1
|
Shin CH, Rossi M, Mazan-Mamczarz K, Martindale JL, Munk R, Pal A, Piao Y, Fan J, De S, Abdelmohsen K, Gorospe M. Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20. Mol Cell Biol 2025; 45:129-141. [PMID: 39804141 DOI: 10.1080/10985549.2024.2443590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 03/09/2025] Open
Abstract
Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, HNRNPK mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased. The ensuing loss of full-length HNRNPK enhanced cell cycle arrest along with increased DNA damage. Analysis of the RNAs enriched after HNRNPK ribonucleoprotein immunoprecipitation (RIP) revealed a prominent target of HNRNPK, CDC20 mRNA, encoding a protein critical for progression through the G2/M phase of the cell division cycle. Silencing HNRNPK markedly decreased the levels of CDC20 mRNA via reduced transcription and stability of CDC20 mRNA, leading to lower CDC20 protein levels; conversely, overexpressing HNRNPK increased CDC20 production. Depletion of either HNRNPK or CDC20 impaired cell proliferation, with a concomitant reduction in the levels of CDK1, a key kinase for progression through G2/M. Given that overexpressing CDC20 in HNRNPK-silenced cells partly alleviated growth arrest, we propose that the reduction in HNRNPK levels in senescent cells contributed to inhibiting proliferation at least in part by suppressing CDC20 production.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Zhou J, Wu Z, Aili D, Wang L, Liu T. Exploration of the carcinogenetic and immune role of CHK1 in human cancer. J Cancer 2024; 15:5927-5941. [PMID: 39440047 PMCID: PMC11493005 DOI: 10.7150/jca.93930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/31/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Previous study indicated that CHK1 was important for repairing DNA damage and cell cycle regulation. Aims: To investigate the association of Checkpoint kinase 1 (CHK1) expression with clinicopathological features, prognosis, and immune infiltration in cancer. Methods: Several databases were searched for relevant publications to conduct a meta-analysis to reveal the association between CHK1 and clinicopathological features of cancer. TIMER and GEPIA datasets were utilized to explore the differential expression of CHK1 of tumors. GEPIA and Kaplan-Meier Plotter databases were adopted to detect the prognostic significance of CHK1 in tumor. TIMER and cBioPortal databases were used for the analysis regarding immune infiltration and mutation respectively. Results: We found that CHK1 expression was significantly associated with low differentiation (OR=3.94, 95% CI: 2.73-5.67, P<0.05), advanced stage (OR=3.20, 95% CI: 2.30-4.44, P<0.05), vascular infiltration (OR=3.24, 95% CI: 2.18-4.82, P<0.05) and lymph node metastasis (OR=3.55, 95% CI: 2.62-4.82, P<0.05) of various cancers. CHK1 was highly expressed in multiple cancers and was related to clinical stage, survival, immune infiltration in pan-cancers. Conclusions: Our study found that CHK1 was significantly related to prognosis and immunological status in various cancers, suggesting that CHK1 may serve as a useful biomarker for prognosis and immune infiltration in cancer.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziyi Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dilihumaer Aili
- Department of Orthopedic Surgery, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, China
| | - Lu Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Lee YF, Phua CZJ, Yuan J, Zhang B, Lee MY, Kannan S, Chiu YHJ, Koh CWQ, Yap CK, Lim EKH, Chen J, Lim Y, Lee JJH, Skanderup AJ, Wang Z, Zhai W, Tan NS, Verma CS, Tay Y, Tan DSW, Tam WL. PARP4 interacts with hnRNPM to regulate splicing during lung cancer progression. Genome Med 2024; 16:91. [PMID: 39034402 PMCID: PMC11265163 DOI: 10.1186/s13073-024-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The identification of cancer driver genes from sequencing data has been crucial in deepening our understanding of tumor biology and expanding targeted therapy options. However, apart from the most commonly altered genes, the mechanisms underlying the contribution of other mutations to cancer acquisition remain understudied. Leveraging on our whole-exome sequencing of the largest Asian lung adenocarcinoma (LUAD) cohort (n = 302), we now functionally assess the mechanistic role of a novel driver, PARP4. METHODS In vitro and in vivo tumorigenicity assays were used to study the functional effects of PARP4 loss and mutation in multiple lung cancer cell lines. Interactomics analysis by quantitative mass spectrometry was conducted to identify PARP4's interaction partners. Transcriptomic data from cell lines and patient tumors were used to investigate splicing alterations. RESULTS PARP4 depletion or mutation (I1039T) promotes the tumorigenicity of KRAS- or EGFR-driven lung cancer cells. Disruption of the vault complex, with which PARP4 is commonly associated, did not alter tumorigenicity, indicating that PARP4's tumor suppressive activity is mediated independently. The splicing regulator hnRNPM is a potentially novel PARP4 interaction partner, the loss of which likewise promotes tumor formation. hnRNPM loss results in splicing perturbations, with a propensity for dysregulated intronic splicing that was similarly observed in PARP4 knockdown cells and in LUAD cohort patients with PARP4 copy number loss. CONCLUSIONS PARP4 is a novel modulator of lung adenocarcinoma, where its tumor suppressive activity is mediated not through the vault complex-unlike conventionally thought, but in association with its novel interaction partner hnRNPM, thus suggesting a role for splicing dysregulation in LUAD tumorigenesis.
Collapse
Affiliation(s)
- Yi Fei Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Ju Yuan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Yui Hei Jasper Chiu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Casslynn Wei Qian Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Edwin Kok Hao Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Yuhua Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jane Jia Hui Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Zhenxun Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chandra S Verma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Daniel Shao Weng Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
4
|
Lambert GS, Rice BL, Kaddis Maldonado RJ, Chang J, Parent LJ. Comparative analysis of retroviral Gag-host cell interactions: focus on the nuclear interactome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.575255. [PMID: 38293010 PMCID: PMC10827203 DOI: 10.1101/2024.01.18.575255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Retroviruses exploit a variety of host proteins to assemble and release virions from infected cells. To date, most studies that examined possible interacting partners of retroviral Gag proteins focused on host proteins that localize primarily to the cytoplasm or plasma membrane. Given the recent findings that several full-length Gag proteins localize to the nucleus, identifying the Gag-nuclear interactome has high potential for novel findings that reveal previously unknown host processes. In this study, we systematically compared nuclear factors identified in published HIV-1 proteomic studies which had used a variety of experimental approaches. In addition, to contribute to this body of knowledge, we report results from a mass spectrometry approach using affinity-tagged (His6) HIV-1 and RSV Gag proteins mixed with nuclear extracts. Taken together, the previous studies-as well as our own-identified potential binding partners of HIV-1 and RSV Gag involved in several nuclear processes, including transcription, splicing, RNA modification, and chromatin remodeling. Although a subset of host proteins interacted with both Gag proteins, there were also unique host proteins belonging to each interactome dataset. To validate one of the novel findings, we demonstrated the interaction of RSV Gag with a member of the Mediator complex, Med26, which is required for RNA polymerase II-mediated transcription. These results provide a strong premise for future functional studies to investigate roles for these nuclear host factors that may have shared functions in the biology of both retroviruses, as well as functions specific to RSV and HIV-1, given their distinctive hosts and molecular pathology.
Collapse
Affiliation(s)
- Gregory S. Lambert
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Breanna L. Rice
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Rebecca J. Kaddis Maldonado
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jordan Chang
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Leslie J. Parent
- Department of Medicine, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
5
|
Fallatah A, Anastasakis DG, Manzourolajdad A, Sharma P, Wang X, Jacob A, Alsharif S, Elgerbi A, Coulombe PA, Hafner M, Chung BM. Keratin 19 binds and regulates cytoplasmic HNRNPK mRNA targets in triple-negative breast cancer. BMC Mol Cell Biol 2023; 24:26. [PMID: 37592256 PMCID: PMC10433649 DOI: 10.1186/s12860-023-00488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein K (HNRNPK) regulates pre-mRNA processing and long non-coding RNA localization in the nucleus. It was previously shown that shuttling of HNRNPK to the cytoplasm promotes cell proliferation and cancer metastasis. However, the mechanism of HNRNPK cytoplasmic localization, its cytoplasmic RNA ligands, and impact on post-transcriptional gene regulation remain uncharacterized. RESULTS Here we show that the intermediate filament protein Keratin 19 (K19) directly interacts with HNRNPK and sequesters it in the cytoplasm. Correspondingly, in K19 knockout breast cancer cells, HNRNPK does not localize in the cytoplasm, resulting in reduced cell proliferation. We comprehensively mapped HNRNPK binding sites on mRNAs and showed that, in the cytoplasm, K19-mediated HNRNPK-retention increases the abundance of target mRNAs bound to the 3' untranslated region (3'UTR) at the expected cytidine-rich (C-rich) sequence elements. Furthermore, these mRNAs protected by HNRNPK in the cytoplasm are typically involved in cancer progression and include the p53 signaling pathway that is dysregulated upon HNRNPK knockdown (HNRNPK KD) or K19 knockout (KRT19 KO). CONCLUSIONS This study identifies how a cytoskeletal protein can directly regulate gene expression by controlling the subcellular localization of RNA-binding proteins to support pathways involved in cancer progression.
Collapse
Affiliation(s)
- Arwa Fallatah
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Dimitrios G Anastasakis
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Amirhossein Manzourolajdad
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
- Department of Computer Science, Colgate University, Hamilton, NY, United States of America
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Xiantao Wang
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Alexis Jacob
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America
| | - Sarah Alsharif
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC, United States of America
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States of America.
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC, United States of America.
| |
Collapse
|
6
|
Li D, Guo J, Jia R. Epigenetic Control of Cancer Cell Proliferation and Cell Cycle Progression by HNRNPK via Promoting Exon 4 Inclusion of Histone Code Reader SPIN1. J Mol Biol 2023; 435:167993. [PMID: 36736887 DOI: 10.1016/j.jmb.2023.167993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (HNRNPK, hnRNP K), a multifunctional RNA/DNA binding protein, mainly regulates transcription, translation and RNA splicing, and then plays oncogenic roles in many cancers. However, the related mechanisms remain largely unknown. Here, we found that HNRNPK can partially epigenetically regulate cancer cell proliferation via increasing transcription and exon 4-inclusion of SPIN1, an important oncogenic histone code reader. This exon 4 skipping event of SPIN1 generates a long non-coding RNA, followed by the downregulation of SPIN1 protein. SPIN1 is one of the most significantly co-expressed genes of HNRNPK in thirteen TCGA cancers. Our further studies revealed HNRNPK knockdown significantly inhibited cell growth and cell cycle progression in oral squamous cell carcinoma (OSCC) cells and promoted cell apoptosis. Overexpression of SPIN1 was able to partially rescue the growth inhibition triggered by HNRNPK knockdown. Moreover, CCND1 (Cyclin D1), a key cell cycle regulator and oncogene, epigenetically up-regulated by SPIN1, was also positively regulated by HNRNPK. In addition, we discovered that HNRNPK promoted SPIN1 exon 4 inclusion by interacting with an intronic splicing enhancer in intron 4. Collectively, our study suggests a novel epigenetic regulatory pathway of HNRNPK in OSCC, mediated by controlling the transcription activity and alternative splicing of SPIN1 gene.
Collapse
Affiliation(s)
- Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Li M, Yang X, Zhang G, Wang L, Zhu Z, Zhang W, Huang H, Gao R. Heterogeneous nuclear ribonucleoprotein K promotes the progression of lung cancer by inhibiting the p53‐dependent signaling pathway. Thorac Cancer 2022; 13:1311-1321. [PMID: 35352475 PMCID: PMC9058298 DOI: 10.1111/1759-7714.14387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid‐binding protein. Reportedly, hnRNPK is overexpressed in many human tumors, and such overexpression is associated with poor prognosis, implicating the role of hnRNPK as an oncogene during tumorigenesis. In this study, hnRNPK expression in lung cancer tissues was investigated. Methods Briefly, hnRNPK was knocked down in lung cancer cell lines, and effects of knockdown on the cell proliferation, migration, and cell cycle were assessed using a cell counting kit‐8 (CCK‐8) assay, colony formation assay, transwell assay and flow cytometry. The effects of hnRNPK knockdown on the p53‐dependent signaling pathway were examined using western blotting. Finally, the effect of hnRNPK knockdown on tumor growth was verified in vivo using a lung cancer xenograft mouse model. Results hnRNPK knockdown inhibited the cell proliferation, migration and cell cycle. In addition to phenotypic changes, hnRNPK knockdown upregulated expressions of pCHK1, pCHK2, and p53,p21,cyclin D1, thereby mediating the DNA damage response (DDR). The regulatory function of hnRNPK during p53/p21/cyclin D1 signaling in hnRNPK‐knockdown A549 cells was confirmed by suppressed the protein expression of associated signaling pathways, which inhibited DDR. Conclusion hnRNPK plays a crucial role in the progression of lung cancer, ultimately affecting survival rate. Inhibition of progression of lung cancer cells induced by hnRNPK‐knockdown is dependent on activation of p53 by the p53/p21/cyclin D1 pathway.
Collapse
Affiliation(s)
- Mengyuan Li
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Guoxin Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Le Wang
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Ziwei Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Hao Huang
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| |
Collapse
|
8
|
Myoparr-Associated and -Independent Multiple Roles of Heterogeneous Nuclear Ribonucleoprotein K during Skeletal Muscle Cell Differentiation. Int J Mol Sci 2021; 23:ijms23010108. [PMID: 35008534 PMCID: PMC8744952 DOI: 10.3390/ijms23010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.
Collapse
|
9
|
Puvvula PK, Buczkowski S, Moon AM. hnRNPK-derived cell-penetrating peptide inhibits cancer cell survival. Mol Ther Oncolytics 2021; 23:342-354. [PMID: 34820504 PMCID: PMC8586514 DOI: 10.1016/j.omto.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
hnRNPK is a multifunctional protein that plays an important role in cancer cell proliferation and metastasis via its RNA- and DNA-binding properties. Previously we showed that cell-penetrating peptides derived from the RGG RNA-binding domain of SAFA (hnRNPU) disrupt cancer cell proliferation and survival. Here we explore the efficacy of a peptide derived from the RGG domain of hnRNPK. This peptide acts in a dominant-negative manner on several hnRNPK functions to induce death of multiple types of cancer cells. The peptide phenocopies the effect of hnRNPK knockdown on its mRNA-stability targets such as KLF4 and EGR1 and alters the levels and locations of long non-coding RNAs (lncRNAs) and proteins required for nuclear and paraspeckle formation and function. The RGG-derived peptide also decreases euchromatin as evidenced by loss of active marks and polymerase II occupancy. Our findings reveal the potential therapeutic utility of the hnRNPK RGG-derived peptide in a range of cancers.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Corresponding author: Pavan Kumar Puvvula, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| | - Stephanie Buczkowski
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA
- Corresponding author: Anne M. Moon, MD, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| |
Collapse
|
10
|
Xu W, Wu Y, Fang X, Zhang Y, Cai N, Wen J, Liao J, Zhang B, Chen X, Chu L. SnoRD126 promotes the proliferation of hepatocellular carcinoma cells through transcriptional regulation of FGFR2 activation in combination with hnRNPK. Aging (Albany NY) 2021; 13:13300-13317. [PMID: 33891563 PMCID: PMC8148486 DOI: 10.18632/aging.203014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/14/2021] [Indexed: 02/07/2023]
Abstract
Liver cancer is the sixth most common malignancy and the fourth leading cause of cancer-related death worldwide. Hepatocellular carcinoma (HCC) is the primary type of liver cancer. Small nucleolar RNA (snoRNA) dysfunctions have been associated with cancer development. SnoRD126 is an orphan C/D box snoRNA. How snoRD126 activates the PI3K-AKT pathway, and which domain of snoRD126 exerts its oncogenic function was heretofore completely unknown. Here, we demonstrate that snoRD126 binds to hnRNPK protein to regulate FGFR2 expression and activate the PI3K-AKT pathway. Importantly, we identified the critical domain of snoRD126 responsible for its cancer-promoting functions. Our study further confirms the role of snoRD126 in the progression of HCC and suggests that knockdown snoRD126 may be of potential value as a novel therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Weiqi Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Yu Wu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Xianlong Fang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yuxin Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Ning Cai
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Medical Research Center of Hepatic Surgery in Hubei Province, Wuhan, China
| |
Collapse
|
11
|
Malaney P, Velasco-Estevez M, Aguilar-Garrido P, Aitken MJL, Chan LE, Zhang X, Post SM, Gallardo M. The Eµ-hnRNP K Murine Model of Lymphoma: Novel Insights into the Role of hnRNP K in B-Cell Malignancies. Front Immunol 2021; 12:634584. [PMID: 33912162 PMCID: PMC8072109 DOI: 10.3389/fimmu.2021.634584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/23/2021] [Indexed: 01/18/2023] Open
Abstract
B-cell lymphomas are one of the most biologically and molecularly heterogeneous group of malignancies. The inherent complexity of this cancer subtype necessitates the development of appropriate animal model systems to characterize the disease with the ultimate objective of identifying effective therapies. In this article, we discuss a new driver of B-cell lymphomas - hnRNP K (heterogenous nuclear ribonucleoprotein K)-an RNA-binding protein. We introduce the Eµ-Hnrnpk mouse model, a murine model characterized by hnRNP K overexpression in B cells, which develops B-cell lymphomas with high penetrance. Molecular analysis of the disease developed in this model reveals an upregulation of the c-Myc oncogene via post-transcriptional and translational mechanisms underscoring the impact of non-genomic MYC activation in B-cell lymphomas. Finally, the transplantability of the disease developed in Eµ-Hnrnpk mice makes it a valuable pre-clinical platform for the assessment of novel therapeutics.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Disease Models, Animal
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease
- Heterogeneous-Nuclear Ribonucleoprotein K/genetics
- Heterogeneous-Nuclear Ribonucleoprotein K/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Phenotype
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | | | - Marisa J. L. Aitken
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Lauren E. Chan
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaorui Zhang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Sean M. Post
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Miguel Gallardo
- H12O–CNIO Haematological Malignancies Clinical Research Unit, CNIO, Madrid, Spain
| |
Collapse
|
12
|
Low YH, Asi Y, Foti SC, Lashley T. Heterogeneous Nuclear Ribonucleoproteins: Implications in Neurological Diseases. Mol Neurobiol 2021; 58:631-646. [PMID: 33000450 PMCID: PMC7843550 DOI: 10.1007/s12035-020-02137-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Heterogenous nuclear ribonucleoproteins (hnRNPs) are a complex and functionally diverse family of RNA binding proteins with multifarious roles. They are involved, directly or indirectly, in alternative splicing, transcriptional and translational regulation, stress granule formation, cell cycle regulation, and axonal transport. It is unsurprising, given their heavy involvement in maintaining functional integrity of the cell, that their dysfunction has neurological implications. However, compared to their more established roles in cancer, the evidence of hnRNP implication in neurological diseases is still in its infancy. This review aims to consolidate the evidences for hnRNP involvement in neurological diseases, with a focus on spinal muscular atrophy (SMA), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), multiple sclerosis (MS), congenital myasthenic syndrome (CMS), and fragile X-associated tremor/ataxia syndrome (FXTAS). Understanding more about hnRNP involvement in neurological diseases can further elucidate the pathomechanisms involved in these diseases and perhaps guide future therapeutic advances.
Collapse
Affiliation(s)
- Yi-Hua Low
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Duke-NUS Medical School, Singapore, Singapore
| | - Yasmine Asi
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Sandrine C Foti
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Disorders, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
13
|
hnRNP K Supports High-Amplitude D Site-Binding Protein mRNA ( Dbp mRNA) Oscillation To Sustain Circadian Rhythms. Mol Cell Biol 2020; 40:MCB.00537-19. [PMID: 31907279 DOI: 10.1128/mcb.00537-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/20/2019] [Indexed: 01/24/2023] Open
Abstract
Circadian gene expression is defined by the gene-specific phase and amplitude of daily oscillations in mRNA and protein levels. D site-binding protein mRNA (Dbp mRNA) shows high-amplitude oscillation; however, the underlying mechanism remains elusive. Here, we demonstrate that heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator that activates Dbp transcription via the poly(C) motif within its proximal promoter. Biochemical analyses identified hnRNP K as a specific protein that directly associates with the poly(C) motif in vitro Interestingly, we further confirmed the rhythmic binding of endogenous hnRNP K within the Dbp promoter through chromatin immunoprecipitation as well as the cycling expression of hnRNP K. Finally, knockdown of hnRNP K decreased mRNA oscillation in both Dbp and Dbp-dependent clock genes. Taken together, our results show rhythmic protein expression of hnRNP K and provide new insights into its function as a transcriptional amplifier of Dbp.
Collapse
|
14
|
Gallardo M, Malaney P, Aitken MJL, Zhang X, Link TM, Shah V, Alybayev S, Wu MH, Pageon LR, Ma H, Jacamo R, Yu L, Xu-Monette ZY, Steinman H, Lee HJ, Sarbassov D, Rapado I, Barton MC, Martinez-Lopez J, Bueso-Ramos C, Young KH, Post SM. Uncovering the Role of RNA-Binding Protein hnRNP K in B-Cell Lymphomas. J Natl Cancer Inst 2020; 112:95-106. [PMID: 31077320 PMCID: PMC7489062 DOI: 10.1093/jnci/djz078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 03/22/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein that is aberrantly expressed in cancers. We and others have previously shown that reduced hnRNP K expression downmodulates tumor-suppressive programs. However, overexpression of hnRNP K is the more commonly observed clinical phenomenon, yet its functional consequences and clinical significance remain unknown. METHODS Clinical implications of hnRNP K overexpression were examined through immunohistochemistry on samples from patients with diffuse large B-cell lymphoma who did not harbor MYC alterations (n = 75). A novel transgenic mouse model that overexpresses hnRNP K specifically in B cells was generated to directly examine the role of hnRNP K overexpression in mice (three transgenic lines). Molecular consequences of hnRNP K overexpression were determined through proteomics, formaldehyde-RNA-immunoprecipitation sequencing, and biochemical assays. Therapeutic response to BET-bromodomain inhibition in the context of hnRNP K overexpression was evaluated in vitro and in vivo (n = 3 per group). All statistical tests were two-sided. RESULTS hnRNP K is overexpressed in diffuse large B-cell lymphoma patients without MYC genomic alterations. This overexpression is associated with dismal overall survival and progression-free survival (P < .001). Overexpression of hnRNP K in transgenic mice resulted in the development of lymphomas and reduced survival (P < .001 for all transgenic lines; Line 171[n = 30]: hazard ratio [HR] = 64.23, 95% confidence interval [CI] = 26.1 to 158.0; Line 173 [n = 31]: HR = 25.27, 95% CI = 10.3 to 62.1; Line 177 [n = 25]: HR = 119.5, 95% CI = 42.7 to 334.2, compared with wild-type mice). Clinical samples, mouse models, global screening assays, and biochemical studies revealed that hnRNP K's oncogenic potential stems from its ability to posttranscriptionally and translationally regulate MYC. Consequently, Hnrnpk overexpression renders cells sensitive to BET-bromodomain-inhibition in both in vitro and transplantation models, which represents a strategy for mitigating hnRNP K-mediated c-Myc activation in patients. CONCLUSION Our findings indicate that hnRNP K is a bona fide oncogene when overexpressed and represents a novel mechanism for c-Myc activation in the absence of MYC lesions.
Collapse
Affiliation(s)
- Miguel Gallardo
- Department of Leukemia
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Clinical Research Programme, CNIO, Madrid, Spain
| | | | - Marisa J L Aitken
- Department of Leukemia
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences
| | | | | | - Vrutant Shah
- Department of Epigenetics and Molecular Carcinogenesis
| | | | | | | | | | | | - Li Yu
- Department of Hematopathology
| | | | | | - Hun Ju Lee
- Department of Lymphoma and Myeloma The University of Texas, MD Anderson Cancer Center, Houston, TX
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li M, Zhang W, Yang X, Liu H, Cao L, Li W, Wang L, Zhang G, Gao R. Downregulation of HNRNPK in human cancer cells inhibits lung metastasis. Animal Model Exp Med 2019; 2:291-296. [PMID: 31942561 PMCID: PMC6930993 DOI: 10.1002/ame2.12090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lung cancer frequently occurs in the clinic, leading to poor prognosis and high mortality. Markers for early diagnosis of lung cancer are scarce, and further potential therapeutic targets are also urgently needed. METHOD We established a new mouse model in which the specific gene HNRNPK (heterogeneous nuclear ribonucleoprotein K) was downregulated after administration of doxycycline. The lung metastatic nodules were investigated using bioluminescence imaging, micro-CT, and autopsy quantification. RESULTS Compared with the short hairpin negative control group, less lung metastatic nodules were formed in the short hairpin RNA group. CONCLUSION Downregulation of HNRNPK in cancer cells can inhibit lung metastasis.
Collapse
Affiliation(s)
- Mengyuan Li
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Wenlong Zhang
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Xingjiu Yang
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Hongfei Liu
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Lin Cao
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Weisha Li
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Le Wang
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Guoxin Zhang
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| | - Ran Gao
- Key Laboratory of Human Disease Comparative Medicine (National Health and Family Planning Commission)The Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingP.R. China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingP.R. China
| |
Collapse
|
16
|
Wang Z, Qiu H, He J, Liu L, Xue W, Fox A, Tickner J, Xu J. The emerging roles of hnRNPK. J Cell Physiol 2019; 235:1995-2008. [PMID: 31538344 DOI: 10.1002/jcp.29186] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an DNA/RNA-binding protein and regulates a wide range of biological processes and disease pathogenesis. It contains 3 K-homologous (KH) domains, which are conserved in other RNA-binding proteins, mediate nucleic acid binding activity, and function as an enhancer or repressor of gene transcription. Phosphorylation of the protein alters its regulatory function, which also enables the protein to serve as a docking platform for the signal transduction proteins. In terms of the function of hnRNPK, it is central to many cellular events, including long noncoding RNA (lncRNA) regulation, cancer development and bone homoeostasis. Many studies have identified hnRNPK as an oncogene, where it is overexpressed in cancer tissues compared with the nonneoplastic tissues and its expression level is related to the prognosis of different types of host malignancies. However, hnRNPK has also been identified as a tumour suppressor, as it is important for the activation of the p53/p21 pathway. Recently, the protein is also found to be exclusively related to the regulation of paraspeckles and lncRNAs such as Neat1, Lncenc1 and Xist. Interestingly, hnRNPK has been found to associate with the Kabuki-like syndrome and Au-Kline syndrome with prominent skeletal abnormalities. In vitro study revealed that the hnRNPK protein is essential for the formation of osteoclast, in line with its importance in the skeletal system.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jianbo He
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Langxia Liu
- Key laboratory of functional protein research of Guangdong higher education institutes, Institute of life and health engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Archa Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
17
|
HNRNPK maintains epidermal progenitor function through transcription of proliferation genes and degrading differentiation promoting mRNAs. Nat Commun 2019; 10:4198. [PMID: 31519929 PMCID: PMC6744489 DOI: 10.1038/s41467-019-12238-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/16/2019] [Indexed: 01/08/2023] Open
Abstract
Maintenance of high-turnover tissues such as the epidermis requires a balance between stem cell proliferation and differentiation. The molecular mechanisms governing this process are an area of investigation. Here we show that HNRNPK, a multifunctional protein, is necessary to prevent premature differentiation and sustains the proliferative capacity of epidermal stem and progenitor cells. To prevent premature differentiation of progenitor cells, HNRNPK is necessary for DDX6 to bind a subset of mRNAs that code for transcription factors that promote differentiation. Upon binding, these mRNAs such as GRHL3, KLF4, and ZNF750 are degraded through the mRNA degradation pathway, which prevents premature differentiation. To sustain the proliferative capacity of the epidermis, HNRNPK is necessary for RNA Polymerase II binding to proliferation/self-renewal genes such as MYC, CYR61, FGFBP1, EGFR, and cyclins to promote their expression. Our study establishes a prominent role for HNRNPK in maintaining adult tissue self-renewal through both transcriptional and post-transcriptional mechanisms. Maintenance of high turnover in tissues such as epidermis requires balance between proliferation and differentiation. Here the authors show that HNRNPK promotes RNA Polymerase II binding to proliferation and self-renewal genes as well as degradation of differentiation promoting mRNAs together with DDX6 in epidermis.
Collapse
|
18
|
Xu L, Zhang T, Huang W, Liu X, Lu J, Gao X, Zhang YF, Liu L. YAP mediates the positive regulation of hnRNPK on the lung adenocarcinoma H1299 cell growth. Acta Biochim Biophys Sin (Shanghai) 2019; 51:677-687. [PMID: 31187136 DOI: 10.1093/abbs/gmz053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, and non-small cell lung cancer (NSCLC) accounts for 80%-85% of diagnostic cases. The molecular mechanisms of NSCLC pathogenesis are not well understood. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a multifunctional protein that regulates gene expression and signal transduction and closely associated with tumorigenesis, but its mechanism of action in the pathogenesis of NSCLC is unclear. In this study, we observed that the expression pattern of hnRNPK in H1299 lung adenocarcinoma cells varied depending on the cell density in culture. Moreover, hnRNPK stimulated the ability of proliferation and colony formation of H1299 cells, which is important for the multilayered cell growth in culture. We further investigated whether there is an association between hnRNPK and the elements involved in the cell contact inhibition pathway. By using quantitative reverse transcriptase-polymerase chain reaction assay and a YAP activity reporter system, we found that hnRNPK upregulated the mRNA and protein levels and transcriptional activity of Yes-associated protein 1 (YAP), a master negative regulator of Hippo contact inhibition pathway. Furthermore, YAP knockdown with siRNA abolished the stimulatory effect of hnRNPK on H1299 cell proliferation. These results suggested that YAP could be one of the effectors of hnRNPK. Our data may provide new clues for further understanding the biological functions of hnRNPK, particularly in the context of lung adenocarcinoma oncogenesis.
Collapse
Affiliation(s)
- Lipei Xu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Tingting Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Wensi Huang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaohui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Junlei Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuejuan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Yun-Fang Zhang
- Center of Kidney Disease, Huadu District People’s Hospital, Southern Medical University, Guangzhou 510800, China
| | - Langxia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Bakhmet EI, Nazarov IB, Gazizova AR, Vorobyeva NE, Kuzmin AA, Gordeev MN, Sinenko SA, Aksenov ND, Artamonova TO, Khodorkovskii MA, Alenina N, Onichtchouk D, Wu G, Schöler HR, Tomilin AN. hnRNP-K Targets Open Chromatin in Mouse Embryonic Stem Cells in Concert with Multiple Regulators. Stem Cells 2019; 37:1018-1029. [PMID: 31021473 DOI: 10.1002/stem.3025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/02/2023]
Abstract
The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.
Collapse
Affiliation(s)
- Evgeny I Bakhmet
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Igor B Nazarov
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Adel R Gazizova
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nadezhda E Vorobyeva
- Group of transcriptional complexes dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey A Kuzmin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Mikhail N Gordeev
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sergey A Sinenko
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolai D Aksenov
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Tatyana O Artamonova
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail A Khodorkovskii
- Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Daria Onichtchouk
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alexey N Tomilin
- Laboratory of the Molecular Biology of Stem Cells, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Laboratory of Cellular and Molecular Biology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
20
|
Tang S, Xie Z, Wang P, Li J, Wang S, Liu W, Li M, Wu X, Su H, Cen S, Ye G, Zheng G, Wu Y, Shen H. LncRNA-OG Promotes the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Under the Regulation of hnRNPK. Stem Cells 2019; 37:270-283. [PMID: 30372559 PMCID: PMC7379496 DOI: 10.1002/stem.2937] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are the main source of osteoblasts in vivo and are widely used in stem cell therapy. Previously, we analyzed long noncoding RNA (lncRNA) expression profiles during BM-MSC osteogenesis, and further investigation is needed to elucidate how lncRNAs regulate BM-MSC osteogenesis. Herein, we used customized microarrays to determine lncRNA expression profiles in BM-MSCs on days 0 and 10 of osteogenic differentiation. In addition, we identified a novel osteogenesis-associated lncRNA (lncRNA-OG) that is upregulated during this process. Functional assays showed that lncRNA-OG significantly promotes BM-MSC osteogenesis. Mechanistically, lncRNA-OG interacts with heterogeneous nuclear ribonucleoprotein K (hnRNPK) protein to regulate bone morphogenetic protein signaling pathway activation. Surprisingly, hnRNPK positively regulates lncRNA-OG transcriptional activity by promoting H3K27 acetylation of the lncRNA-OG promoter. Therefore, our study revealed a novel lncRNA with a positive function on BM-MSC osteogenic differentiation and proposed a new interaction between hnRNPK and lncRNA. Stem Cells 2018 Stem Cells 2019;37:270-283.
Collapse
Affiliation(s)
- Su'an Tang
- Department of OrthopedicsThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPeople's Republic of China
- Department of OrthopedicsZhujiang Hospital, Southern Medical UniversityGuangzhouPeople's Republic of China
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPeople's Republic of China
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Peng Wang
- Department of OrthopedicsThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPeople's Republic of China
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Jinteng Li
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Shan Wang
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Wenjie Liu
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Ming Li
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xiaohua Wu
- Center for BiotherapySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Hongjun Su
- Center for BiotherapySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Shuizhong Cen
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Guiwen Ye
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Guan Zheng
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yanfeng Wu
- Center for BiotherapySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenPeople's Republic of China
- Department of OrthopedicsSun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
21
|
Shin CH, Kim HH. Functional roles of heterogeneous nuclear ribonucleoprotein K in post-transcriptional gene regulation. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Bhawe K, Roy D. Interplay between NRF1, E2F4 and MYC transcription factors regulating common target genes contributes to cancer development and progression. Cell Oncol (Dordr) 2018; 41:465-484. [DOI: 10.1007/s13402-018-0395-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
|
23
|
Gao Z, Yuan T, Zhou X, Ni P, Sun G, Li P, Cheng Z, Wang X. Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression. Cancer Biol Ther 2018; 19:407-415. [PMID: 29333921 DOI: 10.1080/15384047.2018.1423923] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Bromodomain and extraterminal domain (BET) proteins act as epigenome readers for gene transcriptional regulation. Among BET family members, BRD4 was well studied, but for its mechanism in non-small cell lung carcinoma has not been elucidated. eIF4E regulates gene translation and has been proved to play an important role in the progression of lung cancer. In this study, we first confirmed that BET inhibitors JQ1 and I-BET151 suppressed the growth of NSCLCs, in parallel with downregulated eIF4E expression. Then we found that knockdown of BRD4 expression using siRNAs inhibited the growth of NSCLCs as well as decreased eIF4E protein levels. Moreover, overexpression of eIF4E partially abrogated the growth inhibitory effect of JQ1, while knockdown of eIF4E enhanced the inhibitory effect of JQ1. Furthermore, JQ1 treatment or knockdown of BRD4 expression decreased eIF4E mRNA levels and inhibited its promoter activity by luciferase reporter assay. JQ1 treatment significantly decreased the binding of eIF4E promoter with BRD4. Finally, JQ1 inhibited the growth of H460 tumors in parallel with downregulated eIF4E mRNA and protein levels in a xenograft mouse model. These findings suggest that inhibition of BET by JQ1, I-BET151, or BRD4 silencing suppresses the growth of non-small cell lung carcinoma through decreasing eIF4E transcription and subsequent mRNA and protein expression. Considering that BET regulates gene transcription epigenetically, our findings not only reveal a new mechanism of BET-regulated eIF4E in lung cancer, but also indicate a novel strategy by co-targeting eIF4E for enhancing BET-targeted cancer therapy.
Collapse
Affiliation(s)
- Zhongyuan Gao
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Ting Yuan
- b Department of Pain Management , The Second Affiliated Hospital, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Xiao Zhou
- b Department of Pain Management , The Second Affiliated Hospital, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Ping Ni
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Geng Sun
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Ping Li
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Zhixiang Cheng
- b Department of Pain Management , The Second Affiliated Hospital, Nanjing Medical University , Nanjing , Jiangsu Province , China
| | - Xuerong Wang
- a Department of Pharmacology , Nanjing Medical University , Nanjing , Jiangsu Province , China.,c Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University , Nanjing , Jiangsu Province , China
| |
Collapse
|
24
|
Li D, Wang X, Mei H, Fang E, Ye L, Song H, Yang F, Li H, Huang K, Zheng L, Tong Q. Long Noncoding RNA pancEts-1 Promotes Neuroblastoma Progression through hnRNPK-Mediated β-Catenin Stabilization. Cancer Res 2018; 78:1169-1183. [PMID: 29311158 DOI: 10.1158/0008-5472.can-17-2295] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/02/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) play essential roles in tumor progression. However, the functions of lncRNAs in the tumorigenesis and aggressiveness of neuroblastoma still remain to be determined. Here, we report the identification of lncRNA pancEts-1 as a novel driver of neuroblastoma progression by using a public microarray dataset. LncRNA pancEts-1 promoted the growth, invasion, and metastasis of neuroblastoma cells in vitro and in vivo Mechanistically, pancEts-1 bound to hnRNPK to facilitate its physical interaction with β-catenin, whereas hnRNPK stabilized the β-catenin by inhibiting proteasome-mediated degradation, resulting in transcriptional alteration of target genes associated with neuroblastoma progression. Both pancEts-1 and hnRNPK were upregulated in clinical neuroblastoma tissues, and were associated with unfavorable outcome of patients. Overall, our results define an oncogenic role of pancEts-1 in neuroblastoma progression through hnRNPK-mediated β-catenin stabilization, with potential implications for the clinical therapeutics of neuroblastoma.Significance: These findings reveal the oncogenic functions of a long noncoding RNA in neuroblastoma progression, offering a potential target for clinical therapeutics. Cancer Res; 78(5); 1169-83. ©2018 AACR.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Lin Ye
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China.
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China.
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
25
|
Huang H, Han Y, Yang X, Li M, Zhu R, Hu J, Zhang X, Wei R, Li K, Gao R. HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway. Oncotarget 2017; 8:103364-103374. [PMID: 29262567 PMCID: PMC5732733 DOI: 10.18632/oncotarget.21873] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is one of the most common human cancers. The molecular mechanisms underlying GC carcinogenesis and progression are still not well understood. In this study, we showed that heterogeneous nuclear ribonucleoprotein K (HNRNPK) was an effective prognostic marker for GC patients especially in early stage. Overexpression of HNRNPK can retard tumor cell proliferation and colony formation in vitro and inhibit tumor growth in vivo through p53/p21/CCND1 axis. Bioinformatics analyses indicated that HNRNPK associated genes were enriched in cell cycle and DNA replication process. Protein-protein interaction network showed that HNRNPK was physically interacted with p53, p21 and other cancer related genes. Besides, GSEA showed that HNRNPK expression was positively correlated with GAMMA radiation response and DNA repair, while negatively correlated with angiogenesis, TGF-β and Hedgehog pathway activation. Finally, several chemicals including Glycine that may repress GC progression through upregulating HNRNPK are suggested. Our study demonstrated that HNRNPK may play as a tumor suppressor in gastric cancer and could be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Yong Han
- Department of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, P. R. China.,People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, P. R. China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou 310014, Zhejiang, P. R. China
| | - Xingjiu Yang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Mengyuan Li
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Ruimin Zhu
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Juanjuan Hu
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Xiaowei Zhang
- Department of Gynaecology and Obstetrics, Civil Aviation General Hospital, Beijing 100123, P. R. China
| | - Rongfei Wei
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Kejuan Li
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| | - Ran Gao
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, P. R. China
| |
Collapse
|
26
|
Kaiser CE, Van Ert NA, Agrawal P, Chawla R, Yang D, Hurley LH. Insight into the Complexity of the i-Motif and G-Quadruplex DNA Structures Formed in the KRAS Promoter and Subsequent Drug-Induced Gene Repression. J Am Chem Soc 2017; 139:8522-8536. [PMID: 28570076 PMCID: PMC5978000 DOI: 10.1021/jacs.7b02046] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activating KRAS mutations frequently occur in pancreatic, colorectal, and lung adenocarcinomas. While many attempts have been made to target oncogenic KRAS, no clinically useful therapies currently exist. Most efforts to target KRAS have focused on inhibiting the mutant protein; a less explored approach involves targeting KRAS at the transcriptional level. The promoter element of the KRAS gene contains a GC-rich nuclease hypersensitive site with three potential DNA secondary structure-forming regions. These are referred to as the Near-, Mid-, and Far-regions, on the basis of their proximity to the transcription start site. As a result of transcription-induced negative superhelicity, these regions can open up to form unique DNA secondary structures: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. While the G-quadruplexes have been well characterized, the i-motifs have not been investigated as thoroughly. Here we show that the i-motif that forms in the C-rich Mid-region is the most stable and exists in a dynamic equilibrium with a hybrid i-motif/hairpin species and an unfolded hairpin species. The transcription factor heterogeneous nuclear ribonucleoprotein K (hnRNP K) was found to bind selectively to the i-motif species and to positively modulate KRAS transcription. Additionally, we identified a benzophenanthridine alkaloid that dissipates the hairpin species and destabilizes the interaction of hnRNP K with the Mid-region i-motif. This same compound stabilizes the three existing KRAS G-quadruplexes. The combined effect of the compound on the Mid-region i-motif and the G-quadruplexes leads to downregulation of KRAS gene expression. This dual i-motif/G-quadruplex-interactive compound presents a new mechanism to modulate gene expression.
Collapse
Affiliation(s)
- Christine E. Kaiser
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Natalie A. Van Ert
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Prashansa Agrawal
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Reena Chawla
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Danzhou Yang
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| | - Laurence H. Hurley
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
- BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
27
|
Kim HJ, Lee JJ, Cho JH, Jeong J, Park AY, Kang W, Lee KJ. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1. J Biol Chem 2017; 292:12801-12812. [PMID: 28592492 DOI: 10.1074/jbc.m117.774992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys132 disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys132 was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys132 in hnRNP K is critical for this inhibition.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jin-Hwan Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - A Young Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Wonmo Kang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 120-750, Korea.
| |
Collapse
|
28
|
Lee G, Bang L, Kim SY, Kim D, Sohn KA. Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer. BMC Med Genomics 2017; 10:28. [PMID: 28589855 PMCID: PMC5461552 DOI: 10.1186/s12920-017-0268-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is a complex disease in which different genomic patterns exists depending on different subtypes. Recent researches present that multiple subtypes of breast cancer occur at different rates, and play a crucial role in planning treatment. To better understand underlying biological mechanisms on breast cancer subtypes, investigating the specific gene regulatory system via different subtypes is desirable. METHODS Gene expression, as an intermediate phenotype, is estimated based on methylation profiles to identify the impact of epigenomic features on transcriptomic changes in breast cancer. We propose a kernel weighted l1-regularized regression model to incorporate tumor subtype information and further reveal gene regulations affected by different breast cancer subtypes. For the proper control of subtype-specific estimation, samples from different breast cancer subtype are learned at different rate based on target estimates. Kolmogorov Smirnov test is conducted to determine learning rate of each sample from different subtype. RESULTS It is observed that genes that might be sensitive to breast cancer subtype show prediction improvement when estimated using our proposed method. Comparing to a standard method, overall performance is also enhanced by incorporating tumor subtypes. In addition, we identified subtype-specific network structures based on the associations between gene expression and DNA methylation. CONCLUSIONS In this study, kernel weighted lasso model is proposed for identifying subtype-specific associations between gene expressions and DNA methylation profiles. Identification of subtype-specific gene expression associated with epigenomic changes might be helpful for better planning treatment and developing new therapies.
Collapse
Affiliation(s)
- Garam Lee
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Lisa Bang
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA
| | - So Yeon Kim
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea
| | - Dokyoon Kim
- Biomedical & Translational Informatics Institute, Geisinger Health System, Danville, PA, USA. .,The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Kyung-Ah Sohn
- Department of Software and Computer Engineering, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
29
|
Gallardo M, Hornbaker MJ, Zhang X, Hu P, Bueso-Ramos C, Post SM. Aberrant hnRNP K expression: All roads lead to cancer. Cell Cycle 2017; 15:1552-7. [PMID: 27049467 DOI: 10.1080/15384101.2016.1164372] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The classification of a gene as an oncogene or a tumor suppressor has been a staple of cancer biology for decades. However, as we delve deeper into the biology of these genes, this simple classification has become increasingly difficult for some. In the case of heterogeneous nuclear ribonuclear protein K (hnRNP K), its role as a tumor suppressor has recently been described in acute myeloid leukemia and demonstrated in a haploinsufficient mouse model. In contrast, data from other clinical correlation studies suggest that hnRNP K may be more fittingly described as an oncogene, due to its increased levels in a variety of malignancies. hnRNP K is a multifunctional protein that can regulate both oncogenic and tumor suppressive pathways through a bevy of chromatin-, DNA-, RNA-, and protein-mediated activates, suggesting its aberrant expression may have broad-reaching cellular impacts. In this review, we highlight our current understanding of hnRNP K, with particular emphasis on its apparently dichotomous roles in tumorigenesis.
Collapse
Affiliation(s)
- Miguel Gallardo
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Marisa J Hornbaker
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas Graduate School of Biomedical Sciences at Houston , Houston , TX , USA
| | - Xiaorui Zhang
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Peter Hu
- c School of Health Professions, The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Carlos Bueso-Ramos
- d Department of Hematopathology , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Sean M Post
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
30
|
Xu H, Wang Z, Xu L, Mo G, Duan G, Wang Y, Sun Z, Chen H. Targeting the eIF4E/β-catenin axis sensitizes cervical carcinoma squamous cells to chemotherapy. Am J Transl Res 2017; 9:1203-1212. [PMID: 28386346 PMCID: PMC5376011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/07/2017] [Indexed: 06/07/2023]
Abstract
Chemotherapy has improved the clinical outcomes of cervical cancer patients. However, patients develop chemoresistance, whose underlying mechanisms are not well understood. In this study, we investigated the phosphorylation levels of eukaryotic translation initiation factor 4E (eIF4E) in cervical cancer cells subjected to chemotherapy. Results showed that chemotherapeutic drugs significantly increased eIF4E phosphorylation at S209 in HeLa and SiHa cells. Upregulation of phosphorylated eIF4E (p-eIF4E) levels has also been shown in cisplatin-resistant HeLa cells and has been observed to be a common response of cervical cancer patients undergoing chemotherapy. We further showed that chemotherapeutic drugs increase β-catenin activity and mRNA levels of Wnt/β-catenin target genes in cervical cancer cells but not in eIF4E-depleted cells, suggesting that chemotherapeutic drugs activate Wnt/β-catenin signaling in an eIF4E-dependent manner. Inhibiting eIF4E via siRNA knockdown or Wnt/β-catenin using the Wnt inhibitor pyrvinium effectively enhanced the anti-proliferative and pro-apoptotic effects of cisplatin in cervical cancer cells both in vitro and in vivo. Our findings demonstrate that eIF4E/β-catenin signaling plays a positive regulatory role in the resistance of cervical cancer cell to chemotherapy and thus highlight the therapeutic value of eIF4E or β-catenin inhibition in overcoming chemoresistance.
Collapse
Affiliation(s)
- Hai Xu
- Department of Obstetrics and Gynaecology, Huangjiahu Hospital of Hubei University of Chinese MedicineWuhan, China
| | - Zhiyin Wang
- Department of Obstetrics and Gynaecology, Huangjiahu Hospital of Hubei University of Chinese MedicineWuhan, China
| | - Lang Xu
- Department of Pathology, School of Medicine, Wuhan University of Science and TechnologyWuhan, China
| | - Guoyan Mo
- China Key Laboratory of TCM Resource and Prescription, Hubei University of Chinese Medicine, Ministry of EducationWuhan, China
| | - Gangfeng Duan
- Department of Internal Medicine, Wuhan Integrated Traditional Chinese Medicine & Western Medicine HospitalWuhan, China
| | - Yali Wang
- Department of Obstetrics and Gynaecology, Wuhan General Hospital of Guangzhou MilitaryWuhan, China
| | - Zhengang Sun
- Department of Gastrointestinal Surgery, Jingzhou Central Hospital, Yangtze UniversityJingzhou, China
| | - Hao Chen
- Department of Gastrointestinal Surgery, Jingzhou Central Hospital, Yangtze UniversityJingzhou, China
| |
Collapse
|
31
|
Eder S, Lamkowski A, Priller M, Port M, Steinestel K. Radiosensitization and downregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon inhibition of mitogen/extracellular signal-regulated kinase (MEK) in malignant melanoma cells. Oncotarget 2016; 6:17178-91. [PMID: 26136337 PMCID: PMC4627300 DOI: 10.18632/oncotarget.3935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/09/2015] [Indexed: 12/21/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an important cofactor in the p53-mediated DNA damage response pathway upon ionizing radiation (IR) and exerts anti-apoptotic effects also independent of p53 pathway activation. Furthermore, hnRNP K is overexpressed in various neoplasms including malignant melanoma (MM). Here, we investigate the role of hnRNP K in the radioresistance of MM cells. Methods and results Our results show cytoplasmic expression of hnRNP K in human MM surgical specimens, but not in benign nevi, and a quick dose- and time-dependent upregulation in response to IR accompanied by cytoplasmic redistribution of the protein in the IPC-298 cellular tumor model carrying an activating NRAS mutation (p.Q61L). SiRNA-based knockdown of hnRNP K induced a delayed decline in γH2AX/53BP1-positive DNA repair foci upon IR. Pharmacological interference with MAPK signaling abrogated ERK phosphorylation, diminished cellular hnRNP K levels, impaired γH2AX/53BP1-foci repair and proliferative capability and increased apoptosis comparable to the observed hnRNP K knockdown phenotype in IPC-298 cells. Conclusion Our results indicate that pharmacological interference with MAPK signaling increases vulnerability of NRAS-mutant malignant melanoma cells to ionizing radiation along with downregulation of endogenous hnRNP K and point towards a possible use for combined MEK inhibition and localized radiation therapy of MM in the NRAS-mutant setting where BRAF inhibitors offer no clinical benefit.
Collapse
Affiliation(s)
- Stefan Eder
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | | | - Markus Priller
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - Konrad Steinestel
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany.,Gerhard-Domagk-Institute of Pathology, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
32
|
Li J, Huang Y, Gao Y, Wu H, Dong W, Liu L. Antibiotic drug rifabutin is effective against lung cancer cells by targeting the eIF4E-β-catenin axis. Biochem Biophys Res Commun 2016; 472:299-305. [DOI: 10.1016/j.bbrc.2016.02.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/29/2016] [Indexed: 12/20/2022]
|
33
|
Lu J, Gao FH. Role and molecular mechanism of heterogeneous nuclear ribonucleoprotein K in tumor development and progression. Biomed Rep 2016; 4:657-663. [PMID: 27284403 DOI: 10.3892/br.2016.642] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the hnRNP family, which exists in the nucleus and the cytoplasm simultaneously. It is a multifunctional protein that can participate in a variety of regulatory progressions of gene expression and signal transduction, such as chromatin remodeling, transcription, RNA alternative splicing and translation. hnRNP K not only directly binds to the kinases, but also recruits the associated factors regarding transcription, splicing and translation to control gene expression, and therefore, it serves as a docking platform for integrating transduction pathways to nucleic acid-directed processes. Numerous studies also show that abnormal expression of hnRNP K is closely associated with the tumor formation. This protein is overexpressed in numerous types of cancer and its aberrant cytoplasmic localization is also associated with a worse prognosis for patients. These results consistently indicate that hnRNP K has a key role in cancer progression. To understand the hnRNP K pathophysiological process in tumor disease, the previous research results regarding the association between hnRNP K and tumors were reviewed.
Collapse
Affiliation(s)
- Jing Lu
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Feng-Hou Gao
- Institute of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
34
|
Cytoplasmic Accumulation of Heterogeneous Nuclear Ribonucleoprotein K Strongly Promotes Tumor Invasion in Renal Cell Carcinoma Cells. PLoS One 2015; 10:e0145769. [PMID: 26713736 PMCID: PMC4699215 DOI: 10.1371/journal.pone.0145769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a part of the ribonucleoprotein complex which regulates diverse biological events. While overexpression of hnRNP K has been shown to be related to tumorigenesis in several cancers, both the expression patterns and biological mechanisms of hnRNP K in renal cell carcinoma (RCC) cells remain unclear. In this study, we showed that hnRNP K protein was strongly expressed in selected RCC cell lines (ACHN, A498, Caki-1, 786–0), and knock-down of hnRNP K expression by siRNA induced cell growth inhibition and apoptosis. Based on immunohistochemical (IHC) analysis of hnRNP K expression in human clear cell RCC specimens, we demonstrated that there was a significant positive correlation between hnRNP K staining score and tumor aggressiveness (e.g., Fuhrman grade, metastasis). Particularly, the rate of cytoplasmic localization of hnRNP K in primary RCC with distant metastasis was significantly higher than that in RCC without metastasis. Additionally, our results indicated that the cytoplasmic distribution of hnRNP K induced by TGF-β stimulus mainly contributed to TGF-β-triggered tumor cell invasion in RCC cells. Dominant cytoplasmic expression of ectopic hnRNP K markedly suppressed the inhibition of invasion by knock-down of endogenous hnRNP K. The expression level of matrix metalloproteinase protein-2 was decreased by endogenous hnRNP K knock-down, and restored by ectopic hnRNP K. Therefore, hnRNP K may be a key molecule involved in cell motility in RCC cells, and molecular mechanism associated with the subcellular localization of hnRNP K may be a novel target in the treatment of metastatic RCC.
Collapse
|
35
|
Yang Y, Jia D, Kim H, Abd Elmageed ZY, Datta A, Davis R, Srivastav S, Moroz K, Crawford BE, Moparty K, Thomas R, Hudson RS, Ambs S, Abdel-Mageed AB. Dysregulation of miR-212 Promotes Castration Resistance through hnRNPH1-Mediated Regulation of AR and AR-V7: Implications for Racial Disparity of Prostate Cancer. Clin Cancer Res 2015; 22:1744-56. [PMID: 26553749 DOI: 10.1158/1078-0432.ccr-15-1606] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/11/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE The causes of disproportionate incidence and mortality of prostate cancer among African Americans (AA) remain elusive. The purpose of this study was to investigate the mechanistic role and assess clinical utility of the splicing factor heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1) in prostate cancer progression among AA men. EXPERIMENTAL DESIGN We employed an unbiased functional genomics approach coupled with suppressive subtractive hybridization (SSH) and custom cDNA microarrays to identify differentially expressed genes in microdissected tumors procured from age- and tumor grade-matched AA and Caucasian American (CA) men. Validation analysis was performed in independent cohorts and tissue microarrays. The underlying mechanisms of hnRNPH1 regulation and its impact on androgen receptor (AR) expression and tumor progression were explored. RESULTS Aberrant coexpression of AR and hnRNPH1 and downregulation of miR-212 were detected in prostate tumors and correlate with disease progression in AA men compared with CA men. Ectopic expression of miR-212 mimics downregulated hnRNPH1 transcripts, which in turn reduced expression of AR and its splice variant AR-V7 (or AR3) in prostate cancer cells. hnRNPH1 physically interacts with AR and steroid receptor coactivator-3 (SRC-3) and primes activation of androgen-regulated genes in a ligand-dependent and independent manner. siRNA silencing of hnRNPH1 sensitized prostate cancer cells to bicalutamide and inhibited prostate tumorigenesis in vivo CONCLUSIONS Our findings define novel roles for hnRNPH1 as a putative oncogene, splicing factor, and an auxiliary AR coregulator. Targeted disruption of the hnRNPH1-AR axis may have therapeutic implications to improve clinical outcomes in patients with advanced prostate cancer, especially among AA men.
Collapse
Affiliation(s)
- Yijun Yang
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Dingwu Jia
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - Amrita Datta
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Rodney Davis
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Sudesh Srivastav
- Department of Biostatistics, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana
| | - Krzysztof Moroz
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana. Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Byron E Crawford
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Krishnarao Moparty
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana. Division of Urology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| | - Raju Thomas
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana. Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana
| | - Robert S Hudson
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana. Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana. Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana.
| |
Collapse
|
36
|
Gallardo M, Lee HJ, Zhang X, Bueso-Ramos C, Pageon LR, McArthur M, Multani A, Nazha A, Manshouri T, Parker-Thornburg J, Rapado I, Quintas-Cardama A, Kornblau SM, Martinez-Lopez J, Post SM. hnRNP K Is a Haploinsufficient Tumor Suppressor that Regulates Proliferation and Differentiation Programs in Hematologic Malignancies. Cancer Cell 2015; 28:486-499. [PMID: 26412324 PMCID: PMC4652598 DOI: 10.1016/j.ccell.2015.09.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/14/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022]
Abstract
hnRNP K regulates cellular programs, and changes in its expression and mutational status have been implicated in neoplastic malignancies. To directly examine its role in tumorigenesis, we generated a mouse model harboring an Hnrnpk knockout allele (Hnrnpk(+/-)). Hnrnpk haploinsufficiency resulted in reduced survival, increased tumor formation, genomic instability, and the development of transplantable hematopoietic neoplasms with myeloproliferation. Reduced hnRNP K expression attenuated p21 activation, downregulated C/EBP levels, and activated STAT3 signaling. Additionally, analysis of samples from primary acute myeloid leukemia patients harboring a partial deletion of chromosome 9 revealed a significant decrease in HNRNPK expression. Together, these data implicate hnRNP K in the development of hematological disorders and suggest hnRNP K acts as a tumor suppressor.
Collapse
Affiliation(s)
- Miguel Gallardo
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hun Ju Lee
- Department of Lymphoma & Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Bueso-Ramos
- Department of Histopathology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura R Pageon
- Department of Veterinary Medicine & Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark McArthur
- Department of Veterinary Medicine & Surgery, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha Multani
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aziz Nazha
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Parker-Thornburg
- Department of Genetics, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Inmaculada Rapado
- Department of Hematology, Hospital Universitario 12 de Octubre and CNIO, Madrid 28041, Spain
| | - Alfonso Quintas-Cardama
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven M Kornblau
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joaquin Martinez-Lopez
- Department of Hematology, Hospital Universitario 12 de Octubre and CNIO, Madrid 28041, Spain
| | - Sean M Post
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Ezrin Binds to DEAD-Box RNA Helicase DDX3 and Regulates Its Function and Protein Level. Mol Cell Biol 2015; 35:3145-62. [PMID: 26149384 DOI: 10.1128/mcb.00332-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/21/2015] [Indexed: 12/30/2022] Open
Abstract
Ezrin is a key regulator of cancer metastasis that links the extracellular matrix to the actin cytoskeleton and regulates cell morphology and motility. We discovered a small-molecule inhibitor, NSC305787, that directly binds to ezrin and inhibits its function. In this study, we used a nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS-MS)-based proteomic approach to identify ezrin-interacting proteins that are competed away by NSC305787. A large number of the proteins that interact with ezrin were implicated in protein translation and stress granule dynamics. We validated direct interaction between ezrin and the RNA helicase DDX3, and NSC305787 blocked this interaction. Downregulation or long-term pharmacological inhibition of ezrin led to reduced DDX3 protein levels without changes in DDX3 mRNA. Ectopic overexpression of ezrin in low-ezrin-expressing osteosarcoma cells caused a notable increase in DDX3 protein levels. Ezrin inhibited the RNA helicase activity of DDX3 but increased its ATPase activity. Our data suggest that ezrin controls the translation of mRNAs preferentially with a structured 5' untranslated region, at least in part, by sustaining the protein level of DDX3 and/or regulating its function. Therefore, our findings suggest a novel function for ezrin in regulation of gene translation that is distinct from its canonical role as a cytoskeletal scaffold at the cell membrane.
Collapse
|
38
|
Moritz B, Lilie H, Naarmann-de Vries IS, Urlaub H, Wahle E, Ostareck-Lederer A, Ostareck DH. Biophysical and biochemical analysis of hnRNP K: arginine methylation, reversible aggregation and combinatorial binding to nucleic acids. Biol Chem 2015; 395:837-53. [PMID: 25003387 DOI: 10.1515/hsz-2014-0146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/20/2014] [Indexed: 12/17/2022]
Abstract
Abstract Analysis of arginine methylation, which affects specific protein interactions in eukaryotic cells, requires access to methylated protein for biophysical and biochemical studies. Methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) upon co-expression with protein arginine methyltransferase 1 in E. coli was monitored by mass spectrometry and found to be identical to the modification of hnRNP K purified from mammalian cells. Recombinant non-methylated and arginine-methylated hnRNP K (MethnRNP K) were used to characterize self-aggregation and nucleic acid binding. Analytical ultracentrifugation and static light scattering experiments revealed that hnRNP K methylation does not impact reversible self-aggregation, which can be prevented by high ionic strength and organic additives. Filter binding assays were used to compare the binding of non-methylated and MethnRNP K to the pyrimidine repeat-containing differentiation control element (DICE) of reticulocyte 15-lipoxygenase mRNA 3' UTR. No affinity differences were detected for both hnRNP K variants. A series of oligonucleotides carrying various numbers of C4 motifs at different positions was used in steady state competition assays with fluorescently-labeled functional differentiation control element (2R). Quantitative evaluation indicated that all hnRNP K homology domains of hnRNP K contribute differentially to RNA binding, with KH1-KH2 acting as a tandem domain and KH3 as an individual binding domain.
Collapse
|
39
|
A preliminary quantitative proteomic analysis of glioblastoma pseudoprogression. Proteome Sci 2015; 13:12. [PMID: 25866482 PMCID: PMC4393599 DOI: 10.1186/s12953-015-0066-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/11/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUNDS Pseudoprogression disease (PsPD) is commonly observed during glioblastoma (GBM) follow-up after adjuvant therapy. Because it is difficult to differentiate PsPD from true early progression of GBM, we have used a quantitative proteomics strategy to identify molecular signatures and develop predictive markers of PsPD. RESULTS An initial screening of three PsPD and three GBM patients was performed, and from which 530 proteins with significant fold changes were identified. By conducting biological functional analysis of these proteins, we found evidence that the protein synthesis network and the cellular growth and proliferation network were most significantly affected. Moreover, six of the proteins (HNRNPK, ELAVL1, CDH2, FBLN1, CALU and FGB) involved in the two networks were validated (n = 18) in the same six samples and in twelve additional samples using immunohistochemistry methods and the western blot analysis. The receiver operating characteristic (ROC) curve analysis in distinguishing PsPD patients from GBM patients yielded an area under curve (AUC) value of 0.90 (95% confidence interval (CI), 0.662-0.9880) for CDH2 and.0.92 (95% CI, 0.696-0.995) for CDH2 combined with ELAVL1. CONCLUSIONS The results of the present study both revealed the biological signatures of PsPD from a proteomics perspective and indicated that CDH2 alone or combined with ELAVL1 could be potential biomarkers with high accuracy in the diagnosis of PsPD.
Collapse
|
40
|
Sugimasa H, Taniue K, Kurimoto A, Takeda Y, Kawasaki Y, Akiyama T. Heterogeneous nuclear ribonucleoprotein K upregulates the kinetochore complex component NUF2 and promotes the tumorigenicity of colon cancer cells. Biochem Biophys Res Commun 2015; 459:29-35. [DOI: 10.1016/j.bbrc.2015.02.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
|
41
|
Karaki S, Andrieu C, Ziouziou H, Rocchi P. The Eukaryotic Translation Initiation Factor 4E (eIF4E) as a Therapeutic Target for Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:1-26. [PMID: 26572974 PMCID: PMC7185574 DOI: 10.1016/bs.apcsb.2015.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells depend on cap-dependent translation more than normal tissue. This explains the emergence of proteins involved in the cap-dependent translation as targets for potential anticancer drugs. Cap-dependent translation starts when eIF4E binds to mRNA cap domain. This review will present eIF4E's structure and functions. It will also expose the use of eIF4E as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Sara Karaki
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Claudia Andrieu
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Hajer Ziouziou
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Palma Rocchi
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France,Corresponding author:
| |
Collapse
|
42
|
He L, Xue X, Wang Z, Hou E, Liu Y, Liang M, Zhang Y, Tian Z. Transcriptional regulation of heterogeneous nuclear ribonucleoprotein K gene expression. Biochimie 2014; 109:27-35. [PMID: 25497182 DOI: 10.1016/j.biochi.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/03/2014] [Indexed: 01/05/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is importantly involved in the regulation of development, DNA damage response, and several human diseases. The molecular mechanisms that control the expression of hnRNP K are largely unknown. In the present study, we investigated the detailed mechanism of the transcriptional regulation of human hnRNP K gene. Two activating and one repressive elements located in the proximal segment of the transcriptional initiation site were identified in hnRNP K gene. A 19 bp-region was responsible for the inhibitory activities of the repressor element. Twenty proteins were identified by DNA-affinity purification and mass spectrometry analyses as binding partners of the primary activating element in the hnRNP K promoter. Chromatin immunoprecipitation and EMSA analysis confirmed the binding of Sp1 with hnRNP K promoter. Sp1 enhanced the promoter activity, increased the expression of hnRNP K, and reduced the mRNA level of angiotensinogen, a gene known to be negatively regulated by hnRNP K. In summary, the current study characterized the promoter elements that regulate the transcription of human hnRNP K gene, identified 20 proteins that bind to the primary activating element of hnRNP K promoter, and demonstrated a functional effect of Sp1 on hnRNP K transcription.
Collapse
Affiliation(s)
- Liqing He
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiaochang Xue
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhengjun Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Entai Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Department of Biopharmaceutics, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Zhongmin Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
43
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
44
|
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA-binding protein implicated in RNA metabolism. Here, we investigated the role of hnRNP K in synapse function. We demonstrated that hnRNP K regulates dendritic spine density and long-term potentiation (LTP) in cultured hippocampal neurons from embryonic rats. LTP requires the extracellular signal-regulated kinase (ERK)1/2-mediated phosphorylation and cytoplasmic accumulation of hnRNP K. Moreover, hnRNP K knockdown prevents ERK cascade activation and GluA1-S845 phosphorylation and surface delivery, which are essential steps for LTP. These findings establish hnRNP K as a new critical regulator of synaptic transmission and plasticity in hippocampal neurons.
Collapse
|
45
|
Chung IC, Chen LC, Chung AK, Chao M, Huang HY, Hsueh C, Tsang NM, Chang KP, Liang Y, Li HP, Chang YS. Matrix metalloproteinase 12 is induced by heterogeneous nuclear ribonucleoprotein K and promotes migration and invasion in nasopharyngeal carcinoma. BMC Cancer 2014; 14:348. [PMID: 24885469 PMCID: PMC4033617 DOI: 10.1186/1471-2407-14-348] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 05/06/2014] [Indexed: 01/10/2023] Open
Abstract
Background Overexpression of heterogeneous nuclear ribonucleoprotein K (hnRNP K), a DNA/RNA binding protein, is associated with metastasis in nasopharyngeal carcinoma (NPC). However, the mechanisms underlying hnRNP K-mediated metastasis is unclear. The aim of the present study was to determine the role of matrix metalloproteinase (MMP) in hnRNP K-mediated metastasis in NPC. Methods We studied hnRNP K-regulated MMPs by analyzing the expression profiles of MMP family genes in NPC tissues and hnRNP K-knockdown NPC cells using Affymetrix microarray analysis and quantitative RT-PCR. The association of hnRNP K and MMP12 expression in 82 clinically proven NPC cases was determined by immunohistochemical analysis. The hnRNP K-mediated MMP12 regulation was determined by zymography and Western blot, as well as by promoter, DNA pull-down and chromatin immunoprecipitation (ChIP) assays. The functional role of MMP12 in cell migration and invasion was demonstrated by MMP12-knockdown and the treatment of MMP12-specific inhibitor, PF-356231. Results MMP12 was overexpressed in NPC tissues, and this high level of expression was significantly correlated with high-level expression of hnRNP K (P = 0.026). The levels of mRNA, protein and enzyme activity of MMP12 were reduced in hnRNP K-knockdown NPC cells. HnRNP K interacting with the region spanning −42 to −33 bp of the transcription start site triggered transcriptional activation of the MMP12 promoter. Furthermore, inhibiting MMP12 by MMP12 knockdown and MMP12-specific inhibitor, PF-356231, significantly reduced the migration and invasion of NPC cells. Conclusions Overexpression of MMP12 was significantly correlated with hnRNP K in NPC tissues. HnRNP K can induce MMP12 expression and enzyme activity through activating MMP12 promoter, which promotes cell migration and invasion in NPC cells. In vitro experiments suggest that NPC metastasis with high MMP12 expression may be treated with PF-356231. HnRNP K and MMP12 may be potential therapeutic markers for NPC, but additional validation studies are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hsin-Pai Li
- Molecular Medicine Research Center, Chang Gung University, 259 Wen-Hwa Ist Road, Taoyuan, Kwei-shan 333, Taiwan.
| | | |
Collapse
|
46
|
Almeida LO, Garcia CB, Matos-Silva FA, Curti C, Leopoldino AM. Accumulated SET protein up-regulates and interacts with hnRNPK, increasing its binding to nucleic acids, the Bcl-xS repression, and cellular proliferation. Biochem Biophys Res Commun 2014; 445:196-202. [PMID: 24508256 DOI: 10.1016/j.bbrc.2014.01.175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET-hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.
Collapse
Affiliation(s)
- Luciana O Almeida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiana B Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flavia A Matos-Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos Curti
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andréia M Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
47
|
Hu W, Wang J, Luo G, Luo B, Wu C, Wang W, Xiao Y, Li J. Proteomics-based analysis of differentially expressed proteins in the CXCR1-knockdown gastric carcinoma MKN45 cell line and its parental cell. Acta Biochim Biophys Sin (Shanghai) 2013; 45:857-66. [PMID: 23924695 DOI: 10.1093/abbs/gmt086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
C-X-C chemokine receptor types 1 (CXCR1), a cell-surface G-protein-coupled receptor has been found to be associated with tumorigenesis, development, and progression of some tumors. Previously, we have found that CXCR1 overexpression is associated with late-stage gastric adenocarcinoma. We also have demonstrated that knockdown of CXCR1 could inhibit cell proliferation in vitro and in vivo. In this study, we compared the changes of protein expression profile between gastric carcinoma MKN45 cell line and CXCR1-knockdown MKN45 cell line by 2D electrophoresis. Among the 101 quantified proteins, 29 spots were significantly different, among which 13 were down-regulated and 16 were up-regulated after CXCR1 knockdown. These proteins were further identified by mass spectrometry analysis. Among them, several up-regulated proteins such as hCG2020155, Keratin8, heterogeneous nuclear ribonucleoprotein C (C1/C2), and several down-regulated proteins such as Sorcin, heat shock protein 27, serpin B6 isoform b, and heterogeneous nuclear ribonucleoprotein K were confirmed. These proteins are related to cell cycle, the transcription regulation, cell adherence, cellular metabolism, drug resistance, and so on. These results provide an additional support to the hypothesis that CXCR1 might play an important role in proliferation, invasion, metastasis, and prognosis, and drug resistance of gastric carcinoma.
Collapse
Affiliation(s)
- Wanming Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Witzig TE, Hu G, Offer SM, Wellik LE, Han JJ, Stenson MJ, Dogan A, Diasio RB, Gupta M. Epigenetic mechanisms of protein tyrosine phosphatase 6 suppression in diffuse large B-cell lymphoma: implications for epigenetic therapy. Leukemia 2013; 28:147-54. [PMID: 23979523 DOI: 10.1038/leu.2013.251] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/07/2013] [Accepted: 08/16/2013] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphatases such as PTPN6 can be downregulated in various neoplasms. PTPN6 expression by immunohistochemistry in 40 diffuse large B-cell lymphoma (DLBCL) tumors was lost or suppressed in 53% (21/40). To elucidate the molecular mechanisms of PTPN6 suppression, we performed a comprehensive epigenetic analysis of PTPN6 promoter 2 (P2). None of the DLBCL primary tumors (0/37) had PTPN6 hypermethylation on the CpG1 island using methylation-specific PCR, pyrosequencing, and high-resolution melting assays. However, hypermethylation in 57% (21/37) of cases was found in a novel CpG island (CpG2) in P2. PTPN6 gene suppression was reversed by 5-aza-deoxycytidine (5-Aza), a DNA methyltransferase inhibitor, and the histone deacetylase inhibitor (HDACi) LBH589. LBH589 and 5-Aza in combination inhibited DLBCL survival and PTPN6 hypermethylation at CpG2. The role of histone modifications was investigated with a chromatin-immunoprecipitation assay demonstrating that PTPN6 P2 is associated with silencing histone marks H3K27me3 and H3K9me3 in DLBCL cells but not normal B cells. 3-Deazaneplanocin A, a histone methyltransferase inhibitor, decreased the H3K27me3 mark, whereas HDACi LBH589 increased the H3K9Ac mark within P2 resulting in re-expression of PTPN6. These studies have uncovered novel epigenetic mechanisms of PTPN6 suppression and suggest that PTPN6 may be a potential target of epigenetic therapy in DLBCL.
Collapse
Affiliation(s)
- T E Witzig
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - G Hu
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - S M Offer
- Department of Molecular and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - L E Wellik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - J J Han
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - M J Stenson
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - A Dogan
- Department of Pathology, Memorial Sloan-Kettering Cancer, New York, NY, USA
| | - R B Diasio
- Department of Molecular and Experimental Therapeutics, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | - M Gupta
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| |
Collapse
|
49
|
Mikula M, Bomsztyk K, Goryca K, Chojnowski K, Ostrowski J. Heterogeneous nuclear ribonucleoprotein (HnRNP) K genome-wide binding survey reveals its role in regulating 3'-end RNA processing and transcription termination at the early growth response 1 (EGR1) gene through XRN2 exonuclease. J Biol Chem 2013; 288:24788-98. [PMID: 23857582 DOI: 10.1074/jbc.m113.496679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid-binding protein that acts as a docking platform integrating signal transduction pathways to nucleic acid-related processes. Given that hnRNPK could be involved in other steps that compose gene expression the definition of its genome-wide occupancy is important to better understand its role in transcription and co-transcriptional processes. Here, we used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to analyze the genome-wide hnRNPK-DNA interaction in colon cancer cell line HCT116. 9.1/3.6 and 7.0/3.4 million tags were sequenced/mapped, then 1809 and 642 hnRNPK binding sites were detected in quiescent and 30-min serum-stimulated cells, respectively. The inspection of sequencing tracks revealed inducible hnRNPK recruitment along a number of immediate early gene loci, including EGR1 and ZFP36, with the highest densities present at the transcription termination sites. Strikingly, hnRNPK knockdown with siRNA resulted in increased pre-RNA levels transcribed downstream of the EGR1 polyadenylation (A) site suggesting altered 3'-end pre-RNA degradation. Further ChIP survey of hnRNPK knockdown uncovered decreased recruitment of the 5'-3' exonuclease XRN2 along EGR1 and downstream of the poly(A) signal without altering RNA polymerase II density at these sites. Immunoprecipitation of hnRNPK and XRN2 from intact and RNase A-treated nuclear extracts followed by shotgun mass spectrometry revealed the presence of hnRNPK and XRN2 in the same complexes along with other spliceosome-related proteins. Our data suggest that hnRNPK may play a role in recruitment of XRN2 to gene loci thus regulating coupling 3'-end pre-mRNA processing to transcription termination.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
50
|
Champattanachai V, Netsirisawan P, Chaiyawat P, Phueaouan T, Charoenwattanasatien R, Chokchaichamnankit D, Punyarit P, Srisomsap C, Svasti J. Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics 2013; 13:2088-99. [PMID: 23576270 DOI: 10.1002/pmic.201200126] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 02/20/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023]
Abstract
O-GlcNAcylation is a dynamic PTM of nuclear and cytoplasmic proteins, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase, which catalyze the addition and removal of O-GlcNAc, respectively. This modification is associated with glucose metabolism, which plays important roles in many diseases including cancer. Although emerging evidence reveals that some tumor-associated proteins are O-GlcNAc modified, the total O-GlcNAcylation in cancer is still largely unexplored. Here, we demonstrate that O-GlcNAcylation was increased in primary breast malignant tumors, not in benign tumors and that this augmentation was associated with increased expression of OGT level. Using 2D O-GlcNAc immnoblotting and LC-MS/MS analysis, we successfully identified 29 proteins, with seven being uniquely O-GlcNAcylated or associated with O-GlcNAcylation in cancer. Of these identified proteins, some were related to the Warburg effect, including metabolic enzymes, proteins involved in stress responses and biosynthesis. In addition, proteins associated with RNA metabolism, gene expression, and cytoskeleton were highly O-GlcNAcylated or associated with O-GlcNAcylation. Moreover, OGT knockdown showed that decreasing O-GlcNAcylation was related to inhibition of the anchorage-independent growth in vitro. These data indicate that aberrant protein O-GlcNAcylation is associated with breast cancer. Abnormal modification of these O-GlcNAc-modified proteins might be one of the vital malignant characteristics of cancer.
Collapse
|