1
|
Carrothers S, Trevisan R, Jayasundara N, Pelletier N, Weeks E, Meyer JN, Di Giulio R, Weinhouse C. An epigenetic memory at the CYP1A gene in cancer-resistant, pollution-adapted killifish. Sci Rep 2025; 15:3033. [PMID: 39856074 PMCID: PMC11759692 DOI: 10.1038/s41598-024-82740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant public health problem that will worsen with a warming climate and increased large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1 A (CYP1A) gene in wild Fundulus heteroclitus that have adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH. In PAH-tolerant fish, CYP1A induction is blunted. Since CYP1A metabolically activates PAH, this memory protects these fish from PAH-mediated cancer. However, PAH-tolerant fish reared in clean water recover CYP1A inducibility, indicating a non-genetic effect. We observed epigenetic control of this reversible memory of generational PAH stress in F1 PAH-tolerant embryos. We detected a bivalent domain in the CYP1A promoter enhancer comprising both activating and repressive histone post-translational modifications. Activating modifications, relative to repressive ones, showed greater increases in response to PAH in sensitive embryos, relative to tolerant, consistent with greater gene activation. PAH-tolerant adult fish showed persistent induction of CYP1A long after exposure cessation, which is consistent with defective CYP1A shutoff. These results indicate that PAH-tolerant fish have epigenetic protection against PAH-induced cancer in early life that degrades in response to continuous gene activation.
Collapse
Affiliation(s)
- Samantha Carrothers
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Nicole Pelletier
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Emma Weeks
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| |
Collapse
|
2
|
Bioinformatics and Experimental Analyses Reveal NFIC as an Upstream Transcriptional Regulator for Ischemic Cardiomyopathy. Genes (Basel) 2022; 13:genes13061051. [PMID: 35741813 PMCID: PMC9222441 DOI: 10.3390/genes13061051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic cardiomyopathy (ICM) caused by coronary artery disease always leads to myocardial infarction and heart failure. Identification of novel transcriptional regulators in ICM is an effective method to establish new diagnostic and therapeutic strategies. In this study, we used two RNA-seq datasets and one microarray dataset from different studies, including 25 ICM and 21 non-failing control (NF) samples of human left ventricle tissues for further analysis. In total, 208 differentially expressed genes (DEGs) were found by combining two RNA-seq datasets with batch effects removed. GO and KEGG analyses of DEGs indicated that the response to wounding, positive regulation of smooth muscle contraction, chromatin, PI3K-Akt signaling pathway, and transporters pathways are involved in ICM. Simple Enrichment Analysis found that NFIC-binding motifs are enriched in promoter regions of downregulated genes. The Gene Importance Calculator further proved that NFIC is vital. NFIC and its downstream genes were verified in the validating microarray dataset. Meanwhile, in rat cardiomyocyte cell line H9C2 cells, two genes (Tspan1 and Hopx) were confirmed, which decreased significantly along with knocking down Nfic expression. In conclusion, NFIC participates in the ICM process by regulating TSPAN1 and HOPX. NFIC and its downstream genes may be marker genes and potential diagnostic and therapeutic targets for ICM.
Collapse
|
3
|
Abstract
Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here, we identify 6703 and 1536 protein–protein interactions for 109 different human TFs through proximity-dependent biotinylation (BioID) and affinity purification mass spectrometry (AP-MS), respectively. The BioID analysis identifies more high-confidence interactions, highlighting the transient and dynamic nature of many of the TF interactions. By performing clustering and correlation analyses, we identify subgroups of TFs associated with specific biological functions, such as RNA splicing or chromatin remodeling. We also observe 202 TF-TF interactions, of which 118 are interactions with nuclear factor 1 (NFI) family members, indicating uncharacterized cross-talk between NFI signaling and other TF signaling pathways. Moreover, TF interactions with basal transcription machinery are mainly observed through TFIID and SAGA complexes. This study provides a rich resource of human TF interactions and also act as a starting point for future studies aimed at understanding TF-mediated transcription. Transcription factors (TFs) interact with several other proteins in the process of transcriptional regulation. Here the authors identify 6703 and 1536 protein–protein interactions for 109 different human TFs through BioID and AP-MS analyses, respectively.
Collapse
|
4
|
Yu J, Song Y, Yang A, Zhang X, Li L. Serum nuclear factor IB as a novel and noninvasive indicator in the diagnosis of secondary hyperparathyroidism. J Clin Lab Anal 2021; 35:e23787. [PMID: 33991027 PMCID: PMC8183937 DOI: 10.1002/jcla.23787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) referred to chronic progressive renal parenchymal damage caused by various causes, with metabolite retention and imbalance of water, electrolyte, and acid-base balance as the main clinical manifestations. Secondary hyperparathyroidism (sHPT) was a common complication in maintenance hemodialysis patients with CRF. Nuclear factor IB (NFIB) was a newly found tumor suppressor gene in various cancers. The present study aimed to illustrate the role of NFIB in sHPT clinical diagnosis and treatment response. METHODS A retrospective, case-control study, including 189 patients with sHPT and 106 CRF patients without sHPT, compared with 95 controls. Serum NFIB and 1,25(OH)2 D3 levels were measured by RT-qPCR and ELISAs, respectively. ROC analysis was conducted to verify the diagnostic value of NFIB in sHPT. Spearman's correlation analysis was conducted to verify the association between NFIB and bone mineral density (BMD) scores. After 6 months of treatment, the variance of NFIB and 1,25(OH)2 D3 in different groups was recorded. RESULTS The expression of NFIB was significantly lower in serum samples from sHPT and non-sHPT CRF patients, compared to controls. Clinicopathological information verified sHPT was associated with NFIB, parathyroid hormone (PTH), serum calcium, serum phosphorus, time of dialysis, and serum 1,25(OH)2 D3 levels. Spearman's correlation analysis illustrated the positive correlation between NFIB levels and BMD scores. At receiver operator characteristic (ROC) curve analysis, the cutoff of 1.6508 for NFIB was able to identify patients with sHPT from healthy controls; meanwhile, NFIB could also discriminate sHPT among CRF patients as well (cutoff = 1.4741). Furthermore, we found that during 6 months of treatment, NFIB levels were gradually increased, while PTH and serum P levels were decreased. CONCLUSIONS Serum NFIB was a highly accurate tool to identify sHPT from healthy controls and CRF patients. Due to its simplicity, specificity, and sensitivity, this candidate can be proposed as a first-line examination in the diagnostic workup in sHPT.
Collapse
Affiliation(s)
- Jian'gen Yu
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Yu Song
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Aihua Yang
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Xiaoyun Zhang
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Lin Li
- Department of Nephrology, The First People's Hospital of Xiaoshan District, Hangzhou, China
| |
Collapse
|
5
|
Single Nucleotide Polymorphisms in 25-Hydroxyvitamin D3 1-Alpha-Hydroxylase ( CYP27B1) Gene: The Risk of Malignant Tumors and Other Chronic Diseases. Nutrients 2020; 12:nu12030801. [PMID: 32197412 PMCID: PMC7146376 DOI: 10.3390/nu12030801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
: Vitamin D is widely known for its roles in the promotion of apoptosis and differentiation, with simultaneous inhibition of proliferation, inflammation, angiogenesis, invasion, and metastasis. Modern literature lacks complete information on polymorphisms in CYP27B1, the only enzyme capable of vitamin D activation. This review presents gathered data that relate to genetic variants in CYP27B1 gene in correlation to multiple diseases, mostly concerning colorectal, prostate, breast, lung, and pancreatic cancers, as well as on other pathologies, such as non-Hodgkin's lymphoma, oral lichen planus, or multiple sclerosis.
Collapse
|
6
|
Lee J, Hoxha E, Song HR. A novel NFIA-NFκB feed-forward loop contributes to glioblastoma cell survival. Neuro Oncol 2017; 19:524-534. [PMID: 27994064 DOI: 10.1093/neuonc/now233] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The nuclear factor I-A (NFIA) transcription factor promotes glioma growth and inhibits apoptosis in glioblastoma (GBM) cells. Here we report that the NFIA pro-survival effect in GBM is mediated in part via a novel NFIA-nuclear factor-kappaB (NFκB) p65 feed-forward loop. Methods We examined effects of gain- and loss-of-function manipulations of NFIA and NFκB p65 on each other's transcription, cell growth, apoptosis and sensitivity to chemotherapy in patient-derived GBM cells and established GBM cell lines. Results NFIA enhanced apoptosis evasion by activating NFκB p65 and its downstream anti-apoptotic factors tumor necrosis factor receptor-associated factor 1 (TRAF1) and cellular inhibitor of apoptosis proteins (cIAPs). Induction of NFκB by NFIA was required to protect cells from apoptosis, and inhibition of NFκB effectively reversed the NFIA anti-apoptotic effect. Conversely, NFIA knockdown decreased expression of NFκB and anti-apoptotic genes TRAF1 and cIAPs, and increased baseline apoptosis. NFIA positively regulated NFκB transcription and NFκB protein level. Interestingly, NFκB also activated the NFIA promoter and increased NFIA level, and knockdown of NFIA was sufficient to attenuate the NFκB pro-survival effect, suggesting a reciprocal regulation between NFIA and NFκB in governing GBM cell survival. Supporting this, NFIA and NFκB expression levels were highly correlated in human GBM and patient-derived GBM cells. Conclusions These data define a previously unknown NFIA-NFκB feed-forward regulation that may contribute to GBM cell survival.
Collapse
Affiliation(s)
- JunSung Lee
- Department of Neurosurgery, New York University, School of Medicine, New York, NY, USA
| | - Edlira Hoxha
- Department of Neurosurgery, New York University, School of Medicine, New York, NY, USA
| | - Hae-Ri Song
- Department of Neurosurgery, New York University, School of Medicine, New York, NY, USA
- Department of Neurology, New York University, School of Medicine, New York, NY, USA
- Brain Tumor Center, Perlmutter Cancer Center, New York University, School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Bunt J, Osinski JM, Lim JW, Vidovic D, Ye Y, Zalucki O, O'Connor TR, Harris L, Gronostajski RM, Richards LJ, Piper M. Combined allelic dosage of Nfia and Nfib regulates cortical development. Brain Neurosci Adv 2017; 1:2398212817739433. [PMID: 32166136 PMCID: PMC7058261 DOI: 10.1177/2398212817739433] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/01/2017] [Indexed: 12/02/2022] Open
Abstract
Background: Nuclear factor I family members nuclear factor I A and nuclear factor I B play important roles during cerebral cortical development. Nuclear factor I A and nuclear factor I B regulate similar biological processes, as their expression patterns, regulation of target genes and individual knockout phenotypes overlap. We hypothesised that the combined allelic loss of Nfia and Nfib would culminate in more severe defects in the cerebral cortex than loss of a single member. Methods: We combined immunofluorescence, co-immunoprecipitation, gene expression analysis and immunohistochemistry on knockout mouse models to investigate whether nuclear factor I A and nuclear factor I B function similarly and whether increasing allelic loss of Nfia and Nfib caused a more severe phenotype. Results: We determined that the biological functions of nuclear factor I A and nuclear factor I B overlap during early cortical development. These proteins are co-expressed and can form heterodimers in vivo. Differentially regulated genes that are shared between Nfia and Nfib knockout mice are highly enriched for nuclear factor I binding sites in their promoters and are associated with neurodevelopment. We found that compound heterozygous deletion of both genes resulted in a cortical phenotype similar to that of single homozygous Nfia or Nfib knockout embryos. This was characterised by retention of the interhemispheric fissure, dysgenesis of the corpus callosum and a malformed dentate gyrus. Double homozygous knockout of Nfia and Nfib resulted in a more severe phenotype, with increased ventricular enlargement and decreased numbers of differentiated glia and neurons. Conclusion: In the developing cerebral cortex, nuclear factor I A and nuclear factor I B share similar biological functions and function additively, as the combined allelic loss of these genes directly correlates with the severity of the developmental brain phenotype.
Collapse
Affiliation(s)
- Jens Bunt
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jason M Osinski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Jonathan Wc Lim
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Diana Vidovic
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yunan Ye
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Oressia Zalucki
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy R O'Connor
- School of Chemical and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Harris
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Linda J Richards
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Piper
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Roh SY, Park JC. The role of nuclear factor I-C in tooth and bone development. J Korean Assoc Oral Maxillofac Surg 2017; 43:63-69. [PMID: 28462188 PMCID: PMC5410429 DOI: 10.5125/jkaoms.2017.43.2.63] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/15/2023] Open
Abstract
Nuclear factor I-C (NFI-C) plays a pivotal role in various cellular processes such as odontoblast and osteoblast differentiation. Nfic-deficient mice showed abnormal tooth and bone formation. The transplantation of Nfic-expressing mouse bone marrow stromal cells rescued the impaired bone formation in Nfic-/- mice. Studies suggest that NFI-C regulate osteogenesis and dentinogenesis in concert with several factors including transforming growth factor-β1, Krüppel-like factor 4, and β-catenin. This review will focus on the function of NFI-C during tooth and bone formation and on the relevant pathways that involve NFI-C.
Collapse
Affiliation(s)
- Song Yi Roh
- Department of Oral Histology-Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Kong J, Xu F, Qu J, Wang Y, Gao M, Yu H, Qian B. Genetic polymorphisms in the vitamin D pathway in relation to lung cancer risk and survival. Oncotarget 2016; 6:2573-82. [PMID: 25544771 PMCID: PMC4385872 DOI: 10.18632/oncotarget.2951] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/09/2014] [Indexed: 12/16/2022] Open
Abstract
Studies have suggested that vitamin D may have protective effects against cancer development or tumor progression. To search for additional evidence, we investigated the role of genetic polymorphisms involved in the vitamin D pathway in non-small cell lung cancer (NSCLC). We evaluated common genetic polymorphisms associated with the vitamin D pathway in relation to NSCLC in a case-control study of 603 newly diagnosed NSCLC patients and 661 matched healthy controls. Seven single nucleotide polymorphisms (SNPs) were genotyped, the expression of CYP27B1 and CYP24A1 were measured in 153 tumor samples and their associations with genotypes and patient survival were also analyzed. In the case-control comparison, we found SNP rs3782130 (CYP27B1), rs7041 (GC), rs6068816 and rs4809957 (CYP24A1) associated with NSCLC risk. The risk of NSCLC was increased with the number of risk alleles. CYP27B1 and CYP24A1 expression were significantly different between tumor and normal tissues in NSCLC. High CYP27B1 expression was associated with better overall survival, and the expression was different by the rs3782130 genotype. The study suggests that some genetic polymorphisms involved in the vitamin D pathway may associate with NSCLC risk, and one of the polymorphisms (rs3782130) may affect gene expression and patient survival.
Collapse
Affiliation(s)
- Jinyu Kong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Department of Cancer Epigenetics Laboratory, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangxiu Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Jinli Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Yu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Ming Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Biyun Qian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Liu Y, Feng J, Li J, Zhao H, Ho TV, Chai Y. An Nfic-hedgehog signaling cascade regulates tooth root development. Development 2015; 142:3374-82. [PMID: 26293299 DOI: 10.1242/dev.127068] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/31/2015] [Indexed: 01/09/2023]
Abstract
Coordination between the Hertwig's epithelial root sheath (HERS) and apical papilla (AP) is crucial for proper tooth root development. The hedgehog (Hh) signaling pathway and Nfic are both involved in tooth root development; however, their relationship has yet to be elucidated. Here, we establish a timecourse of mouse molar root development by histological staining of sections, and we demonstrate that Hh signaling is active before and during root development in the AP and HERS using Gli1 reporter mice. The proper pattern of Hh signaling activity in the AP is crucial for the proliferation of dental mesenchymal cells, because either inhibition with Hh inhibitors or constitutive activation of Hh signaling activity in transgenic mice leads to decreased proliferation in the AP and shorter roots. Moreover, Hh activity is elevated in Nfic(-/-) mice, a root defect model, whereas RNA sequencing and in situ hybridization show that the Hh attenuator Hhip is downregulated. ChIP and RNAscope analyses suggest that Nfic binds to the promoter region of Hhip. Treatment of Nfic(-/-) mice with Hh inhibitor partially restores cell proliferation, AP growth and root development. Taken together, our results demonstrate that an Nfic-Hhip-Hh signaling pathway is crucial for apical papilla growth and proper root formation. This discovery provides insight into the molecular mechanisms regulating tooth root development.
Collapse
Affiliation(s)
- Yang Liu
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA Department of Prosthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing 100081, People's Republic of China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People's Republic of China
| | - Hu Zhao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Wickenheisser JK, Biegler JM, Nelson-DeGrave VL, Legro RS, Strauss JF, McAllister JM. Cholesterol side-chain cleavage gene expression in theca cells: augmented transcriptional regulation and mRNA stability in polycystic ovary syndrome. PLoS One 2012; 7:e48963. [PMID: 23155436 PMCID: PMC3498373 DOI: 10.1371/journal.pone.0048963] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/03/2012] [Indexed: 11/17/2022] Open
Abstract
Hyperandrogenism is characteristic of women with polycystic ovary syndrome (PCOS). Ovarian theca cells isolated from PCOS follicles and maintained in long-term culture produce elevated levels of progestins and androgens compared to normal theca cells. Augmented steroid production in PCOS theca cells is associated with changes in the expression of genes for several steroidogenic enzymes, including CYP11A1, which encodes cytochrome P450 cholesterol side-chain cleavage. Here, we further examined CYP11A1 gene expression, at both the transcriptional and post-transcriptional level in normal and PCOS theca cells propagated in long-term culture utilizing quantitative RT-PCR, functional promoter analyses, and mRNA degradation studies. The minimal element(s) that conferred increased basal and cAMP-dependent CYP11A1 promoter function were determined. CYP11A1 mRNA half-life in normal and PCOS theca cells was compared. Results of these cumulative studies showed that basal and forskolin stimulated steady state CYP11A1 mRNA abundance and CYP11A1 promoter activity were increased in PCOS theca cells. Deletion analysis of the CYP11A1 promoter demonstrated that augmented promoter function in PCOS theca cells results from increased basal regulation conferred by a minimal sequence between -160 and -90 bp of the transcriptional start site. The transcription factor, nuclear factor 1C2, was observed to regulate basal activity of this minimal CYP11A1 element. Examination of mRNA stability in normal and PCOS theca cells demonstrated that CYP11A1 mRNA half-life increased >2-fold, from approximately 9.22+/-1.62 h in normal cells, to 22.38+/-0.92 h in PCOS cells. Forskolin treatment did not prolong CYP11A1 mRNA stability in either normal or PCOS theca cells. The 5'-UTR of CYP11A1 mRNA confers increased basal mRNA stability in PCOS cells. In conclusion, these studies show that elevated steady state CYP11A1 mRNA abundance in PCOS cells results from increased transactivation of the CYP11A1 promoter and increased CYP11A1 mRNA stability.
Collapse
Affiliation(s)
- Jessica K. Wickenheisser
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jessica M. Biegler
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Velen L. Nelson-DeGrave
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Richard S. Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jerome F. Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jan M. McAllister
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
12
|
Liang B, Tikhanovich I, Nasheuer HP, Folk WR. Stimulation of BK virus DNA replication by NFI family transcription factors. J Virol 2012; 86:3264-75. [PMID: 22205750 PMCID: PMC3302295 DOI: 10.1128/jvi.06369-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/22/2011] [Indexed: 12/15/2022] Open
Abstract
BK polyomavirus (BKV) establishes persistent, low-level, and asymptomatic infections in most humans and causes polyomavirus-associated nephropathy (PVAN) and other pathologies in some individuals. The activation of BKV replication following kidney transplantation, leading to viruria, viremia, and, ultimately, PVAN, is associated with immune suppression as well as inflammation and stress from ischemia-reperfusion injury of the allograft, but the stimuli and molecular mechanisms leading to these pathologies are not well defined. The replication of BKV DNA in cell cultures is regulated by the viral noncoding control region (NCCR) comprising the core origin and flanking sequences, to which BKV T antigen (Tag), cellular proteins, and small regulatory RNAs bind. Six nuclear factor I (NFI) binding sites occur in sequences flanking the late side of the core origin (the enhancer) of the archetype virus, and their mutation, either individually or in toto, reduces BKV DNA replication when placed in competition with templates containing intact BKV NCCRs. NFI family members interacted with the helicase domain of BKV Tag in pulldown assays, suggesting that NFI helps recruit Tag to the viral core origin and may modulate its function. However, Tag may not be the sole target of the replication-modulatory activities of NFI: the NFIC/CTF1 isotype stimulates BKV template replication in vitro at low concentrations of DNA polymerase-α primase (Pol-primase), and the p58 subunit of Pol-primase associates with NFIC/CTF1, suggesting that NFI also recruits Pol-primase to the NCCR. These results suggest that NFI proteins (and the signaling pathways that target them) activate BKV replication and contribute to the consequent pathologies caused by acute infection.
Collapse
Affiliation(s)
- Bo Liang
- Department of Biochemistry and Genetics Area Program, University of Missouri—Columbia, Columbia, Missouri, USA
| | - Irina Tikhanovich
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - Heinz Peter Nasheuer
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland
| | - William R. Folk
- Department of Biochemistry and Genetics Area Program, University of Missouri—Columbia, Columbia, Missouri, USA
| |
Collapse
|
13
|
Plasari G, Edelmann S, Högger F, Dusserre Y, Mermod N, Calabrese A. Nuclear factor I-C regulates TGF-{beta}-dependent hair follicle cycling. J Biol Chem 2010; 285:34115-25. [PMID: 20729551 DOI: 10.1074/jbc.m110.120659] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skin appendages such as teeth and hair share several common signaling pathways. The nuclear factor I C (NFI-C) transcription factor has been implicated in tooth development, but a potential role in hair growth had not been assessed. In this study we found that NFI-C regulates the onset of the hair growth cycle. NFI-C(-/-) mice were delayed in the transition from the telogen to anagen phase of the hair follicle cycle after either experimental depilation or spontaneous hair loss. Lack of NFI-C resulted in delayed induction of the sonic hedgehog, Wnt5a, and Lef1 gene expression, which are key regulators of the hair follicle growth initiation. NFI-C(-/-) mice also showed elevated levels of transforming growth factor β1 (TGF-β1), an inhibitor of keratinocyte proliferation, and of the cell cycle inhibitor p21 at telogen. Reduced expression of Ki67, a marker of cell proliferation, was noted at the onset of anagen, indicating impaired activation of the hair progenitor cells. These findings implicate NFI-C in the repression of TGF-β1 signaling during telogen stage, resulting in the delay of progenitor cell proliferation and hair follicle regeneration in NFI-C-deficient mice. Taken together with prior observations, these findings also designate NFI-C as a regulator of adult progenitor cell proliferation and of postnatal tissue growth or regeneration.
Collapse
Affiliation(s)
- Genta Plasari
- Institute of Biotechnology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Molecular regulation of JC virus tropism: insights into potential therapeutic targets for progressive multifocal leukoencephalopathy. J Neuroimmune Pharmacol 2010; 5:404-17. [PMID: 20401541 DOI: 10.1007/s11481-010-9203-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a growing concern for patients undergoing immune modulatory therapies for treatment of autoimmune diseases such as multiple sclerosis. Currently, there are no drugs approved for the treatment of PML that have been demonstrated in the patient to effectively and reproducibly alter the course of disease progression. The human polyoma virus JC is the causative agent of PML. JC virus (JCV) dissemination is tightly controlled by regulation of viral gene expression from the promoter by cellular transcription factors expressed in cells permissive for infection. JCV infection likely occurs during childhood, and latent virus containing PML-associated promoter sequences is maintained in lymphoid cells within the bone marrow. Because development of PML is tightly linked to suppression and or modulation of the immune system as in development of hematological malignancies, AIDS, and monoclonal antibody treatments, further scrutiny of the course of JCV infection in immune cells will be essential to our understanding of development of PML and identification of new therapeutic targets.
Collapse
|
15
|
Nuclear factor I-C links platelet-derived growth factor and transforming growth factor beta1 signaling to skin wound healing progression. Mol Cell Biol 2009; 29:6006-17. [PMID: 19752192 DOI: 10.1128/mcb.01921-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.
Collapse
|
16
|
Nuclear factor one transcription factors in CNS development. Mol Neurobiol 2009; 39:10-23. [PMID: 19058033 DOI: 10.1007/s12035-008-8048-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/12/2008] [Indexed: 01/22/2023]
Abstract
Transcription factors are key regulators of central nervous system (CNS) development and brain function. Research in this area has now uncovered a new key player-the nuclear factor one (NFI) gene family. It has been almost a decade since the phenotype of the null mouse mutant for the nuclear factor one A transcription factor was reported. Nfia null mice display a striking brain phenotype including agenesis of the corpus callosum and malformation of midline glial populations needed to guide axons of the corpus callosum across the midline of the developing brain. Besides NFIA, there are three other NFI family members in vertebrates: NFIB, NFIC, and NFIX. Since generation of the Nfia knockout (KO) mice, KO mice for all other family members have been generated, and defects in one or more organ systems have been identified for all four NFI family members (collectively referred to as NFI here). Like the Nfia KO mice, the Nfib and Nfix KO mice also display a brain phenotype, with the Nfib KO forebrain phenotype being remarkably similar to that of Nfia. Over the past few years, studies have highlighted NFI as a key payer in a variety of CNS processes including axonal outgrowth and guidance and glial and neuronal cell differentiation. Here, we discuss the importance and role of NFI in these processes in the context of several CNS systems including the neocortex, hippocampus, cerebellum, and spinal cord at both cellular and molecular levels.
Collapse
|
17
|
Lazakovitch E, Kalb JM, Matsumoto R, Hirono K, Kohara Y, Gronostajski RM. nfi-I affects behavior and life-span in C. elegans but is not essential for DNA replication or survival. BMC DEVELOPMENTAL BIOLOGY 2005; 5:24. [PMID: 16242019 PMCID: PMC1277823 DOI: 10.1186/1471-213x-5-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 10/20/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND The Nuclear Factor I (one) (NFI) family of transcription/replication factors plays essential roles in mammalian gene expression and development and in adenovirus DNA replication. Because of its role in viral DNA replication NFI has long been suspected to function in host DNA synthesis. Determining the requirement for NFI proteins in mammalian DNA replication is complicated by the presence of 4 NFI genes in mice and humans. Loss of individual NFI genes in mice cause defects in brain, lung and tooth development, but the presence of 4 homologous NFI genes raises the issue of redundant roles for NFI genes in DNA replication. No NFI genes are present in bacteria, fungi or plants. However single NFI genes are present in several simple animals including Drosophila and C. elegans, making it possible to test for a requirement for NFI in multicellular eukaryotic DNA replication and development. Here we assess the functions of the single nfi-1 gene in C. elegans. RESULTS C. elegans NFI protein (CeNFI) binds specifically to the same NFI-binding site recognized by vertebrate NFIs. nfi-1 encodes alternatively-spliced, maternally-inherited transcripts that are expressed at the single cell stage, during embryogenesis, and in adult muscles, neurons and gut cells. Worms lacking nfi-1 survive but have defects in movement, pharyngeal pumping and egg-laying and have a reduced life-span. Expression of the muscle gene Ce titin is decreased in nfi-1 mutant worms. CONCLUSION NFI gene function is not needed for survival in C. elegans and thus NFI is likely not essential for DNA replication in multi-cellular eukaryotes. The multiple defects in motility, egg-laying, pharyngeal pumping, and reduced lifespan indicate that NFI is important for these processes. Reduction in Ce titin expression could affect muscle function in multiple tissues. The phenotype of nfi-1 null worms indicates that NFI functions in multiple developmental and behavioral systems in C. elegans, likely regulating genes that function in motility, egg-laying, pharyngeal pumping and lifespan maintenance.
Collapse
Affiliation(s)
- Elena Lazakovitch
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - John M Kalb
- Dept. of Biology, Canisius College, Buffalo, NY, USA
| | - Reiko Matsumoto
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| | - Keiko Hirono
- CREST and Gene Network Lab, National Institute of Genetics, Mishima, Japan
| | - Yuji Kohara
- CREST and Gene Network Lab, National Institute of Genetics, Mishima, Japan
| | - Richard M Gronostajski
- Dept. of Biochemistry, SUNY at Buffalo, 140 Farber Hall, 3435 Main St., Buffalo, NY, 14214, USA
| |
Collapse
|
18
|
Mysiak ME, Wyman C, Holthuizen PE, van der Vliet PC. NFI and Oct-1 bend the Ad5 origin in the same direction leading to optimal DNA replication. Nucleic Acids Res 2004; 32:6218-25. [PMID: 15576348 PMCID: PMC535662 DOI: 10.1093/nar/gkh944] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two cellular transcription factors, nuclear factor I (NFI) and octamer binding protein (Oct-1), bind simultaneously to their recognition sequences in the Ad5 origin of replication thereby enhancing initiation. Using scanning force microscopy we have previously shown that NFI induces a 60 degrees bend in the origin DNA. Here we demonstrate that Oct-1 induces a 42 degrees bend in the origin DNA. Simultaneous binding of NFI and Oct-1 induces an 82 degrees collective bend suggesting that both bends are oriented towards each other. In functional replication assays we further demonstrate that this extensive DNA bending leads to a synergistic enhancement of DNA replication. We propose that collective DNA bending induced by NFI and Oct-1 facilitates the optimal assembly of the preinitiation complex and plays an important role in the stimulatory mechanism of NFI and Oct-1 in replication.
Collapse
Affiliation(s)
- Monika E Mysiak
- Department of Physiological Chemistry, University Medical Centre Utrecht and Centre for Biomedical Genetics, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | |
Collapse
|
19
|
Mysiak ME, Bleijenberg MH, Wyman C, Holthuizen PE, van der Vliet PC. Bending of adenovirus origin DNA by nuclear factor I as shown by scanning force microscopy is required for optimal DNA replication. J Virol 2004; 78:1928-35. [PMID: 14747557 PMCID: PMC369512 DOI: 10.1128/jvi.78.4.1928-1935.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear factor I (NFI) is a transcription factor that binds to the adenovirus type 5 (Ad5) origin of replication and recruits the adenovirus DNA polymerase, thereby stimulating initiation of DNA replication in vitro. Using scanning force microscopy, we demonstrate that NFI induces a 60 degrees bend upon binding to the origin. The A/T-rich region preceding the core recognition sequence of NFI influences the DNA bend angle, since substitution of A/T base pairs by G/C base pairs severely decreases bending. Mutations in the A/T-rich region do not affect binding of NFI to DNA. However, mutations that reduce the protein-induced bend lead to a loss of NFI-stimulated replication, indicating that DNA bending is functionally important. In contrast, basal initiation or DNA binding of the polymerase is not impaired by these origin mutations. We conclude that binding of NFI to the Ad5 origin causes structural changes in DNA that are essential for the stimulatory function of NFI in replication. We propose that NFI-induced origin bending facilitates the assembly of a functional initiation complex.
Collapse
Affiliation(s)
- Monika E Mysiak
- Department of Physiological Chemistry, University Medical Center Utrecht, and Centre for Biomedical Genetics, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Murtagh J, Martin F, Gronostajski RM. The Nuclear Factor I (NFI) gene family in mammary gland development and function. J Mammary Gland Biol Neoplasia 2003; 8:241-54. [PMID: 14635798 DOI: 10.1023/a:1025909109843] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mammary gland development and function require the coordinated spatial and temporal expression of a large fraction of the mammalian genome. A number of site-specific transcription factors are essential to achieve the appropriate growth, branching, expansion, and involution of the mammary gland throughout early postnatal development and the lactation cycle. One family of transcription factors proposed to play a major role in the mammary gland is encoded by the Nuclear Factor I (NFI) genes. The NFI gene family is found only in multicellular animals, with single genes being present in flies and worms and four genes in vertebrates. While the NFI family expanded and diversified prior to the evolution of the mammary gland, it is clear that several mammary-gland specific genes are regulated by NFI proteins. Here we address the structure and evolution of the NFI gene family and examine the role of the NFI transcription factors in the expression of mammary-gland specific proteins, including whey acidic protein and carboxyl ester lipase. We discuss current data showing that unique NFI proteins are expressed during lactation and involution and suggest that the NFI gene family likely has multiple important functions throughout mammary gland development.
Collapse
Affiliation(s)
- Janice Murtagh
- Conway Institute of Biomolecular and Biomedical Research and Department of Pharmacology, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
21
|
Abstract
Nuclear factor I (NFI) genes are expressed in multiple organs throughout development (Chaudhry et al., 1997; for review, see Gronostajski, 2000). All four NFI genes are expressed in embryonic mouse brain, with Nfia, Nfib, and Nfix being expressed highly in developing cortex (Chaudhry et al., 1997). Disruption of the Nfia gene causes agenesis of the corpus callosum (ACC), hydrocephalus, and reduced GFAP expression (das Neves et al., 1999). Three midline structures, the glial wedge, glia within the indusium griseum, and the glial sling are involved in development of the corpus callosum (Silver et al., 1982; Silver and Ogawa, 1983; Shu and Richards, 2001). Because Nfia(-)/- mice show glial abnormalities and ACC, we asked whether defects in midline glial structures occur in Nfia(-)/- mice. NFI-A protein is expressed in all three midline populations. In Nfia(-)/-, mice sling cells are generated but migrate abnormally into the septum and do not form a sling. Glia within the indusium griseum and the glial wedge are greatly reduced or absent and consequently Slit2 expression is also reduced. Although callosal axons approach the midline, they fail to cross and extend aberrantly into the septum. The hippocampal commissure is absent or reduced, whereas the ipsilaterally projecting perforating axons (Hankin and Silver, 1988; Shu et al., 2001) appear relatively normal. These results support an essential role for midline glia in callosum development and a role for Nfia in the formation of midline glial structures.
Collapse
|
22
|
Monaco MC, Sabath BF, Durham LC, Major EO. JC virus multiplication in human hematopoietic progenitor cells requires the NF-1 class D transcription factor. J Virol 2001; 75:9687-95. [PMID: 11559801 PMCID: PMC114540 DOI: 10.1128/jvi.75.20.9687-9695.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
JCV, a small DNA virus of the polyomavirus family, has been shown to infect glial cells of the central nervous system, hematopoietic progenitor cells, and immune system lymphocytes. A family of DNA binding proteins called nuclear factor-1 (NF-1) has been linked with site-coding specific transcription of cellular and viral genes and replication of some viruses, including JC virus (JCV). It is unclear which NF-1 gene product must be expressed by cells to promote JCV multiplication. Previously, it was shown that elevated levels of NF-1 class D mRNA were expressed by human brain cells that are highly susceptible to JCV infection but not by JCV nonpermissive HeLa cells. Recently, we reported that CD34(+) precursor cells of the KG-1 line, when treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA), differentiated to cells with macrophage-like characteristics and lost susceptibility to JCV infection. These studies have now been extended by asking whether loss of JCV susceptibility by PMA-treated KG-1 cells is linked with alterations in levels of NF-1 class D expression. Using reverse transcription-PCR, we have found that PMA-treated KG-1 cells express mRNA that codes for all four classes of NF-1 proteins, although different levels of RNA expression were observed in the hematopoietic cells differentiated into macrophages. Northern hybridization confirms that the expression of NF-1 class D gene is lower in JCV nonpermissive PMA-treated KG-1 cells compared with non-PMA-treated cells. Further, using gel mobility shift assays, we were able to show the induction of specific NF-1-DNA complexes in KG-1 cells undergoing PMA treatment. The binding increases in direct relation to the duration of PMA treatment. These results suggest that the binding pattern of NF-1 class members may change in hematopoietic precursor cells, such as KG-1, as they undergo differentiation to macrophage-like cells. Transfection of PMA-treated KG-1 cells with an NF-1 class D expression vector restored the susceptibility of these cells to JCV infection, while the transfection of PMA-treated KG-1 cells with NF-1 class A, B, and C vectors was not able to restore JCV susceptibility. These data collectively suggest that selective expression of NF-1 class D has a regulatory role in JCV multiplication.
Collapse
Affiliation(s)
- M C Monaco
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
23
|
Rajas F, Delhase M, De La Hoya M, Verdood P, Castrillo JL, Hooghe-Peters EL. Nuclear factor 1 regulates the distal silencer of the human PIT1/GHF1 gene. Biochem J 1998; 333 ( Pt 1):77-84. [PMID: 9639565 PMCID: PMC1219558 DOI: 10.1042/bj3330077] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we report the characterization of 12 kb genomic DNA upstream of the human PIT1/GHF1 promoter. Different regions involved in the modulation of human PIT1/GHF1 gene expression were defined by transient transfection studies. Two regions, one proximal (-7.1/-2. 3) and one distal (-11.8/-10.9), presented an enhancer activity in pituitary cells when placed upstream of the SV40 promoter. The 0.9 kb distal region was analysed further and found to decrease the basal transcriptional activity of the human PIT1/GHF1 minimal promoter, indicating that this region behaves as a silencer for its own promoter. Three Pit-1/GHF-1-binding sites and two ubiquitous nuclear factor 1 (NF-1)-binding sites were identified by DNase I footprinting in the distal regulatory region. Deletion analysis indicated that NF-1 or NF-1-related protein(s) participate in the down-regulation of human PIT1/GHF1 gene expression by interacting with an NF-1-binding site within the distal regulatory region.
Collapse
Affiliation(s)
- F Rajas
- Pharmacology Department, Medical School, Free University of Brussels (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Dekker J, van Oosterhout JA, van der Vliet PC. Two regions within the DNA binding domain of nuclear factor I interact with DNA and stimulate adenovirus DNA replication independently. Mol Cell Biol 1996; 16:4073-80. [PMID: 8754805 PMCID: PMC231403 DOI: 10.1128/mcb.16.8.4073] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The cellular transcription factor nuclear factor I (NFI) stimulates adenovirus DNA replication by up to 50-fold. The NFI DNA binding domain (NFI-BD) is sufficient for stimulation and interacts with the viral DNA polymerase, thereby recruiting the precursor terminal protein-DNA polymerase complex (pTP-pol) to the origin of replication. The mechanism of DNA binding by NFI is unknown. To examine DNA binding and stimulation of adenovirus DNA replication by NFI-BD in more detail, we generated a series of deletion mutants and show that the DNA binding domain of NFI consists of two subdomains: a highly basic N-terminal domain that binds nonspecifically to DNA and a C-terminal domain that binds specifically but with very low affinity to the NFI recognition site. Both of these subdomains stimulate DNA replication, although not to the same extent as the intact DNA binding domain. The N-terminal domain has an alpha-helical structure, as shown by circular dichroism spectroscopy. The C-terminal domain interacts with the pTP-pol complex and is able to recruit the pTP-pol complex to DNA, which leads to pTP-pol-dependent stimulation of replication. The N-terminal domain also stimulates replication in a pTP-pol-dependent manner and enhances binding of pTP-pol to DNA. Since we could not detect a direct protein-protein interaction between pTP-pol and the N-terminal domain, we suggest that this domain stimulates replication by inducing structural changes in the DNA.
Collapse
Affiliation(s)
- J Dekker
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands
| | | | | |
Collapse
|
25
|
Li S, Rosen JM. Nuclear factor I and mammary gland factor (STAT5) play a critical role in regulating rat whey acidic protein gene expression in transgenic mice. Mol Cell Biol 1995; 15:2063-70. [PMID: 7891701 PMCID: PMC230433 DOI: 10.1128/mcb.15.4.2063] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rat whey acidic protein (WAP) gene contains a mammary gland-specific and hormonally regulated DNase I-hypersensitive site 830 to 720 bp 5' to the site of transcription initiation. We have reported previously that nuclear factor I (NFI) binding at a palindromic site and binding at a half-site are the major DNA-protein interactions detected within this tissue-specific nuclease-hypersensitive region. We now show that point mutations introduced into these NFI-binding sites dramatically affect WAP gene expression in transgenic mice. Transgene expression was totally abrogated when the palindromic NFI site or both binding sites were mutated, suggesting that NFI is a key regulator of WAP gene expression. In addition, a recognition site for mammary gland factor (STAT5), which mediates prolactin induction of milk protein gene expression, was also identified immediately proximal to the NFI-binding sites. Mutation of this site reduced transgene expression by approximately 90% per gene copy, but did not alter tissue specificity. These results suggest that regulation of WAP gene expression is determined by the cooperative interactions among several enhancers that constitute a composite response element.
Collapse
Affiliation(s)
- S Li
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
26
|
MyoD and myogenin act on the chicken myosin light-chain 1 gene as distinct transcriptional factors. Mol Cell Biol 1993. [PMID: 8413304 DOI: 10.1128/mcb.13.11.7153] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of MyoD, myogenin, MRF4, and Myf-5 converts nonmuscle cells to muscle cells. In an attempt to analyze the roles of these factors, we have investigated their effects on transcription driven by the promoter of the chicken myosin alkaline light-chain (MLC1) gene. The activation by CMD1 or c-myogenin (chicken MyoD or myogenin, respectively) was dependent on the existence of a muscle-specific regulatory region located from positions -2096 to -1743. Its distal half, containing a pair of E boxes (CANNTG), had been previously characterized as an enhancer responsive to CMD1 but not to c-myogenin. In this study, we report the identification of another enhancer in the muscle-specific regulatory region which is preferentially responsive to c-myogenin. Deletion and mutation analyses indicated that this enhancer requires a single E box and its flanking sequences. Furthermore, analysis of chimeric proteins of CMD1 and c-myogenin indicated that regions outside the basic helix-loop-helix domain of c-myogenin are involved in the specificity of the enhancer. These results show that CMD1 and c-myogenin act on the MLC1 gene by recognizing different upstream DNA sequences and that direct or indirect interactions between the regions outside the basic helix-loop-helix domain and flanking sequences of E boxes are involved in the target sequence specificity.
Collapse
|
27
|
Asakura A, Fujisawa-Sehara A, Komiya T, Nabeshima Y, Nabeshima Y. MyoD and myogenin act on the chicken myosin light-chain 1 gene as distinct transcriptional factors. Mol Cell Biol 1993; 13:7153-62. [PMID: 8413304 PMCID: PMC364776 DOI: 10.1128/mcb.13.11.7153-7162.1993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Expression of MyoD, myogenin, MRF4, and Myf-5 converts nonmuscle cells to muscle cells. In an attempt to analyze the roles of these factors, we have investigated their effects on transcription driven by the promoter of the chicken myosin alkaline light-chain (MLC1) gene. The activation by CMD1 or c-myogenin (chicken MyoD or myogenin, respectively) was dependent on the existence of a muscle-specific regulatory region located from positions -2096 to -1743. Its distal half, containing a pair of E boxes (CANNTG), had been previously characterized as an enhancer responsive to CMD1 but not to c-myogenin. In this study, we report the identification of another enhancer in the muscle-specific regulatory region which is preferentially responsive to c-myogenin. Deletion and mutation analyses indicated that this enhancer requires a single E box and its flanking sequences. Furthermore, analysis of chimeric proteins of CMD1 and c-myogenin indicated that regions outside the basic helix-loop-helix domain of c-myogenin are involved in the specificity of the enhancer. These results show that CMD1 and c-myogenin act on the MLC1 gene by recognizing different upstream DNA sequences and that direct or indirect interactions between the regions outside the basic helix-loop-helix domain and flanking sequences of E boxes are involved in the target sequence specificity.
Collapse
Affiliation(s)
- A Asakura
- Division of Molecular Genetics, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Seisenberger C, Winnacker EL, Scherthan H. Localisation of the human nuclear factor I/X (NFI/X) gene to chromosome 19p13 and detection of five other related loci at 1p21-22, 1q42-43, 5q15, 11p13 and 20q13 by FISH. Hum Genet 1993; 91:535-7. [PMID: 8340106 DOI: 10.1007/bf00205076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nuclear factor I (NFI) is a member of a family of dimeric DNA-binding proteins that are involved both in the initiation of adenovirus DNA replication and in the stimulation of transcriptional activation. We have used fluorescence in situ hybridisation (FISH) to map one of four known genes encoding an NFI protein, the human NFI/X gene, to chromosome 19p1.3. Secondary sites of hybridisation observed at 5p1.5, 1q4.2-4.4, 1p2.1-2.2, and 20p1.3 most likely are attributable to partial sequence homologies with related NFI genes.
Collapse
Affiliation(s)
- C Seisenberger
- Institut für Biochemie, MPI für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
29
|
Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol Cell Biol 1992. [PMID: 1324403 DOI: 10.1128/mcb.12.9.3665] [Citation(s) in RCA: 184] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional cascades that specify cell fate have been well described in invertebrates. In mammalian development, however, gene hierarchies involved in determination of cell lineage are not understood. With the recent cloning of the MyoD family of myogenic regulatory factors, a model system has become available with which to study the dynamics of muscle determination in mammalian development. Myogenin, along with other members of the MyoD gene family, possesses the apparent ability to redirect nonmuscle cells into the myogenic lineage. This ability appears to be due to the direct activation of an array of subordinate or downstream genes which are responsible for formation and function of the muscle contractile apparatus. Myogenin-directed transcription has been shown to occur through interaction with a DNA consensus sequence known as an E box (CANNTG) present in the control regions of numerous downstream genes. In addition to activating the transcription of subordinate genes, members of the MyoD family positively regulate their own expression and cross-activate one another's expression. These autoregulatory interactions have been suggested as a mechanism for induction and maintenance of the myogenic phenotype, but the molecular details of the autoregulatory circuits are undefined. Here we show that the myogenin promoter contains a binding site for the myocyte-specific enhancer-binding factor, MEF-2, which can function as an intermediary of myogenin autoactivation. Since MEF-2 can be induced by myogenin, these results suggest that myogenin and MEF-2 participate in a transcriptional cascade in which MEF-2, once induced by myogenin, acts to amplify and maintain the myogenic phenotype by acting as a positive regulator of myogenin expression.
Collapse
|
30
|
Edmondson DG, Cheng TC, Cserjesi P, Chakraborty T, Olson EN. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol Cell Biol 1992; 12:3665-77. [PMID: 1324403 PMCID: PMC360220 DOI: 10.1128/mcb.12.9.3665-3677.1992] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transcriptional cascades that specify cell fate have been well described in invertebrates. In mammalian development, however, gene hierarchies involved in determination of cell lineage are not understood. With the recent cloning of the MyoD family of myogenic regulatory factors, a model system has become available with which to study the dynamics of muscle determination in mammalian development. Myogenin, along with other members of the MyoD gene family, possesses the apparent ability to redirect nonmuscle cells into the myogenic lineage. This ability appears to be due to the direct activation of an array of subordinate or downstream genes which are responsible for formation and function of the muscle contractile apparatus. Myogenin-directed transcription has been shown to occur through interaction with a DNA consensus sequence known as an E box (CANNTG) present in the control regions of numerous downstream genes. In addition to activating the transcription of subordinate genes, members of the MyoD family positively regulate their own expression and cross-activate one another's expression. These autoregulatory interactions have been suggested as a mechanism for induction and maintenance of the myogenic phenotype, but the molecular details of the autoregulatory circuits are undefined. Here we show that the myogenin promoter contains a binding site for the myocyte-specific enhancer-binding factor, MEF-2, which can function as an intermediary of myogenin autoactivation. Since MEF-2 can be induced by myogenin, these results suggest that myogenin and MEF-2 participate in a transcriptional cascade in which MEF-2, once induced by myogenin, acts to amplify and maintain the myogenic phenotype by acting as a positive regulator of myogenin expression.
Collapse
Affiliation(s)
- D G Edmondson
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | |
Collapse
|
31
|
Abstract
Nuclear factor I (NFI) is composed of a family of site-specific DNA-binding proteins which recognize a DNA-binding site with the consensus sequence TGGC/A(N)5GCCAA. Binding sites for NFI have previously been shown to stimulate mRNA synthesis in vitro when present upstream of the TATA box of the adenovirus major late promoter (AdMLP). We have examined the effect of NFI-binding sites on transcription in vivo in transiently transfected HeLa and COS cells. An NFI-binding site isolated from the human genome activated expression from the minimal AdMLP in vivo in both the absence and presence of the simian virus 40 enhancer. A point mutation that decreased NFI binding affinity for the site in vitro reduced expression to near the basal level of the AdMLP. Several NFI-binding sites which differed in their spacer and flanking sequences were tested for their ability to activate expression in vivo. The ability of these sites to activate expression correlated with the strength of NFI binding in vitro. An NFI-binding site stimulated expression equally well when placed from 33 to 65 bp upstream of the TATA box. However, expression dropped to basal levels when the site was located from 71 to 77 bp upstream of the TATA box. These studies indicate that an NFI-binding site in this chimeric promoter activates expression in vivo only if located within a critical distance of the TATA box.
Collapse
|
32
|
Knox JJ, Rebstein PJ, Manoukian A, Gronostajski RM. In vivo stimulation of a chimeric promoter by binding sites for nuclear factor I. Mol Cell Biol 1991; 11:2946-51. [PMID: 1903836 PMCID: PMC360121 DOI: 10.1128/mcb.11.6.2946-2951.1991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nuclear factor I (NFI) is composed of a family of site-specific DNA-binding proteins which recognize a DNA-binding site with the consensus sequence TGGC/A(N)5GCCAA. Binding sites for NFI have previously been shown to stimulate mRNA synthesis in vitro when present upstream of the TATA box of the adenovirus major late promoter (AdMLP). We have examined the effect of NFI-binding sites on transcription in vivo in transiently transfected HeLa and COS cells. An NFI-binding site isolated from the human genome activated expression from the minimal AdMLP in vivo in both the absence and presence of the simian virus 40 enhancer. A point mutation that decreased NFI binding affinity for the site in vitro reduced expression to near the basal level of the AdMLP. Several NFI-binding sites which differed in their spacer and flanking sequences were tested for their ability to activate expression in vivo. The ability of these sites to activate expression correlated with the strength of NFI binding in vitro. An NFI-binding site stimulated expression equally well when placed from 33 to 65 bp upstream of the TATA box. However, expression dropped to basal levels when the site was located from 71 to 77 bp upstream of the TATA box. These studies indicate that an NFI-binding site in this chimeric promoter activates expression in vivo only if located within a critical distance of the TATA box.
Collapse
Affiliation(s)
- J J Knox
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Toohey MG, Lee JW, Huang M, Peterson DO. Functional elements of the steroid hormone-responsive promoter of mouse mammary tumor virus. J Virol 1990; 64:4477-88. [PMID: 2166825 PMCID: PMC247918 DOI: 10.1128/jvi.64.9.4477-4488.1990] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transcription from the promoter of mouse mammary tumor virus is subject to induction by several classes of steroid hormones as well as to repression by a negative regulatory element present in the long terminal repeats of proviral DNA. In order to characterize the functional elements of the promoter that in some way must respond to these regulatory signals, a number of promoter mutations were constructed, including a set of linker-scanning mutations across the entire promoter region. Analysis of these mutated promoters with a transient-transfection assay defined at least three mutation-sensitive promoter elements that are required for both basal and hormone-induced transcription. One mutation-sensitive region contains a TATA element located at approximately position -30 with respect to the start of transcription. A second mutation-sensitive region contains two 10-base-pair direct repeats located between positions -60 and -38, within which are embedded three copies of octamer-related sequences; complete disruption of this region of the promoter leads to a more severe decrease in transcription than do any of the linker-scanning mutations, suggesting that the repeated sequences may be at least partially functionally redundant. Gel electrophoresis mobility shift assays were used to demonstrate specific binding of a nuclear protein to this region of the promoter. A third mutation-sensitive region contains a binding site for nuclear factor 1 (NF-1) located between positions -77 and -63. Site-directed mutations in the NF-1-binding site which increase the apparent affinity of NF-1 for the promoter in vitro do not decrease the hormone dependence of transcription, suggesting that transcriptional activation mediated by steroid hormone-receptor complexes cannot be explained by facilitation or stabilization of the interaction of promoter sequences with NF-1 and consistent with the idea that binding of NF-1 is not rate determining in transcription from the mouse mammary tumor virus promoter. None of the promoter mutations functionally separates basal from glucocorticoid-induced transcription, suggesting that hormone induction does not make the promoter independent of any of the DNA-binding factors required for its basal activity.
Collapse
Affiliation(s)
- M G Toohey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843
| | | | | | | |
Collapse
|
34
|
Olsen HS, Lovmand S, Lovmand J, Jørgensen P, Kjeldgaard NO, Pedersen FS. Involvement of nuclear factor I-binding sites in control of Akv virus gene expression. J Virol 1990; 64:4152-61. [PMID: 2166811 PMCID: PMC247879 DOI: 10.1128/jvi.64.9.4152-4161.1990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The U3 region of Akv murine leukemia virus carries a 99-base-pair repeat that is associated with transcriptional enhancement in murine NIH 3T3 cells. Deletion analysis points to a critical function of a region within the repeat unit related to the recognition sequences for nuclear factor I proteins but distinct from the sites previously analyzed in related viruses. Nuclear proteins binding to the critical site were detected in NIH 3T3 cells and in mouse livers. A protein fraction binding to this site was purified from mouse livers by ion-exchange and DNA affinity chromatography and shown to have nuclear factor I properties. Mutations that caused a partial or complete reduction of the in vitro binding were introduced into an Akv long terminal repeat with one 99-base-pair repeat copy driving a reporter gene, and the expression activities of the mutants in NIH 3T3 cells were found to correspond to their in vitro binding activities. This correlation strongly supports the role of nuclear factor I proteins in Akv expression. Residual expression activity was, however, detected in mutants devoid of in vitro binding. This residual activity may relate to the presence of additional sequences with homology to nuclear factor I binding sites both within and outside the repeat region. The ability of these sites to bind crude and purified protein fractions with nuclear factor I activity was analyzed, and the role of the sites within and outside the repeat region for control of gene expression of Akv and related viruses is discussed.
Collapse
Affiliation(s)
- H S Olsen
- Department of Molecular Biology and Plant Physiology, University of Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Nuclear factor I (NFI) is a group of related site-specific DNA-binding proteins that function in adenovirus DNA replication and cellular RNA metabolism. We have measured both the levels and forms of NFI that interact with a well-characterized 26-base-pair NFI-binding site. Five different NFI-DNA complexes were seen in HeLa nuclear extracts by using a gel mobility shift (GMS) assay. In addition, at least six forms of NFI were shown to cross-link directly to DNA by using a UV cross-linking assay. The distinct GMS complexes detected were composed of different subspecies of NFI polypeptides as assayed by UV cross-linking. Different murine cell lines possessed varying levels and forms of NFI binding activity, as judged by nitrocellulose filter binding and GMS assays. The growth state of NIH 3T3 cells affected both the types of NFI-DNA complexes seen in a GMS assay and the forms of the protein detected by UV cross-linking.
Collapse
|
36
|
Goyal N, Knox J, Gronostajski RM. Analysis of multiple forms of nuclear factor I in human and murine cell lines. Mol Cell Biol 1990; 10:1041-8. [PMID: 2304457 PMCID: PMC360962 DOI: 10.1128/mcb.10.3.1041-1048.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nuclear factor I (NFI) is a group of related site-specific DNA-binding proteins that function in adenovirus DNA replication and cellular RNA metabolism. We have measured both the levels and forms of NFI that interact with a well-characterized 26-base-pair NFI-binding site. Five different NFI-DNA complexes were seen in HeLa nuclear extracts by using a gel mobility shift (GMS) assay. In addition, at least six forms of NFI were shown to cross-link directly to DNA by using a UV cross-linking assay. The distinct GMS complexes detected were composed of different subspecies of NFI polypeptides as assayed by UV cross-linking. Different murine cell lines possessed varying levels and forms of NFI binding activity, as judged by nitrocellulose filter binding and GMS assays. The growth state of NIH 3T3 cells affected both the types of NFI-DNA complexes seen in a GMS assay and the forms of the protein detected by UV cross-linking.
Collapse
Affiliation(s)
- N Goyal
- Department of Medical Biophysics, Ontario Cancer Institute, Toronto, Canada
| | | | | |
Collapse
|
37
|
Farache G, Razin SV, Targa FR, Scherrer K. Organization of the 3'-boundary of the chicken alpha globin gene domain and characterization of a CR 1-specific protein binding site. Nucleic Acids Res 1990; 18:401-9. [PMID: 2308840 PMCID: PMC333441 DOI: 10.1093/nar/18.3.401] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The sequence of a DNA fragment about 1 Kbp long located at the 3' boundary of the chicken alpha globin gene domain, including the 3'-side matrix attachment point and the site of transcription termination, was determined. It contains a repetitive DNA element and the AT-rich (easily denaturable) DNA segment conserved at the same position in the duck genome. The repetitive sequence was identified by computer analysis as being a member of the CR1 family. Within the non-repetitive part of the AT-rich DNA fragment, four topoisomerase II recognition sites were found which might be indicative of matrix attachment. Furthermore, two distinct regions were identified, possessing strong homology to a number of noncoding consensus sequences, one of them to a limited part of the LTR of HTLVIII, and the other to the replication origin of Polyoma virus JC. DNA shift experiments showed that the CR1 repeat binds specifically an abundant nuclear protein factor. The binding site for this factor was identified by footprinting and turned out to be closely related to the previously described recognition site for the TGGCA-binding protein, the chicken analog of nuclear factor 1 (NF-1). Finally, the CR1 repeats within the chicken alpha and beta globin gene domains were mapped. All these observations are discussed in terms of the organization of the 5' and 3' boundaries of the functional genomic domains forming a chromatin loop including all avian alpha type globin genes.
Collapse
Affiliation(s)
- G Farache
- Institut Jacques Monod, Université Paris 7, France
| | | | | | | |
Collapse
|
38
|
A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter. Mol Cell Biol 1990. [PMID: 2586526 DOI: 10.1128/mcb.9.12.5548] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.
Collapse
|
39
|
Corthésy B, Cardinaux JR, Claret FX, Wahli W. A nuclear factor I-like activity and a liver-specific repressor govern estrogen-regulated in vitro transcription from the Xenopus laevis vitellogenin B1 promoter. Mol Cell Biol 1989; 9:5548-62. [PMID: 2586526 PMCID: PMC363725 DOI: 10.1128/mcb.9.12.5548-5562.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A hormone-controlled in vitro transcription system derived from Xenopus liver nuclear extracts was exploited to identify novel cis-acting elements within the vitellogenin gene B1 promoter region. In addition to the already well-documented estrogen-responsive element (ERE), two elements were found within the 140 base pairs upstream of the transcription initiation site. One of them, a negative regulatory element, is responsible for the lack of promoter activity in the absence of the hormone and, as demonstrated by DNA-binding assays, interacts with a liver-specific transcription factor. The second is required in association with the estrogen-responsive element to mediate hormonal induction and is recognized by the Xenopus liver homolog of nuclear factor I.
Collapse
Affiliation(s)
- B Corthésy
- Institut de Biologie Animale, Université de Lausanne, Switzerland
| | | | | | | |
Collapse
|
40
|
Identification of HeLa cell nuclear factors that bind to and activate the early promoter of human polyomavirus BK in vitro. Mol Cell Biol 1989. [PMID: 2550803 DOI: 10.1128/mcb.9.9.3821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human polyomavirus BK (BKV), an oncogenic DNA virus, differs from other papovaviruses in the organization of the regulatory region and in tissue tropism for kidney cells. The noncoding regulatory region of the viral genome in prototype strains includes three 68-base-pair (bp) repeats, each containing a number of potential regulatory elements. Some of these signals are unique to human papovaviruses, and others are homologous to those identified in many viral and cellular genes. We evaluated the contribution of individual 68-bp repeats to the initiation of transcription from the early promoter in a HeLa cell extract and identified cis-acting elements to which human cellular factors bind to activate transcription. The early promoter with only one copy of the 68-bp repeat could accurately initiate transcription in vitro, but additional copies were required for its stimulation. DNA-binding assays and DNase I protection experiments identified six domains in the regulatory region protected by human cellular factors. Two of these footprints were located within the proximal and distal 68-bp repeats, and one was located at the late side of the repeats. These footprints were centered over a TGGA(N)5-6GCCA core and were produced by a protein of the nuclear factor 1 (NF-1) family. This protein is either identical or similar to that which binds to the high-affinity site at the origin of adenovirus DNA replication. Three other domains, two at the junctions of the 68-bp repeats and one in the late side of the repeats, were partially protected by proteins with AP-1- and Sp-1-like activities. Transcription initiation from the early promoter was drastically reduced when a complete 68-bp repeat or the NF-1 binding site was used as a competitor in the in vitro assay. However, a point mutation within the NF-1 binding site, which reduced NF-1 binding in vitro to a level comparable to that of nonspecific DNA, also eliminated its ability to compete with early transcription. The murine homolog of the AP-1 binding site had a modest effect on in vitro transcription. Our results suggest that, among the multiple HeLa cell nuclear factors, NF-1 acts as a major activator of the early promoter in vitro.
Collapse
|
41
|
Chakraborty T, Das GC. Identification of HeLa cell nuclear factors that bind to and activate the early promoter of human polyomavirus BK in vitro. Mol Cell Biol 1989; 9:3821-8. [PMID: 2550803 PMCID: PMC362443 DOI: 10.1128/mcb.9.9.3821-3828.1989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human polyomavirus BK (BKV), an oncogenic DNA virus, differs from other papovaviruses in the organization of the regulatory region and in tissue tropism for kidney cells. The noncoding regulatory region of the viral genome in prototype strains includes three 68-base-pair (bp) repeats, each containing a number of potential regulatory elements. Some of these signals are unique to human papovaviruses, and others are homologous to those identified in many viral and cellular genes. We evaluated the contribution of individual 68-bp repeats to the initiation of transcription from the early promoter in a HeLa cell extract and identified cis-acting elements to which human cellular factors bind to activate transcription. The early promoter with only one copy of the 68-bp repeat could accurately initiate transcription in vitro, but additional copies were required for its stimulation. DNA-binding assays and DNase I protection experiments identified six domains in the regulatory region protected by human cellular factors. Two of these footprints were located within the proximal and distal 68-bp repeats, and one was located at the late side of the repeats. These footprints were centered over a TGGA(N)5-6GCCA core and were produced by a protein of the nuclear factor 1 (NF-1) family. This protein is either identical or similar to that which binds to the high-affinity site at the origin of adenovirus DNA replication. Three other domains, two at the junctions of the 68-bp repeats and one in the late side of the repeats, were partially protected by proteins with AP-1- and Sp-1-like activities. Transcription initiation from the early promoter was drastically reduced when a complete 68-bp repeat or the NF-1 binding site was used as a competitor in the in vitro assay. However, a point mutation within the NF-1 binding site, which reduced NF-1 binding in vitro to a level comparable to that of nonspecific DNA, also eliminated its ability to compete with early transcription. The murine homolog of the AP-1 binding site had a modest effect on in vitro transcription. Our results suggest that, among the multiple HeLa cell nuclear factors, NF-1 acts as a major activator of the early promoter in vitro.
Collapse
Affiliation(s)
- T Chakraborty
- Department of Molecular Biology, University of Texas Health Center, Tyler 75710
| | | |
Collapse
|
42
|
Nilsson P, Hallberg B, Thornell A, Grundström T. Mutant analysis of protein interactions with a nuclear factor I binding site in the SL3-3 virus enhancer. Nucleic Acids Res 1989; 17:4061-75. [PMID: 2544855 PMCID: PMC317919 DOI: 10.1093/nar/17.11.4061] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor I (NFI) is shown to be of importance for the activity of the enhancer element of a T-cell leukemogenic murine retrovirus, SL3-3, and for the regulation of this element by glucocorticoid. Each nucleotide of the binding site of the NFI proteins was mutated, and the effects of the mutations were quantitated with an electrophoretic mobility shift assay. Mutations in the inverted repeat of the binding site have symmetric effects which strongly support the notion that NFI proteins preferentially bind to dyad symmetry sites. Such binding sites were shown to be more than 100 fold stronger than the corresponding single binding sites. We find dyad symmetry sequences which are much stronger NFI binding sites than NFI sites identified in different genes and also stronger than previously proposed consensus binding sequences for NFI.
Collapse
Affiliation(s)
- P Nilsson
- Department of Applied Cell and Molecular Biology, University of Umeå, Sweden
| | | | | | | |
Collapse
|
43
|
Rimphanitchayakit V, Hatfull GF, Grindley ND. The 43 residue DNA binding domain of gamma delta resolvase binds adjacent major and minor grooves of DNA. Nucleic Acids Res 1989; 17:1035-50. [PMID: 2537948 PMCID: PMC331720 DOI: 10.1093/nar/17.3.1035] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The carboxyl-terminal domain of gamma delta resolvase binds to each half of the three resolvase binding sites that constitute the recombination site, res. Ethylation inhibition experiments show that the phosphate contacts made by the C-terminal DNA binding domain are similar to those made by intact resolvase, with the exception of a single phosphate at the inside end of each contact region which is contacted solely by the intact resolvase. The DNA binding domain makes essentially identical contacts to all 6 half sites, whereas the intact resolvase makes slightly different contacts to each binding site. Despite its small size, only 43 amino acid residues, the resolvase C-terminal domain interacts with an unusually large segment of DNA. Phosphate contacts extend across an adjacent major and minor groove of DNA and about one third of the circumference around the helix. The minimal binding segment, determined experimentally, is a 12 bp sequence that includes the 9 base pair inverted repeat (common to all half sites), the adjacent 3 base pairs (towards the center of the intact resolvase binding site), and phosphates at both ends.
Collapse
Affiliation(s)
- V Rimphanitchayakit
- Department of Molecular Biophysics and Biochemistry, Yale University Medical School, New Haven, CT 06510
| | | | | |
Collapse
|
44
|
Abstract
The estrogen-dependent binding of a protein to the upstream region of the chicken vitellogenin gene was detected by using in vivo dimethyl sulfate, genomic DNase I, and in vitro exonuclease III footprinting. The site is located between base pairs -848 and -824, and its sequence resembles that of the nuclear factor I binding site. The results suggest that a nuclear factor binding to this site is involved in the regulation of the vitellogenin gene.
Collapse
|
45
|
Gil G, Smith JR, Goldstein JL, Slaughter CA, Orth K, Brown MS, Osborne TF. Multiple genes encode nuclear factor 1-like proteins that bind to the promoter for 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci U S A 1988; 85:8963-7. [PMID: 3194401 PMCID: PMC282633 DOI: 10.1073/pnas.85.23.8963] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
DNA-binding proteins of the nuclear factor 1 (NF1) family recognize sequences containing TGG. Two of these proteins, termed reductase promoter factor (RPF) proteins A and B, bind to the promoter for hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a negatively regulated enzyme in cholesterol biosynthesis. In the current study, we determined the sequences of peptides derived from hamster RPF proteins A and B and used this information to isolate a cDNA, designated pNF1/Red1, that encodes RPF protein B. The peptide sequence of RPF protein A, the other reductase-related protein, suggests that it is the hamster equivalent of NF1/L, which was previously cloned from rat liver. We also isolated a hamster cDNA for an additional member of the NF1 family, designated NF1/X. Thus, the hamster genome contains at least three genes for NF1-like proteins. It is likely to contain a fourth gene, corresponding to NF1/CTF, which was previously cloned from the human. The NH2-terminal sequences of all four NF1-like proteins (NF1/Red1, NF1/L, NF1/X, and NF1/CTF), which are virtually identical, contain the DNA-binding domain that recognizes TGG. Functional diversity may arise from differences in the COOH-terminal sequences. We hypothesize that the COOH-terminal domain interacts with adjacent DNA-binding proteins, thereby stabilizing the binding of a particular NF1-like protein to a particular promoter. This protein-protein interaction confers specificity to a class of proteins whose DNA-recognition sequence is widespread in the genome. Sterols may repress transcription of the reductase gene by disrupting this protein-protein interaction.
Collapse
Affiliation(s)
- G Gil
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | | | |
Collapse
|
46
|
Bakker O, Philipsen JN, Hennis BC, Ab G. Estrogen-inducible binding of a nuclear factor to the vitellogenin upstream region. Mol Cell Biol 1988; 8:4557-60. [PMID: 3185560 PMCID: PMC365535 DOI: 10.1128/mcb.8.10.4557-4560.1988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The estrogen-dependent binding of a protein to the upstream region of the chicken vitellogenin gene was detected by using in vivo dimethyl sulfate, genomic DNase I, and in vitro exonuclease III footprinting. The site is located between base pairs -848 and -824, and its sequence resembles that of the nuclear factor I binding site. The results suggest that a nuclear factor binding to this site is involved in the regulation of the vitellogenin gene.
Collapse
Affiliation(s)
- O Bakker
- Department of Biochemistry, Groningen University, The Netherlands
| | | | | | | |
Collapse
|
47
|
Abstract
BK virus (BKV) is a human papovavirus which latently infects a majority of the world population. Reactivation of this virus is associated with acute hemorrhagic cystitis, and BKV DNA has been found in human tumor tissue. BKV is one of many highly homologous papovaviruses, including simian virus 40 and JC virus, which display distinct host and cell-type specificities, transformation potentials, and pathologies. These differences are thought to be determined, in part, by the noncoding regulatory region of each virus, which contains the origin of replication and regulatory elements for both early and late gene expression. We have used linker scan mutants to map functional elements of a truncated BKV early promoter and enhancer and have studied the stereospecific requirements of these elements. We have also identified protein-binding regions through DNase protection studies. Our results show that a minimum of four elements are necessary for efficient early transcription, at least three of which correspond to DNase-protected domains. These protein-binding elements map to the TATA box and two nuclear factor 1 consensus sequences, one located within the enhancer repeat unit and the other located to the late side of the enhancer. The sequence of the fourth element is similar to the transcription factor Sp1 consensus sequence. Additional DNase-protected sites are centered over AP-1 and Sp1 consensus sequences. Finally, we find that the functional elements of the BKV early promoter and enhancer lack strict stereospecific requirements for efficient transcription.
Collapse
Affiliation(s)
- K L Deyerle
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | |
Collapse
|
48
|
Tseng RW, Williams T, Fujimura FK. Unique requirement for the PyF441 mutation for polyomavirus infection of F9 embryonal carcinoma cells. J Virol 1988; 62:2896-902. [PMID: 2839708 PMCID: PMC253727 DOI: 10.1128/jvi.62.8.2896-2902.1988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A point mutation at nucleotide 5258 in the enhancer of the polyomavirus host range mutant F441 permits productive infection of F9 embryonal carcinoma cells, which, when undifferentiated, are refractory to infection by wild-type polyomavirus. Synthetic oligonucleotides were used to construct viral genomes containing all four possible nucleotide pairs at nucleotide 5258. While all four of the viruses infected 3T6 cells efficiently, only F441, which has a guanosine in place of the wild-type adenosine in the early strand of DNA at position 5258, was able to infect F9 cells. Transfection assays with enhancer-dependent plasmid constructs expressing the chloramphenicol acetyltransferase gene under the control of the polyomavirus early promoter verified that only the F441 enhancer had any significant activity in F9 cells. DNase I footprinting showed that the F441 mutation creates a strong binding site for purified CCAAT box transcription factor, which is identical to nuclear factor 1. The three other mutations at nucleotide 5258 alter the affinity and the quality of factor binding at this site.
Collapse
Affiliation(s)
- R W Tseng
- Cancer Research Center, La Jolla Cancer Research Foundation, California 92037
| | | | | |
Collapse
|
49
|
Abstract
Human keratin 18 (K18) and the homologous mouse protein, Endo B, are intermediate filament subunits of the type I keratin class. Both are expressed in many simple epithelial cell types including trophoblasts, the first differentiated cell type to appear during mouse embryogenesis. The K18 gene was identified and cloned from among the 15 to 20 similar sequences identified within the human genome. The identity of the cloned gene was confirmed by comparing the sequence of the first two exons to the K18 cDNA sequence and transfecting the gene into various murine cell lines and verifying the encoded protein as K18 by immunoprecipitation and partial peptide mapping. The transfected K18 gene was expressed in mouse HR9 parietal endodermal cells and mouse fibroblasts even though the fibroblasts fail to express endogenous Endo B. S1 nuclease protection analysis indicated that mRNA synthesized from the transfected K18 gene is initiated at the same position as authentic K18 mRNA found in both BeWo trophoblastoma cells and HeLa cells. Pulse-chase experiments indicated that the human K18 protein is stable in murine parietal endodermal cells (HR9) which express EndoA, a complementary mouse type II keratin. Surprisingly, however, K18 was degraded when synthesized in cells which lack a type II keratin. This turnover of K18 may be an important mechanism by which epithelial cells maintain equal molar amounts of both type I and II keratins. In addition, the levels of the endogenous type I Endo B in parietal endodermal cells were compensatingly down regulated in the presence of the K18 protein, while the levels of the endogenous type II Endo A were not affected in any of the transfected cell lines.
Collapse
|
50
|
Hallberg B, Grundström T. Tissue specific sequence motifs in the enhancer of the leukaemogenic mouse retrovirus SL3-3. Nucleic Acids Res 1988; 16:5927-44. [PMID: 2840634 PMCID: PMC336838 DOI: 10.1093/nar/16.13.5927] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The long terminal repeat (LTR) of the retrovirus SL3-3 determines its tropism for T-lymphocytes and its ability to induce T-cell lymphomas in mice. We have studied the ability of different DNA sequences located upstream of the "TATA" box in the LTR of SL3-3 to enhance transcription in T-lymphocyte cell lines and other cell lines, employing a transient assay and quantitative S1 nuclease mapping. The enhancer was found to be composed of many DNA domains which determines different activities in different cell lines. We find enhancer sequence motifs with a high T-lymphocyte specificity in the DNA repetitions of the LTR, and other enhancer motifs active in a broader range of cells in the surrounding DNA segments. The localization of sequences preferentially active in T-cells within the repeated sequences containing differences between SL3-3 and the very closely related Akv virus, which is without the T cell tropism and leukaemogenicity of SL3-3, supports the notion that the enhancer sequence motifs with T-cell preferences are primary determinants of these properties.
Collapse
Affiliation(s)
- B Hallberg
- Unit for Applied Cell and Molecular Biology, University of Umeâ, Sweden
| | | |
Collapse
|