase activity. PLANT PHYSIOLOGY 2014; 166:202-16. [PMID: 25037209 PMCID: PMC4149707 DOI: 10.1104/pp.114.237834] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/10/2014] [Indexed: 05/02/2023]
Abstract
Holliday junctions (HJs) are physical links between homologous DNA molecules that arise as central intermediary structures during homologous recombination and repair in meiotic and somatic cells. It is necessary for these structures to be resolved to ensure correct chromosome segregation and other functions. In eukaryotes, including plants, homologs of a gene called XPG-like endonuclease1 (GEN1) have been identified that process HJs in a manner analogous to the HJ resolvases of phages, archaea, and bacteria. Here, we report that Arabidopsis (Arabidopsis thaliana), a eukaryotic organism, has two functional GEN1 homologs instead of one. Like all known eukaryotic resolvases, AtGEN1 and Arabidopsis single-strand DNA endonuclease1 both belong to class IV of the Rad2/XPG family of nucleases. Their resolvase activity shares the characteristics of the Escherichia coli radiation and UV sensitive C paradigm for resolvases, which involves resolving HJs by symmetrically oriented incisions in two opposing strands. This leads to ligatable products without the need for further processing. The observation that the sequence context influences the cleavage by the enzymes can be interpreted as a hint for the existence of sequence specificity. The two Arabidopsis paralogs differ in their preferred sequences. The precise cleavage positions observed for the resolution of mobile nicked HJs suggest that these cleavage positions are determined by both the substrate structure and the sequence context at the junction point.
Collapse
Affiliation(s)
- Markus Bauknecht
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Daniela Kobbe
- Botanical Institute II, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
35
|
Structural studies of DNA end detection and resection in homologous recombination. Cold Spring Harb Perspect Biol 2014; 6:a017962. [PMID: 25081516 DOI: 10.1101/cshperspect.a017962] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
DNA double-strand breaks are repaired by two major pathways, homologous recombination or nonhomologous end joining. The commitment to one or the other pathway proceeds via different steps of resection of the DNA ends, which is controlled and executed by a set of DNA double-strand break sensors, endo- and exonucleases, helicases, and DNA damage response factors. The molecular choreography of the underlying protein machinery is beginning to emerge. In this review, we discuss the early steps of genetic recombination and double-strand break sensing with an emphasis on structural and molecular studies.
Collapse
|
36
|
Abstract
Double Holliday junctions (dHJS) are important intermediates of homologous recombination. The separate junctions can each be cleaved by DNA structure-selective endonucleases known as Holliday junction resolvases. Alternatively, double Holliday junctions can be processed by a reaction known as "double Holliday junction dissolution." This reaction requires the cooperative action of a so-called "dissolvasome" comprising a Holliday junction branch migration enzyme (Sgs1/BLM RecQ helicase) and a type IA topoisomerase (Top3/TopoIIIα) in complex with its OB (oligonucleotide/oligosaccharide binding) fold containing accessory factor (Rmi1). This review details our current knowledge of the dissolution process and the players involved in catalyzing this mechanistically complex means of completing homologous recombination reactions.
Collapse
Affiliation(s)
- Anna H Bizard
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Nordea Center for Healthy Aging, Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
37
|
Kramarz K, Litwin I, Cal-Bąkowska M, Szakal B, Branzei D, Wysocki R, Dziadkowiec D. Swi2/Snf2-like protein Uls1 functions in the Sgs1-dependent pathway of maintenance of rDNA stability and alleviation of replication stress. DNA Repair (Amst) 2014; 21:24-35. [PMID: 25091157 DOI: 10.1016/j.dnarep.2014.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 05/05/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
Abstract
The Saccharomyces cerevisiae Uls1 belongs to the Swi2/Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here we show that Uls1 is implicated in DNA repair independently of the replication stress response pathways mediated by the endonucleases Mus81 and Yen1 and the helicases Mph1 and Srs2. Uls1 works together with Sgs1 and we demonstrate that the attenuation of replication stress-related defects in sgs1Δ by deletion of ULS1 depends on a functional of Rad51 recombinase and post-replication repair pathway mediated by Rad18 and Rad5, but not on the translesion polymerase, Rev3. The higher resistance of sgs1Δ uls1Δ mutants to genotoxic stress compared to single sgs1Δ cells is not the result of decreased formation or accelerated resolution of recombination-dependent DNA structures. Instead, deletion of ULS1 restores stability of the rDNA region in sgs1Δ cells. Our data suggest that Uls1 may contribute to genomic stability during DNA synthesis and channel the repair of replication lesions into the Sgs1-dependent pathway, with DNA translocase and SUMO binding activities of Uls1 as well as a RING domain being essential for its functions in replication stress response.
Collapse
Affiliation(s)
- Karol Kramarz
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Ireneusz Litwin
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Magdalena Cal-Bąkowska
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Barnabas Szakal
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Robert Wysocki
- Institute of Experimental Biology, Faculty of Biological Sciences, University of Wrocław, 50-328 Wrocław, Poland
| | - Dorota Dziadkowiec
- Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland.
| |
Collapse
|
38
|
Katsani KR, Irimia M, Karapiperis C, Scouras ZG, Blencowe BJ, Promponas VJ, Ouzounis CA. Functional genomics evidence unearths new moonlighting roles of outer ring coat nucleoporins. Sci Rep 2014; 4:4655. [PMID: 24722254 PMCID: PMC3983603 DOI: 10.1038/srep04655] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/21/2014] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence for the involvement of Y-complex nucleoporins (Y-Nups) in cellular processes beyond the inner core of nuclear pores of eukaryotes. To comprehensively assess the range of possible functions of Y-Nups, we delimit their structural and functional properties by high-specificity sequence profiles and tissue-specific expression patterns. Our analysis establishes the presence of Y-Nups across eukaryotes with novel composite domain architectures, supporting new moonlighting functions in DNA repair, RNA processing, signaling and mitotic control. Y-Nups associated with a select subset of the discovered domains are found to be under tight coordinated regulation across diverse human and mouse cell types and tissues, strongly implying that they function in conjunction with the nuclear pore. Collectively, our results unearth an expanded network of Y-Nup interactions, thus supporting the emerging view of the Y-complex as a dynamic protein assembly with diverse functional roles in the cell.
Collapse
Affiliation(s)
- Katerina R Katsani
- Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece
| | - Manuel Irimia
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Christos Karapiperis
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Zacharias G Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessalonica, Greece
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus
| | - Christos A Ouzounis
- 1] Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada [2] Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, PO Box 20537, CY-1678 Nicosia, Cyprus [3] Institute of Applied Biosciences, Centre for Research & Technology, PO Box 361, GR-57001 Thessalonica, Greece [4]
| |
Collapse
|
39
|
Bocquet N, Bizard AH, Abdulrahman W, Larsen NB, Faty M, Cavadini S, Bunker RD, Kowalczykowski SC, Cejka P, Hickson ID, Thomä NH. Structural and mechanistic insight into Holliday-junction dissolution by topoisomerase IIIα and RMI1. Nat Struct Mol Biol 2014; 21:261-8. [PMID: 24509834 PMCID: PMC4292918 DOI: 10.1038/nsmb.2775] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 01/17/2014] [Indexed: 12/19/2022]
Abstract
Repair of DNA double-strand breaks via homologous recombination can produce double Holliday junctions (dHJs) that require enzymatic separation. Topoisomerase IIIα (TopIIIα) together with RMI1 disentangles the final hemicatenane intermediate obtained once dHJs have converged. How binding of RMI1 to TopIIIα influences it to behave as a hemicatenane dissolvase, rather than as an enzyme that relaxes DNA topology, is unknown. Here, we present the crystal structure of human TopIIIα complexed to the first oligonucleotide-binding domain (OB fold) of RMI1. TopIII assumes a toroidal type 1A topoisomerase fold. RMI1 attaches to the edge of the gate in TopIIIα through which DNA passes. RMI1 projects a 23-residue loop into the TopIIIα gate, thereby influencing the dynamics of its opening and closing. Our results provide a mechanistic rationale for how RMI1 stabilizes TopIIIα-gate opening to enable dissolution and illustrate how binding partners modulate topoisomerase function.
Collapse
Affiliation(s)
- Nicolas Bocquet
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Anna H Bizard
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Wassim Abdulrahman
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Nicolai B Larsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mahamadou Faty
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Petr Cejka
- 1] Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, USA. [2]
| | - Ian D Hickson
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
40
|
Knoll A, Schröpfer S, Puchta H. The RTR complex as caretaker of genome stability and its unique meiotic function in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:33. [PMID: 24575106 PMCID: PMC3921566 DOI: 10.3389/fpls.2014.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/25/2014] [Indexed: 05/02/2023]
Abstract
The RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RMI1 is involved in the processing of DNA recombination intermediates in all eukaryotes. In Arabidopsis thaliana the complex partners RECQ4A, topoisomerase 3α and RMI1 have been shown to be involved in DNA repair and in the suppression of homologous recombination in somatic cells. Interestingly, mutants of AtTOP3A and AtRMI1 are also sterile due to extensive chromosome breakage in meiosis I, a phenotype that seems to be specific for plants. Although both proteins are essential for meiotic recombination it is still elusive on what kind of intermediates they are acting on. Recent data indicate that the pattern of non-crossover (NCO)-associated meiotic gene conversion (GC) differs between plants and other eukaryotes, as less NCOs in comparison to crossovers (CO) could be detected in Arabidopsis. This indicates that NCOs happen either more rarely in plants or that the conversion tract length is significantly shorter than in other organisms. As the TOP3α/RMI1-mediated dissolution of recombination intermediates results exclusively in NCOs, we suggest that the peculiar GC pattern found in plants is connected to the unique role, members of the RTR complex play in plant meiosis.
Collapse
Affiliation(s)
| | | | - Holger Puchta
- *Correspondence: Holger Puchta, Botanical Institute II, Karlsruhe Institute of Technology, Hertzstraße 16, 76187 Karlsruhe, Germany e-mail:
| |
Collapse
|
41
|
Copsey A, Tang S, Jordan PW, Blitzblau HG, Newcombe S, Chan ACH, Newnham L, Li Z, Gray S, Herbert AD, Arumugam P, Hochwagen A, Hunter N, Hoffmann E. Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions. PLoS Genet 2013; 9:e1004071. [PMID: 24385939 PMCID: PMC3873251 DOI: 10.1371/journal.pgen.1004071] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022] Open
Abstract
During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4(Eme1). Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.
Collapse
Affiliation(s)
- Alice Copsey
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Shangming Tang
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Philip W. Jordan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hannah G. Blitzblau
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sonya Newcombe
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Andrew Chi-ho Chan
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Louise Newnham
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Zhaobo Li
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Stephen Gray
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Alex D. Herbert
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Prakash Arumugam
- Department of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andreas Hochwagen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, United States of America
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, United States of America
- Department of Biology, New York University, New York, New York, United States of America
- Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, United States of America
- Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, California, United States of America
| | - Eva Hoffmann
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
42
|
Schröpfer S, Kobbe D, Hartung F, Knoll A, Puchta H. Defining the roles of the N-terminal region and the helicase activity of RECQ4A in DNA repair and homologous recombination in Arabidopsis. Nucleic Acids Res 2013; 42:1684-97. [PMID: 24174542 PMCID: PMC3919593 DOI: 10.1093/nar/gkt1004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RecQ helicases are critical for the maintenance of genomic stability. The Arabidopsis RecQ helicase RECQ4A is the functional counterpart of human BLM, which is mutated in the genetic disorder Bloom’s syndrome. RECQ4A performs critical roles in regulation of homologous recombination (HR) and DNA repair. Loss of RECQ4A leads to elevated HR frequencies and hypersensitivity to genotoxic agents. Through complementation studies, we were now able to demonstrate that the N-terminal region and the helicase activity of RECQ4A are both essential for the cellular response to replicative stress induced by methyl methanesulfonate and cisplatin. In contrast, loss of helicase activity or deletion of the N-terminus only partially complemented the mutant hyper-recombination phenotype. Furthermore, the helicase-deficient protein lacking its N-terminus did not complement the hyper-recombination phenotype at all. Therefore, RECQ4A seems to possess at least two different and independent sub-functions involved in the suppression of HR. By in vitro analysis, we showed that the helicase core was able to regress an artificial replication fork. Swapping of the terminal regions of RECQ4A with the closely related but functionally distinct helicase RECQ4B indicated that in contrast to the C-terminus, the N-terminus of RECQ4A was required for its specific functions in DNA repair and recombination.
Collapse
Affiliation(s)
- Susan Schröpfer
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe 76187, Germany and Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI), Erwin-Baur-Strasse 27, Quedlinburg 06484, Germany
| | | | | | | | | |
Collapse
|
43
|
Glineburg MR, Chavez A, Agrawal V, Brill SJ, Johnson FB. Resolution by unassisted Top3 points to template switch recombination intermediates during DNA replication. J Biol Chem 2013; 288:33193-204. [PMID: 24100144 DOI: 10.1074/jbc.m113.496133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionarily conserved Sgs1/Top3/Rmi1 (STR) complex plays vital roles in DNA replication and repair. One crucial activity of the complex is dissolution of toxic X-shaped recombination intermediates that accumulate during replication of damaged DNA. However, despite several years of study the nature of these X-shaped molecules remains debated. Here we use genetic approaches and two-dimensional gel electrophoresis of genomic DNA to show that Top3, unassisted by Sgs1 and Rmi1, has modest capacities to provide resistance to MMS and to resolve recombination-dependent X-shaped molecules. The X-shaped molecules have structural properties consistent with hemicatenane-related template switch recombination intermediates (Rec-Xs) but not Holliday junction (HJ) intermediates. Consistent with these findings, we demonstrate that purified Top3 can resolve a synthetic Rec-X but not a synthetic double HJ in vitro. We also find that unassisted Top3 does not affect crossing over during double strand break repair, which is known to involve double HJ intermediates, confirming that unassisted Top3 activities are restricted to substrates that are distinct from HJs. These data help illuminate the nature of the X-shaped molecules that accumulate during replication of damaged DNA templates, and also clarify the roles played by Top3 and the STR complex as a whole during the resolution of replication-associated recombination intermediates.
Collapse
|
44
|
Kennedy JA, Daughdrill GW, Schmidt KH. A transient α-helical molecular recognition element in the disordered N-terminus of the Sgs1 helicase is critical for chromosome stability and binding of Top3/Rmi1. Nucleic Acids Res 2013; 41:10215-27. [PMID: 24038467 PMCID: PMC3905885 DOI: 10.1093/nar/gkt817] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The RecQ-like DNA helicase family is essential for the maintenance of genome stability in all organisms. Sgs1, a member of this family in Saccharomyces cerevisiae, regulates early and late steps of double-strand break repair by homologous recombination. Using nuclear magnetic resonance spectroscopy, we show that the N-terminal 125 residues of Sgs1 are disordered and contain a transient α-helix that extends from residue 25 to 38. Based on the residue-specific knowledge of transient secondary structure, we designed proline mutations to disrupt this α-helix and observed hypersensitivity to DNA damaging agents and increased frequency of genome rearrangements. In vitro binding assays show that the defects of the proline mutants are the result of impaired binding of Top3 and Rmi1 to Sgs1. Extending mutagenesis N-terminally revealed a second functionally critical region that spans residues 9–17. Depending on the position of the proline substitution in the helix functional impairment of Sgs1 function varied, gradually increasing from the C- to the N-terminus. The multiscale approach we used to interrogate structure/function relationships in the long disordered N-terminal segment of Sgs1 allowed us to precisely define a functionally critical region and should be generally applicable to other disordered proteins.
Collapse
Affiliation(s)
- Jessica A. Kennedy
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA, Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Gary W. Daughdrill
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA, Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kristina H. Schmidt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA, Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA and Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- *To whom correspondence should be addressed. Tel: +1 813 974 1592; Fax: +1 813 974 1614;
| |
Collapse
|
45
|
Bonnet S, Knoll A, Hartung F, Puchta H. Different functions for the domains of the Arabidopsis thaliana RMI1 protein in DNA cross-link repair, somatic and meiotic recombination. Nucleic Acids Res 2013; 41:9349-60. [PMID: 23956219 PMCID: PMC3814364 DOI: 10.1093/nar/gkt730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombination intermediates, such as double Holliday junctions, can be resolved by nucleases or dissolved by the combined action of a DNA helicase and a topoisomerase. In eukaryotes, dissolution is mediated by the RTR complex consisting of a RecQ helicase, a type IA topoisomerase and the structural protein RecQ-mediated genome instability 1 (RMI1). Throughout eukaryotes, the RTR complex is involved in DNA repair and in the suppression of homologous recombination (HR) in somatic cells. Surprisingly, Arabidopsis thaliana mutants of topoisomerase 3α and RMI1 are also sterile due to extensive chromosome breakage in meiosis I, indicating that both proteins are essential for meiotic recombination in plants. AtRMI1 harbours an N-terminal DUF1767 domain and two oligosaccharide binding (OB)-fold domains. To define specific roles for these individual domains, we performed complementation experiments on Atrmi1 mutants with an AtRMI1 full-length open reading frame (ORF) or deletion constructs lacking specific domains. We show that the DUF1767 domain and the OB-fold domain 1 are both essential for the function of AtRMI1 in DNA cross-link repair as well as meiotic recombination, but partially dispensable for somatic HR suppression. The OB-fold domain 2 is not necessary for either somatic or meiotic HR, but it seems to have a minor function in DNA cross-link repair.
Collapse
Affiliation(s)
- Simone Bonnet
- Karlsruhe Institute of Technology, Botanical Institute II, Hertzstrasse 16, 76187 Karlsruhe, Germany
| | | | | | | |
Collapse
|
46
|
Guiraldelli MF, Eyster C, Pezza RJ. Genome instability and embryonic developmental defects in RMI1 deficient mice. DNA Repair (Amst) 2013; 12:835-43. [PMID: 23900276 DOI: 10.1016/j.dnarep.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/04/2013] [Accepted: 07/08/2013] [Indexed: 12/19/2022]
Abstract
RMI1 forms an evolutionarily conserved complex with BLM/TOP3α/RMI2 (BTR complex) to prevent and resolve aberrant recombination products, thereby promoting genome stability. Most of our knowledge about RMI1 function has been obtained from biochemical studies in vitro. In contrast, the role of RMI1 in vivo remains unclear. Previous attempts to generate an Rmi1 knockout mouse line resulted in pre-implantation embryonic lethality, precluding the use of mouse embryonic fibroblasts (MEFs) and embryonic morphology to assess the role of RMI1 in vivo. Here, we report the generation of an Rmi1 deficient mouse line (hy/hy) that develops until 9.5 days post coitum (dpc) with marked defects in development. MEFs derived from Rmi1(hy/hy) are characterized by severely impaired cell proliferation, frequently having elevated DNA content, high numbers of micronuclei and an elevated percentage of partial condensed chromosomes. Our results demonstrate the importance of RMI1 in maintaining genome integrity and normal embryonic development.
Collapse
Affiliation(s)
- Michel F Guiraldelli
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | |
Collapse
|
47
|
Relationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection. Proc Natl Acad Sci U S A 2013; 110:E1661-8. [PMID: 23589858 DOI: 10.1073/pnas.1305166110] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Homologous recombination is a major pathway for repair of DNA double-strand breaks. This repair process is initiated by resection of the 5′-terminated strand at the break site. In yeast, resection is carried out by three nucleolytic complexes: Mre11-Rad50-Xrs2, which functions at the initial step and also stimulates the two processive pathways, Sgs1-Dna2 and Exonuclease 1 (Exo1). Here we investigated the relationship between the three resection pathways with a focus on Exo1. Exo1 preferentially degrades the 5′-terminal stand of duplex DNA that is single stranded at the 3′ end, in agreement with its role downstream of the Mre11-Rad50-Xrs2 complex. Replication protein A (RPA) stimulates DNA end resection by Exo1 by both preventing nonspecific binding of Exo1 to and preventing degradation of single-stranded DNA. Nucleolytic degradation of DNA by Exo1 is inhibited by the helicase-deficient Sgs1 K706A mutant protein and, reciprocally, the nuclease-deficient Exo1 D173A mutant protein inhibits DNA unwinding by Sgs1. Thus, the activities of Sgs1 and Exo1 at DNA ends are mutually exclusive, establishing biochemically that both machineries function independently in DNA end processing. We also reconstituted Sgs1-Top3-Rmi1-RPA-Dna2 and Exo1 resection reactions both individually and combined, either with or without the Mre11-Rad50-Xrs2 complex. We show that the yeast Sgs1-Dna2 and Exo1 pathways do not stimulate one another and function as independent and separate DNA end-processing machineries, even in the presence of the stimulatory Mre11-Rad50-Xrs2 complex.
Collapse
|
48
|
Manthei KA, Keck JL. The BLM dissolvasome in DNA replication and repair. Cell Mol Life Sci 2013; 70:4067-84. [PMID: 23543275 DOI: 10.1007/s00018-013-1325-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
RecQ DNA helicases are critical for proper maintenance of genomic stability, and mutations in multiple human RecQ genes are linked with genetic disorders characterized by a predisposition to cancer. RecQ proteins are conserved from prokaryotes to humans and in all cases form higher-order complexes with other proteins to efficiently execute their cellular functions. The focus of this review is a conserved complex that is formed between RecQ helicases and type-I topoisomerases. In humans, this complex is referred to as the BLM dissolvasome or BTR complex, and is comprised of the RecQ helicase BLM, topoisomerase IIIα, and the RMI proteins. The BLM dissolvasome functions to resolve linked DNA intermediates without exchange of genetic material, which is critical in somatic cells. We will review the history of this complex and highlight its roles in DNA replication, recombination, and repair. Additionally, we will review recently established interactions between BLM dissolvasome and a second set of genome maintenance factors (the Fanconi anemia proteins) that appear to allow coordinated genome maintenance efforts between the two systems.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | | |
Collapse
|
49
|
Xue X, Raynard S, Busygina V, Singh AK, Sung P. Role of replication protein A in double holliday junction dissolution mediated by the BLM-Topo IIIα-RMI1-RMI2 protein complex. J Biol Chem 2013; 288:14221-14227. [PMID: 23543748 DOI: 10.1074/jbc.m113.465609] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved BTR complex, composed of the Bloom's syndrome helicase (BLM), topoisomerase IIIα, RMI1, and RMI2, regulates homologous recombination in favor of non-crossover formation via the dissolution of the double Holliday Junction (dHJ). Here we show enhancement of the BTR-mediated dHJ dissolution reaction by the heterotrimeric single-stranded DNA binding protein replication protein A (RPA). Our results suggest that RPA acts by sequestering a single-stranded DNA intermediate during dHJ dissolution. We provide evidence that RPA physically interacts with RMI1. The RPA interaction domain in RMI1 has been mapped, and RMI1 mutants impaired for RPA interaction have been generated. Examination of these mutants ascertains the significance of the RMI1-RPA interaction in dHJ dissolution. Our results thus implicate RPA as a cofactor of the BTR complex in dHJ dissolution.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Steven Raynard
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Valeria Busygina
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Akhilesh K Singh
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
50
|
Norman-Axelsson U, Durand-Dubief M, Prasad P, Ekwall K. DNA topoisomerase III localizes to centromeres and affects centromeric CENP-A levels in fission yeast. PLoS Genet 2013; 9:e1003371. [PMID: 23516381 PMCID: PMC3597498 DOI: 10.1371/journal.pgen.1003371] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 01/25/2013] [Indexed: 11/21/2022] Open
Abstract
Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-ACnp1 at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-ACnp1 occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-ACnp1 at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-ACnp1 in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-ACnp1 nucleosomes. Centromeres are unique regions on eukaryotic chromosomes that are essential for chromosome segregation at mitosis and meiosis. Centromere identity and function depends on the presence of specialized chromatin with nucleosomes containing the centromere-specific histone H3 variant CENP-A. Assembly and disassembly of nucleosomes have previously been shown to involve a family of enzymes known as DNA topoisomerases. We show that centromeres are unique in that they are associated with high levels of Top3, but low levels of Top1 and Top2, suggesting that Top3 is particularly important for centromeric DNA topology. Impaired function of Top3 or its partner Rqh1 results in chromosome segregation defects and increased levels of CENP-ACnp1 at centromeres. This role in limiting the levels of CENP-ACnp1 at centromeres is independent of the established role for the Top3-Rqh1 complex in homologous recombination. Therefore, we hypothesize that the Top3-Rqh1 complex exerts this effect by regulating centromere DNA topology, which in turn affects CENP-ACnp1 nucleosome dynamics. Specific removal of negative supercoiling by Top3 could directly have a negative effect on assembly of CENP-ACnp1 nucleosomes with left-handed negative wrapping of DNA and/or act indirectly by inhibiting transcription-coupled CENP-ACnp1 assembly. Alternatively, Top3 may be a factor that promotes formation of CENP-ACnp1 hemisomes with right-handed wrapping of DNA over conventional octamers. This suggests a new role for the Top3-Rqh1 complex at centromeres and may contribute to the understanding of the structural and functional specification of centromeres.
Collapse
Affiliation(s)
- Ulrika Norman-Axelsson
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Mickaël Durand-Dubief
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Punit Prasad
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Ekwall
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| |
Collapse
|