1
|
Tellier M, Chalmers R. Compensating for over-production inhibition of the Hsmar1 transposon in Escherichia coli using a series of constitutive promoters. Mob DNA 2020; 11:5. [PMID: 31938044 PMCID: PMC6954556 DOI: 10.1186/s13100-020-0200-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/01/2020] [Indexed: 01/03/2023] Open
Abstract
Background Transposable elements (TEs) are a diverse group of self-mobilizing DNA elements. Transposition has been exploited as a powerful tool for molecular biology and genomics. However, transposition is sometimes limited because of auto-regulatory mechanisms that presumably allow them to cohabit within their hosts without causing excessive genomic damage. The papillation assay provides a powerful visual screen for hyperactive transposases. Transposition is revealed by the activation of a promoter-less lacZ gene when the transposon integrates into a non-essential gene on the host chromosome. Transposition events are detected as small blue speckles, or papillae, on the white background of the main Escherichia coli colony. Results We analysed the parameters of the papillation assay including the strength of the transposase transcriptional and translational signals. To overcome certain limitations of inducible promoters, we constructed a set of vectors based on constitutive promoters of different strengths to widen the range of transposase expression. We characterized and validated our expression vectors with Hsmar1, a member of the mariner transposon family. The highest rate of transposition was observed with the weakest promoters. We then took advantage of our approach to investigate how the level of transposition responds to selected point mutations and the effect of joining the transposase monomers into a single-chain dimer. Conclusions We generated a set of vectors to provide a wide range of transposase expression which will be useful for screening libraries of transposase mutants. The use of weak promoters should allow screening for truly hyperactive transposases rather than those that are simply resistant to auto-regulatory mechanisms, such as overproduction inhibition (OPI). We also found that mutations in the Hsmar1 dimer interface provide resistance to OPI in bacteria, which could be valuable for improving bacterial transposon mutagenesis techniques.
Collapse
Affiliation(s)
- Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK.,2Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH UK
| |
Collapse
|
2
|
Structural Insights on Retroviral DNA Integration: Learning from Foamy Viruses. Viruses 2019; 11:v11090770. [PMID: 31443391 PMCID: PMC6784120 DOI: 10.3390/v11090770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022] Open
Abstract
Foamy viruses (FV) are retroviruses belonging to the Spumaretrovirinae subfamily. They are non-pathogenic viruses endemic in several mammalian hosts like non-human primates, felines, bovines, and equines. Retroviral DNA integration is a mandatory step and constitutes a prime target for antiretroviral therapy. This activity, conserved among retroviruses and long terminal repeat (LTR) retrotransposons, involves a viral nucleoprotein complex called intasome. In the last decade, a plethora of structural insights on retroviral DNA integration arose from the study of FV. Here, we review the biochemistry and the structural features of the FV integration apparatus and will also discuss the mechanism of action of strand transfer inhibitors.
Collapse
|
3
|
Blundell-Hunter G, Tellier M, Chalmers R. Transposase subunit architecture and its relationship to genome size and the rate of transposition in prokaryotes and eukaryotes. Nucleic Acids Res 2019; 46:9637-9646. [PMID: 30184164 PMCID: PMC6182136 DOI: 10.1093/nar/gky794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/01/2018] [Indexed: 12/17/2022] Open
Abstract
Cut-and-paste transposons are important tools for mutagenesis, gene-delivery and DNA sequencing applications. At the molecular level, the most thoroughly understood are Tn5 and Tn10 in bacteria, and mariner and hAT elements in eukaryotes. All bacterial cut-and-paste transposases characterized to date are monomeric prior to interacting with the transposon end, while all eukaryotic transposases are multimers. Although there is a limited sample size, we proposed that this defines two pathways for transpososome assembly which distinguishes the mechanism of the bacterial and eukaryotic transposons. We predicted that the respective pathways would dictate how the rate of transposition is related to transposase concentration and genome size. Here, we have tested these predictions by creating a single-chain dimer version of the bacterial Tn5 transposase. We show that artificial dimerization switches the transpososome assembly pathway from the bacterial-style to the eukaryotic-style. Although this had no effect in vitro, where the transposase does not have to search far to locate the transposon ends, it increased the rate of transposition in bacterial and HeLa cell assays. However, in contrast to the mariner elements, the Tn5 single-chain dimer remained unaffected by over-production inhibition, which is an emergent property of the transposase subunit structure in the mariner elements.
Collapse
Affiliation(s)
- George Blundell-Hunter
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Michael Tellier
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
4
|
Chevignon G, Periquet G, Gyapay G, Vega-Czarny N, Musset K, Drezen JM, Huguet E. Cotesia congregata Bracovirus Circles Encoding PTP and Ankyrin Genes Integrate into the DNA of Parasitized Manduca sexta Hemocytes. J Virol 2018; 92:e00438-18. [PMID: 29769342 PMCID: PMC6052314 DOI: 10.1128/jvi.00438-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022] Open
Abstract
Polydnaviruses (PDVs) are essential for the parasitism success of tens of thousands of species of parasitoid wasps. PDVs are present in wasp genomes as proviruses, which serve as the template for the production of double-stranded circular viral DNA carrying virulence genes that are injected into lepidopteran hosts. PDV circles do not contain genes coding for particle production, thereby impeding viral replication in caterpillar hosts during parasitism. Here, we investigated the fate of PDV circles of Cotesia congregata bracovirus during parasitism of the tobacco hornworm, Manduca sexta, by the wasp Cotesia congregata Sequences sharing similarities with host integration motifs (HIMs) of Microplitis demolitor bracovirus (MdBV) circles involved in integration into DNA could be identified in 12 CcBV circles, which encode PTP and VANK gene families involved in host immune disruption. A PCR approach performed on a subset of these circles indicated that they persisted in parasitized M. sexta hemocytes as linear forms, possibly integrated in host DNA. Furthermore, by using a primer extension capture method based on these HIMs and high-throughput sequencing, we could show that 8 out of 9 circles tested were integrated in M. sexta hemocyte genomic DNA and that integration had occurred specifically using the HIM, indicating that an HIM-mediated specific mechanism was involved in their integration. Investigation of BV circle insertion sites at the genome scale revealed that certain genomic regions appeared to be enriched in BV insertions, but no specific M. sexta target site could be identified.IMPORTANCE The identification of a specific and efficient integration mechanism shared by several bracovirus species opens the question of its role in braconid parasitoid wasp parasitism success. Indeed, results obtained here show massive integration of bracovirus DNA in somatic immune cells at each parasitism event of a caterpillar host. Given that bracoviruses do not replicate in infected cells, integration of viral sequences in host DNA might allow the production of PTP and VANK virulence proteins within newly dividing cells of caterpillar hosts that continue to develop during parasitism. Furthermore, this integration process could serve as a basis to understand how PDVs mediate the recently identified gene flux between parasitoid wasps and Lepidoptera and the frequency of these horizontal transfer events in nature.
Collapse
Affiliation(s)
- Germain Chevignon
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Georges Periquet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Gabor Gyapay
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Nathalie Vega-Czarny
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope (Centre National de Séquençage), Evry, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, Tours, France
| |
Collapse
|
5
|
Claeys Bouuaert C, Chalmers R. A single active site in the mariner transposase cleaves DNA strands of opposite polarity. Nucleic Acids Res 2017; 45:11467-11478. [PMID: 29036477 PMCID: PMC5714172 DOI: 10.1093/nar/gkx826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023] Open
Abstract
The RNase H structural fold defines a large family of nucleic acid metabolizing enzymes that catalyze phosphoryl transfer reactions using two divalent metal ions in the active site. Almost all of these reactions involve only one strand of the nucleic acid substrates. In contrast, cut-and-paste transposases cleave two DNA strands of opposite polarity, which is usually achieved via an elegant hairpin mechanism. In the mariner transposons, the hairpin intermediate is absent and key aspects of the mechanism by which the transposon ends are cleaved remained unknown. Here, we characterize complexes involved prior to catalysis, which define an asymmetric pathway for transpososome assembly. Using mixtures of wild-type and catalytically inactive transposases, we show that all the catalytic steps of transposition occur within the context of a dimeric transpososome. Crucially, we find that each active site of a transposase dimer is responsible for two hydrolysis and one transesterification reaction at the same transposon end. These results provide the first strong evidence that a DDE/D active site can hydrolyze DNA strands of opposite polarity, a mechanism that has rarely been observed with any type of nuclease.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ronald Chalmers
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
6
|
Abstract
The IS630-Tc1-mariner (ITm) family of transposons is one of the most widespread in nature. The phylogenetic distribution of its members shows that they do not persist for long in a given lineage, but rely on frequent horizontal transfer to new hosts. Although they are primarily selfish genomic-parasites, ITm transposons contribute to the evolution of their hosts because they generate variation and contribute protein domains and regulatory regions. Here we review the molecular mechanism of ITm transposition and its regulation. We focus mostly on the mariner elements, which are understood in the greatest detail owing to in vitro reconstitution and structural analysis. Nevertheless, the most important characteristics are probably shared across the grouping. Members of the ITm family are mobilized by a cut-and-paste mechanism and integrate at 5'-TA dinucleotide target sites. The elements encode a single transposase protein with an N-terminal DNA-binding domain and a C-terminal catalytic domain. The phosphoryl-transferase reactions during the DNA-strand breaking and joining reactions are performed by the two metal-ion mechanism. The metal ions are coordinated by three or four acidic amino acid residues located within an RNase H-like structural fold. Although all of the strand breaking and joining events at a given transposon end are performed by a single molecule of transposase, the reaction is coordinated by close communication between transpososome components. During transpososome assembly, transposase dimers compete for free transposon ends. This helps to protect the host by dampening an otherwise exponential increase in the rate of transposition as the copy number increases.
Collapse
|
7
|
Esnault C, Jaillet J, Delorme N, Bouchet N, Renault S, Douziech-Eyrolles L, Pilard JF, Augé-Gouillou C. Kinetic analysis of the interaction of Mos1 transposase with its inverted terminal repeats reveals new insight into the protein-DNA complex assembly. Chembiochem 2015; 16:140-8. [PMID: 25487538 DOI: 10.1002/cbic.201402466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/08/2022]
Abstract
Transposases are specific DNA-binding proteins that promote the mobility of discrete DNA segments. We used a combination of physicochemical approaches to describe the association of MOS1 (an eukaryotic transposase) with its specific target DNA, an event corresponding to the first steps of the transposition cycle. Because the kinetic constants of the reaction are still unknown, we aimed to determine them by using quartz crystal microbalance on two sources of recombinant MOS1: one produced in insect cells and the other produced in bacteria. The prokaryotic-expressed MOS1 showed no cooperativity and displayed a Kd of about 300 nM. In contrast, the eukaryotic-expressed MOS1 generated a cooperative system, with a lower Kd (∼ 2 nm). The origins of these differences were investigated by IR spectroscopy and AFM imaging. Both support the conclusion that prokaryotic- and eukaryotic-expressed MOS1 are not similarly folded, thereby resulting in differences in the early steps of transposition.
Collapse
Affiliation(s)
- Charles Esnault
- Groupe Instabilité Génétique et Transposases, EA 6306, Fédération GICC, UFR Sciences Pharmaceutiques, Université François Rabelais, 31 Avenue Monge, 37200 Tours (France)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bouchet N, Jaillet J, Gabant G, Brillet B, Briseño-Roa L, Cadene M, Augé-Gouillou C. cAMP protein kinase phosphorylates the Mos1 transposase and regulates its activity: evidences from mass spectrometry and biochemical analyses. Nucleic Acids Res 2014; 42:1117-28. [PMID: 24081583 PMCID: PMC3902898 DOI: 10.1093/nar/gkt874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/19/2022] Open
Abstract
Genomic plasticity mediated by transposable elements can have a dramatic impact on genome integrity. To minimize its genotoxic effects, it is tightly regulated either by intrinsic mechanisms (linked to the element itself) or by host-mediated mechanisms. Using mass spectrometry, we show here for the first time that MOS1, the transposase driving the mobility of the mariner Mos1 element, is phosphorylated. We also show that the transposition activity of MOS1 is downregulated by protein kinase AMP cyclic-dependent phosphorylation at S170, which renders the transposase unable to promote Mos1 transposition. One step in the transposition cycle, the assembly of the paired-end complex, is specifically inhibited. At the cellular level, we provide evidence that phosphorylation at S170 prevents the active transport of the transposase into the nucleus. Our data suggest that protein kinase AMP cyclic-dependent phosphorylation may play a double role in the early stages of genome invasion by mariner elements.
Collapse
Affiliation(s)
- Nicolas Bouchet
- Innovation Moléculaire Thérapeutique, EA 6306, UFR Sciences Pharmaceutiques, Parc Grandmont, Université François Rabelais, 37200 Tours, France, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orléans, France, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l’Université, 29000 Quimper, France and Biologie Cellulaire de la Synapse, INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Jérôme Jaillet
- Innovation Moléculaire Thérapeutique, EA 6306, UFR Sciences Pharmaceutiques, Parc Grandmont, Université François Rabelais, 37200 Tours, France, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orléans, France, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l’Université, 29000 Quimper, France and Biologie Cellulaire de la Synapse, INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Guillaume Gabant
- Innovation Moléculaire Thérapeutique, EA 6306, UFR Sciences Pharmaceutiques, Parc Grandmont, Université François Rabelais, 37200 Tours, France, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orléans, France, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l’Université, 29000 Quimper, France and Biologie Cellulaire de la Synapse, INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Benjamin Brillet
- Innovation Moléculaire Thérapeutique, EA 6306, UFR Sciences Pharmaceutiques, Parc Grandmont, Université François Rabelais, 37200 Tours, France, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orléans, France, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l’Université, 29000 Quimper, France and Biologie Cellulaire de la Synapse, INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Luis Briseño-Roa
- Innovation Moléculaire Thérapeutique, EA 6306, UFR Sciences Pharmaceutiques, Parc Grandmont, Université François Rabelais, 37200 Tours, France, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orléans, France, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l’Université, 29000 Quimper, France and Biologie Cellulaire de la Synapse, INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Martine Cadene
- Innovation Moléculaire Thérapeutique, EA 6306, UFR Sciences Pharmaceutiques, Parc Grandmont, Université François Rabelais, 37200 Tours, France, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orléans, France, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l’Université, 29000 Quimper, France and Biologie Cellulaire de la Synapse, INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Corinne Augé-Gouillou
- Innovation Moléculaire Thérapeutique, EA 6306, UFR Sciences Pharmaceutiques, Parc Grandmont, Université François Rabelais, 37200 Tours, France, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orléans, France, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l’Université, 29000 Quimper, France and Biologie Cellulaire de la Synapse, INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
9
|
Pflieger A, Jaillet J, Petit A, Augé-Gouillou C, Renault S. Target capture during Mos1 transposition. J Biol Chem 2013; 289:100-11. [PMID: 24269942 DOI: 10.1074/jbc.m113.523894] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide.
Collapse
Affiliation(s)
- Aude Pflieger
- From the EA 6306 Innovation Moléculaire et Thérapeutique, Université François Rabelais, UFR des Sciences et Techniques, UFR de Pharmacie, 37200 Tours, France
| | | | | | | | | |
Collapse
|
10
|
Abstract
DNA transposases are enzymes that catalyze the movement of discrete pieces of DNA from one location in the genome to another. Transposition occurs through a series of controlled DNA strand cleavage and subsequent integration reactions that are carried out by nucleoprotein complexes known as transpososomes. Transpososomes are dynamic assemblies which must undergo conformational changes that control DNA breaks and ensure that, once started, the transposition reaction goes to completion. They provide a precise architecture within which the chemical reactions involved in transposon movement occur, but adopt different conformational states as transposition progresses. Their components also vary as they must, at some stage, include target DNA and sometimes even host-encoded proteins. A very limited number of transpososome states have been crystallographically captured, and here we provide an overview of the various structures determined to date. These structures include examples of DNA transposases that catalyze transposition by a cut-and-paste mechanism using an RNaseH-like nuclease catalytic domain, those that transpose using only single-stranded DNA substrates and targets, and the retroviral integrases that carry out an integration reaction very similar to DNA transposition. Given that there are a number of common functional requirements for transposition, it is remarkable how these are satisfied by complex assemblies that are so architecturally different.
Collapse
|
11
|
Esnault C, Chénais B, Casse N, Delorme N, Louarn G, Pilard JF. Electrochemically Modified Carbon and Chromium Surfaces for AFM Imaging of Double-Strand DNA Interaction with Transposase Protein. Chemphyschem 2013; 14:338-45. [DOI: 10.1002/cphc.201200885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Indexed: 11/08/2022]
|
12
|
Cuypers MG, Trubitsyna M, Callow P, Forsyth VT, Richardson JM. Solution conformations of early intermediates in Mos1 transposition. Nucleic Acids Res 2012; 41:2020-33. [PMID: 23262225 PMCID: PMC3561948 DOI: 10.1093/nar/gks1295] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
DNA transposases facilitate genome rearrangements by moving DNA transposons around and between genomes by a cut-and-paste mechanism. DNA transposition proceeds in an ordered series of nucleoprotein complexes that coordinate pairing and cleavage of the transposon ends and integration of the cleaved ends at a new genomic site. Transposition is initiated by transposase recognition of the inverted repeat sequences marking each transposon end. Using a combination of solution scattering and biochemical techniques, we have determined the solution conformations and stoichiometries of DNA-free Mos1 transposase and of the transposase bound to a single transposon end. We show that Mos1 transposase is an elongated homodimer in the absence of DNA and that the N-terminal 55 residues, containing the first helix-turn-helix motif, are required for dimerization. This arrangement is remarkably different from the compact, crossed architecture of the dimer in the Mos1 paired-end complex (PEC). The transposase remains elongated when bound to a single-transposon end in a pre-cleavage complex, and the DNA is bound predominantly to one transposase monomer. We propose that a conformational change in the single-end complex, involving rotation of one half of the transposase along with binding of a second transposon end, could facilitate PEC assembly.
Collapse
Affiliation(s)
- Maxime G Cuypers
- Life Sciences Group, Institut Laue Langevin (ILL), 6 rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | |
Collapse
|
13
|
Jaillet J, Genty M, Cambefort J, Rouault JD, Augé-Gouillou C. Regulation of mariner transposition: the peculiar case of Mos1. PLoS One 2012; 7:e43365. [PMID: 22905263 PMCID: PMC3419177 DOI: 10.1371/journal.pone.0043365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/20/2012] [Indexed: 01/18/2023] Open
Abstract
Background Mariner elements represent the most successful family of autonomous DNA transposons, being present in various plant and animal genomes, including humans. The introduction and co-evolution of mariners within host genomes imply a strict regulation of the transposon activity. Biochemical data accumulated during the past decade have led to a convergent picture of the transposition cycle of mariner elements, suggesting that mariner transposition does not rely on host-specific factors. This model does not account for differences of transposition efficiency in human cells between mariners. We thus wondered whether apparent similarities in transposition cycle could hide differences in the intrinsic parameters that control mariner transposition. Principal Findings We find that Mos1 transposase concentrations in excess to the Mos1 ends prevent the paired-end complex assembly. However, we observe that Mos1 transposition is not impaired by transposase high concentration, dismissing the idea that transposase over production plays an obligatory role in the down-regulation of mariner transposition. Our main finding is that the paired-end complex is formed in a cooperative way, regardless of the transposase concentration. We also show that an element framed by two identical ITRs (Inverted Terminal Repeats) is more efficient in driving transposition than an element framed by two different ITRs (i.e. the natural Mos1 copy), the latter being more sensitive to transposase concentration variations. Finally, we show that the current Mos1 ITRs correspond to the ancestral ones. Conclusions We provide new insights on intrinsic properties supporting the self-regulation of the Mos1 element. These properties (transposase specific activity, aggregation, ITR sequences, transposase concentration/transposon copy number ratio…) could have played a role in the dynamics of host-genomes invasion by Mos1, accounting (at least in part) for the current low copy number of Mos1 within host genomes.
Collapse
Affiliation(s)
- Jérôme Jaillet
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Murielle Genty
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jeanne Cambefort
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes et Spéciation – CNRS UPR9034, Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Corinne Augé-Gouillou
- Innovation Moléculaire Thérapeutique, EA 6306 – Université François Rabelais, Parc Grandmont, Tours, France
- * E-mail:
| |
Collapse
|
14
|
Carpentier G, Jaillet J, Pflieger A, Adet J, Renault S, Augé-Gouillou C. Transposase-transposase interactions in MOS1 complexes: a biochemical approach. J Mol Biol 2010; 405:892-908. [PMID: 21110982 DOI: 10.1016/j.jmb.2010.11.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 11/30/2022]
Abstract
Transposases are proteins that have assumed the mobility of class II transposable elements. In order to map the interfaces involved in transposase-transposase interactions, we have taken advantage of 12 transposase mutants that impair mariner transposase-transposase interactions taking place during transposition. Our data indicate that transposase-transposase interactions regulating Mos1 transposition are sophisticated and result from (i) active MOS1 dimerization through the first HTH of the N-terminal domain, which leads to inverted terminal repeat (ITR) binding; (ii) inactive dimerization carried by part of the C-terminal domain, which prevents ITR binding; and (iii) oligomerization. Inactive dimers are nonpermissive in organizing complexes that produce ITR binding, but the interfaces (or interactions) supplied in this state could play a role in the various rearrangements needed during transposition. Oligomerization is probably not due to a specific MOS1 domain, but rather the result of nonspecific interactions resulting from incorrect folding of the protein. Our data also suggest that the MOS1 catalytic domain is a main actor in the overall organization of MOS1, thus playing a role in MOS1 oligomerization. Finally, we propose that MOS1 behaves as predicted by the pre-equilibrium existing model, whereby proteins are found to exist simultaneously in populations with diverse conformations, monomers and active and inactive dimers for MOS1. We were able to identify several MOS1 mutants that modify this pre-existing equilibrium. According to their properties, some of these mutants will be useful tools to break down the remaining gaps in our understanding of mariner transposition.
Collapse
Affiliation(s)
- Guillaume Carpentier
- Université François Rabelais de Tours, GICC, CNRS, UMR 6239, UFR Sciences & Techniques, Parc Grandmont, 37200 Tours, France
| | | | | | | | | | | |
Collapse
|
15
|
A simple topological filter in a eukaryotic transposon as a mechanism to suppress genome instability. Mol Cell Biol 2010; 31:317-27. [PMID: 21041479 DOI: 10.1128/mcb.01066-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA transposition takes place within a higher-order complex known as the transpososome. Almost everything known about its assembly has been gleaned from bacterial transposons. Here we present a detailed analysis of transpososome assembly in the human Hsmar1 element. The transpososome is nominally symmetrical, consisting of two identical transposon ends and a dimer of transposase. However, after the transposase dimer has captured the first transposon end, an asymmetry is introduced, raising a barrier against recruitment of the second end. The barrier can be overcome by right-handed plectonemic intertwining of the transposon ends. This likely occurs mainly during transcription and episodes of nucleosome remodeling. Plectonemic intertwining favors only synapsis of closely linked transposon ends in the inverted-repeat configuration and therefore suppresses the promiscuous synapsis of distant transposon ends, which initiate McClintock's chromosomal breakage-fusion-bridge cycles in maize. We also show that synapsis of the transposon ends is a prerequisite for the first catalytic step. This provides constraints on the enzymatic mechanism of the double-strand breaks in mariner transposition, excluding the most prevalent of the current models.
Collapse
|
16
|
Nesmelova IV, Hackett PB. DDE transposases: Structural similarity and diversity. Adv Drug Deliv Rev 2010; 62:1187-95. [PMID: 20615441 PMCID: PMC2991504 DOI: 10.1016/j.addr.2010.06.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/29/2010] [Indexed: 01/24/2023]
Abstract
DNA transposons are mobile DNA elements that can move from one DNA molecule to another and thereby deliver genetic information into human chromosomes in order to confer a new function or replace a defective gene. This process requires a transposase enzyme. During transposition DD[E/D]-transposases undergo a series of conformational changes. We summarize the structural features of DD[E/D]-transposases for which three-dimensional structures are available and that relate to transposases, which are being developed for use in mammalian cells. Similar to other members of the polynucleotidyl transferase family, the catalytic domains of DD[E/D]-transposases share a common feature: an RNase H-like fold that draws three catalytically active residues, the DDE motif, into close proximity. Beyond this fold, the structures of catalytic domains vary considerably, and the DD[E/D]-transposases display marked structural diversity within their DNA-binding domains. Yet despite such structural variability, essentially the same end result is achieved.
Collapse
Affiliation(s)
- Irina V Nesmelova
- Department of Physics and Optical Science, University of North Carolina, Charlotte, 28223, United States.
| | | |
Collapse
|
17
|
Renault S, Demattéi MV, Lahouassa H, Bigot Y, Augé-Gouillou C. In vitro recombination and inverted terminal repeat binding activities of the Mcmar1 transposase. Biochemistry 2010; 49:3534-44. [PMID: 20359246 DOI: 10.1021/bi901957p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Mcmar1 mariner element (MLE) presents some intriguing features with two large, perfectly conserved, 355 bp inverted terminal repeats (ITRs) containing two 28 bp direct repeats (DRs). The presence of a complete ORF in Mcmar1 makes it possible to explore the transposition of this unusual MLE. Mcmar1 transposase (MCMAR1) was purified, and in vitro transposition assays showed that it is able to promote ITR-dependent DNA cleavages and recombination events, which correspond to plasmid fusions and transpositions with imprecise ends. Further analyses indicated that MCMAR1 is able to interact with the 355 bp ITR through two DRs: the EDR (external DR) is a high-affinity binding site for MCMAR1, whereas the IDR (internal DR) is a low-affinity binding site. The main complex detected within the EDR contained a transposase dimer and only one DNA molecule. We hypothesize that the inability of MCMAR1 to promote precise in vitro transposition events could be due to mutations in its ORF sequence or to the specific features of transposase binding to the ITR. Indeed, the ITR region spanning from EDR to IDR resembles a MITE and could be bent by specific host factors. This suggests that the assembly of the transposition complex is more complex than that of those involved in the mobility of the Mos1 and Himar1 mariner elements.
Collapse
Affiliation(s)
- Sylvaine Renault
- Université François Rabelais de Tours, GICC, CNRS, UMR 6239, UFR des Sciences & Techniques, Parc de Grandmont, 37200 Tours, France.
| | | | | | | | | |
Collapse
|
18
|
Thomas X, Hedhili S, Beuf L, Demattéi MV, Laparra H, Khong GN, Breitler JC, Montandon F, Carnus E, Norre F, Burtin D, Gantet P, Bigot Y, Renault S. The mariner Mos1 transposase produced in tobacco is active in vitro. Genetica 2010; 138:519-30. [PMID: 19847655 DOI: 10.1007/s10709-009-9414-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 10/05/2009] [Indexed: 11/25/2022]
Abstract
The mariner-like transposon Mos1 is used for insertional mutagenesis and transgenesis in different animals (insects, nematodes), but has never been used in plants. In this paper, the transposition activity of Mos1 was tested in Nicotiana tabacum, but no transposition event was detected. In an attempt to understand the absence of in planta transposition, Mos1 transposase (MOS1) was produced and purified from transgenic tobacco (HMNtMOS1). HMNtMOS1 was able to perform all transposition reaction steps in vitro: binding to ITR, excision and integration of the same pseudo-transposon used in in planta transposition assays. The in vitro transposition reaction was not inhibited by tobacco nuclear proteins, and did not depend on the temperature used for plant growth. Several hypotheses are proposed that could explain the inhibition of HMNtMOS1 activity in planta.
Collapse
Affiliation(s)
- Xavier Thomas
- Université François Rabelais de Tours, GICC, Parc de Grandmont, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Claeys Bouuaert C, Chalmers R. Transposition of the human Hsmar1 transposon: rate-limiting steps and the importance of the flanking TA dinucleotide in second strand cleavage. Nucleic Acids Res 2009; 38:190-202. [PMID: 19858101 PMCID: PMC2800235 DOI: 10.1093/nar/gkp891] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hsmar1 is a member of the mariner family of DNA transposons. Although widespread in nature, their molecular mechanism remains obscure. Many other cut-and-paste elements use a hairpin intermediate to cleave the two strands of DNA at each transposon end. However, this intermediate is absent in mariner, suggesting that these elements use a fundamentally different mechanism for second-strand cleavage. We have taken advantage of the faithful and efficient in vitro reaction provided by Hsmar1 to characterize the products and intermediates of transposition. We report different factors that particularly affect the reaction, which are the reaction pH and the transposase concentration. Kinetic analysis revealed that first-strand nicking and integration are rapid. The rate of the reaction is limited in part by the divalent metal ion-dependent assembly of a complex between transposase and the transposon end(s) prior to the first catalytic step. Second-strand cleavage is the rate-limiting catalytic step of the reaction. We discuss our data in light of a model for the two metal ion catalytic mechanism and propose that mariner excision involves a significant conformational change between first- and second-strand cleavage at each transposon end. Furthermore, this conformational change requires specific contacts between transposase and the flanking TA dinucleotide.
Collapse
|
20
|
Physical properties of DNA components affecting the transposition efficiency of the mariner Mos1 element. Mol Genet Genomics 2009; 282:531-46. [PMID: 19774400 DOI: 10.1007/s00438-009-0484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have shown that the transposase and the inverted terminal repeat (ITR) of the Mos1 mariner elements are suboptimal for transposition; and that hyperactive transposases and transposon with more efficient ITR configurations can be obtained by rational molecular engineering. In an attempt to determine the extent to which this element is suboptimal for transposition, we investigate here the impact of the three main DNA components on its transposition efficiency in bacteria and in vitro. We found that combinations of natural and synthetic ITRs obtained by systematic evolution of ligands by exponential enrichment did increase the transposition rate. We observed that when untranslated terminal regions were associated with their respective natural ITRs, they acted as transposition enhancers, probably via the early transposition steps. Finally, we demonstrated that the integrity of the Mos1 inner region was essential for transposition. These findings allowed us to propose prototypes of optimized Mos1 vectors, and to define the best sequence features of their associated marker cassettes. These vector prototypes were assayed in HeLa cells, in which Mos1 vectors had so far been found to be inactive. The results obtained revealed that using these prototypes does not circumvent this problem. However, such vectors can be expected to provide new tools for the use in genome engineering in systems such as Caenorhabditis elegans in which Mos1 is very active.
Collapse
|
21
|
Yang G, Nagel DH, Feschotte C, Hancock CN, Wessler SR. Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE. Science 2009; 325:1391-4. [PMID: 19745152 DOI: 10.1126/science.1175688] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Miniature inverted repeat transposable elements (MITEs) are widespread in eukaryotic genomes, where they can attain high copy numbers despite a lack of coding capacity. However, little is known about how they originate and amplify. We performed a genome-wide screen of functional interactions between Stowaway MITEs and potential transposases in the rice genome and identified a transpositionally active MITE that possesses key properties that enhance transposition. Although not directly related to its autonomous element, the MITE has less affinity for the transposase than does the autonomous element but lacks a motif repressing transposition in the autonomous element. The MITE contains internal sequences that enhance transposition. These findings suggest that MITEs achieve high transposition activity by scavenging transposases encoded by distantly related and self-restrained autonomous elements.
Collapse
Affiliation(s)
- Guojun Yang
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
22
|
Richardson JM, Colloms SD, Finnegan DJ, Walkinshaw MD. Molecular architecture of the Mos1 paired-end complex: the structural basis of DNA transposition in a eukaryote. Cell 2009; 138:1096-108. [PMID: 19766564 PMCID: PMC3977044 DOI: 10.1016/j.cell.2009.07.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/24/2009] [Accepted: 07/02/2009] [Indexed: 11/26/2022]
Abstract
A key step in cut-and-paste DNA transposition is the pairing of transposon ends before the element is excised and inserted at a new site in its host genome. Crystallographic analyses of the paired-end complex (PEC) formed from precleaved transposon ends and the transposase of the eukaryotic element Mos1 reveals two parallel ends bound to a dimeric enzyme. The complex has a trans arrangement, with each transposon end recognized by the DNA binding region of one transposase monomer and by the active site of the other monomer. Two additional DNA duplexes in the crystal indicate likely binding sites for flanking DNA. Biochemical data provide support for a model of the target capture complex and identify Arg186 to be critical for target binding. Mixing experiments indicate that a transposase dimer initiates first-strand cleavage and suggest a pathway for PEC formation.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.
| | | | | | | |
Collapse
|
23
|
Lampe DJ. Bacterial genetic methods to explore the biology of mariner transposons. Genetica 2009; 138:499-508. [PMID: 19711186 DOI: 10.1007/s10709-009-9401-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Mariners are small DNA mediated transposons of eukaryotes that fortuitously function in bacteria. Using bacterial genetics, it is possible to study a variety of properties of mariners, including transpositional ability, dominant-negative regulation, overexpresson inhibition, and the function of cis-acting sequences like the inverted terminal repeats. In conjunction with biochemical techniques, the structure of the transposase can be elucidated and the activity of the elements can be improved for genetic tool use. Finally, it is possible to uncover functional transposase genes directly from genomes given a suitable bacterial genetic screen.
Collapse
Affiliation(s)
- David J Lampe
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15116, USA.
| |
Collapse
|
24
|
Claeys Bouuaert C, Chalmers RM. Gene therapy vectors: the prospects and potentials of the cut-and-paste transposons. Genetica 2009; 138:473-84. [PMID: 19649713 DOI: 10.1007/s10709-009-9391-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 07/14/2009] [Indexed: 11/28/2022]
Abstract
Gene therapy applications require efficient tools for the stable delivery of genetic information into eukaryotic genomes. Most current gene delivery strategies are based on viral vectors. However, a number of drawbacks, such as the limited cargo capacity, host immune response and mutational risks, highlight the need for alternative gene delivery tools. A comprehensive gene therapy tool kit should contain a range of vectors and techniques that can be adapted to different targets and purposes. Transposons provide a potentially powerful approach. However, transposons encompass a large number of different molecular mechanisms, some of which are better suited to gene delivery applications than others. Here, we consider the range and potentials of the various mechanisms, focusing on the cut-and-paste transposons as one of the more promising avenues towards gene therapy applications. Several cut-and-paste transposition systems are currently under development. We will first consider the mechanisms of piggyBac and the hAT family elements Tol1 and Tol2, before focusing on the mariner family elements including Mos1, Himar1 and Hsmar1.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
25
|
Germon S, Bouchet N, Casteret S, Carpentier G, Adet J, Bigot Y, Augé-Gouillou C. Mariner Mos1 transposase optimization by rational mutagenesis. Genetica 2009; 137:265-76. [PMID: 19533383 DOI: 10.1007/s10709-009-9375-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/25/2009] [Indexed: 11/28/2022]
Abstract
Mariner transposons are probably the most widespread transposable element family in animal genomes. To date, they are believed not to require species-specific host factors for transposition. Despite this, Mos1, one of the most-studied mariner elements (with Himar1), has been shown to be active in insects, but inactive in mammalian genomes. To circumvent this problem, one strategy consists of both enhancing the activity of the Mos1 transposase (MOS1), and making it insensitive to activity-altering post-translational modifications. Here, we report rational mutagenesis studies performed to obtain hyperactive and non-phosphorylable MOS1 variants. Transposition assays in bacteria have made it possible to isolate numerous hyperactive MOS1 variants. The best mutant combinations, named FETY and FET, are 60- and 800-fold more active than the wild-type MOS1 version, respectively. However, there are serious difficulties in using them, notably because they display severe cytotoxicity. On the other hand, three positions lying within the HTH motif, T88, S99, and S104 were found to be sensitive to phosphorylation. Our efforts to obtain active non-phosphorylable mutants at S99 and S104 positions were unsuccessful, as these residues, like the co-linear amino acids in their close vicinity, are critical for MOS1 activity. Even if host factors are not essential for transposition, our data demonstrate that the host machinery is essential in regulating MOS1 activity.
Collapse
Affiliation(s)
- Stéphanie Germon
- GICC, Université François Rabelais de Tours, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Mariner transposons as genetic tools in vertebrate cells. Genetica 2009; 137:9-17. [PMID: 19479327 DOI: 10.1007/s10709-009-9370-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 05/13/2009] [Indexed: 01/12/2023]
Abstract
Transposable elements (TEs) are being investigated as potential molecular tools in genetic engineering, for use in procedures such as transgenesis and insertional mutagenesis. Naturally active and reconstructed active TEs are both being studied to develop non-viral delivery vehicles. To date, the active elements being used include three Mariner-Like Elements (MLEs). We review below the studies that have investigated the ability of these MLEs to insert a transgene in vertebrate cells.
Collapse
|
27
|
Crénès G, Ivo D, Hérisson J, Dion S, Renault S, Bigot Y, Petit A. The bacterial Tn9 chloramphenicol resistance gene: an attractive DNA segment for Mos1 mariner insertions. Mol Genet Genomics 2008; 281:315-28. [PMID: 19112581 DOI: 10.1007/s00438-008-0414-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 12/04/2008] [Indexed: 11/26/2022]
Abstract
The eukaryotic mariner transposons are currently thought to have no sequence specificity for integration other than to insert within a TA contained in a degenerated [TA](1-4) tract, either in vitro or in vivo. We have investigated the properties of a suspected hotspot for the integration of the mariner Mos1 element, namely the Tn9 cat gene that encodes a chloramphenicol acetyl transferase. Using in vitro and bacterial transposition assays, we confirmed that the cat gene is a preferential target for MOS1 integration, whatever its sequence environment, copy number or chromosomal locus. We also observed that its presence increases transposition rates both in vitro and in bacterial assays. The structural and sequence features that constitute the attractiveness of cat were also investigated. We first demonstrated that supercoiling is essential for the cat gene to be a hot spot. In contrast to the situation for Tc1-like elements, DNA curvature and bendability were not found to affect integration target preferences. We found that Mos1 integrations do not occur randomly along the cat gene. All TA dinucleotides that are preferred for integration were found within either TATA or TA x TA motifs. However, these motifs are not sufficient to constitute an attractive dinucleotide, since four TATA and TA x TA sites are cold spots.
Collapse
Affiliation(s)
- Gwénaëlle Crénès
- GICC, UMR CNRS 6239, Université François Rabelais de Tours, UFR des Sciences et Techniques, Parc de Grandmont, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Sinzelle L, Jégot G, Brillet B, Rouleux-Bonnin F, Bigot Y, Augé-Gouillou C. Factors acting on Mos1 transposition efficiency. BMC Mol Biol 2008; 9:106. [PMID: 19036139 PMCID: PMC2642840 DOI: 10.1186/1471-2199-9-106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 11/26/2008] [Indexed: 01/06/2023] Open
Abstract
Background Mariner-like elements (MLEs) are widespread DNA transposons in animal genomes. Although in vitro transposition reactions require only the transposase, various factors depending on the host, the physico-chemical environment and the transposon sequence can interfere with the MLEs transposition in vivo. Results The transposition of Mos1, first isolated from drosophila mauritiana, depends of both the nucleic acid sequence of the DNA stuffer (in terms of GC content), and its length. We provide the first in vitro experimental demonstration that MITEs of MLE origin, as small as 80 to 120-bp, are able to transpose. Excessive temperature down-regulates Mos1 transposition, yielding excision products unable to re-integrate. Finally, the super-helicity of the DNA transposon donor has a dramatic impact on the transposition efficiency. Conclusion The study highlights how experimental conditions can bias interpretation of mariner excision frequency and quality. In vitro, the auto-integration pathway markedly limits transposition efficiency to new target sites, and this phenomenon may also limit events in the natural host. We propose a model for small transposons transposition that bypasses DNA bending constraints.
Collapse
Affiliation(s)
- Ludivine Sinzelle
- Université François Rabelais de Tours, GICC, UFR des Sciences & Techniques, Parc Grandmont, 37200 Tours, France.
| | | | | | | | | | | |
Collapse
|
29
|
Liang X, Sved JA. Repair of P element ends following hybrid element excision leads to recombination in Drosophila melanogaster. Heredity (Edinb) 2008; 102:127-32. [PMID: 18781165 DOI: 10.1038/hdy.2008.87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P elements are thought to replicate themselves starting with the association of the left and right ends, followed by a cut-copy-paste process. An abnormal form of this process has been shown to occur when the associated left and right ends come from sister elements rather than from the same element, leading to formation of a 'hybrid element.' These ends can insert nearby in the genome to produce recombination, with associated structural changes. We have previously increased the frequency of such 'hybrid element insertion' by combining end-deleted elements in trans in a genotype with a left-end on one chromosome and a right-end on the homologous chromosome. Although many recombinants produced by this genotype have structural changes expected with insertion, nearly 50% of the predicted insertional recombinants contain no structural change. We present evidence using RFLP markers closely linked to the end-deleted elements that in these cases the P element ends dissociate before insertion, and are subsequently ligated together following a process analogous to synthesis-dependent strand annealing. The results suggest that broken ends containing P elements are resolved by the same repair process as ends not containing P elements, and that such repair from hybrid element events may occur in the majority of cases.
Collapse
Affiliation(s)
- X Liang
- School of Biological Sciences A12, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
30
|
Transposon–Host Cell Interactions in the Regulation of Sleeping Beauty Transposition. TRANSPOSONS AND THE DYNAMIC GENOME 2008. [DOI: 10.1007/7050_2008_042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
31
|
Tang M, Cecconi C, Bustamante C, Rio DC. Analysis of P element transposase protein-DNA interactions during the early stages of transposition. J Biol Chem 2007; 282:29002-29012. [PMID: 17644523 DOI: 10.1074/jbc.m704106200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P elements are a family of transposable elements found in Drosophila that move by using a cut-and-paste mechanism and that encode a transposase protein that uses GTP as a cofactor for transposition. Here we used atomic force microscopy to visualize the initial interaction of transposase protein with P element DNA. The transposase first binds to one of the two P element ends, in the presence or absence of GTP, prior to synapsis. In the absence of GTP, these complexes remain stable but do not proceed to synapsis. In the presence of GTP or nonhydrolyzable GTP analogs, synapsis happens rapidly, whereas DNA cleavage is slow. Both atomic force microscopy and standard biochemical methods have been used to show that the P element transposase exists as a pre-formed tetramer that initially binds to either one of the two P element ends in the absence of GTP prior to synapsis. This initial single end binding may explain some of the aberrant P element-induced rearrangements observed in vivo, such as hybrid end insertion. The allosteric effect of GTP in promoting synapsis by P element transposase may be to orient a second site-specific DNA binding domain in the tetramer allowing recognition of a second high affinity transposase-binding site at the other transposon end.
Collapse
Affiliation(s)
- Mei Tang
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development and Division of Biochemistry and Molecular Biology, Center for Integrative Genomics, University of California, Berkeley, California 94720
| | - Ciro Cecconi
- CNR-INFM-S3 University of Modena e Reggio Emilia, 41100 Modena, Italy
| | - Carlos Bustamante
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development and Division of Biochemistry and Molecular Biology, Center for Integrative Genomics, University of California, Berkeley, California 94720; Department of Physics, University of California, Berkeley, California 94720; Howard Hughes Medical Institute, Berkeley, California 94720; Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Donald C Rio
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development and Division of Biochemistry and Molecular Biology, Center for Integrative Genomics, University of California, Berkeley, California 94720.
| |
Collapse
|
32
|
Richardson JM, Finnegan DJ, Walkinshaw MD. Crystallization of a Mos1 transposase-inverted-repeat DNA complex: biochemical and preliminary crystallographic analyses. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:434-7. [PMID: 17565190 PMCID: PMC2335011 DOI: 10.1107/s1744309107019045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 04/17/2007] [Indexed: 11/10/2022]
Abstract
A complex formed between Mos1 transposase and its inverted-repeat DNA has been crystallized. The crystals diffract to 3.25 A resolution and exhibit monoclinic (P2(1)) symmetry, with unit-cell parameters a = 120.8, b = 85.1, c = 131.6 A, beta = 99.3 degrees . The X-ray diffraction data display noncrystallographic twofold symmetry and characteristic dsDNA diffraction at approximately 3.3 A. Biochemical analyses confirmed the presence of DNA and full-length protein in the crystals. The relationship between the axis of noncrystallographic symmetry, the unit-cell axes and the DNA diffraction pattern are discussed. The data are consistent with the previously proposed model of the paired-ends complex containing a dimer of the transposase.
Collapse
Affiliation(s)
- Julia M Richardson
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, Scotland.
| | | | | |
Collapse
|
33
|
Butler MG, Chakraborty SA, Lampe DJ. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition. Genetica 2006; 127:351-66. [PMID: 16850239 DOI: 10.1007/s10709-006-6250-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 12/21/2005] [Indexed: 10/24/2022]
Abstract
Mariner family transposons are perhaps the most widespread transposable elements of eukaryotes. While we are beginning to understand the precise mechanism of transposition of these elements, the structure of their transposases are still poorly understood. We undertook an extensive mutagenesis of the N-terminal third of the transposase of the Himar1 mariner transposon to begin the process of determining the structure and evolution of mariner transposases. N and C-terminal deletion analyses localized the DNA binding domain of Himar1 transposase to the first 115 amino acids. Alanine scanning of 23 selected sites within this region uncovered mutations that not only affected DNA binding but DNA cleavage as well. The behavior of other mutations strongly suggested that the N-terminus is also involved in multimerization of the transposase on a single inverted terminal repeat and in paired ends complex formation which brings together the two ends of the transposon. Finally, two hyperactive mutations at conserved sites suggest that mariner transposases are under a pattern of stabilizing selection in nature with regard to how efficiently they mediate transposition, resulting in a population of "average" transposons.
Collapse
Affiliation(s)
- Matthew G Butler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
34
|
Pouget N, Turlan C, Destainville N, Salomé L, Chandler M. IS911 transpososome assembly as analysed by tethered particle motion. Nucleic Acids Res 2006; 34:4313-23. [PMID: 16923775 PMCID: PMC1636345 DOI: 10.1093/nar/gkl420] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Initiation of transposition requires formation of a synaptic complex between both transposon ends and the transposase (Tpase), the enzyme which catalyses DNA cleavage and strand transfer and which ensures transposon mobility. We have used a single-molecule approach, tethered particle motion (TPM), to observe binding of a Tpase derivative, OrfAB[149], amputated for its C-terminal catalytic domain, to DNA molecules carrying one or two IS911 ends. Binding of OrfAB[149] to a single IS911 end provoked a small shortening of the DNA. This is consistent with a DNA bend introduced by protein binding to a single end. This was confirmed using a classic gel retardation assay with circularly permuted DNA substrates. When two ends were present on the tethered DNA in their natural, inverted, configuration, Tpase not only provoked the short reduction in length but also generated species with greatly reduce effective length consistent with DNA looping between the ends. Once formed, this 'looped' species was very stable. Kinetic analysis in real-time suggested that passage from the bound unlooped to the looped state could involve another species of intermediate length in which both transposon ends are bound. DNA carrying directly repeated ends also gave rise to the looped species but the level of the intermediate species was significantly enhanced. Its accumulation could reflect a less favourable synapse formation from this configuration than for the inverted ends. This is compatible with a model in which Tpase binds separately to and bends each end (the intermediate species) and protein-protein interactions then lead to synapsis (the looped species).
Collapse
Affiliation(s)
- N. Pouget
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
- Institut de Pharmacologie et Biologie Structurale (UMR CNRS 5089)205 route de Narbonne 31077 Toulouse cedex, France
| | - C. Turlan
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
| | - N. Destainville
- Laboratoire de Physique Théorique (UMR CNRS 5152), IRSAMC, Université Paul Sabatier118 route de Narbonne, 31062 Toulouse cedex, France
| | - L. Salomé
- Institut de Pharmacologie et Biologie Structurale (UMR CNRS 5089)205 route de Narbonne 31077 Toulouse cedex, France
| | - M. Chandler
- Laboratoire de Microbiologie et Génétique Moléculaire (UMR CNRS 5100)118 route de Narbonne, 31062 Toulouse cedex, France
- To whom correspondence should be addressed. Tel: +33 5 61 33 58 61; Fax: +33 5 61 33 58 58.
| |
Collapse
|
35
|
Brillet B, Benjamin B, Bigot Y, Yves B, Augé-Gouillou C, Corinne AG. Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 2006; 130:105-20. [PMID: 16912840 DOI: 10.1007/s10709-006-0025-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 06/02/2006] [Indexed: 01/20/2023]
Abstract
In this review, we focus on the assembly of DNA/protein complexes that trigger transposition in eukaryotic members of the IS630-Tc1-mariner (ITm) super-family, the Tc1- and mariner-like elements (TLEs and MLEs). Elements belonging to this super-family encode transposases with DNA binding domains of different origins, and recent data indicate that the chimerization of functional domains has been an important evolutionary aspect in the generation of new transposons within the ITm super-family. These data also reveal that the inverted terminal repeats (ITRs) at the ends of transposons contain three kinds of motif within their sequences. The first two are well known and correspond to the cleavage site on the outer ITR extremities, and the transposase DNA binding site. The organization of ITRs and of the transposase DNA binding domains implies that differing pathways are used by MLEs and TLEs to regulate transposition initiation. These differences imply that the ways ITRs are recognized also differ leading to the formation of differently organized synaptic complexes. The third kind of motif is the transposition enhancers, which have been found in almost all the functional MLEs and TLEs analyzed to date. Finally, in vitro and in vivo assays of various elements all suggest that the transposition initiation complex is not formed randomly, but involves a mechanism of oriented transposon scanning.
Collapse
Affiliation(s)
- Benjamin Brillet
- Laboratoire d'Etudes des Parasites Génétiques, Université François Rabelais, FRE CNRS 2969, UFR Sciences & Techniques, Parc Grandmont, 37200, Tours, France
| | | | | | | | | | | |
Collapse
|
36
|
Casse N, Bui QT, Nicolas V, Renault S, Bigot Y, Laulier M. Species sympatry and horizontal transfers of Mariner transposons in marine crustacean genomes. Mol Phylogenet Evol 2006; 40:609-19. [PMID: 16690328 DOI: 10.1016/j.ympev.2006.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/16/2006] [Accepted: 02/06/2006] [Indexed: 11/22/2022]
Abstract
Mariner-like elements (MLEs) have been widely detected in terrestrial species. The first complete MLE isolated from a marine invertebrate was detected in the genome of the hydrothermal crab Bythograea thermydron by Halaimia-Toumi et al. [Halaimia-Toumi, N., Casse, N., Demattei, M.V., Renault, S., Pradier, E., Bigot, Y., Laulier, M., 2004. The GC-rich transposon Bytmar1 from the deep-sea hydrothermal crab, Bythograea thermydron, may encode three transposase isoforms from a single ORF. J. Mol. Evol. 59, 747-760] and called Bytmar1. Here, we report the isolation of three new Bytmar1 relatives from the genomes of one hydrothermal amphipod Ventiella sulfuris (Vensmar1) and two coastal crustacea, Maia brachydactila (Maibmar1) and Cancer pagurus (Canpmar1). Like Bytmar1, these MLEs have an unusually high GC content, a high CpG ratio, and a low TpA ratio. Their consensus sequence encodes a transposase that is preceded by an N-flag, as in Bytmar1, which could be a marine feature. Only one of the 19 clones obtained, Vensmar1.3, encoded for a full-length transposase. The phylogenetic analyses revealed that all these Bytmar1-related elements can be differentiated into two clusters, corresponding to the coastal or hydrothermal origin of their hosts. They also confirmed that the irritans sub-family comprises at least four lineages that seem to depend on the taxonomical position and habitat of their hosts. Finally, we observed that elements coding for two potentially complete transposases exhibiting 99.5% similarity, Bytmar1.11 and Vensmar1.3, were present in the genome of two distantly related hydrothermal crustacea, one Amphipod and one Decapod. The hypothesis of horizontal transfers is discussed in the light of the sequence similarities observed.
Collapse
Affiliation(s)
- N Casse
- Laboratoire de Biologie et Génétique Evolutive, EA 3265, Université du Maine, Avenue Olivier Messiaen, 72085 Le Mans cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Richardson JM, Dawson A, O'hagan N, Taylor P, Finnegan DJ, Walkinshaw MD. Mechanism of Mos1 transposition: insights from structural analysis. EMBO J 2006; 25:1324-34. [PMID: 16511570 PMCID: PMC1422158 DOI: 10.1038/sj.emboj.7601018] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 02/01/2006] [Indexed: 11/09/2022] Open
Abstract
We present the crystal structure of the catalytic domain of Mos1 transposase, a member of the Tc1/mariner family of transposases. The structure comprises an RNase H-like core, bringing together an aspartic acid triad to form the active site, capped by N- and C-terminal alpha-helices. We have solved structures with either one Mg2+ or two Mn2+ ions in the active site, consistent with a two-metal mechanism for catalysis. The lack of hairpin-stabilizing structural motifs is consistent with the absence of a hairpin intermediate in Mos1 excision. We have built a model for the DNA-binding domain of Mos1 transposase, based on the structure of the bipartite DNA-binding domain of Tc3 transposase. Combining this with the crystal structure of the catalytic domain provides a model for the paired-end complex formed between a dimer of Mos1 transposase and inverted repeat DNA. The implications for the mechanisms of first and second strand cleavage are discussed.
Collapse
Affiliation(s)
| | - Angela Dawson
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Natasha O'hagan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul Taylor
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David J Finnegan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
38
|
Palomeque T, Antonio Carrillo J, Muñoz-López M, Lorite P. Detection of a mariner-like element and a miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of the genus Messor and their possible involvement for satellite DNA evolution. Gene 2006; 371:194-205. [PMID: 16507338 DOI: 10.1016/j.gene.2005.11.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 11/27/2022]
Abstract
The satellite DNA of ants Messor bouvieri, M. barbarus and M. structor, studied in a previous paper, is organized as tandemly repeated 79-bp monomers in the three species showing high sequence similarity. In the present paper, a mariner-like element (Mboumar) and a new MITE (miniature inverted-repeat transposable element) called IRE-130, inserted into satellite DNA from M. bouvieri, are analyzed. The study of Mboumar element, of its transcription and the putative transposase that it would encode, suggests that it could be an active element. Mboumar elements inserted into IRE-130 elements have also been detected. It is the first time, to our knowledge, that a MITE has been described in Hymenoptera and it is also the first time that a mariner-like element inserted into a MITE has been detected. A mariner-like element, inserted into satellite DNA from M. structor and in M. barbarus, also has been found. The results seem to indicate that transposition events have participated in the satellite DNA mobilization and evolution.
Collapse
Affiliation(s)
- Teresa Palomeque
- Departamento de Biología Experimental. Area de Genética. Universidad de Jaén. 23071, Jaén, Spain.
| | | | | | | |
Collapse
|
39
|
Augé-Gouillou C, Brillet B, Germon S, Hamelin MH, Bigot Y. Mariner Mos1 transposase dimerizes prior to ITR binding. J Mol Biol 2005; 351:117-30. [PMID: 15992822 DOI: 10.1016/j.jmb.2005.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/26/2005] [Accepted: 05/11/2005] [Indexed: 11/22/2022]
Abstract
The mariner Mos1 synaptic complex consists of a tetramer of transposase molecules that bring together the two ends of the element. Such an assembly requires at least two kinds of protein-protein interfaces. The first is involved in "cis" dimerization, and consists of transposase molecules bound side-by-side on a single DNA molecule. The second, which is involved in "trans" dimerization, consists of transposase molecules bound to two different DNA molecules. Here, we used biochemical and genetic methods to enhance the definition of the regions involved in cis and trans-dimerization in the mariner Mos1 transposase. The cis and trans-dimerization interfaces were both found within the first 143 amino acid residues of the protein. The cis-dimerization activity was mainly contained in amino acids 1-20. The region spanning from amino acid residues 116-143, and containing the WVPHEL motif, was involved in the cis- to trans-shift as well as in trans-dimerization stabilization. Although the transposase exists mainly as a monomer in solution, we provide evidence that the transposase cis-dimer is the active species in inverted terminal repeat (ITR) binding. We also observed that the catalytic domain of the mariner Mos1 transposase modulates efficient transposase-transposase interactions in the absence of the transposon ends.
Collapse
Affiliation(s)
- Corinne Augé-Gouillou
- Laboratoire d'Etude des Parasites Génétiques, Université François Rabelais de Tours, EA 3868, UFR Sciences & Techniques, Parc Grandmont, 37200 Tours, France.
| | | | | | | | | |
Collapse
|
40
|
Bigot Y, Brillet B, Augé-Gouillou C. Conservation of Palindromic and Mirror Motifs within Inverted Terminal Repeats of mariner-like Elements. J Mol Biol 2005; 351:108-16. [PMID: 15946679 DOI: 10.1016/j.jmb.2005.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 04/14/2005] [Accepted: 05/02/2005] [Indexed: 11/24/2022]
Abstract
The transposase of the mariner-like elements (MLEs) specifically binds as a dimer to the inverted terminal repeat of the transposon that encodes it. Two binding-motifs located within the inverted terminal sequences (ITR) are therefore recognized, as previously indicated, by biochemical data obtained with the Mos1 and Himar1 transposases. Here, we define the motifs that are involved in the binding of a MLE transposase to its ITR by analyzing the nucleic acid properties of the 5' and 3' ITR sequences from 45 MLEs, taking into account the fact that the transposase binds to the ITR, using its CRO binding domains and the general characteristics of the cro binding sites so far investigated. Our findings show that in all the MLE ITRs, the outer half was better conserved than the inner half. More interestingly, they allowed us to characterize conserved palindromic and mirror motifs specific to each "MLE species". The presence of the palindromic motifs was correlated to the binding of the transposase dimer, whereas the properties of the mirror motifs were shown to be responsible for the bend in each ITR that helps to stabilize transposase-ITR interactions.
Collapse
Affiliation(s)
- Yves Bigot
- Laboratoire d'Etude des Parasites Génétiques, Université François Rabelais, E.A.3868, UFR des Sciences et Techniques, Parc de Grandmont, Avenue Monge, 37200 Tours, France.
| | | | | |
Collapse
|