1
|
Hang Q, Zuo S, Yang Y, Wang Y, Li C, Li W, Guo J, Hou S, Huang H. USP33 is an integrin α6 deubiquitinase and promotes esophageal squamous cell carcinoma cell migration and metastasis. J Cancer Res Clin Oncol 2024; 150:511. [PMID: 39589547 PMCID: PMC11599434 DOI: 10.1007/s00432-024-06041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE The deubiquitinating enzymes (DUBs) have been linked to cancer initiation and progression. Although ubiquitin-specific protease 33 (USP33) represents a significant factor in regulating various tumor cell behaviors, its specific biological functions and precise mechanisms in esophageal squamous cell carcinoma (ESCC) progression remain unclear. METHODS The expressions of USP33 mRNA in GEO databases, clinical ESCC samples, and USP33 protein were analyzed using bioinformatics, RT-PCR, and immunohistochemistry, respectively. Using Kaplan-Meier survival curves, the log-rank test was used to determine the cumulative survival rate. Western blotting was used to determine indicated protein expression. The cell biological functions were evaluated by cell growth assay, transwell, cell adhesion, and cell spreading assay, respectively. The interaction between USP33 and integrins was detected by immunoprecipitation, and the deubiquitination was performed by deubiquitination assay. The metastatic ability was checked by tail vein injection. RESULTS A significant positive correlation was found between USP33 expression and clinical TNM stage, T classification, and poor prognosis in patients with ESCC. USP33 promoted laminin-dependent adhesion, spreading, and migration of ESCC cells but not their proliferation. Mechanistically, USP33 mediates cell migration through binding, deubiquinating, and stabilizing integrin α6. USP33 knockdown could inhibit ESCC cell migration and metastasis majorly through integrin α6. CONCLUSION This study reveals a novel mechanism of USP33 in promoting laminin-dependent ESCC cell migration and metastasis through integrin α6, suggesting that USP33 may be a promising target for treating ESCC.
Collapse
Affiliation(s)
- Qinglei Hang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, Suining, Jiangsu Province, 221200, China.
| | - Shiying Zuo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Yawen Yang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | - Yuanzhi Wang
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Caimin Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Wenqian Li
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Jingya Guo
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China
| | - Sicong Hou
- Department of Clinical Medicine, Medical College, Key laboratory of Jiangsu province university for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China.
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, 225001, China.
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng, Jiangsu Province, 224006, China.
- Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, Jiangsu Province, 224006, China.
| |
Collapse
|
2
|
Huang G, Zhou M, Lu D, Li J, Tang Q, Xiong C, Liang F, Chen R. The mechanism of ITGB4 in tumor migration and invasion. Front Oncol 2024; 14:1421902. [PMID: 39169946 PMCID: PMC11335651 DOI: 10.3389/fonc.2024.1421902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Integrin β4 (ITGB4) is a transmembrane protein that functions as a mechanosensor, mediating the bidirectional exchange of information between the intracellular and extracellular matrices. ITGB4 plays a critical role in cell adhesion, migration, and signaling. Numerous studies have implicated ITGB4 as a key facilitator of tumor migration and invasion. This review provides a foundational description of the mechanisms by which ITGB4 regulates tumor migration and invasion through pathways involving focal adhesion kinase (FAK), protein kinase B (AKT), and matrix metalloproteinases (MMPs). These mechanisms encompass epithelial-mesenchymal transition (EMT), phosphorylation, and methylation of associated molecules. Additionally, this review explores the role of ITGB4 in the migration and invasion of prevalent clinical tumors, including those of the digestive system, breast, and prostate.
Collapse
Affiliation(s)
- Guichen Huang
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Damin Lu
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Jinxiao Li
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Tang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Chutong Xiong
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Reeder TL, Zarlenga DS, Dyer RM. Molecular evidence sterile tissue damage during pathogenesis of pododermatitis aseptica hemorrhagica circumscripta is associated with disturbed epidermal-dermal homeostasis. J Dairy Sci 2024:S0022-0302(24)00842-7. [PMID: 38825113 DOI: 10.3168/jds.2023-24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
Podermatitis aseptica hemorrhagica circumscripta is associated with metalloproteinase 2 weakening of distal phalangeal suspensory structures and sinkage of the distal phalanx in the claw capsule. Pressure from the tuberculum flexorium on the sole epidermis and dermis produces hemorrhagic tissue injury and defective horn production appearing as yellow-red, softened claw horn in region 4 of the sole. A model of the MAPK/ERK signal cascade orchestrating epidermal-dermal homeostasis was employed to determine if sterile inflammatory responses are linked to disturbed signal transduction for epidermal homeostasis in sole epidermis and dermis. The objective was to assess shifts in target genes of inflammation, up- and downstream MAPK/ERK signal elements, and targeted genes supporting epidermal proliferation and differentiation. Sole epidermis and dermis was removed from lateral claws bearing lesions of podermatitis aseptica hemorrhagica circumscripta, medial claws from the same limb and lateral claws from completely normal limbs of multiparous, lactating Holstein cows. The abundance levels of targeted transcripts were evaluated by real-time QPCR. Lesion effects were assessed by ANOVA, and mean comparisons were performed with t-tests to assess variations between mean expression in ulcer-bearing or medial claw dermis and epidermis and completely normal lateral claw dermis and epidermis or between ulcer-bearing dermis and epidermis and medial claw dermis and epidermis. The lesions were sterile and showed losses across multiple growth factors, their receptors, several downstream AP1 transcription components, CMYC, multiple cell cycle and terminal differentiation elements conducted by MAPK/ERK signals and β 4, α 6 and collagen 17A hemidesmosome components. These losses coincided with increased cytokeratin 6, β 1 integrin, proinflammatory metalloproteinases 2 and 9, IL1B and physiologic inhibitors of IL1B, the decoy receptor and receptor antagonist. Medial claw epidermis and dermis from limbs with lateral claws bearing podermatitis aseptica hemorrhagica circumscripta showed reductions in upstream MAPK/ERK signal elements and downstream targets that paralleled those in hemorrhagic lesions. Inhibitors of IL1B increased in the absence of real increases in inflammatory targets in the medial claw dermis and epidermis. Losses across multiple signal path elements and downstream targets were associated with negative effects on targeted transcripts supporting claw horn production and wound repair across lesion-bearing lateral claws and lesion-free medial claw dermis and epidermis. It was unclear if the sterile inflammation was causative or a consequence of these perturbations.
Collapse
Affiliation(s)
- T L Reeder
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303
| | - D S Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agriculture Research Center, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705-2350
| | - R M Dyer
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, Delaware 19717-1303.
| |
Collapse
|
4
|
Puzhankara L, Rajagopal A, Kedlaya MN, Karmakar S, Nayak N, Shanmugasundaram S. Cell Junctions in Periodontal Health and Disease: An Insight. Eur J Dent 2024; 18:448-457. [PMID: 38049123 PMCID: PMC11132765 DOI: 10.1055/s-0043-1775726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Cells are the building blocks of all living organisms. The presence of cell junctions such as tight junctions, gap junctions, and anchoring junctions between cells play a role in cell-to-cell communication in periodontal health and disease. A literature search was done in Scopus, PubMed, and Web of Science to gather information about the effect of cell junctions on periodontal health and disease. The presence of tight junction in the oral cavity helps in cell-to-cell adhesiveness and assists in the barrier function. The gap junctions help in controlling growth and development and in the cell signaling process. The presence of desmosomes and hemidesmosomes as anchoring junctions aid in mechanical strength and tissue integrity. Periodontitis is a biofilm-induced disease leading to the destruction of the supporting structures of the tooth. The structures of the periodontium possess multiple cell junctions that play a significant role in periodontal health and disease as well as periodontal tissue healing. This review article provides an insight into the role of cell junctions in periodontal disease and health, and offers concepts for development of therapeutic strategies through manipulation of cell junctions.
Collapse
Affiliation(s)
- Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N. Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
5
|
Pan T, Li J, Zhang O, Zhu Y, Zhou H, Ma M, Yu Y, Lyu J, Chen Y, Xu L. Knockdown of ribosome RNA processing protein 15 suppresses migration of hepatocellular carcinoma through inhibiting PATZ1-associated LAMC2/FAK pathway. BMC Cancer 2024; 24:334. [PMID: 38475740 DOI: 10.1186/s12885-024-12065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin β4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.
Collapse
Affiliation(s)
- Tongtong Pan
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jinhai Li
- Department of Liver and Gall Surgery, The Third Affiliated Hospital of Wenzhou Medical University, 325200, Wenzhou, Zhejiang, China
| | - Ouyang Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yuqin Zhu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Hongfei Zhou
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Mengchen Ma
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yanwen Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jiaojian Lyu
- Department of Infectious Diseases, Lishui People's Hospital, 323000, Lishui, Zhejiang, China
| | - Yongping Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| | - Liang Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Chen M, Marrs B, Qi L, Knifley T, Weiss HL, D’Orazio JA, O’Connor KL. Integrin α6β4 signals through DNA damage response pathway to sensitize breast cancer cells to cisplatin. Front Oncol 2022; 12:1043538. [PMID: 36439467 PMCID: PMC9686853 DOI: 10.3389/fonc.2022.1043538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Integrin α6β4 is highly expressed in triple negative breast cancer (TNBC) and drives its most aggressive traits; however, its impact on chemotherapeutic efficacy remains untested. We found that integrin α6β4 signaling promoted sensitivity to cisplatin and carboplatin but not to other chemotherapies tested. Mechanistic investigations revealed that integrin α6β4 stimulated the activation of ATM, p53, and 53BP1, which required the integrin β4 signaling domain. Genetic manipulation of gene expression demonstrated that mutant p53 cooperated with integrin α6β4 for cisplatin sensitivity and was necessary for downstream phosphorylation of 53BP1 and enhanced ATM activation. Additionally, we found that in response to cisplatin-induced DNA double strand break (DSB), integrin α6β4 suppressed the homologous recombination (HR) activity and enhanced non-homologous end joining (NHEJ) repair activity. Finally, we discovered that integrin α6β4 preferentially activated DNA-PK, facilitated DNA-PK-p53 and p53-53BP1 complex formation in response to cisplatin and required DNA-PK to enhance ATM, 53BP1 and p53 activation as well as cisplatin sensitivity. In summary, we discovered a novel function of integrin α6β4 in promoting cisplatin sensitivity in TNBC through DNA damage response pathway.
Collapse
Affiliation(s)
- Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Brock Marrs
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - John A. D’Orazio
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Pediatrics, University of Kentucky, Lexington, KY, United States
| | - Kathleen L. O’Connor
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Zhang D, Huang H, Zheng T, Zhang L, Cui B, Liu Y, Tan S, Zhao L, Tian T, Gao L, Fu Q, Cheng Z, Zhao Y. Polymeric immunoglobulin receptor suppresses colorectal cancer through the AKT-FOXO3/4 axis by downregulating LAMB3 expression. Front Oncol 2022; 12:924988. [PMID: 35992840 PMCID: PMC9389318 DOI: 10.3389/fonc.2022.924988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies worldwide and its mechanism is unclear. Polymeric immunoglobulin receptor (PIGR) which plays an important role in mucosal immunity is widely expressed in the mucosal epithelium and is dysregulated in different tumors. However, the role and underlying mechanisms of PIGR in CRC remain unclear. Here, we demonstrated that PIGR was hypermethylated and downregulated in our cohort (N = 272), and these features were associated with reduced overall survival in patients (HRmethylation 1.61, 95% CI [1.11-2.33]). These findings were validated by external TCGA and GEO data. Moreover, PIGR overexpression inhibits CRC cell malignant phenotypes in vitro and impedes CRC cells growth in male BALB/c nude mice. Mechanistically, PIGR physically associates with RE1 silencing transcription factor (REST) and blocks the transcription of laminin subunit beta 3 (LAMB3). Subsequently, the AKT-FOXO3/4 axis was suppressed by downregulated LAMB3. In the drug sensitive assay, PIGR-overexpressing cells were more sensitive to cisplatin and gemcitabine. Together, PIGR may serve as a powerful prognostic biomarker and putative tumor suppressor by suppressing the AKT-FOXO3/4 axis by downregulating LAMB3 in CRC. Our study may offer a novel therapeutic strategy for treating CRC patients who highly express PIGR with cisplatin and gemcitabine.
Collapse
Affiliation(s)
- Ding Zhang
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Hao Huang
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Ting Zheng
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Lei Zhang
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Binbin Cui
- Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiheng Tan
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Liyuan Zhao
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Lijing Gao
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Qingzhen Fu
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Zesong Cheng
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, NHC Key Laboratory of Etiology and Epidemiology (23618504), Harbin Medical University, Harbin, China
- *Correspondence: Yashuang Zhao,
| |
Collapse
|
8
|
Mohammadi A, Sorensen GL, Pilecki B. MFAP4-Mediated Effects in Elastic Fiber Homeostasis, Integrin Signaling and Cancer, and Its Role in Teleost Fish. Cells 2022; 11:cells11132115. [PMID: 35805199 PMCID: PMC9265350 DOI: 10.3390/cells11132115] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein belonging to the fibrinogen-related domain superfamily. MFAP4 is highly expressed in elastin-rich tissues such as lung, blood vessels and skin. MFAP4 is involved in organization of the ECM, regulating proper elastic fiber assembly. On the other hand, during pathology MFAP4 actively contributes to disease development and progression due to its interactions with RGD-dependent integrin receptors. Both tissue expression and circulating MFAP4 levels are associated with various disorders, including liver fibrosis and cancer. In other experimental models, such as teleost fish, MFAP4 appears to participate in host defense as a macrophage-specific innate immune molecule. The aim of this review is to summarize the accumulating evidence that indicates the importance of MFAP4 in homeostasis as well as pathological conditions, discuss its known biological functions with special focus on elastic fiber assembly, integrin signaling and cancer, as well as describe the reported functions of non-mammalian MFAP4 in fish. Overall, our work provides a comprehensive overview on the role of MFAP4 in health and disease.
Collapse
|
9
|
Chen W, Gard JMC, Epshtein Y, Camp SM, Garcia JGN, Jacobson JR, Cress AE. Integrin Beta 4E Promotes Endothelial Phenotypic Changes and Attenuates Lung Endothelial Cell Inflammatory Responses. Front Physiol 2022; 13:769325. [PMID: 35250607 PMCID: PMC8895044 DOI: 10.3389/fphys.2022.769325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
We previously reported integrin beta 4 (ITGB4) is an important mediator of lung vascular protection by simvastatin, a 3-hydroxy-3-methylglutaryl-coenzyme A-reductase inhibitor. In this study, we report increased endothelial cell (EC) expression specifically of ITGB4E, an ITGB4 mRNA splice variant, by simvastatin with effects on EC protein expression and inflammatory responses. In initial experiments, human pulmonary artery ECs were treated using simvastatin (5 μM, 24 h) prior to immunoprecipitation of integrin alpha 6 (ITGA6), which associates with ITGB4, and Western blotting for full-length ITGB4 and ITGB4E, uniquely characterized by a truncated 114 amino acid cytoplasmic domain. These experiments confirmed a significant increase in both full-length ITGB4 and ITGB4E. To investigate the effects of increased ITGB4E expression alone, ECs were transfected with ITGB4E or control vector, and cells were seeded in wells containing Matrigel to assess effects on angiogenesis or used for scratch assay to assess migration. Decreased angiogenesis and migration were observed in ITGB4E transfected ECs compared with controls. In separate experiments, PCR and Western blots from transfected cells demonstrated significant changes in EC protein expression associated with increased ITGB4E, including marked decreases in platelet endothelial cell adhesion molecule-1 (PECAM-1) and vascular endothelial-cadherin (VE-cadherin) as well as increased expression of E-cadherin and N-cadherin along with increased expression of the Slug and Snail transcription factors that promote endothelial-to-mesenchymal transition (EndMT). We, then, investigated the functional effects of ITGB4E overexpression on EC inflammatory responses and observed a significant attenuation of lipopolysaccharide (LPS)-induced mitogen-activated protein kinase (MAPK) activation, including decreased phosphorylation of both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), as well as reduced inflammatory cytokines (IL-6 and IL-8), expressed in the media of EC after either LPS or excessive cyclic stretch (CS). Finally, EC expression-increased ITGB4E demonstrated decreased barrier disruption induced by thrombin as measured by transendothelial electrical resistance. Our data support distinct EC phenotypic changes induced by ITGB4E that are also associated with an attenuation of cellular inflammatory responses. These findings implicate ITGB4E upregulation as an important mediator of lung EC protection by statins and may lead to novel therapeutic strategies for patients with or at risk for acute lung injury (ALI).
Collapse
Affiliation(s)
- Weiguo Chen
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Jamie M. C. Gard
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Yulia Epshtein
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jeffrey R. Jacobson
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Jeffrey R. Jacobson,
| | - Anne E. Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Qi L, Knifley T, Chen M, O'Connor KL. Integrin α6β4 requires plectin and vimentin for adhesion complex distribution and invasive growth. J Cell Sci 2022; 135:273711. [PMID: 34897465 PMCID: PMC8917354 DOI: 10.1242/jcs.258471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 12/01/2021] [Indexed: 01/30/2023] Open
Abstract
Integrin α6β4 binds plectin to associate with vimentin; however, the biological function remains unclear. Here, we utilized various integrin β4 mutants and CRISPR-Cas9 editing to investigate this association. Upon laminin binding, integrin α6β4 distinctly distributed peripherally as well as centrally, proximal to the nucleus. Upon fibronectin addition, integrin α6β4 was centrally recruited to large focal adhesions (FAs) and enhanced Fak (also known as PTK2) phosphorylation. Integrin β4 plectin-binding mutants or genetic deletion of plectin inhibited β4 recruitment to FAs and integrin α6β4-enhanced cell spreading, migration and three-dimensional invasive growth. Loss of the β4 signaling domain (but retaining plectin binding) blocked migration and invasiveness but not cell spreading, recruitment to FAs or colony growth. Immunostaining revealed that integrin α6β4 redistributed vimentin perinuclearly, where it colocalized with plectin and FAs. Depletion of vimentin completely blocked integrin β4-enhanced invasive growth, Fak phosphorylation and proliferation in three dimensions but not two dimensions. In summary, we demonstrate the essential roles of plectin and vimentin in promoting an invasive phenotype downstream of integrin α6β4. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington 40506-0509, USA,Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506-0509, USA
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington 40506-0509, USA,Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506-0509, USA
| | - Min Chen
- Markey Cancer Center, University of Kentucky, Lexington 40506-0509, USA,Toxicology and Cancer Biology, University of Kentucky, Lexington 40506-0509, USA
| | - Kathleen L. O'Connor
- Markey Cancer Center, University of Kentucky, Lexington 40506-0509, USA,Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506-0509, USA,Author for correspondence ()
| |
Collapse
|
11
|
Zhou J, Shen JY, Man XY, Li W, Chen JQ, Cai SQ, Zheng M. Differential Regulation of Integrin α5 and β4 in Normal and Psoriatic Epidermal Keratinocytes. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jiong Zhou
- Zhejiang University School of Medicine, China
| | | | | | - Wei Li
- Zhejiang University School of Medicine, China
| | - Jia-Qi Chen
- Zhejiang University School of Medicine, China
| | | | - Min Zheng
- Zhejiang University School of Medicine, China
| |
Collapse
|
12
|
Yang H, Xu Z, Peng Y, Wang J, Xiang Y. Integrin β4 as a Potential Diagnostic and Therapeutic Tumor Marker. Biomolecules 2021; 11:biom11081197. [PMID: 34439865 PMCID: PMC8394641 DOI: 10.3390/biom11081197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Integrin β4 (ITGβ4) is a class of transmembrane adhesion molecules composed of hemidesmosomes (HDs). Its unique long intracellular domain provides intricate signal transduction functions. These signal transduction effects are especially prominent in tumors. Many recent studies have shown that integrin β4 is differentially expressed in various tumors, and it plays a vital role in tumor invasion, proliferation, epithelial–mesenchymal transition, and angiogenesis. Therefore, we categorize the research related to integrin β4, starting from its structure and function in tumor tissues, and provide a basic description. Based on its structure and function, we believe that integrin β4 can be used as a tumor marker. In clinical practice, it is described as a diagnostic marker for the targeted treatment of cancer and will be helpful in the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Haoyu Yang
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Zixuan Xu
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Yuqian Peng
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Jiali Wang
- Xiang Ya School of Medicine, Central South University, Changsha 410013, China;
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Correspondence: ; Tel.:+86-139-7312-8943
| |
Collapse
|
13
|
Godinho-Pereira J, Garcia AR, Figueira I, Malhó R, Brito MA. Behind Brain Metastases Formation: Cellular and Molecular Alterations and Blood-Brain Barrier Disruption. Int J Mol Sci 2021; 22:7057. [PMID: 34209088 PMCID: PMC8268492 DOI: 10.3390/ijms22137057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) brain metastases is a life-threatening condition to which accounts the poor understanding of BC cells' (BCCs) extravasation into the brain, precluding the development of preventive strategies. Thus, we aimed to unravel the players involved in the interaction between BCCs and blood-brain barrier (BBB) endothelial cells underlying BBB alterations and the transendothelial migration of malignant cells. We used brain microvascular endothelial cells (BMECs) as a BBB in vitro model, under conditions mimicking shear stress to improve in vivo-like BBB features. Mixed cultures were performed by the addition of fluorescently labelled BCCs to distinguish individual cell populations. BCC-BMEC interaction compromised BBB integrity, as revealed by junctional proteins (β-catenin and zonula occludens-1) disruption and caveolae (caveolin-1) increase, reflecting paracellular and transcellular hyperpermeability, respectively. Both BMECs and BCCs presented alterations in the expression pattern of connexin 43, suggesting the involvement of the gap junction protein. Myosin light chain kinase and phosphorylated myosin light chain were upregulated, revealing the involvement of the endothelial cytoskeleton in the extravasation process. β4-Integrin and focal adhesion kinase were colocalised in malignant cells, reflecting molecular interaction. Moreover, BCCs exhibited invadopodia, attesting migratory properties. Collectively, hub players involved in BC brain metastases formation were unveiled, disclosing possible therapeutic targets for metastases prevention.
Collapse
Affiliation(s)
- Joana Godinho-Pereira
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Ana Rita Garcia
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Inês Figueira
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Farm-ID—Faculty of Pharmacy Association for Research and Development, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rui Malhó
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, Universidade de Lisboa, Campo Grande 016, 1749-016 Lisbon, Portugal;
| | - Maria Alexandra Brito
- iMed.ULisboa—Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal; (J.G.-P.); (A.R.G.); (I.F.)
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
14
|
EGFR-dependent tyrosine phosphorylation of integrin β4 is not required for downstream signaling events in cancer cell lines. Sci Rep 2021; 11:8675. [PMID: 33883672 PMCID: PMC8060419 DOI: 10.1038/s41598-021-88134-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
In epithelial cancers, the epidermal growth factor receptor (EGFR) and integrin α6β4 are frequently overexpressed and found to synergistically activate intracellular signaling pathways that promote cell proliferation and migration. In cancer cells, the β4 subunit is phosphorylated at tyrosine residues not normally recognized as kinase substrates; however, the function of these phosphotyrosine residues in cancer cells is a subject of much debate. In EGFR-overexpressing carcinoma cells, we found that the Src family kinase (SFK) inhibitor PP2 reduces β4 tyrosine phosphorylation following the activation of EGFR. However, siRNA mediated knockdown of the SFKs Src, Fyn, Yes and Lyn, individually or in combination, did not affect the EGF-induced phosphorylation of β4. Using phospho-peptide affinity chromatography and mass spectrometry, we found that PLCγ1 binds β4 at the phosphorylated residues Y1422/Y1440, but were unable to verify this interaction in A431 carcinoma cells that overexpress the EGFR. Furthermore, using A431 cells devoid of β4 or reconstituted with phenylalanine specific mutants of β4, the activation of several downstream signaling pathways, including PLCγ/PKC, MAPK and PI3K/Akt, were not substantially affected. We conclude that tyrosine-phosphorylated β4 does not enhance EGFR-mediated signaling in EGFR-overexpressing cells, despite the fact that this integrin subunit is highly tyrosine phosphorylated in these cells.
Collapse
|
15
|
Gao Y, Zheng H, Li L, Feng M, Chen X, Hao B, Lv Z, Zhou X, Cao Y. Prostate-Specific Membrane Antigen (PSMA) Promotes Angiogenesis of Glioblastoma Through Interacting With ITGB4 and Regulating NF-κB Signaling Pathway. Front Cell Dev Biol 2021; 9:598377. [PMID: 33748101 PMCID: PMC7969793 DOI: 10.3389/fcell.2021.598377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/15/2021] [Indexed: 12/01/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is the most common primary malignant tumor in the central nervous system (CNS), causing the extremely poor prognosis. Combining the role of angiogenesis in tumor progression and the role of prostate-specific membrane antigen (PSMA) in angiogenesis, this study aims to explore the functions of PSMA in GBM. Methods Clinical GBM specimens were collected from 60 patients who accepted surgical treatment in Fudan University Shanghai Cancer Center between January 2018 and June 2019. Immunohistochemical staining was used to detect PSMA and CD31 expression in GBM tissues. Prognostic significance of PSMA was evaluated by bioinformatics. Human umbilical vein endothelial cells (HUVECs) transfected with PSMA overexpression plasmids or cultured with conditioned medium collected based on GBM cells, were used for CCK8, Transwell and tube formation assays. High-throughput sequencing and immunoprecipitation were used to explore the underlying mechanism. Furthermore, the in vivo experiment had been also conducted. Results We demonstrated that PSMA was abundantly expressed in endothelium of vessels of GBM tissues but not in vessels of normal tissues, which was significantly correlated with poor prognosis. Overexpression of PSMA could promotes proliferation, invasion and tube formation ability of human umbilical vein endothelial cells (HUVECs). Moreover, U87 or U251 conditioned medium could upregulated PSMA expression and induce similar effects on phenotypes of HUVECs, all of which could be partially attenuated by 2-PMPA treatment. The mechanistic study revealed that PSMA might promote angiogenesis of GBM through interacting with Integrin β4 (ITGB4) and activating NF-κB signaling pathway. The in vivo growth of GBM could be alleviated by the treatment of 2-PMPA. Conclusion This study identified PSMA as a critical regulator in angiogenesis and progression of GBM, which might be a promising therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Zheng
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xiaoyan Zhou
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Kuriyama N, Yoshioka Y, Kikuchi S, Azuma N, Ochiya T. Extracellular Vesicles Are Key Regulators of Tumor Neovasculature. Front Cell Dev Biol 2020; 8:611039. [PMID: 33363175 PMCID: PMC7755723 DOI: 10.3389/fcell.2020.611039] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/16/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor progression involves a series of biologically important steps in which the crosstalk between cancer cells and the surrounding environment is an important issue. Angiogenesis is a key tumorigenic phenomenon for cancer progression. Tumor-related extracellular vesicles (EVs) modulate the tumor microenvironment (TME) through cell-to-cell communication. Tumor cells in a hypoxic TME release more EVs than cells in a normoxic environment due to uncontrollable tumor proliferation. Tumor-derived EVs in the TME influence endothelial cells (ECs), which then play multiple roles, contributing to tumor angiogenesis, loss of the endothelial vascular barrier by binding to ECs, and subsequent endothelial-to-mesenchymal transition. In contrast, they also indirectly induce tumor angiogenesis through the phenotype switching of various cells into cancer-associated fibroblasts, the activation of tumor-associated ECs and platelets, and remodeling of the extracellular matrix. Here, we review current knowledge regarding the involvement of EVs in tumor vascular-related cancer progression.
Collapse
Affiliation(s)
- Naoya Kuriyama
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan.,Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
17
|
Abstract
Stem cells (SCs) maintain tissue homeostasis and repair wounds. Despite marked variation in tissue architecture and regenerative demands, SCs often follow similar paradigms in communicating with their microenvironmental "niche" to transition between quiescent and regenerative states. Here we use skin epithelium and skeletal muscle-among the most highly-stressed tissues in our body-to highlight similarities and differences in niche constituents and how SCs mediate natural tissue rejuvenation and perform regenerative acts prompted by injuries. We discuss how these communication networks break down during aging and how understanding tissue SCs has led to major advances in regenerative medicine.
Collapse
Affiliation(s)
- Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Helen M Blau
- Baxter Foundation Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Chondroitin Sulfate Promotes the Proliferation of Keloid Fibroblasts Through Activation of the Integrin and Protein Kinase B Pathways. Int J Mol Sci 2020; 21:ijms21061955. [PMID: 32182995 PMCID: PMC7139995 DOI: 10.3390/ijms21061955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/11/2020] [Indexed: 01/05/2023] Open
Abstract
Keloids are dermal fibroproliferative tumors that arise beyond the boundary of the original wound edges and invades adjacent tissue. Keloids are characterized by the extensive production of extracellular matrix (ECM) and abnormal fibroblast proliferation. Chondroitin sulfate (CS) is one of the major structural components of cartilage and ECM. Recently, we reported the over-accumulation of CS in keloid lesions. Keloid-derived fibroblasts (KFs) and normal dermal fibroblasts (NFs) were incubated with CS. The fibroblast proliferation rate was analyzed using a tetrazolium salt colorimetric assay. The activation of the intracellular signaling pathway was analyzed by Western blotting. Wortmannin, a PI3K inhibitor, and anti-integrin antibodies were tested to investigate the mechanism of the CS-induced cell proliferation. CS strongly stimulated the proliferation of KFs, but not NFs. The analysis of the intracellular signal transduction pathway revealed that the stimulation effect of CS on KF proliferation was due to the activation of the protein kinase B (AKT) pathway and that integrin α1 was responsible for this phenomenon. We revealed that CS probably activates the AKT pathway through integrin to induce KF proliferation. CS may be a novel clinical therapeutic target in keloids.
Collapse
|
20
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
21
|
Li J, Luo M, Ou H, Liu X, Kang X, Yin W. Integrin β4 promotes invasion and anoikis resistance of papillary thyroid carcinoma and is consistently overexpressed in lymphovascular tumor thrombus. J Cancer 2019; 10:6635-6648. [PMID: 31777592 PMCID: PMC6856897 DOI: 10.7150/jca.36125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Although the majority of papillary thyroid cancers (PTC) are indolent, a subset of PTCs behaves aggressively due to extensive invasion and distant metastasis. Integrin β4, a member of the integrin family, has been shown to enhance the progression in some malignancies; however, its role in PTC remains unclear. Here, we demonstrated that β4 overexpression was associated with extrathyroid extension, lymph node metastasis, high TNM stage, and poor overall survival based on The Cancer Genome Atlas cohort. Immunohistochemistry showed that β4 expression was significantly upregulated in the tumors with infiltrating growth pattern, as well as those with positive lymphovascular invasion. Moreover, β4 was invariably overexpressed in the lymphovascular tumor thrombi, which has not been reported before. After shRNA-induced knockdown of β4 in vitro, the migration, invasion and scratch repair ability of the tumor cells were significantly reduced. Furthermore, β4 reduction decreased anchorage-independent growth and increased anoikis. The bioinformatics analysis revealed that approximately 70 pathways were significantly dysregulated in the high β4 expression group. The MAPK pathway and propanoate metabolism were located in the network center of those pathways. Taken together, our results suggest that β4 could promote the tumor's aggressiveness by enhancing invasion and antagonizing anoikis. The upregulated expression of β4 in the tumor thrombi is intrinsically linked to its role in strengthening the anoikis resistance.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China.,State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, 518055, China
| | - Minghua Luo
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Huiting Ou
- Department of Endocrinology, Shenzhen Second People's Hospital, Guangdong Province, 518035, China
| | - Xiaoling Liu
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Xueling Kang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| |
Collapse
|
22
|
Tan ST, Dosan R. Lessons From Epithelialization: The Reason Behind Moist Wound Environment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874372201913010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wound healing consists of multiple structured mechanism and is influenced by various factors. Epithelialization is one of the major aspect in wound healing and inhibition of this mechanism will greatly impair wound healing. Epithelialization is a process where epithelial cells migrate upwards and repair the wounded area. This process is the most essential part in wound healing and occurs in proliferative phase of wound healing. Skin stem cells which reside in several locations of epidermis contribute in the re-epithelialization when the skin is damaged. Epithelialization process is activated by inflammatory signal and then keratinocyte migrate, differentiate and stratify to close the defect in the skin. Several theories of epithelialization model in wound healing have been proposed for decades and have shown the mechanism of epidermal cell migration during epithelialization even though the exact mechanism is still controversial. This process is known to be influenced by the wound environment where moist wound environment is preferred rather than dry wound environment. In dry wound environment, epithelialization is known to be inhibited because of scab or crust which is formed from dehydrated and dead cells. Moist wound environment enhances the epithelialization process by easier migration of epidermal cells, faster epithelialization, and prolonged presence of proteinases and growth factors. This article focuses on the epithelialization process in wound healing, epithelialization models, effects of wound environment on epithelialization and epithelialization as the basis for products that enhance wound healing.
Collapse
|
23
|
Shen J, Xu J, Chen B, Ma D, Chen Z, Li JC, Zhu C. Elevated integrin α6 expression is involved in the occurrence and development of lung adenocarcinoma, and predicts a poor prognosis: a study based on immunohistochemical analysis and bioinformatics. J Cancer Res Clin Oncol 2019; 145:1681-1693. [PMID: 31175464 DOI: 10.1007/s00432-019-02907-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To study integrin α6 expression in lung adenocarcinoma tissue through comparison with matching adjacent non-cancerous tissues as well as elucidating the correlation between integrin α6 expression with the clinical parameters of lung adenocarcinoma. We also explore the signal pathways associated with integrin α6 up-regulation. METHODS The clinical data, cancer tissues, and adjacent non-cancerous tissues of 30 patients diagnosed with lung adenocarcinoma were collected from Taizhou Hospital in Zhejiang Province, China, in 2010. The protein levels of integrin α6 were determined by immunohistochemistry methods. mRNA data of 85 lung adenocarcinoma tissues and 14 normal tissues as well as clinical results were collected from GEO30219. We also collected mRNA data of 533 lung adenocarcinoma tissues and 59 normal tissues as well as the clinical results of 522 patients with lung adenocarcinoma from the Cancer Genome Atlas (TCGA) database. The differences in protein and mRNA levels in cancer tissues and non-cancerous tissues were analyzed, and we subsequently investigated the association between integrin α6 expression and key parameters indicating lung adenocarcinoma progression and overall survival rate. Additionally, the possible pathways involved in the up-regulation of integrin α6 were analyzed by GSEA. RESULTS The protein levels of integrin α6 in lung adenocarcinoma tissues were significantly higher than those in adjacent tissues (p < 0.01), and were positively correlated with the grade and T stage of lung adenocarcinoma (p < 0.05). Patients with low integrin α6 protein levels had higher survival rates (p < 0.05). The analysis of gene chip data from the TCGA database also showed that the integrin α6 mRNA level was significantly correlated with T stage (p < 0.05), overall survival (OS) rate (p < 0.01), and disease-free survival (DFS) rate (p = 0.005). GSEA gene enrichment analysis identified a series of pathways that may be associated with integrin α6 up-regulation, including the AGR, PYK2, ECM, and PTEN pathways. CONCLUSION Integrin α6 plays an important role in the occurrence and progression of lung adenocarcinoma and may act as a prognostic predictor of lung adenocarcinoma in patients. Based on the results of the present study, integrin α6 may be a potential target gene for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, 317000, China
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Xu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Baofu Chen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Dehua Ma
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Zixuan Chen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China
| | - Ji-Cheng Li
- Institute of Cell Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Chengchu Zhu
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, 317000, China.
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, China.
| |
Collapse
|
24
|
β-1,3/1,4-Glucan Lichenan from Cetraria islandica (L.) ACH. induces cellular differentiation of human keratinocytes. Fitoterapia 2018; 129:226-236. [DOI: 10.1016/j.fitote.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
|
25
|
Chen J, Zhang H, Luo J, Wu X, Li X, Zhao X, Zhou D, Yu S. Overexpression of α3, β3 and γ2 chains of laminin-332 is associated with poor prognosis in pancreatic ductal adenocarcinoma. Oncol Lett 2018; 16:199-210. [PMID: 29928402 PMCID: PMC6006395 DOI: 10.3892/ol.2018.8678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a worldwide health problem. Early diagnosis and assessment may enhance the quality of life and survival of patients. The present study investigated the potential correlations between the gene and protein expression of laminin-332 (LM-332 or laminin-5) and clinicopathological factors as well as evaluating its influence on the survival of patients with PDA. The expression of LM-332 subunit mRNAs in pancreatic carcinoma specimens from 37 patients was investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Using immunohistochemical methods, the protein expressions of the three chains of LM-322 (LNα3, LNβ3 and LNγ2) were determined in 96 pancreatic carcinoma specimens, for association analysis with clinicopathological characteristics from patient data. The results of the prognosis analysis of three mRNAs expression datasets were validated in The Cancer Genome Atlas datasets. RT-qPCR results indicated that the overall relative values of LNα3 and LNγ2 mRNAs were increased in pancreatic carcinoma compared with the control. In immunostaining analyses LNα3 and LNγ2 expression was observed in all tumor tissues from the 96 patient samples. The expression levels of LNα3, LNβ3 and LNγ2 were associated with each other. LNα3 and LNγ2 positivity was significantly associated with differentiation, depth of invasion and advanced stage (P<0.05). The samples were classified into three groups: Basement membrane (B) type, cytoplasmic (C) type and mixed (M) type, according to their LNγ2 immunohistochemical expression patterns. The B type correlated significantly with differentiation (P=0.010) and the M type was significantly associated with hepatic metastasis (P=0.031). Patients with B-type LNγ2 demonstrated significantly better outcomes than patients with the C or M type (P=0.012 and P=0.003, respectively). Overexpression of the α3, β3 and γ2 chains of LM-332 may serve an important role in the progression and prognosis of PDA.
Collapse
Affiliation(s)
- Jun Chen
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Hao Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Jiansheng Luo
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xiaokang Wu
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xueming Li
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xinyi Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dongkai Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shian Yu
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
26
|
Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S, Cao D, Tang L, Tang S, Wu M, Yang W, Wang H. Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 2018; 9:191. [PMID: 29335551 PMCID: PMC5768693 DOI: 10.1038/s41467-017-02583-0] [Citation(s) in RCA: 731] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
The communication between tumor-derived elements and stroma in the metastatic niche has a critical role in facilitating cancer metastasis. Yet, the mechanisms tumor cells use to control metastatic niche formation are not fully understood. Here we report that in the lung metastatic niche, high-metastatic hepatocellular carcinoma (HCC) cells exhibit a greater capacity to convert normal fibroblasts to cancer-associated fibroblasts (CAFs) than low-metastatic HCC cells. We show high-metastatic HCC cells secrete exosomal miR-1247-3p that directly targets B4GALT3, leading to activation of β1-integrin–NF-κB signaling in fibroblasts. Activated CAFs further promote cancer progression by secreting pro-inflammatory cytokines, including IL-6 and IL-8. Clinical data show high serum exosomal miR-1247-3p levels correlate with lung metastasis in HCC patients. These results demonstrate intercellular crosstalk between tumor cells and fibroblasts is mediated by tumor-derived exosomes that control lung metastasis of HCC, providing potential targets for prevention and treatment of cancer metastasis. How tumor cells control metastatic niche formation is not fully understood. Here, the authors show in a lung metastatic niche, high-metastatic hepatocellular carcinoma cells secrete exosomal miR-1247-3p that leads to activation of β1-integrin-NF-κBsignalling, converting fibroblasts to cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Tian Fang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China
| | - Hongwei Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China
| | - Guishuai Lv
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Ting Li
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China
| | - Changzheng Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China
| | - Qin Han
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China
| | - Lexing Yu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Bo Su
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linna Guo
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Shanna Huang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Dan Cao
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Liang Tang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Shanhua Tang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Mengchao Wu
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China.,National Center for Liver Cancer, Shanghai, 201805, China
| | - Wen Yang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China. .,National Center for Liver Cancer, Shanghai, 201805, China.
| | - Hongyang Wang
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, China. .,National Center for Liver Cancer, Shanghai, 201805, China. .,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Choi JH, Song YS, Song K, Lee HJ, Hong JW, Kim GC. Skin renewal activity of non-thermal plasma through the activation of β-catenin in keratinocytes. Sci Rep 2017; 7:6146. [PMID: 28733577 PMCID: PMC5522407 DOI: 10.1038/s41598-017-06661-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/15/2017] [Indexed: 12/26/2022] Open
Abstract
For recent years, devices that generate non-thermal plasma (NTP) have been introduced into the field of dermatology. Since NTP has demonstrated strong anti-pathogenic activity with safety of use, NTP was first applied to sterilize the skin surface to aid in the healing of various kinds of skin diseases. However, the effect of NTP on skin regeneration has not yet been fully explored. In this study, the effect of NTP on the growth of keratinocytes was tested using the HaCaT human keratinocyte cell line and HRM2 hairless mice. Treatment with NTP allowed confluent keratinocytes to escape from G1 cell cycle arrest and increased the proportion of cells in S and G2 phases. In particular, NTP treatment immediately dispersed E-cadherin-mediated cell-to-cell interactions, resulting in the translocation of β-catenin to the nucleus and leading to the enhanced transcription of target genes including c-MYC and cyclin D1. Moreover, repeated treatment of the mice with NTP also stimulated epidermal expansion by activating β-catenin in the epidermal cells. The symptoms of cellular DNA damage were not detected after NTP treatment. Taken together, these results demonstrate that NTP may be employed as a new type of skin regenerating device.
Collapse
Affiliation(s)
- J H Choi
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Y S Song
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea
| | - K Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - H J Lee
- Department of Electrical Engineering, Pusan National University, Busan, South Korea
| | - J W Hong
- Department of Internal Medicine, School of Korean Medicine, Pusan National University, Yangsan, South Korea.
- (Bio)medical Research Institute, Pusan National University Hospital, Yangsan, South Korea.
| | - G C Kim
- Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan, South Korea.
| |
Collapse
|
28
|
Kariya Y, Kariya Y, Gu J. Roles of Integrin α6β4 Glycosylation in Cancer. Cancers (Basel) 2017; 9:cancers9070079. [PMID: 28678156 PMCID: PMC5532615 DOI: 10.3390/cancers9070079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/15/2023] Open
Abstract
Malignant transformation is accompanied with aberrant glycosylation of proteins. Such changes in glycan structure also occur in the integrins, which are a large family of cell surface receptors for the extracellular matrix and play key roles in tumor progression. There is now increasing evidence that glycosylation of integrins affects cellular signaling and interaction with the extracellular matrix, receptor tyrosine kinases, and galectins, thereby regulating cell adhesion, motility, growth, and survival. Integrin α6β4 is a receptor for laminin-332 and the increased expression level is correlated with malignant progression and poor survival in various types of cancers. Recent studies have revealed that integrin α6β4 plays central roles in tumorigenesis and the metastatic process. In this review, we summarize our current understanding of the molecular mechanisms of tumor progression driven by integrin α6β4 and also discuss the modification of glycans on integrin β4 subunit to address the important roles of glycan in integrin-mediated tumor progression.
Collapse
Affiliation(s)
- Yoshinobu Kariya
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
| | - Yukiko Kariya
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
29
|
Seo EY, Jin SP, Kim YK, Lee H, Han S, Lee DH, Chung JH. Integrin-β4–TNS4–Focal Adhesion Kinase Signaling Mediates Keratinocyte Proliferation in Human Skin. J Invest Dermatol 2017; 137:763-766. [DOI: 10.1016/j.jid.2016.10.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
|
30
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
31
|
Peng X, Yu Y, Wang Z, Zhang X, Wang J, Liu C. Potentiation effect of HB-EGF on facilitating wound healing via 2-N,6-O-sulfated chitosan nanoparticles modified PLGA scaffold. RSC Adv 2017. [DOI: 10.1039/c7ra07719j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
26SCS-nanoparticles modified PLGA have synergistic effect with HB-EGF on promoting the migration of keratinocyte, realizing the skin regeneration.
Collapse
Affiliation(s)
- Xiang Peng
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Zihao Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Xiaohui Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| |
Collapse
|
32
|
Jacków J, Löffek S, Nyström A, Bruckner-Tuderman L, Franzke CW. Collagen XVII Shedding Suppresses Re-Epithelialization by Directing Keratinocyte Migration and Dampening mTOR Signaling. J Invest Dermatol 2016; 136:1031-1041. [PMID: 26827763 DOI: 10.1016/j.jid.2016.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022]
Abstract
Transmembrane collagen XVII is traditionally viewed as an important hemidesmosomal attachment component that promotes stable dermal-epidermal adhesion in the skin. However, its expression is highly elevated at the leading edges of cutaneous wounds or invasive carcinomas, suggesting alternative functions in cell migration. The collagenous ectodomain of collagen XVII is constitutively shed from the cell surface by a disintegrin and metalloproteinases, and this shedding is strongly induced during wound healing. Recently, we investigated the physiological relevance of collagen XVII shedding by generating knock-in mice, which exclusively express a functional non-sheddable collagen XVII mutant. Prevention of ectodomain shedding in these mice caused no spontaneous phenotype in resting skin, but accelerated re-epithelialization on skin wounding. Here, we investigated the mechanistic function of shedding during wound healing. Using the non-shedding collagen XVII mice as a model, we uncovered ectodomain shedding as a highly dynamic modulator of in vivo proliferation and motility of activated keratinocytes through tight coordination of α6β4 integrin-laminin-332 interactions and dampening of mechanistic target of rapamycin signaling at the wound edges. Thus, our studies identify ectodomain shedding of collagen XVII as an interactive platform that translates shedding into a signal for directed cell growth and motility during skin regeneration.
Collapse
Affiliation(s)
- Joanna Jacków
- Department of Dermatology, Medical Center, University of Freiburg, Germany.
| | - Stefanie Löffek
- Department of Dermatology, Medical Center, University of Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center, University of Freiburg, Germany
| | | | | |
Collapse
|
33
|
Elevated integrin α6β4 expression is associated with venous invasion and decreased overall survival in non-small cell lung cancer. Hum Pathol 2016; 54:174-83. [PMID: 27107458 DOI: 10.1016/j.humpath.2016.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/26/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
Lung cancer carries a poor prognosis and is the most common cause of cancer-related death worldwide. The integrin α6β4, a laminin receptor, promotes carcinoma progression in part by cooperating with various growth factor receptors to facilitate invasion and metastasis. In carcinoma cells with mutant TP53, the integrin α6β4 promotes cell survival. TP53 mutations and integrin α6β4 overexpression co-occur in many aggressive malignancies. Because of the high frequency of TP53 mutations in lung squamous cell carcinoma (SCC), we sought to investigate the association of integrin β4 expression with clinicopathologic features and survival in non-small cell lung cancer (NSCLC). We constructed a lung cancer tissue microarray and stained sections for integrin β4 subunit expression using immunohistochemistry. We found that integrin β4 expression is elevated in SCC compared with adenocarcinoma (P<.0001), which was confirmed in external gene expression data sets (P<.0001). We also determined that integrin β4 overexpression associates with the presence of venous invasion (P=.0048) and with reduced overall patient survival (hazard ratio, 1.46; 95% confidence interval, 1.01-2.09; P=.0422). Elevated integrin β4 expression was also shown to associate with reduced overall survival in lung cancer gene expression data sets (hazard ratio, 1.49; 95% confidence interval, 1.31-1.69; P<.0001). Using cBioPortal, we generated a network map demonstrating the 50 most highly altered genes neighboring ITGB4 in SCC, which included laminins, collagens, CD151, genes in the EGFR and PI3K pathways, and other known signaling partners. In conclusion, we demonstrate that integrin β4 is overexpressed in NSCLC where it is an adverse prognostic marker.
Collapse
|
34
|
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature 2015. [PMID: 26524530 DOI: 10.1038/nature 15756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.
Collapse
Affiliation(s)
- Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Bruno Costa-Silva
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tang-Long Shen
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Plant Pathology and Microbiology and Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Goncalo Rodrigues
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Ayako Hashimoto
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Shinji Kohsaka
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sophia Ceder
- Department of Oncology and Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Swarnima Singh
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Caitlin Williams
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Nadine Soplop
- Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA
| | - Kunihiro Uryu
- Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA
| | - Lindsay Pharmer
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Tari King
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Linda Bojmar
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Alexander E Davies
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yonathan Ararso
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York 10021, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Jonathan Hernandez
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Joshua M Weiss
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Vanessa D Dumont-Cole
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Kimberly Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Aru Narendran
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta T3B 6A8, Canada
| | - Gary K Schwartz
- Division of Hematology/Oncology, Columbia University School of Medicine, New York, New York 10032, USA
| | - John H Healey
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Per Sandstrom
- Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Knut Jørgen Labori
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Nydalen, Oslo 0424, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Nydalen, Oslo 0424, Norway
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Maria de Sousa
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Mary S Brady
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Oystein Fodstad
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo 0424, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo 0318, Norway
| | - Volkmar Muller
- Department of Gynecology, University Medical Center, Martinistrasse 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Andy J Minn
- Department of Radiation Oncology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Vinagolu K Rajasekhar
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Cyrus M Ghajar
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Hector Peinado
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
35
|
Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527:329-35. [PMID: 26524530 PMCID: PMC4788391 DOI: 10.1038/nature15756] [Citation(s) in RCA: 3677] [Impact Index Per Article: 367.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 09/29/2015] [Indexed: 12/11/2022]
Abstract
Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.
Collapse
Affiliation(s)
- Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Bruno Costa-Silva
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tang-Long Shen
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Plant Pathology and Microbiology and Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Goncalo Rodrigues
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Ayako Hashimoto
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, New York 10065, USA
| | - Shinji Kohsaka
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Angela Di Giannatale
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Sophia Ceder
- Department of Oncology and Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Swarnima Singh
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Caitlin Williams
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Nadine Soplop
- Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA
| | - Kunihiro Uryu
- Electron Microscopy Resource Center (EMRC), Rockefeller University, New York, New York 10065, USA
| | - Lindsay Pharmer
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Tari King
- Breast Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Linda Bojmar
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Alexander E Davies
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yonathan Ararso
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, New York 10021, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Jonathan Hernandez
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Joshua M Weiss
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Vanessa D Dumont-Cole
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Kimberly Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Leonard H Wexler
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Aru Narendran
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, Alberta T3B 6A8, Canada
| | - Gary K Schwartz
- Division of Hematology/Oncology, Columbia University School of Medicine, New York, New York 10032, USA
| | - John H Healey
- Orthopaedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Per Sandstrom
- Department of Surgery, County Council of Östergötland, and Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 58185 Linköping, Sweden
| | - Knut Jørgen Labori
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Nydalen, Oslo 0424, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Nydalen, Oslo 0424, Norway
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Maria de Sousa
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Mary S Brady
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Oystein Fodstad
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo 0424, Norway.,Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Blindern, Oslo 0318, Norway
| | - Volkmar Muller
- Department of Gynecology, University Medical Center, Martinistrasse 52, 20246 Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Andy J Minn
- Department of Radiation Oncology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Vinagolu K Rajasekhar
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Cyrus M Ghajar
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA
| | - Hector Peinado
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10021, USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
36
|
Zacharski DM, Brandt S, Esch S, König S, Mormann M, Ulrich-Merzenich G, Hensel A. Xyloglucan from Tropaeolum majus Seeds Induces Cellular Differentiation of Human Keratinocytes by Inhibition of EGFR Phosphorylation and Decreased Activity of Transcription Factor CREB. Biomacromolecules 2015; 16:2157-67. [PMID: 26068019 DOI: 10.1021/acs.biomac.5b00553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Xyloglucan XG (molecular weight 462 kDa, 1,4-/1,4,6-(pGlc) linked backbone, side chains of 1-pXyl, 1,2-pXyl, 1-p-Gal) was isolated from the seeds of Tropaeolum majus. XG (100 μg/mL) induced terminal cellular differentiation of human keratinocytes, as demonstrated by immunofluorescence staining and Western blot using cytokeratin 10 and involucrin as marker proteins. Differentiation was also induced by XG-derived oligosaccharides (degree of polymerization 7-9). Quantitative real-time polymerase chain reaction (qPCR) revealed the induction of gene expression of typical differentiation markers (cytokeratin, filaggrin, involucrin, loricrin, transglutaminase) in a time-dependent manner. Whole human genome microarray indicated that most of upregulated genes were related to differentiation processes. Microarray findings on selected genes were subsequently confirmed by qPCR. For identification of the molecular target of xyloglucan PAGE of keratinocyte membrane preparations was performed, followed by blotting with fluorescein isothiocyanate-labeled XG. XG interacting proteins were characterized by MS. Peptide fragments of epidermal growth factor receptor (EGFR) and integrin β4 were identified. Subsequent phospho-kinase array indicated that phosphorylation of EGFR and transcription factor cAMP response element-binding protein (CREB) was decreased in the XG-treated cells. Thus, the XG-induced differentiation of keratinocytes is proposed to be mediated by the inhibition of the phosphorylation of EGFR, leading to a dimished CREB activation, which is essential for the activation of cellular differentiation.
Collapse
Affiliation(s)
- Dominika M Zacharski
- ‡University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - Simone Brandt
- ‡University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - Stefan Esch
- ‡University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - Simone König
- §University of Münster, Interdisciplinary Centre for Clinical Research, Core Unit Proteomics, Röntgenstr. 21, D-48149 Münster, Germany
| | - Michael Mormann
- #University of Münster, Institute for Hygiene, Robert-Koch-Strasse 41, D-48149 Münster, Germany
| | - Gudrun Ulrich-Merzenich
- ∥University Clinic Centre Bonn, Medical Clinic III, Centre for Internal Medicine, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Andreas Hensel
- ‡University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| |
Collapse
|
37
|
Has C, Nyström A. Epidermal Basement Membrane in Health and Disease. CURRENT TOPICS IN MEMBRANES 2015; 76:117-70. [PMID: 26610913 DOI: 10.1016/bs.ctm.2015.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skin, as the organ protecting the individual from environmental aggressions, constantly meets external insults and is dependent on mechanical toughness for its preserved function. Accordingly, the epidermal basement membrane (BM) zone has adapted to enforce tissue integrity. It harbors anchoring structures created through unique organization of common BM components and expression of proteins exclusive to the epidermal BM zone. Evidence for the importance of its correct assembly and the nonredundancy of its components for skin integrity is apparent from the multiple skin blistering disorders caused by mutations in genes coding for proteins associated with the epidermal BM and from autoimmune disorders in which autoantibodies target these molecules. However, it has become clear that these proteins not only provide mechanical support but are also critically involved in tissue homeostasis, repair, and regeneration. In this chapter, we provide an overview of the unique organization and components of the epidermal BM. A special focus will be given to its function during regeneration, and in inherited and acquired diseases.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
38
|
Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2014; 3:445-464. [PMID: 25032064 DOI: 10.1089/wound.2013.0473] [Citation(s) in RCA: 895] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022] Open
Abstract
Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalie C. Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Horacio Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Aron G. Nusbaum
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew Sawaya
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shailee B. Patel
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Laiqua Khalid
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
39
|
Winograd-Katz SE, Fässler R, Geiger B, Legate KR. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 2014; 15:273-88. [PMID: 24651544 DOI: 10.1038/nrm3769] [Citation(s) in RCA: 467] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adhesive interactions of cells with their environment through the integrin family of transmembrane receptors have key roles in regulating multiple aspects of cellular physiology, including cell proliferation, viability, differentiation and migration. Consequently, failure to establish functional cell adhesions, and thus the assembly of associated cytoplasmic scaffolding and signalling networks, can have severe pathological effects. The roles of specific constituents of integrin-mediated adhesions, which are collectively known as the 'integrin adhesome', in diverse pathological states are becoming clear. Indeed, the prominence of mutations in specific adhesome molecules in various human diseases is now appreciated, and experimental as well as in silico approaches provide insights into the molecular mechanisms underlying these pathological conditions.
Collapse
Affiliation(s)
- Sabina E Winograd-Katz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kyle R Legate
- 1] Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Center for Nanosciences, Department of Applied Physics, Ludwig-Maximilians University, 80799 Munich, Germany
| |
Collapse
|
40
|
Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol 2014; 34:144-53. [DOI: 10.1016/j.matbio.2013.10.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 12/30/2022]
|
41
|
|
42
|
Protein kinase D1 has a key role in wound healing and skin carcinogenesis. J Invest Dermatol 2013; 134:902-909. [PMID: 24213370 PMCID: PMC3961536 DOI: 10.1038/jid.2013.474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 01/14/2023]
Abstract
Protein kinase D (PKD) is a family of stress-responsive serine/threonine kinases implicated in the regulation of diverse cellular functions including cell growth, differentiation, apoptosis, and cell motility. Although all three isoforms are expressed in keratinocytes, their role in skin biology and pathology is poorly understood. We recently identified a critical role for PKD1 during reversal of keratinocyte differentiation in culture, suggesting a potential pro-proliferative role in epidermal adaptive responses. Here, we generated mice with targeted deletion of PKD1 in epidermis to evaluate the significance of PKD1 in normal and hyperplastic conditions. These mice displayed a normal skin phenotype indicating that PKD1 is dispensable for skin development and homeostasis. Upon wounding however, PKD1-deficient mice exhibited delayed wound re-epithelialization correlated with a reduced proliferation and migration of keratinocytes at the wound edge. In addition, the hyperplastic and inflammatory responses to topical phorbol ester were significantly suppressed suggesting involvement of PKD1 in tumor promotion. Consistently, when subjected to two-stage chemical skin carcinogenesis protocol, PKD1-deficient mice were resistant to papilloma formation when compared to control littermates. These results revealed a critical pro-proliferative role for PKD1 in epidermal adaptive responses, suggesting a potential therapeutic target in skin wound and cancer treatment.
Collapse
|
43
|
Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:327-347. [PMID: 24587971 DOI: 10.1089/wound.2012.0380] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Normal wound healing progresses through a series of overlapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. RECENT ADVANCES A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, exposed termini, and the fact that their only modifications are two disulfide bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to pharmacological modulation. CRITICAL ISSUES Chemokines are multifunctional, and in many situations, their functions are highly dependent on the microenvironment. Moreover, each specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligomers. Activation of one receptor by any single chemokine can lead to desensitization of other chemokine receptors, or even other GPCRs in the same cell, with implications for how these proteins or their receptors could be used to manipulate function. FUTURE DIRECTIONS Investment in better understanding of the functions of chemokines and their receptors in a local context can reveal new ways for therapeutic intervention. Understanding how different chemokines can activate the same receptor and vice versa could identify new possibilities for drug development based on their heterotypic interactions.
Collapse
Affiliation(s)
- Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Melissa Petreaca
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| |
Collapse
|
44
|
Nyström A, Velati D, Mittapalli VR, Fritsch A, Kern JS, Bruckner-Tuderman L. Collagen VII plays a dual role in wound healing. J Clin Invest 2013; 123:3498-509. [PMID: 23867500 PMCID: PMC3726167 DOI: 10.1172/jci68127] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/09/2013] [Indexed: 01/01/2023] Open
Abstract
Although a host of intracellular signals is known to contribute to wound healing, the role of the cell microenvironment in tissue repair remains elusive. Here we employed 2 different mouse models of genetic skin fragility to assess the role of the basement membrane protein collagen VII (COL7A1) in wound healing. COL7A1 secures the attachment of the epidermis to the dermis, and its mutations cause a human skin fragility disorder coined recessive dystrophic epidermolysis bullosa (RDEB) that is associated with a constant wound burden. We show that COL7A1 is instrumental for skin wound closure by 2 interconnected mechanisms. First, COL7A1 was required for re-epithelialization through organization of laminin-332 at the dermal-epidermal junction. Its loss perturbs laminin-332 organization during wound healing, which in turn abrogates strictly polarized expression of integrin α6β4 in basal keratinocytes and negatively impacts the laminin-332/integrin α6β4 signaling axis guiding keratinocyte migration. Second, COL7A1 supported dermal fibroblast migration and regulates their cytokine production in the granulation tissue. These findings, which were validated in human wounds, identify COL7A1 as a critical player in physiological wound healing in humans and mice and may facilitate development of therapeutic strategies not only for RDEB, but also for other chronic wounds.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Daniela Velati
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Venugopal R. Mittapalli
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Anja Fritsch
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Johannes S. Kern
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| |
Collapse
|
45
|
Yoshioka T, Otero J, Chen Y, Kim YM, Koutcher JA, Satagopan J, Reuter V, Carver B, de Stanchina E, Enomoto K, Greenberg NM, Scardino PT, Scher HI, Sawyers CL, Giancotti FG. β4 Integrin signaling induces expansion of prostate tumor progenitors. J Clin Invest 2013; 123:682-99. [PMID: 23348745 PMCID: PMC3561800 DOI: 10.1172/jci60720] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/25/2012] [Indexed: 02/03/2023] Open
Abstract
The contextual signals that regulate the expansion of prostate tumor progenitor cells are poorly defined. We found that a significant fraction of advanced human prostate cancers and castration-resistant metastases express high levels of the β4 integrin, which binds to laminin-5. Targeted deletion of the signaling domain of β4 inhibited prostate tumor growth and progression in response to loss of p53 and Rb function in a mouse model of prostate cancer (PB-TAg mice). Additionally, it suppressed Pten loss-driven prostate tumorigenesis in tissue recombination experiments. We traced this defect back to an inability of signaling-defective β4 to sustain self-renewal of putative cancer stem cells in vitro and proliferation of transit-amplifying cells in vivo. Mechanistic studies indicated that mutant β4 fails to promote transactivation of ErbB2 and c-Met in prostate tumor progenitor cells and human cancer cell lines. Pharmacological inhibition of ErbB2 and c-Met reduced the ability of prostate tumor progenitor cells to undergo self-renewal in vitro. Finally, we found that β4 is often coexpressed with c-Met and ErbB2 in human prostate cancers and that combined pharmacological inhibition of these receptor tyrosine kinases exerts antitumor activity in a mouse xenograft model. These findings indicate that the β4 integrin promotes prostate tumorigenesis by amplifying ErbB2 and c-Met signaling in tumor progenitor cells.
Collapse
Affiliation(s)
- Toshiaki Yoshioka
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Javier Otero
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Yu Chen
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Young-Mi Kim
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Jason A. Koutcher
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Jaya Satagopan
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Victor Reuter
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Brett Carver
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Elisa de Stanchina
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Katsuhiko Enomoto
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Norman M. Greenberg
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Peter T. Scardino
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Howard I. Scher
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Charles L. Sawyers
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| | - Filippo G. Giancotti
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, New York, USA.
Departments of Molecular Pathology and Tumor Pathology, Akita University Graduate School of Medicine, Akita, Japan.
Human Oncology and Pathogenesis Program,
Department of Medicine,
Department of Medical Physics,
Department of Epidemiology and Biostatistics, and
Department of Pathology, Memorial Hospital, MSKCC, New York, New York, USA.
Antitumor Assessment Core, MSKCC, New York, New York, USA.
Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Department of Surgery, Memorial Hospital, MSKCC, New York, New York, USA
| |
Collapse
|
46
|
|
47
|
Johnson NR, Wang Y. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J Control Release 2012; 166:124-9. [PMID: 23154193 DOI: 10.1016/j.jconrel.2012.11.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/02/2012] [Accepted: 11/04/2012] [Indexed: 11/26/2022]
Abstract
Wound healing is a dynamic process that relies on coordinated signaling molecules to succeed. Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is proven to accelerate healing, however precise control over its application is necessary to reduce side effects and achieve desired therapeutic benefit. To achieve effective growth factor delivery we designed a bioactive heparin-based coacervate. In vitro, HB-EGF released from the coacervate delivery system displayed enhanced bioactivity and promoted human keratinocyte migration while preserving cell proliferative capability. In a mouse excisional full-thickness wound model, controlled release of HB-EGF within the wound significantly accelerated wound closure more effectively than an equal dosage of free HB-EGF. Healing was induced by rapid re-epithelialization, granulation tissue formation, and accompanied by angiogenesis. Consistent with in vitro results, wounds treated with HB-EGF coacervate exhibited enhanced migration of keratinocytes with retained proliferative potential, forming a confluent layer for regained barrier function within 7 days. Collectively, these results suggest that coacervate-based controlled release of HB-EGF may serve as a new therapy to accelerate healing of cutaneous wounds.
Collapse
Affiliation(s)
- Noah Ray Johnson
- Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
48
|
Seltmann K, Roth W, Kröger C, Loschke F, Lederer M, Hüttelmaier S, Magin TM. Keratins mediate localization of hemidesmosomes and repress cell motility. J Invest Dermatol 2012; 133:181-90. [PMID: 22895363 DOI: 10.1038/jid.2012.256] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The keratin (K)-hemidesmosome (HD) interaction is crucial for cell-matrix adhesion and migration in several epithelia, including the epidermis. Mutations in constituent proteins cause severe blistering skin disorders by disrupting the adhesion complex. Despite extensive studies, the role of keratins in HD assembly and maintenance is only partially understood. Here we address this issue in keratinocytes in which all keratins are depleted by genome engineering. Unexpectedly, such keratinocytes maintain many characteristics of their normal counterparts. However, the absence of the entire keratin cytoskeleton leads to loss of plectin from the hemidesmosomal plaque and scattering of the HD transmembrane core along the basement membrane zone. To investigate the functional consequences, we performed migration and adhesion assays. These revealed that, in the absence of keratins, keratinocytes adhere much faster to extracellular matrix substrates and migrate approximately two times faster compared with wild-type cells. Reexpression of the single keratin pair K5 and K14 fully reversed the above phenotype. Our data uncover a role of keratins, which to our knowledge is previously unreported, in the maintenance of HDs upstream of plectin, with implications for epidermal homeostasis and pathogenesis. They support the view that the downregulation of keratins observed during epithelial-mesenchymal transition supports the migratory and invasive behavior of tumor cells.
Collapse
|
49
|
Elliott CG, Kim SS, Hamilton DW. Functional significance of periostin in excisional skin repair: is the devil in the detail? Cell Adh Migr 2012; 6:319-26. [PMID: 22983194 DOI: 10.4161/cam.20879] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past year, three papers have been published exploring the role of the matricellular protein periostin in excisional skin repair. These papers all show a delay in wound closure and the kinetics of this delay are strikingly similar across the three reports. The similarities between these papers end, however, when each investigates the mechanism through which periostin influences skin repair. Three proposed mechanisms have been identified: (1) myofibroblast differentiation, (2) keratinocyte proliferation and (3) fibroblast proliferation and migration. The aim of this commentary is to compare and contrast the three studies performed to date in an attempt to decipher the role of periostin in the repair of full-thickness skin wounds.
Collapse
Affiliation(s)
- Christopher G Elliott
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON Canada
| | | | | |
Collapse
|
50
|
Kligys KR, Wu Y, Hopkinson SB, Kaur S, Platanias LC, Jones JCR. α6β4 integrin, a master regulator of expression of integrins in human keratinocytes. J Biol Chem 2012; 287:17975-84. [PMID: 22493440 DOI: 10.1074/jbc.m111.310458] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three major laminin and collagen-binding integrins in skin (α6β4, α3β1, and α2β1) are involved in keratinocyte adhesion to the dermis and dissemination of skin cells during wound healing and/or tumorigenesis. Knockdown of α6 integrin in keratinocytes not only results in motility defects but also leads to decreased surface expression of the α2, α3, and β4 integrin subunits. Whereas α2 integrin mRNA levels are decreased in α6 integrin knockdown cells, α3 and β4 integrin mRNAs levels are unaffected. Expression of either α6 or α3 integrin in α6 integrin knockdown cells restores α2 integrin mRNA levels. Moreover, re-expression of α6 integrin increases β4 integrin protein at the cell surface, which results in an increase in α3 integrin expression via activation of initiation factor 4E-binding protein 1. Our data indicate that the α6β4 integrin is a master regulator of transcription and translation of other integrin subunits and underscore its pivotal role in wound healing and cancer.
Collapse
Affiliation(s)
- Kristina R Kligys
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|