1
|
Saharan K, Baral S, Gandhi S, Singh AK, Ghosh S, Das R, Nagaraj VA, Vasudevan D. Structure-function studies of a nucleoplasmin isoform from Plasmodium falciparum. J Biol Chem 2025; 301:108379. [PMID: 40049416 PMCID: PMC11993163 DOI: 10.1016/j.jbc.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/14/2025] [Accepted: 02/27/2025] [Indexed: 04/01/2025] Open
Abstract
An organized regulation of gene expression and DNA replication is vital for the progression of the complex life cycle of Plasmodium falciparum (Pf), involving multiple hosts and various stages. These attributes rely on the dynamic architecture of chromatin governed by several factors, including histone chaperones. Nucleoplasmin class of histone chaperones perform histone chaperoning function and participate in various developmental processes in eukaryotes. Here, our crystal structure confirmed that Pf indeed possesses a nucleoplasmin isoform (PfNPM), and the N-terminal core domain (NTD) adopts the characteristic pentameric doughnut conformation. Furthermore, PfNPM exists as a pentamer in solution, and the N-terminal core domain exhibits thermal and chemical stability. PfNPM interacts individually with assembled H2A/H2B and H3/H4 with an equimolar stoichiometry, wherein the acidic tracts of PfNPM were found to be necessary for these interactions. Further, H3/H4 displays a higher binding affinity for PfNPM than H2A/H2B, potentially due to stronger electrostatic interactions. The interaction studies also suggested that H2A/H2B and H3/H4 might share the same binding site on the PfNPM distal face, wherein H3/H4 could substitute H2A/H2B due to a higher binding affinity. Intriguingly, PfNPM neither demonstrated direct interaction with the nucleosome core particles nor displayed nucleosome assembly function, suggesting it may not be directly associated with histone deposition on the parasite genomic DNA. Furthermore, our immunofluorescence results suggested that PfNPM predominantly localizes in the nucleus and exhibits expression only in the early blood stages, such as ring and trophozoite. Altogether, we provide the first report on the structural and functional characterization of PfNPM.
Collapse
Affiliation(s)
- Ketul Saharan
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Somanath Baral
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Surajit Gandhi
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Ajit Kumar Singh
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Sourav Ghosh
- Malaria Parasite Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Rahul Das
- Malaria Parasite Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India; Regional Centre for Biotechnology, Faridabad, India
| | - Viswanathan Arun Nagaraj
- Malaria Parasite Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India
| | - Dileep Vasudevan
- Structural Biology Laboratory, BRIC-Institute of Life Sciences (BRIC-ILS), Bhubaneswar, India; Structural Biology Laboratory, BRIC-Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, India.
| |
Collapse
|
2
|
Falini B, Sorcini D, Perriello VM, Sportoletti P. Functions of the native NPM1 protein and its leukemic mutant. Leukemia 2025; 39:276-290. [PMID: 39690184 DOI: 10.1038/s41375-024-02476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
The nucleophosmin (NPM1) gene encodes for the most abundant nucleolar protein. Thanks to its property to act as histone chaperone and to shuttle between the nucleus and cytoplasm, the NPM1 protein is involved in multiple cellular function that are here extensively reviewed and include the formation of the nucleolus through liquid-liquid phase separation, regulation of ribosome biogenesis and transport, control of DNA repair and centrosome duplication as well as response to nucleolar stress. NPM1 is mutated in about 30-35% of adult acute myeloid leukemia (AML). Due to its unique biological and clinical features, NPM1-mutated AML is regarded as a distinct leukemia entity in the WHO 5th edition and ICC classifications of myeloid malignancies. The NPM1 mutant undergoes changes at the C-terminus of the protein that leads to its delocalization in the cytoplasm of the leukemic cells. Here, we focus also on its biological functions discussing the murine models of NPM1 mutations and the various mechanisms that occur at cytoplasmic and nuclear levels to promote and maintain NPM1-mutated AML.
Collapse
Affiliation(s)
- Brunangelo Falini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy.
| | - Daniele Sorcini
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Vincenzo Maria Perriello
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Sportoletti
- Institute of Hematology and Center for Hemato-Oncological research (CREO), University of Perugia and Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
3
|
Safa-Tahar-Henni S, Páez Martinez K, Gress V, Esparza N, Roques É, Bonnet-Magnaval F, Bilodeau M, Gagné V, Bresson E, Cardin S, El-Hachem N, Iasenza I, Alzial G, Boivin I, Nakamichi N, Soufflet AC, Mirela Pascariu C, Duchaine J, Mathien S, Bonneil É, Eppert K, Marinier A, Sauvageau G, Deblois G, Thibault P, Hébert J, Eaves CJ, Cellot S, Barabé F, Wilhelm BT. Comparative small molecule screening of primary human acute leukemias, engineered human leukemia and leukemia cell lines. Leukemia 2025; 39:29-41. [PMID: 39472547 PMCID: PMC11717705 DOI: 10.1038/s41375-024-02400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/14/2024] [Accepted: 08/28/2024] [Indexed: 01/11/2025]
Abstract
Targeted therapeutics for high-risk cancers remain an unmet medical need. Here we report the results of a large-scale screen of over 11,000 molecules for their ability to inhibit the survival and growth in vitro of human leukemic cells from multiple sources including patient samples, de novo generated human leukemia models, and established human leukemic cell lines. The responses of cells from de novo models were most similar to those of patient samples, both of which showed striking differences from the cell-line responses. Analysis of differences in subtype-specific therapeutic vulnerabilities made possible by the scale of this screen enabled the identification of new specific modulators of apoptosis, while also highlighting the complex polypharmacology of anti-leukemic small molecules such as shikonin. These findings introduce a new platform for uncovering new therapeutic options for high-risk human leukemia, in addition to reinforcing the importance of the test sample choice for effective drug discovery.
Collapse
Affiliation(s)
- Safia Safa-Tahar-Henni
- Laboratory for High Throughput Biology, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Karla Páez Martinez
- Laboratory for High Throughput Biology, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Verena Gress
- Unité de recherche en immuno-hémato-oncologie Charles-Bruneau, Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
| | - Nayeli Esparza
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Élodie Roques
- Laboratory for High Throughput Biology, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Florence Bonnet-Magnaval
- Laboratory for High Throughput Biology, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Mélanie Bilodeau
- Unité de recherche en immuno-hémato-oncologie Charles-Bruneau, Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
| | - Valérie Gagné
- Laboratory for High Throughput Biology, Montréal, QC, Canada
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
| | - Eva Bresson
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada
| | - Sophie Cardin
- Unité de recherche en immuno-hémato-oncologie Charles-Bruneau, Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
| | - Nehme El-Hachem
- Unité de recherche en immuno-hémato-oncologie Charles-Bruneau, Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
| | - Isabella Iasenza
- Centre for Translational Biology, McGill University Heath Centre Research Institute, Montréal, QC, Canada
| | - Gabriel Alzial
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Metabolic and Epigenetic Alterations in Cancer Research unit, Montréal, QC, Canada
| | - Isabel Boivin
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Molecular Genetics of Stem Cells Research Unit, Montréal, QC, Canada
| | - Naoto Nakamichi
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Anne-Cécile Soufflet
- Unité de recherche en immuno-hémato-oncologie Charles-Bruneau, Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada
| | - Cristina Mirela Pascariu
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Proteomics and Bioanalytical Mass Spectrometry Research Unit, Montréal, QC, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- High throughput screening platform, Montréal, QC, Canada
| | - Simon Mathien
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- High throughput screening platform, Montréal, QC, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Proteomics and Bioanalytical Mass Spectrometry Research Unit, Montréal, QC, Canada
| | - Kolja Eppert
- Centre for Translational Biology, McGill University Heath Centre Research Institute, Montréal, QC, Canada
- Department of Pediatrics, McGill University, Montréal, QC, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Medicinal Chemistry/Drug Discovery Unit, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Molecular Genetics of Stem Cells Research Unit, Montréal, QC, Canada
- Institut universitaire d'hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Deblois
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Faculty of Medicine, Faculty of Pharmacy, University of Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada
- Proteomics and Bioanalytical Mass Spectrometry Research Unit, Montréal, QC, Canada
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Montréal, QC, Canada
| | - Josée Hébert
- Institut universitaire d'hémato-oncologie et de thérapie cellulaire, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sonia Cellot
- Unité de recherche en immuno-hémato-oncologie Charles-Bruneau, Centre de recherche Azrieli du CHU Sainte-Justine, Montréal, QC, Canada.
- Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada.
- Department of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Montréal, QC, Canada.
- Institute for Research in Immunology and Cancer, Montréal, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
4
|
Taha MS, Ahmadian MR. Nucleophosmin: A Nucleolar Phosphoprotein Orchestrating Cellular Stress Responses. Cells 2024; 13:1266. [PMID: 39120297 PMCID: PMC11312075 DOI: 10.3390/cells13151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nucleophosmin (NPM1) is a key nucleolar protein released from the nucleolus in response to stress stimuli. NPM1 functions as a stress regulator with nucleic acid and protein chaperone activities, rapidly shuttling between the nucleus and cytoplasm. NPM1 is ubiquitously expressed in tissues and can be found in the nucleolus, nucleoplasm, cytoplasm, and extracellular environment. It plays a central role in various biological processes such as ribosome biogenesis, cell cycle regulation, cell proliferation, DNA damage repair, and apoptosis. In addition, it is highly expressed in cancer cells and solid tumors, and its mutation is a major cause of acute myeloid leukemia (AML). This review focuses on NPM1's structural features, functional diversity, subcellular distribution, and role in stress modulation.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Algar S, Vázquez-Villa H, Aguilar-Garrido P, Navarro-Aguadero MÁ, Velasco-Estévez M, Sánchez-Merino A, Arribas-Álvarez I, Paradela A, Giner-Arroyo RL, Tamargo-Azpilicueta J, Díaz-Moreno I, Martínez-López J, Gallardo M, López-Rodríguez ML, Benhamú B. Cancer-Stem-Cell Phenotype-Guided Discovery of a Microbiota-Inspired Synthetic Compound Targeting NPM1 for Leukemia. JACS AU 2024; 4:1786-1800. [PMID: 38818079 PMCID: PMC11134387 DOI: 10.1021/jacsau.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 06/01/2024]
Abstract
The human microbiota plays an important role in human health and disease, through the secretion of metabolites that regulate key biological functions. We propose that microbiota metabolites represent an unexplored chemical space of small drug-like molecules in the search of new hits for drug discovery. Here, we describe the generation of a set of complex chemotypes inspired on selected microbiota metabolites, which have been synthesized using asymmetric organocatalytic reactions. Following a primary screening in CSC models, we identified the novel compound UCM-13369 (4b) whose cytotoxicity was mediated by NPM1. This protein is one of the most frequent mutations of AML, and NPM1-mutated AML is recognized by the WHO as a distinct hematopoietic malignancy. UCM-13369 inhibits NPM1 expression, downregulates the pathway associated with mutant NPM1 C+, and specifically recognizes the C-end DNA-binding domain of NPM1 C+, avoiding the nucleus-cytoplasm translocation involved in the AML tumorological process. The new NPM1 inhibitor triggers apoptosis in AML cell lines and primary cells from AML patients and reduces tumor infiltration in a mouse model of AML with NPM1 C+ mutation. The disclosed phenotype-guided discovery of UCM-13369, a novel small molecule inspired on microbiota metabolites, confirms that CSC death induced by NPM1 inhibition represents a promising therapeutic opportunity for NPM1-mutated AML, a high-mortality disease.
Collapse
Affiliation(s)
- Sergio Algar
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Pedro Aguilar-Garrido
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Miguel Ángel Navarro-Aguadero
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - María Velasco-Estévez
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Anabel Sánchez-Merino
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Iván Arribas-Álvarez
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | - Rafael L. Giner-Arroyo
- Institute
for Chemical Research, cicCartuja, University
of Seville, CSIC, E-41092 Sevilla, Spain
| | | | - Irene Díaz-Moreno
- Institute
for Chemical Research, cicCartuja, University
of Seville, CSIC, E-41092 Sevilla, Spain
| | - Joaquín Martínez-López
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Miguel Gallardo
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - María L. López-Rodríguez
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Bellinda Benhamú
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
6
|
Wang T, Zou Y, Meng H, Zheng P, Teng J, Huang N, Chen J. Securin acetylation prevents precocious separase activation and premature sister chromatid separation. Curr Biol 2024; 34:1295-1308.e5. [PMID: 38452759 DOI: 10.1016/j.cub.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.
Collapse
Affiliation(s)
- Tianning Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Breast Disease Diagnosis and Treatment Center/Department of Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Yuhong Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Meng
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Pengli Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Qin G, Bai F, Hu H, Zhang J, Zhan W, Wu Z, Li J, Fu Y, Deng Y. Targeting the NAT10/NPM1 axis abrogates PD-L1 expression and improves the response to immune checkpoint blockade therapy. Mol Med 2024; 30:13. [PMID: 38243170 PMCID: PMC10799409 DOI: 10.1186/s10020-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND PD-1/PD-L1 play a crucial role as immune checkpoint inhibitors in various types of cancer. Although our previous study revealed that NPM1 was a novel transcriptional regulator of PD-L1 and stimulated the transcription of PD-L1, the underlying regulatory mechanism remains incompletely characterized. METHODS Various human cancer cell lines were used to validate the role of NPM1 in regulating the transcription of PD-L1. The acetyltransferase NAT10 was identified as a facilitator of NPM1 acetylation by coimmunoprecipitation and mass spectrometry. The potential application of combined NAT10 inhibitor and anti-CTLA4 treatment was evaluated by an animal model. RESULTS We demonstrated that NPM1 enhanced the transcription of PD-L1 in various types of cancer, and the acetylation of NPM1 played a vital role in this process. In particular, NAT10 facilitated the acetylation of NPM1, leading to enhanced transcription and increased expression of PD-L1. Moreover, our findings demonstrated that Remodelin, a compound that inhibits NAT10, effectively reduced NPM1 acetylation, leading to a subsequent decrease in PD-L1 expression. In vivo experiments indicated that Remodelin combined with anti-CTLA-4 therapy had a superior therapeutic effect compared with either treatment alone. Ultimately, we verified that the expression of NAT10 exhibited a positive correlation with the expression of PD-L1 in various types of tumors, serving as an indicator of unfavorable prognosis. CONCLUSION This study suggests that the NAT10/NPM1 axis is a promising therapeutic target in malignant tumors.
Collapse
Affiliation(s)
- Ge Qin
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Fan Bai
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Huabin Hu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Jianwei Zhang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Weixiang Zhan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Zehua Wu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Jianxia Li
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Yang Fu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China
| | - Yanhong Deng
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Yuan Cun Er Rd No. 26, Guangzhou, 510655, People's Republic of China.
| |
Collapse
|
8
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
9
|
Buzón P, Velázquez‐Cruz A, Corrales‐Guerrero L, Díaz‐Quintana A, Díaz‐Moreno I, Roos WH. The Histone Chaperones SET/TAF-1β and NPM1 Exhibit Conserved Functionality in Nucleosome Remodeling and Histone Eviction in a Cytochrome c-Dependent Manner. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301859. [PMID: 37548614 PMCID: PMC10582448 DOI: 10.1002/advs.202301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Chromatin homeostasis mediates essential processes in eukaryotes, where histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. The dynamic nature of these processes, however, has severely impeded their characterization at the molecular level. Here, fluorescence optical tweezers are applied to follow histone chaperone dynamics in real time. The molecular action of SET/template-activating factor-Iβ and nucleophosmin 1-representing the two most common histone chaperone folds-are examined using both nucleosomes and isolated histones. It is shown that these chaperones present binding specificity for fully dismantled nucleosomes and are able to recognize and disrupt non-native histone-DNA interactions. Furthermore, the histone eviction process and its modulation by cytochrome c are scrutinized. This approach shows that despite the different structures of these chaperones, they present conserved modes of action mediating nucleosome remodeling.
Collapse
Affiliation(s)
- Pedro Buzón
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenNijenborgh 4Groningen9747 AGThe Netherlands
- Present address:
Department of BiochemistryUniversity of ZurichZurich8057Switzerland
| | - Alejandro Velázquez‐Cruz
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Laura Corrales‐Guerrero
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Antonio Díaz‐Quintana
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Irene Díaz‐Moreno
- Instituto de Investigaciones Químicas (IIQ)Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja)Universidad de Sevilla – Consejo Superior de Investigaciones Científicas (CSIC)Avda. Américo Vespucio 49Sevilla41092Spain
| | - Wouter H. Roos
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
10
|
Li D, Cao R, Li Q, Yang Y, Tang A, Zhang J, Liu Q. Nucleolus assembly impairment leads to two-cell transcriptional repression via NPM1-mediated PRC2 recruitment. Nat Struct Mol Biol 2023:10.1038/s41594-023-01003-w. [PMID: 37202475 DOI: 10.1038/s41594-023-01003-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
The nucleolus is a compartmentalized organelle in eukaryotic cells known to form during embryogenesis, yet how its layered architecture is transformed from homogenous precursor bodies is unclear, and any impacts of this formation on embryonic cell fate determination remain unknown. Here, we demonstrate that lncRNA LoNA tethers granular-component-enriched NPM1 to dense-fibrillar-component-enriched FBL and drives the formation of compartmentalized nucleolus via facilitating liquid-liquid phase separation of those two nucleolar proteins. Phenotypically, LoNA-deficient embryos show developmental arrest at the two-cell (2C) stage. Mechanistically, we demonstrate that LoNA deficiency leads to nucleolar formation failure, resulting in mislocalization and acetylation of NPM1 in the nucleoplasm. Acetylated NPM1 recruits and guides PRC2 complex to 2C genes, where PRC2 complex trimethylates H3K27, leading to transcriptional repression of these genes. Collectively, our findings reveal that lncRNA is required for the establishment of nucleolar structure, and this process has an impact on two-cell embryonic development via 2C transcriptional activation.
Collapse
Affiliation(s)
- Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China
| | - Ran Cao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiaodan Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aihui Tang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, China.
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
11
|
XPO1 intensifies sorafenib resistance by stabilizing acetylation of NPM1 and enhancing epithelial-mesenchymal transition in hepatocellular carcinoma. Biomed Pharmacother 2023; 160:114402. [PMID: 36791564 DOI: 10.1016/j.biopha.2023.114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Emerging studies have suggested that exportin-1 (XPO1) plays a pivotal role in hepatocellular carcinoma (HCC). However, the underlying mechanism of XPO1 in HCC sorafenib resistance remains enigmatic. The expression of XPO1 in HCC tumor tissues and sorafenib-resistant (SR) cells were analyzed by bioinformatics analysis, immunohistochemistry (IHC) and Western blotting. The interaction mechanism between XPO1 and Nucleophosmin (NPM1) was investigated by immunoprecipitation (IP), Mass-spectrometric (MS) analysis, immunofluorescence colocalization, CRISPR/CAS9 technology and RNA-seq. Analyses were also conducted on KPT-8602 and sorafenib's combined therapeutic effect. Our findings unraveled that the XPO1 overexpression was observed in HCC, and correlated with poorer survival. Knockdown of XPO1 inhibited the migration and proliferation of HCC cells, and also reduced the resistance of HCC cells to sorafenib. Mechanistically, XPO1 interacted with the C-terminus of NPM1 and mediated the acetylation of NPM1 at lysine 54 to maintain sorafenib resistance. XPO1 was bound to Vimentin, resulting in the epithelial-mesenchymal transition (EMT) progression in sorafenib-resistant cells. KPT-8602 in combination with sorafenib suppressed the tumor growth. These results highlighted the therapeutic value of targeting XPO1 in overcoming sorafenib resistance. The combinational treatment of KPT-8602 and sorafenib might be an improved therapeutic option.
Collapse
|
12
|
Uckelmann HJ, Haarer EL, Takeda R, Wong EM, Hatton C, Marinaccio C, Perner F, Rajput M, Antonissen NJC, Wen Y, Yang L, Brunetti L, Chen CW, Armstrong SA. Mutant NPM1 Directly Regulates Oncogenic Transcription in Acute Myeloid Leukemia. Cancer Discov 2023; 13:746-765. [PMID: 36455613 PMCID: PMC10084473 DOI: 10.1158/2159-8290.cd-22-0366] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023]
Abstract
The dysregulation of developmental and stem cell-associated genes is a common phenomenon during cancer development. Around half of patients with acute myeloid leukemia (AML) express high levels of HOXA cluster genes and MEIS1. Most of these AML cases harbor an NPM1 mutation (NPM1c), which encodes for an oncoprotein mislocalized from the nucleolus to the cytoplasm. How NPM1c expression in hematopoietic cells leads to its characteristic gene-expression pattern remains unclear. Here, we show that NPM1c directly binds to specific chromatin targets, which are co-occupied by the histone methyltransferase KMT2A (MLL1). Targeted degradation of NPM1c leads to a rapid decrease in gene expression and loss of RNA polymerase II, as well as activating histone modifications at its targets. We demonstrate that NPM1c directly regulates oncogenic gene expression in collaboration with the MLL1 complex and define the mechanism by which MLL1-Menin small-molecule inhibitors produce clinical responses in patients with NPM1-mutated AML. SIGNIFICANCE We uncovered an important functional role of mutant NPM1 as a crucial direct driver of oncogenic gene expression in AML. NPM1c can bind to chromatin and cooperate with the MLL complex, providing the first functional insight into the mechanism of Menin-MLL inhibition in NPM1c leukemias. See related article by Wang et al., p. 724. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Hannah J. Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Elena L. Haarer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Reina Takeda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Eric M. Wong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Christian Marinaccio
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Masooma Rajput
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Noa J. C. Antonissen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Yanhe Wen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, Perugia Italy
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Na J, Lee CH, Chung JK, Youn H. Overexpression of Both Human Sodium Iodide Symporter (NIS) and BRG1-Bromodomain Synergistically Enhances Radioiodine Sensitivity by Stabilizing p53 through NPM1 Expression. Int J Mol Sci 2023; 24:ijms24032761. [PMID: 36769088 PMCID: PMC9917390 DOI: 10.3390/ijms24032761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Improved therapeutic strategies are required to minimize side effects associated with radioiodine gene therapy to avoid unnecessary damage to normal cells and radiation-induced secondary malignancies. We previously reported that codon-optimized sodium iodide symporter (oNIS) enhances absorption of I-131 and that the brahma-associated gene 1 bromodomain (BRG1-BRD) causes inefficient DNA damage repair after high-energy X-ray therapy. To increase the therapeutic effect without applying excessive radiation, we considered the combination of oNIS and BRG1-BRD as gene therapy for the most effective radioiodine treatment. The antitumor effect of I-131 with oNIS or oNIS+BRD expression was examined by tumor xenograft models along with functional assays at the cellular level. The synergistic effect of both BRG1-BRD and oNIS gene overexpression resulted in more DNA double-strand breaks and led to reduced cell proliferation/survival rates after I-131 treatment, which was mediated by the p53/p21 pathway. We found increased p53, p21, and nucleophosmin 1 (NPM1) in oNIS- and BRD-expressing cells following I-131 treatment, even though the remaining levels of citrulline and protein arginine deiminase 4 (PAD4) were unchanged at the protein level.
Collapse
Affiliation(s)
- Juri Na
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Correspondence: (J.N.); (H.Y.); Tel.: +44-1752-431038 (J.N.); +82-2-3668-7026 (H.Y.)
| | - Chul-Hee Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Imaging Centre, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Correspondence: (J.N.); (H.Y.); Tel.: +44-1752-431038 (J.N.); +82-2-3668-7026 (H.Y.)
| |
Collapse
|
14
|
Xu SX, Han YW, Guo JL, Bian XK, Hu HM, Lee SC. The binding between NPM and H2B proteins signals for the diabetes-associated centrosome amplification. Cell Biochem Funct 2022; 40:516-525. [PMID: 35678289 DOI: 10.1002/cbf.3721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022]
Abstract
Diabetes not only increases the risk for cancer but also promotes cancer metastasis. Centrosome amplification (CA) is sufficient to initiate tumorigenesis and can enhance the invasion potential of cancer cells. We have reported that diabetes can induce CA, with diabetic pathophysiological factors as the triggers, which involves the signaling of nucleophosmin (NPM). Thus, CA can serve as a candidate biological link between diabetes and cancer. In the present study, we attempted to identify the NPM binding partners and investigated whether the binding between NPM and its partner mediated the CA. We confirmed that high glucose, insulin, and palmitic acid cancer could elicit CA in the HCT16 colon cancer cells and found that the experimental treatment increased the binding between NPM and H2B, but not between p-NPM and H2B. The molecular docking analysis supported the fact that NPM and H2B could bind to each other through various amino acid residues. The treatment also increased the colocalization of NPM and H2B in the cytosol. Importantly, disruption of the NPM1-H2B complex by individual knockdown of the protein level of NPM or H2B led to the inhibition of the treatment-evoked CA. In conclusion, our results suggest that the binding between NPM and H2B proteins signals for the CA by high glucose, insulin, and palmitic acid.
Collapse
Affiliation(s)
- Si X Xu
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Ya W Han
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jia Li Guo
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xue K Bian
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Hong M Hu
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shao C Lee
- Department of Cell Biology, Institute of Biomedical Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
15
|
Ikeda D, Chi S, Uchiyama S, Nakamura H, Guo YM, Yamauchi N, Yuda J, Minami Y. Molecular Classification and Overcoming Therapy Resistance for Acute Myeloid Leukemia with Adverse Genetic Factors. Int J Mol Sci 2022; 23:5950. [PMID: 35682627 PMCID: PMC9180585 DOI: 10.3390/ijms23115950] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
The European LeukemiaNet (ELN) criteria define the adverse genetic factors of acute myeloid leukemia (AML). AML with adverse genetic factors uniformly shows resistance to standard chemotherapy and is associated with poor prognosis. Here, we focus on the biological background and real-world etiology of these adverse genetic factors and then describe a strategy to overcome the clinical disadvantages in terms of targeting pivotal molecular mechanisms. Different adverse genetic factors often rely on common pathways. KMT2A rearrangement, DEK-NUP214 fusion, and NPM1 mutation are associated with the upregulation of HOX genes. The dominant tyrosine kinase activity of the mutant FLT3 or BCR-ABL1 fusion proteins is transduced by the AKT-mTOR, MAPK-ERK, and STAT5 pathways. Concurrent mutations of ASXL1 and RUNX1 are associated with activated AKT. Both TP53 mutation and mis-expressed MECOM are related to impaired apoptosis. Clinical data suggest that adverse genetic factors can be found in at least one in eight AML patients and appear to accumulate in relapsed/refractory cases. TP53 mutation is associated with particularly poor prognosis. Molecular-targeted therapies focusing on specific genomic abnormalities, such as FLT3, KMT2A, and TP53, have been developed and have demonstrated promising results.
Collapse
Affiliation(s)
- Daisuke Ikeda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
- Department of Hematology, Kameda Medical Center, Kamogawa 296-8602, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Satoshi Uchiyama
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Hirotaka Nakamura
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Yong-Mei Guo
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Nobuhiko Yamauchi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Junichiro Yuda
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa, Chiba 277-8577, Japan; (D.I.); (S.C.); (S.U.); (H.N.); (Y.-M.G.); (N.Y.); (J.Y.)
| |
Collapse
|
16
|
Hou Y, Liang Z, Qi L, Tang C, Liu X, Tang J, Zhao Y, Zhang Y, Fang T, Luo Q, Wang S, Wang F. Baicalin Targets HSP70/90 to Regulate PKR/PI3K/AKT/eNOS Signaling Pathways. Molecules 2022; 27:1432. [PMID: 35209223 PMCID: PMC8874410 DOI: 10.3390/molecules27041432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1β and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.
Collapse
Affiliation(s)
- Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuqing Liang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jilin Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Tiantian Fang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
17
|
Shukla S, Agarwal P, Kumar A. Disordered regions tune order in chromatin organization and function. Biophys Chem 2022; 281:106716. [PMID: 34844028 DOI: 10.1016/j.bpc.2021.106716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins or hybrid proteins with ordered domains and disordered regions (both collectively designated as IDP(R)s) defy the well-established structure-function paradigm due to their ability to perform multiple biological functions even in the absence of a well-defined 3D structure. IDP(R)s have a unique ability to exist as a functional heterogeneous ensemble, where they adopt multiple thermodynamically stable conformations with low energy barriers between states. The resultant structural plasticity or conformational adaptability provides them with a high functional diversity and ease of regulation. Hence, IDP(R)s are highly efficient biological machinery to mediate intricate cellular functions such as signaling, gene expression, and assembly of complex structures. One such structure is the nucleoprotein complex known as Chromatin. Interestingly, the proteins involved in shaping up the structure and function of chromatin are abundant in disordered regions, which serve more than just as mere flexible linkers. The disordered regions are involved in crucial processes such as gene expression regulation, chromatin architecture maintenance, and liquid-liquid phase separation initiation. This review is an attempt to explore the advantages and the functional and regulatory roles of intrinsic disorder in several Chromatin Associated Proteins from a mechanistic standpoint.
Collapse
Affiliation(s)
- Shivangi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Prakhar Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
18
|
The Role of Nucleophosmin 1 ( NPM1) Mutation in the Diagnosis and Management of Myeloid Neoplasms. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010109. [PMID: 35054502 PMCID: PMC8780493 DOI: 10.3390/life12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1) is a multifunctional protein with both proliferative and growth-suppressive roles in the cell. In humans, NPM1 is involved in tumorigenesis via chromosomal translocations, deletions, or mutation. Acute myeloid leukemia (AML) with mutated NPM1, a distinct diagnostic entity by the current WHO Classification of myeloid neoplasm, represents the most common diagnostic subtype in AML and is associated with a favorable prognosis. The persistence of NPM1 mutation in AML at relapse makes this mutation an ideal target for minimal measurable disease (MRD) detection. The clinical implication of this is far-reaching because NPM1-mutated AML is currently classified as being of standard risk, with the best treatment strategy (transplantation versus chemotherapy) yet undefined. Myeloid neoplasms with NPM1 mutations and <20% blasts are characterized by an aggressive clinical course and a rapid progression to AML. The pathological classification of these cases remains controversial. Future studies will determine whether NPM1 gene mutation may be sufficient for diagnosing NPM1-mutated AML independent of the blast count. This review aims to summarize the role of NPM1 in normal cells and in human cancer and discusses its current role in clinical management of AML and related myeloid neoplasms.
Collapse
|
19
|
Histone chaperone Nucleophosmin regulates transcription of key genes involved in oral tumorigenesis. Mol Cell Biol 2021; 42:e0066920. [PMID: 34898280 DOI: 10.1128/mcb.00669-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nucleophosmin (NPM1) is a multifunctional histone chaperone that can activate acetylation-dependent transcription from chromatin templates in vitro. Acetylation of NPM1 by p300 has been shown to further enhance its transcription activation potential. Moreover, its total and acetylated pools are increased in oral squamous cell carcinoma. However, the role of NPM1 or its acetylated form (AcNPM1) in transcriptional regulation in cells and oral tumorigenesis is not fully elucidated. Using ChIP-seq analyses, we provide the first genome-wide profile of AcNPM1 and show that AcNPM1 is enriched at transcriptional regulatory elements. AcNPM1 co-occupies marks of active transcription at promoters and DNase I hypersensitive sites at enhancers. In addition, using a high-throughput protein interaction profiling approach, we show that NPM1 interacts with RNA Pol II, general transcription factors, mediator subunits, histone acetyltransferase complexes, and chromatin remodelers. NPM1 histone chaperone activity also contributes to its transcription activation potential. Further, NPM1 depletion leads to decreased AcNPM1 occupancy and reduced expression of genes required for proliferative, migratory and invasive potential of oral cancer cells. NPM1 depletion also abrogates the growth of orthotopic tumors in mice. Collectively, these results establish that AcNPM1 functions as a coactivator during during RNA polymerase II-driven transcription and regulates the expression of genes that promote oral tumorigenesis.
Collapse
|
20
|
Hindley A, Catherwood MA, McMullin MF, Mills KI. Significance of NPM1 Gene Mutations in AML. Int J Mol Sci 2021; 22:ijms221810040. [PMID: 34576201 PMCID: PMC8467861 DOI: 10.3390/ijms221810040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of this literature review is to examine the significance of the nucleophosmin 1 (NPM1) gene in acute myeloid leukaemia (AML). This will include analysis of the structure and normal cellular function of NPM1, the type of mutations commonly witnessed in NPM1, and the mechanism by which this influences the development and progression of AML. The importance of NPM1 mutation on prognosis and the treatment options available to patients will also be reviewed along with current guidelines recommending the rapid return of NPM1 mutational screening results and the importance of employing a suitable laboratory assay to achieve this. Finally, future developments in the field including research into new therapies targeting NPM1 mutated AML are considered.
Collapse
Affiliation(s)
- Andrew Hindley
- Clinical Haematology, Belfast City Hospital, Belfast BT9 7AB, UK;
- Correspondence:
| | | | - Mary Frances McMullin
- Centre for Medical Education, Queen’s University Belfast, Belfast BT7 1NN, UK;
- Northern Ireland and Belfast Health and Social Care Trust, Belfast BT9 7AB, UK
| | - Ken I. Mills
- Patrick G Johnston Center for Cancer Research, Queens University Belfast, Belfast BT9 7AE, UK;
| |
Collapse
|
21
|
González‐Arzola K, Guerra‐Castellano A, Rivero‐Rodríguez F, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MA. Mitochondrial cytochrome c shot towards histone chaperone condensates in the nucleus. FEBS Open Bio 2021; 11:2418-2440. [PMID: 33938164 PMCID: PMC8409293 DOI: 10.1002/2211-5463.13176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Despite mitochondria being key for the control of cell homeostasis and fate, their role in DNA damage response is usually just regarded as an apoptotic trigger. However, growing evidence points to mitochondrial factors modulating nuclear functions. Remarkably, after DNA damage, cytochrome c (Cc) interacts in the cell nucleus with a variety of well-known histone chaperones, whose activity is competitively inhibited by the haem protein. As nuclear Cc inhibits the nucleosome assembly/disassembly activity of histone chaperones, it might indeed affect chromatin dynamics and histone deposition on DNA. Several histone chaperones actually interact with Cc Lys residues through their acidic regions, which are also involved in heterotypic interactions leading to liquid-liquid phase transitions responsible for the assembly of nuclear condensates, including heterochromatin. This relies on dynamic histone-DNA interactions that can be modulated by acetylation of specific histone Lys residues. Thus, Cc may have a major regulatory role in DNA repair by fine-tuning nucleosome assembly activity and likely nuclear condensate formation.
Collapse
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Francisco Rivero‐Rodríguez
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)University of Seville – CSICSpain
| |
Collapse
|
22
|
Koukoulas K, Giakountis A, Karagiota A, Samiotaki M, Panayotou G, Simos G, Mylonis I. ERK signalling controls productive HIF-1 binding to chromatin and cancer cell adaptation to hypoxia through HIF-1α interaction with NPM1. Mol Oncol 2021; 15:3468-3489. [PMID: 34388291 PMCID: PMC8637566 DOI: 10.1002/1878-0261.13080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022] Open
Abstract
The hypoxia-inducible factor HIF-1 is essential for oxygen homeostasis. Despite its well-understood oxygen-dependent expression, regulation of its transcriptional activity remains unclear. We show that phosphorylation by ERK1/2, in addition to promoting HIF-1α nuclear accumulation, also enhances its interaction with chromatin and stimulates direct binding to nucleophosmin (NPM1), a histone chaperone and chromatin remodeler. NPM1 is required for phosphorylation-dependent recruitment of HIF-1 to hypoxia-response elements (HREs), its interaction with acetylated histones and high expression of HIF-1 target genes under hypoxia. Transcriptome analysis revealed a significant number of hypoxia-related genes commonly regulated by NPM1 and HIF-1. These NPM1/HIF-1α co-upregulated genes are enriched in three different cancer types and their expression correlates with hypoxic tumor status and worse patient prognosis. In concert, silencing of NPM1 expression or disruption of its association with HIF-1α inhibits metabolic adaptation of cancer cells and triggers apoptotic death upon hypoxia. We suggest that ERK-mediated phosphorylation of HIF-1α regulates its physical interaction with NPM1, which is essential for productive association of HIF-1 with hypoxia target genes and their optimal transcriptional activation, required for survival under low oxygen or tumor growth.
Collapse
Affiliation(s)
- Kreon Koukoulas
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis Larissa, 41500, Greece.,Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| | - Martina Samiotaki
- Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - George Panayotou
- Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis Larissa, 41500, Greece.,Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, H4A 3T2, Canada
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| |
Collapse
|
23
|
Hatakeyama D, Shoji M, Ogata S, Masuda T, Nakano M, Komatsu T, Saitoh A, Makiyama K, Tsuneishi H, Miyatake A, Takahira M, Nishikawa E, Ohkubo A, Noda T, Kawaoka Y, Ohtsuki S, Kuzuhara T. Acetylation of the influenza A virus polymerase subunit PA in the N-terminal domain positively regulates its endonuclease activity. FEBS J 2021; 289:231-245. [PMID: 34270849 DOI: 10.1111/febs.16123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
The post-translational acetylation of lysine residues is found in many nonhistone proteins and is involved in a wide range of biological processes. Recently, we showed that the nucleoprotein of the influenza A virus is acetylated by histone acetyltransferases (HATs), a phenomenon that affects viral transcription. Here, we report that the PA subunit of influenza A virus RNA-dependent RNA polymerase is acetylated by the HATs, P300/CREB-binding protein-associated factor (PCAF), and general control nonderepressible 5 (GCN5), resulting in accelerated endonuclease activity. Specifically, the full-length PA subunit expressed in cultured 293T cells was found to be strongly acetylated. Moreover, the partial recombinant protein of the PA N-terminal region containing the endonuclease domain was also acetylated by PCAF and GCN5 in vitro, which facilitated its endonuclease activity. Mass spectrometry analyses identified K19 as a candidate acetylation target in the PA N-terminal region. Notably, the substitution of the lysine residue at position 19 with glutamine, a mimic of the acetyl-lysine residue, enhanced its endonuclease activity in vitro; this point mutation also accelerated influenza A virus RNA-dependent RNA polymerase activity in the cell. Our findings suggest that PA acetylation is important for the regulation of the endonuclease and RNA polymerase activities of the influenza A virus.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Masahiro Nakano
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Tsugunori Komatsu
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Ayaka Saitoh
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Kyoko Makiyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Hazuki Tsuneishi
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Asuka Miyatake
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Mizuki Takahira
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Erina Nishikawa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Ayana Ohkubo
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| | - Takeshi Noda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Yoshihiro Kawaoka
- Institute of Medical Science, University of Tokyo, Japan.,School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Japan
| |
Collapse
|
24
|
Mutual dependency between lncRNA LETN and protein NPM1 in controlling the nucleolar structure and functions sustaining cell proliferation. Cell Res 2021; 31:664-683. [PMID: 33432115 PMCID: PMC8169757 DOI: 10.1038/s41422-020-00458-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Fundamental processes such as ribosomal RNA synthesis and chromatin remodeling take place in the nucleolus, which is hyperactive in fast-proliferating cells. The sophisticated regulatory mechanism underlying the dynamic nucleolar structure and functions is yet to be fully explored. The present study uncovers the mutual functional dependency between a previously uncharacterized human long non-coding RNA, which we renamed LETN, and a key nucleolar protein, NPM1. Specifically, being upregulated in multiple types of cancer, LETN resides in the nucleolus via direct binding with NPM1. LETN plays a critical role in facilitating the formation of NPM1 pentamers, which are essential building blocks of the nucleolar granular component and control the nucleolar functions. Repression of LETN or NPM1 led to similar and profound changes of the nucleolar morphology and arrest of the nucleolar functions, which led to proliferation inhibition of human cancer cells and neural progenitor cells. Interestingly, this inter-dependency between LETN and NPM1 is associated with the evolutionarily new variations of NPM1 and the coincidental emergence of LETN in higher primates. We propose that this human-specific protein-lncRNA axis renders an additional yet critical layer of regulation with high physiological relevance in both cancerous and normal developmental processes that require hyperactive nucleoli.
Collapse
|
25
|
Bose A, Modi K, Dey S, Dalvi S, Nadkarni P, Sudarshan M, Kundu TK, Venkatraman P, Dalal SN. 14-3-3γ prevents centrosome duplication by inhibiting NPM1 function. Genes Cells 2021; 26:426-446. [PMID: 33813791 DOI: 10.1111/gtc.12848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
14-3-3 proteins bind to ligands via phospho-serine containing consensus motifs. However, the molecular mechanisms underlying complex formation and dissociation between 14-3-3 proteins and their ligands remain unclear. We identified two conserved acidic residues in the 14-3-3 peptide-binding pocket (D129 and E136) that potentially regulate complex formation and dissociation. Altering these residues to alanine led to opposing effects on centrosome duplication. D129A inhibited centrosome duplication, whereas E136A stimulated centrosome amplification. These results were due to the differing abilities of these mutant proteins to form a complex with NPM1. Inhibiting complex formation between NPM1 and 14-3-3γ led to an increase in centrosome duplication and over-rode the ability of D129A to inhibit centrosome duplication. We identify a novel role of 14-3-3γ in regulating centrosome licensing and a novel mechanism underlying the formation and dissociation of 14-3-3 ligand complexes dictated by conserved residues in the 14-3-3 family.
Collapse
Affiliation(s)
- Arunabha Bose
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Kruti Modi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Suchismita Dey
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Somavally Dalvi
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Prafful Nadkarni
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Mukund Sudarshan
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Prasanna Venkatraman
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sorab N Dalal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
26
|
Insights into the roles of histone chaperones in nucleosome assembly and disassembly in virus infection. Virus Res 2021; 297:198395. [PMID: 33737155 DOI: 10.1016/j.virusres.2021.198395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022]
Abstract
Nucleosomes are assembled or disassembled with the aid of histone chaperones in a cell. Viruses can exist either as minichromosomes/episomes or can integrate into the host genome and in both the cases the viral proteins interact and manipulate the cellular nucleosome assembly machinery to ensure their survival and propagation. Recent studies have provided insight into the mechanism and role of histone chaperones in nucleosome assembly and disassembly on the virus genome. Further, the interactions between viral proteins and histone chaperones have been implicated in the integration of the virus genome into the host genome. This review highlights the recent progress and future challenges in understanding the role of histone chaperones in viruses with DNA or RNA genome and their role in governing viral pathogenesis.
Collapse
|
27
|
Abstract
Mouse models of human myeloid malignancies support the detailed and focused investigation of selected driver mutations and represent powerful tools in the study of these diseases. Carefully developed murine models can closely recapitulate human myeloid malignancies in vivo, enabling the interrogation of a number of aspects of these diseases including their preclinical course, interactions with the microenvironment, effects of pharmacological agents, and the role of non-cell-autonomous factors, as well as the synergy between co-occurring mutations. Importantly, advances in gene-editing technologies, particularly CRISPR-Cas9, have opened new avenues for the development and study of genetically modified mice and also enable the direct modification of mouse and human hematopoietic cells. In this review we provide a concise overview of some of the important mouse models that have advanced our understanding of myeloid leukemogenesis with an emphasis on models relevant to clonal hematopoiesis, myelodysplastic syndromes, and acute myeloid leukemia with a normal karyotype.
Collapse
Affiliation(s)
- Faisal Basheer
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - George Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, United Kingdom
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
28
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
29
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
30
|
Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes (Basel) 2020; 11:genes11060649. [PMID: 32545659 PMCID: PMC7348733 DOI: 10.3390/genes11060649] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein involved in ribosome biogenesis, the maintenance of genomic integrity and the regulation of the ARF-p53 tumor-suppressor pathway among multiple other functions. Mutations in the corresponding gene cause a cytoplasmic dislocation of the NPM1 protein. These mutations are unique to acute myeloid leukemia (AML), a disease characterized by clonal expansion, impaired differentiation and the proliferation of myeloid cells in the bone marrow. Despite our improved understanding of NPM1 mutations and their consequences, the underlying leukemia pathogenesis is still unclear. Recent studies that focused on dysregulated gene expression in AML with mutated NPM1 have shed more light into these mechanisms. In this article, we review the current evidence on normal functions of NPM1 and aberrant functioning in AML, and highlight investigational strategies targeting these mutations.
Collapse
|
31
|
Pang MYH, Sun X, Ausió J, Ishibashi T. Histone H4 variant, H4G, drives ribosomal RNA transcription and breast cancer cell proliferation by loosening nucleolar chromatin structure. J Cell Physiol 2020; 235:9601-9608. [PMID: 32385931 DOI: 10.1002/jcp.29770] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/09/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
The hominidae-specific histone variant H4G is expressed in breast cancer patients in a stage-dependent manner. H4G localizes primarily in the nucleoli via its interaction with nucleophosmin (NPM1). H4G is involved in rDNA transcription and ribosome biogenesis, which facilitates breast cancer cell proliferation. However, the molecular mechanism underlying this process remains unknown. Here, we show that H4G is not stably incorporated into nucleolar chromatin, even with the chaperoning assistance of NPM1. H4G likely form transient nucleosome-like-structure that undergoes rapid dissociation. In addition, the nucleolar chromatin in H4GKO cells is more compact than WT cells. Altogether, our results suggest that H4G relaxes the nucleolar chromatin and enhances rRNA transcription by forming destabilized nucleosome in breast cancer cells.
Collapse
Affiliation(s)
- Matthew Y H Pang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - Xulun Sun
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Toyotaka Ishibashi
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| |
Collapse
|
32
|
Qin G, Wang X, Ye S, Li Y, Chen M, Wang S, Qin T, Zhang C, Li Y, Long Q, Hu H, Shi D, Li J, Zhang K, Zhai Q, Tang Y, Kang T, Lan P, Xie F, Lu J, Deng W. NPM1 upregulates the transcription of PD-L1 and suppresses T cell activity in triple-negative breast cancer. Nat Commun 2020; 11:1669. [PMID: 32245950 PMCID: PMC7125142 DOI: 10.1038/s41467-020-15364-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) interaction plays a crucial role in tumor-associated immune escape. Here, we verify that triple-negative breast cancer (TNBC) has higher PD-L1 expression than other subtypes. We then discover that nucleophosmin (NPM1) binds to PD-L1 promoter specifically in TNBC cells and activates PD-L1 transcription, thus inhibiting T cell activity in vitro and in vivo. Furthermore, we demonstrate that PARP1 suppresses PD-L1 transcription through its interaction with the nucleic acid binding domain of NPM1, which is required for the binding of NPM1 at PD-L1 promoter. Consistently, the PARP1 inhibitor olaparib elevates PD-L1 expression in TNBC and exerts a better effect with anti-PD-L1 therapy. Together, our research has revealed NPM1 as a transcription regulator of PD-L1 in TNBC, which could lead to potential therapeutic strategies to enhance the efficacy of cancer immunotherapy.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/genetics
- B7-H1 Antigen/metabolism
- Breast/pathology
- Cell Line, Tumor
- DNA-Binding Proteins
- Disease Models, Animal
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Gene Knockdown Techniques
- Humans
- Kaplan-Meier Estimate
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice
- Middle Aged
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleophosmin
- Phthalazines/pharmacology
- Phthalazines/therapeutic use
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors
- Poly (ADP-Ribose) Polymerase-1/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Prognosis
- Promoter Regions, Genetic/genetics
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tissue Array Analysis
- Transcriptional Activation/immunology
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/immunology
- Triple Negative Breast Neoplasms/mortality
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Ge Qin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shubiao Ye
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhuo Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Tao Qin
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yixin Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Huabin Hu
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jiaping Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kai Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qinglian Zhai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yanlai Tang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Ping Lan
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fangyun Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jianjun Lu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| |
Collapse
|
33
|
Nandy D, Rajam SM, Dutta D. A three layered histone epigenetics in breast cancer metastasis. Cell Biosci 2020; 10:52. [PMID: 32257110 PMCID: PMC7106732 DOI: 10.1186/s13578-020-00415-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thanks to the advancement in science and technology and a significant number of cancer research programs being carried out throughout the world, the prevention, prognosis and treatment of breast cancer are improving with a positive and steady pace. However, a stern thoughtful attention is required for the metastatic breast cancer cases—the deadliest of all types of breast cancer, with a character of relapse even when treated. In an effort to explore the less travelled avenues, we summarize here studies underlying the aspects of histone epigenetics in breast cancer metastasis. Authoritative reviews on breast cancer epigenetics are already available; however, there is an urgent need to focus on the epigenetics involved in metastatic character of this cancer. Here we put forward a comprehensive review on how different layers of histone epigenetics comprising of histone chaperones, histone variants and histone modifications interplay to create breast cancer metastasis landscape. Finally, we propose a hypothesis of integrating histone-epigenetic factors as biomarkers that encompass different breast cancer subtypes and hence could be exploited as a target of larger population.
Collapse
Affiliation(s)
- Debparna Nandy
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| | - Sruthy Manuraj Rajam
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014 India
| |
Collapse
|
34
|
Gao X, Bao H, Liu L, Zhu W, Zhang L, Yue L. Systematic analysis of lysine acetylome and succinylome reveals the correlation between modification of H2A.X complexes and DNA damage response in breast cancer. Oncol Rep 2020; 43:1819-1830. [PMID: 32236595 PMCID: PMC7160542 DOI: 10.3892/or.2020.7554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal protein acetylation and succinylation in lysine residues can cause the initiation and development of numerous different types of tumors. However, to the best of our knowledge, there is currently a lack of systematic investigation in breast cancer. Using proteomic techniques, the present study systematically investigated the two modifications of all proteins in invasive ductal carcinoma tissues to identify potential targets. The results revealed significantly higher modification levels for the majority of proteins in breast cancer tissue when compared with para‑carcinomous normal tissue. The bioinformatic analysis demonstrated that either highly acetylated or succinylated proteins were significantly enriched in histone H2A.X (H2A.X) complexes and nucleophosmin (NPM1) may be the key member among them. The results of further analyses revealed that H2A.X complexes were associated with DNA damage response (DDR), and the proteomic results for protein quantification provided further evidence for the abnormal DDR condition in breast cancer tissues. Later, the western blotting results validated the high acetylation and succinylation levels of the majority of proteins, including the modification of NPM1 and its correlation with cell viability. Finally, the upregulation of H2A.X in breast cancer tissues further demonstrated the association between H2A.X complex modification and DDR in breast cancer. Overall, the present study systematically investigated the protein acetylation and succinylation in breast cancer and provided evidence to support H2A.X complexes as potential targets. These results broaden the horizon for breast cancer investigation and link it with epigenetics.
Collapse
Affiliation(s)
- Xiuli Gao
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Hongguang Bao
- Oncology Surgical Department, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Likun Liu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wenbin Zhu
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liping Zhang
- Department of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liling Yue
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
35
|
Ribosome and Translational Control in Stem Cells. Cells 2020; 9:cells9020497. [PMID: 32098201 PMCID: PMC7072746 DOI: 10.3390/cells9020497] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions. In this review, we will provide the most recent literature describing how ribosome biogenesis and translational control regulate stem cell functions and are crucial for accommodating proteome remodeling in response to changes in stem cell fate.
Collapse
|
36
|
Darracq A, Pak H, Bourgoin V, Zmiri F, Dellaire G, Affar EB, Milot E. NPM and NPM-MLF1 interact with chromatin remodeling complexes and influence their recruitment to specific genes. PLoS Genet 2019; 15:e1008463. [PMID: 31675375 PMCID: PMC6853375 DOI: 10.1371/journal.pgen.1008463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 11/13/2019] [Accepted: 10/04/2019] [Indexed: 11/18/2022] Open
Abstract
Nucleophosmin (NPM1) is frequently mutated or subjected to chromosomal translocation in acute myeloid leukemia (AML). NPM protein is primarily located in the nucleus, but the recurrent NPMc+ mutation, which creates a nuclear export signal, is characterized by cytoplasmic localization and leukemogenic properties. Similarly, the NPM-MLF1 translocation product favors the partial cytoplasmic retention of NPM. Regardless of their common cellular distribution, NPM-MLF1 malignancies engender different effects on hematopoiesis compared to NPMc+ counterparts, highlighting possible aberrant nuclear function(s) of NPM in NPMc+ and NPM-MLF1 AML. We performed a proteomic analysis and found that NPM and NPM-MLF1 interact with various nuclear proteins including subunits of the chromatin remodeling complexes ISWI, NuRD and P/BAF. Accordingly, NPM and NPM-MLF1 are recruited to transcriptionally active or repressed genes along with NuRD subunits. Although the overall gene expression program in NPM knockdown cells is similar to that resulting from NPMc+, NPM-MLF1 expression differentially altered gene transcription regulated by NPM. The abnormal gene regulation imposed by NPM-MLF1 can be characterized by the enhanced recruitment of NuRD to gene regulatory regions. Thus, different mechanisms would orchestrate the dysregulation of NPM function in NPMc+- versus NPM1-MLF1-associated leukemia. NPMc+ mutation is the most common mutation in acute myeloid leukemia (AML) with prevalence in one third of all AML cases. NPM can also be involved in leukemogenic translocation including the t(3;5)(q25;q34) NPM-MLF1 translocation, which is associated to bad clinical course but remains poorly defined. We are reporting that NPM and the leukemogenic NPM-MLF1 play central role in chromatin organization and gene regulation in hematopoietic cells. A proteomic analysis provided the evidence that NPM and NPM-MLF1 are interacting with the chromatin remodeling complexes NuRD, P/BAF and ISWI in hematopoietic cells. The NPM nuclear depletion, such as imposed by the leukemogenic NPMc+ mutation, or the expression of NPM-MLF1 favors the uncontrolled recruitment of the CHD4/NuRD to chromatin and the abnormal regulation of NPM-target genes. Our results suggest that the abnormal gene regulation forced by NPM-MLF1 is different than the loss of nuclear function imposed by NPMc+, and it can be characterized by the enhanced recruitment of CHD4/NuRD to genes. Thus, NPM-MLF1 is likely to promote hematopoietic malignancies by disruption of gene regulation imposed by the NuRD activity.
Collapse
Affiliation(s)
- Anaïs Darracq
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
| | - Helen Pak
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Vincent Bourgoin
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Farah Zmiri
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Graham Dellaire
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - El Bachir Affar
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Boulevard Edouard-Montpetit, Montreal, Quebec, Canada
| | - Eric Milot
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Boulevard Edouard-Montpetit, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
37
|
Ducray SP, Natarajan K, Garland GD, Turner SD, Egger G. The Transcriptional Roles of ALK Fusion Proteins in Tumorigenesis. Cancers (Basel) 2019; 11:cancers11081074. [PMID: 31366041 PMCID: PMC6721376 DOI: 10.3390/cancers11081074] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase involved in neuronal and gut development. Initially discovered in T cell lymphoma, ALK is frequently affected in diverse cancers by oncogenic translocations. These translocations involve different fusion partners that facilitate multimerisation and autophosphorylation of ALK, resulting in a constitutively active tyrosine kinase with oncogenic potential. ALK fusion proteins are involved in diverse cellular signalling pathways, such as Ras/extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K)/Akt and Janus protein tyrosine kinase (JAK)/STAT. Furthermore, ALK is implicated in epigenetic regulation, including DNA methylation and miRNA expression, and an interaction with nuclear proteins has been described. Through these mechanisms, ALK fusion proteins enable a transcriptional programme that drives the pathogenesis of a range of ALK-related malignancies.
Collapse
Affiliation(s)
- Stephen P Ducray
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | | | - Gavin D Garland
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK.
| | - Gerda Egger
- Department of Pathology, Medical University Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, 1090 Vienna, Austria.
| |
Collapse
|
38
|
Ashraf K, Nabeel-Shah S, Garg J, Saettone A, Derynck J, Gingras AC, Lambert JP, Pearlman RE, Fillingham J. Proteomic Analysis of Histones H2A/H2B and Variant Hv1 in Tetrahymena thermophila Reveals an Ancient Network of Chaperones. Mol Biol Evol 2019; 36:1037-1055. [PMID: 30796450 PMCID: PMC6502085 DOI: 10.1093/molbev/msz039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Epigenetic information, which can be passed on independently of the DNA sequence, is stored in part in the form of histone posttranslational modifications and specific histone variants. Although complexes necessary for deposition have been identified for canonical and variant histones, information regarding the chromatin assembly pathways outside of the Opisthokonts remains limited. Tetrahymena thermophila, a ciliated protozoan, is particularly suitable to study and unravel the chromatin regulatory layers due to its unique physical separation of chromatin states in the form of two distinct nuclei present within the same cell. Using a functional proteomics pipeline, we carried out affinity purification followed by mass spectrometry of endogenously tagged T. thermophila histones H2A, H2B and variant Hv1.We identified a set of interacting proteins shared among the three analyzed histones that includes the FACT-complex, as well as H2A- or Hv1-specific chaperones. We find that putative subunits of T. thermophila versions of SWR- and INO80-complexes, as well as transcription-related histone chaperone Spt6Tt specifically copurify with Hv1. We also identified importin β6 and the T. thermophila ortholog of nucleoplasmin 1 (cNpl1Tt) as H2A–H2B interacting partners. Our results further implicate Poly [ADP-ribose] polymerases in histone metabolism. Molecular evolutionary analysis, reciprocal affinity purification coupled to mass spectrometry experiments, and indirect immunofluorescence studies using endogenously tagged Spt16Tt (FACT-complex subunit), cNpl1Tt, and PARP6Tt underscore the validity of our approach and offer mechanistic insights. Our results reveal a highly conserved regulatory network for H2A (Hv1)–H2B concerning their nuclear import and assembly into chromatin.
Collapse
Affiliation(s)
- Kanwal Ashraf
- Department of Biology, York University, Toronto, ON, Canada
| | - Syed Nabeel-Shah
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jyoti Garg
- Department of Biology, York University, Toronto, ON, Canada
| | - Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Joanna Derynck
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada.,CHU de Québec Research Center, CHUL, Québec, QC, Canada
| | | | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
39
|
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol 2019; 111:52-62. [PMID: 31009764 DOI: 10.1016/j.biocel.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Markéta Šašinková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| |
Collapse
|
40
|
Bi X, Ye Q, Li D, Peng Q, Wang Z, Wu X, Zhang Y, Zhang Q, Jiang F. Inhibition of nucleolar stress response by Sirt1: A potential mechanism of acetylation-independent regulation of p53 accumulation. Aging Cell 2019; 18:e12900. [PMID: 30623565 PMCID: PMC6413664 DOI: 10.1111/acel.12900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/28/2018] [Accepted: 12/08/2018] [Indexed: 02/04/2023] Open
Abstract
The mammalian Sirt1 deacetylase is generally thought to be a nuclear protein, but some pilot studies have suggested that Sirt1 may also be involved in orchestrating nucleolar functions. Here, we show that nucleolar stress response is a ubiquitous cellular reaction that can be induced by different types of stress conditions, and Sirt1 is an endogenous suppressor of nucleolar stress response. Using stable isotope labeling by amino acids in cell culture approach, we have identified a physical interaction of between Sirt1 and the nucleolar protein nucleophosmin, and this protein-protein interaction appears to be necessary for Sirt1 inhibition on nucleolar stress, whereas the deacetylase activity of Sirt1 is not strictly required. Based on the reported prerequisite role of nucleolar stress response in stress-induced p53 protein accumulation, we have also provided evidence suggesting that Sirt1-mediated inhibition on nucleolar stress response may represent a novel mechanism by which Sirt1 can modulate intracellular p53 accumulation independent of lysine deacetylation. This process may represent an alternative mechanism by which Sirt1 regulates functions of the p53 pathway.
Collapse
Affiliation(s)
- Xiaolei Bi
- School of Basic MedicineShandong UniversityJinanShandong ProvinceChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
- Present address:
Department of CardiologyQingdao Municipal HospitalQingdaoShandong ProvinceChina
| | - Qing Ye
- School of Basic MedicineShandong UniversityJinanShandong ProvinceChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Daoyuan Li
- National Glycoengineering Research CenterShandong UniversityJinanChina
| | - Qisheng Peng
- Key Laboratory of Zoonosis ResearchJilin UniversityChangchunJilin ProvinceChina
| | - Zhe Wang
- Division of Endocrinology and MetabolismShandong Provincial Hospital affiliated to Shandong UniversityJinanChina
| | - Xiao Wu
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| | - Fan Jiang
- School of Basic MedicineShandong UniversityJinanShandong ProvinceChina
- Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical SciencesJinanChina
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of CardiologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
41
|
Qiu SW, Wan YL, Wang M, Wang JX. [Effects of NPM1 gene expression on acute myeloid leukemia cell lines and its mechanism]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 38:940-944. [PMID: 29224316 PMCID: PMC7342777 DOI: 10.3760/cma.j.issn.0253-2727.2017.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
目的 探讨NPM1基因表达对急性髓系白血病(AML)细胞系的影响及其机制。 方法 选取AML细胞系U937和HL-60细胞,转染NPM1质粒至细胞系构建稳定克隆,采用Western blot法鉴定高表达NPM1蛋白的单克隆细胞。MTT法检测细胞增殖活性,流式细胞术检测细胞周期分布和细胞凋亡率,显微镜下计数检测集落形成能力,Western blot法检测细胞周期相关信号通路蛋白表达,实时荧光定量PCR(RQ-PCR)法检测初诊AML患者骨髓单个核细胞NPM1基因表达水平。 结果 ①U937和HL-60细胞中NPM1高表达组相对细胞增殖率与对照组相比,差异无统计学意义(4.68±1.28对3.89±0.81,3.34±0.37对2.68±0.29,P值均>0.05)。②U937和HL-60细胞中NPM1高表达组S期细胞比例均明显高于对照组[(50.22±3.42)%对(39.78±3.80)%,(59.01±3.27)%对(43.94±2.08)%,P值均<0.05]。③U937细胞NPM1高表达组和对照组相比具有更强的抗凋亡能力[(48.67±3.22)%和(68.77±10.21)%,P<0.05]和集落形成能力(772.7±24.0和652.3±16.5,P<0.05),而HL-60细胞相应的两组细胞上述能力均相似。④NPM1高表达组细胞中CDK4、Cyclin D1、Cyclin D2及Cyclin E表达明显高于对照组,而Cyclin D3表达明显低于对照组。⑤细胞遗传学预后良好组AML患者NPM1定量水平低于预后中等组。 结论 NPM1蛋白能够促进更多的细胞进入S期,增强抗凋亡和细胞集落形成能力。NPM1定量水平可能预示细胞遗传学的危险度。
Collapse
Affiliation(s)
- S W Qiu
- Institute of Hematology & Blood Disease Hospital, CAMS & PUMC, Tianjin 300020, China
| | | | | | | |
Collapse
|
42
|
Brunetti L, Gundry MC, Goodell MA. New insights into the biology of acute myeloid leukemia with mutated NPM1. Int J Hematol 2019; 110:150-160. [DOI: 10.1007/s12185-018-02578-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
|
43
|
Wiesmann N, Gieringer R, Grus F, Brieger J. Phosphoproteome Profiling Reveals Multifunctional Protein NPM1 as part of the Irradiation Response of Tumor Cells. Transl Oncol 2018; 12:308-319. [PMID: 30453269 PMCID: PMC6240713 DOI: 10.1016/j.tranon.2018.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022] Open
Abstract
To fight resistances to radiotherapy, the understanding of escape mechanisms of tumor cells is crucial. The aim of this study was to identify phosphoproteins that are regulated upon irradiation. The comparative analysis of the phosphoproteome before and after irradiation brought nucleophosmin (NPM1) into focus as a versatile phosphoprotein that has already been associated with tumorigenesis. We could show that knockdown of NPM1 significantly reduces tumor cell survival after irradiation. NPM1 is dephosphorylated stepwise within 1 hour after irradiation at two of its major phosphorylation sites: threonine-199 and threonine-234/237. This dephosphorylation is not the result of a fast cell cycle arrest, and we found a heterogenous intracellular distribution of NPM1 between the nucleoli, the nucleoplasm, and the cytoplasm after irradiation. We hypothesize that the dephosphorylation of NPM1 at threonine-199 and threonine-234/237 is part of the immediate response to irradiation and of importance for tumor cell survival. These findings could make NPM1 an attractive pharmaceutical target to radiosensitize tumor cells and improve the outcome of radiotherapy by inhibiting the pathways that help tumor cells to escape cell death after gamma irradiation.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rita Gieringer
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Juergen Brieger
- Molecular Tumor Biology, Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Centre of the Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
44
|
Kaypee S, Sahadevan SA, Sudarshan D, Halder Sinha S, Patil S, Senapati P, Kodaganur GS, Mohiyuddin A, Dasgupta D, Kundu TK. Oligomers of human histone chaperone NPM1 alter p300/KAT3B folding to induce autoacetylation. Biochim Biophys Acta Gen Subj 2018; 1862:1729-1741. [DOI: 10.1016/j.bbagen.2018.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 11/27/2022]
|
45
|
Sen Gupta A, Joshi G, Pawar S, Sengupta K. Nucleolin modulates compartmentalization and dynamics of histone 2B-ECFP in the nucleolus. Nucleus 2018; 9:350-367. [PMID: 29943658 PMCID: PMC6165600 DOI: 10.1080/19491034.2018.1471936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Eukaryotic cells have 2 to 3 discrete nucleoli required for ribosome synthesis. Nucleoli are phase separated nuclear sub-organelles. Here we examined the role of nuclear Lamins and nucleolar factors in modulating the compartmentalization and dynamics of histone 2B (H2B-ECFP) in the nucleolus. Live imaging and Fluorescence Recovery After Photobleaching (FRAP) of labelled H2B, showed that the depletion of Lamin B1, Fibrillarin (FBL) or Nucleostemin (GNL3), enhances H2B-ECFP mobility in the nucleolus. Furthermore, Nucleolin knockdown significantly decreases H2B-ECFP compartmentalization in the nucleolus, while H2B-ECFP residence and mobility in the nucleolus was prolonged upon Nucleolin overexpression. Co-expression of N-terminal and RNA binding domain (RBD) deletion mutants of Nucleolin or inhibiting 45S rRNA synthesis reduces the sequestration of H2B-ECFP in the nucleolus. Taken together, these studies reveal a crucial role of Nucleolin-rRNA complex in modulating the compartmentalization, stability and dynamics of H2B within the nucleolus.
Collapse
Affiliation(s)
- Ayantika Sen Gupta
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Gaurav Joshi
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Sumit Pawar
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Kundan Sengupta
- Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
46
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
47
|
Tsekrekou M, Stratigi K, Chatzinikolaou G. The Nucleolus: In Genome Maintenance and Repair. Int J Mol Sci 2017; 18:ijms18071411. [PMID: 28671574 PMCID: PMC5535903 DOI: 10.3390/ijms18071411] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 11/16/2022] Open
Abstract
The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Crete, Greece.
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
48
|
Warren C, Shechter D. Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches. J Mol Biol 2017; 429:2401-2426. [PMID: 28610839 DOI: 10.1016/j.jmb.2017.06.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/21/2023]
Abstract
Chromatin is the complex of eukaryotic DNA and proteins required for the efficient compaction of the nearly 2-meter-long human genome into a roughly 10-micron-diameter cell nucleus. The fundamental repeating unit of chromatin is the nucleosome: 147bp of DNA wrapped about an octamer of histone proteins. Nucleosomes are stable enough to organize the genome yet must be dynamically displaced and reassembled to allow access to the underlying DNA for transcription, replication, and DNA damage repair. Histone chaperones are a non-catalytic group of proteins that are central to the processes of nucleosome assembly and disassembly and thus the fluidity of the ever-changing chromatin landscape. Histone chaperones are responsible for binding the highly basic histone proteins, shielding them from non-specific interactions, facilitating their deposition onto DNA, and aiding in their eviction from DNA. Although most histone chaperones perform these common functions, recent structural studies of many different histone chaperones reveal that there are few commonalities in their folds. Importantly, sequence-based predictions show that histone chaperones are highly enriched in intrinsically disordered regions (IDRs) and acidic stretches. In this review, we focus on the molecular mechanisms underpinning histone binding, selectivity, and regulation of these highly dynamic protein regions. We highlight new evidence suggesting that IDRs are often critical for histone chaperone function and play key roles in chromatin assembly and disassembly pathways.
Collapse
Affiliation(s)
- Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
49
|
Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia 2017; 31:798-807. [PMID: 28111462 DOI: 10.1038/leu.2017.30] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by accumulation of myeloid cells in the bone marrow because of impaired differentiation and proliferation, resulting in hematopoietic insufficiency. NPM1 is one of the most commonly mutated genes in AML, present in 20-30% of cases. Mutations in NPM1 represent a distinct entity in the World Health Organization (WHO) classification and commonly indicate a better risk prognosis. In this review, we discuss the many functions of NPM1, the consequence of mutations in NPM1 and possible mechanisms through which mutations lead to leukemogenesis. We also discuss clinical consequences of mutations, associated gene expression patterns and the role of NPM1 mutations in informing prognosis and therapeutic decisions and predicting relapse in AML.
Collapse
Affiliation(s)
- E M Heath
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - S M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - M D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - T Murphy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - L I Shlush
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
50
|
Lu M, Bai J, Xu B, Sun Q, Wei F, Tang X, Zhang H, Li J, Wang G, Yin Q, Li S. Effect of alpha-lipoic acid on relieving ammonia stress and hepatic proteomic analyses of broilers. Poult Sci 2017; 96:88-97. [DOI: 10.3382/ps/pew285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/21/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022] Open
|