1
|
Circular permutation of a synthetic eukaryotic chromosome with the telomerator. Proc Natl Acad Sci U S A 2014; 111:17003-10. [PMID: 25378705 DOI: 10.1073/pnas.1414399111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromosome engineering is a major focus in the fields of systems biology, genetics, synthetic biology, and the functional analysis of genomes. Here, we describe the "telomerator," a new synthetic biology device for use in Saccharomyces cerevisiae. The telomerator is designed to inducibly convert circular DNA molecules into mitotically stable, linear chromosomes replete with functional telomeres in vivo. The telomerator cassette encodes convergent yeast telomere seed sequences flanking the I-SceI homing endonuclease recognition site in the center of an intron artificially transplanted into the URA3 selectable/counterselectable auxotrophic marker. We show that inducible expression of the homing endonuclease efficiently generates linear molecules, identified by using a simple plate-based screening method. To showcase its functionality and utility, we use the telomerator to circularly permute a synthetic yeast chromosome originally constructed as a circular molecule, synIXR, to generate 51 linear variants. Many of the derived linear chromosomes confer unexpected phenotypic properties. This finding indicates that the telomerator offers a new way to study the effects of gene placement on chromosomes (i.e., telomere proximity). However, that the majority of synIXR linear derivatives support viability highlights inherent tolerance of S. cerevisiae to changes in gene order and overall chromosome structure. The telomerator serves as an important tool to construct artificial linear chromosomes in yeast; the concept can be extended to other eukaryotes.
Collapse
|
2
|
An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 7516468 DOI: 10.1128/mcb.14.7.4485] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
L1 elements constitute a highly repetitive human DNA family (50,000 to 100,000 copies) lacking long terminal repeats and ending in a poly(A) tail. Some L1 elements are capable of retrotransposition in the human genome (Kazazian, H. H., Jr., C. Wong, H. Youssoufian, A. F. Scott, D. G. Phillips, and S.E. Antonarakis, Nature (London) 332:164-166, 1988). Although most are 5' truncated, a consensus sequence of complete L1 elements is 6 kb long and contains two open reading frames (ORFs) (Scott, A. F., B. J. Schmeckpeper, M. Abdelrazik, C. T. Comey, B. O'Hara, J. P. Rossiter, T. Cooley, P. Health, K. D. Smith, and L. Margolet, Genomics 1:113-125, 1987). The protein encoded by ORF2 has reverse transcriptase (RT) activity in vitro (Mathias, S. L., A. F. Scott, H. H. Kazazian, Jr., J. D. Boeke, and A. Gabriel, Science 254:1808-1810, 1991). Because L1 elements are so numerous, efficient methods for identifying active copies are required. We have developed a simple in vivo assay for the activity of L1 RT based on the system developed by Derr et al. (Derr, L. K., J. N. Strathern, and D. J. Garfinkel, Cell 67:355-364, 1991) for yeast HIS3 pseudogene formation. L1 ORF2 displays an in vivo RT activity similar to that of yeast Ty1 RT in this system and generates pseudogenes with unusual structures. Like the HIS3 pseudogenes whose formation depends on Ty1 RT, the HIS3 pseudogenes generated by L1 RT are joined to Ty1 sequences and often are part of complex arrays of Ty1 elements, multiple HIS3 pseudogenes, and hybrid Ty1/L1 elements. These pseudogenes differ from those previously described in that there are base pairs of unknown origin inserted at several of the junctions. In two of three HIS3 pseudogenes studied, the L1 RT appears to have jumped from the 5' end of a Ty1/L1 transcript to the poly(A) tract of the HIS3 RNA.
Collapse
|
3
|
Dombroski BA, Feng Q, Mathias SL, Sassaman DM, Scott AF, Kazazian HH, Boeke JD. An in vivo assay for the reverse transcriptase of human retrotransposon L1 in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:4485-92. [PMID: 7516468 PMCID: PMC358820 DOI: 10.1128/mcb.14.7.4485-4492.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
L1 elements constitute a highly repetitive human DNA family (50,000 to 100,000 copies) lacking long terminal repeats and ending in a poly(A) tail. Some L1 elements are capable of retrotransposition in the human genome (Kazazian, H. H., Jr., C. Wong, H. Youssoufian, A. F. Scott, D. G. Phillips, and S.E. Antonarakis, Nature (London) 332:164-166, 1988). Although most are 5' truncated, a consensus sequence of complete L1 elements is 6 kb long and contains two open reading frames (ORFs) (Scott, A. F., B. J. Schmeckpeper, M. Abdelrazik, C. T. Comey, B. O'Hara, J. P. Rossiter, T. Cooley, P. Health, K. D. Smith, and L. Margolet, Genomics 1:113-125, 1987). The protein encoded by ORF2 has reverse transcriptase (RT) activity in vitro (Mathias, S. L., A. F. Scott, H. H. Kazazian, Jr., J. D. Boeke, and A. Gabriel, Science 254:1808-1810, 1991). Because L1 elements are so numerous, efficient methods for identifying active copies are required. We have developed a simple in vivo assay for the activity of L1 RT based on the system developed by Derr et al. (Derr, L. K., J. N. Strathern, and D. J. Garfinkel, Cell 67:355-364, 1991) for yeast HIS3 pseudogene formation. L1 ORF2 displays an in vivo RT activity similar to that of yeast Ty1 RT in this system and generates pseudogenes with unusual structures. Like the HIS3 pseudogenes whose formation depends on Ty1 RT, the HIS3 pseudogenes generated by L1 RT are joined to Ty1 sequences and often are part of complex arrays of Ty1 elements, multiple HIS3 pseudogenes, and hybrid Ty1/L1 elements. These pseudogenes differ from those previously described in that there are base pairs of unknown origin inserted at several of the junctions. In two of three HIS3 pseudogenes studied, the L1 RT appears to have jumped from the 5' end of a Ty1/L1 transcript to the poly(A) tract of the HIS3 RNA.
Collapse
Affiliation(s)
- B A Dombroski
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
4
|
Metzger D, Losson R, Bornert JM, Lemoine Y, Chambon P. Promoter specificity of the two transcriptional activation functions of the human oestrogen receptor in yeast. Nucleic Acids Res 1992; 20:2813-7. [PMID: 1614867 PMCID: PMC336926 DOI: 10.1093/nar/20.11.2813] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously demonstrated that the human oestrogen receptor (hER) contains two transcriptional activation functions located in the N-terminal region (TAF-1) and in the hormone binding domain (TAF-2), which can act both independently and synergistically in a promoter- and cell-specific manner in animal cells. We have also demonstrated that hER can activate transcription from chimaeric oestrogen-responsive GAL1 promoters in yeast, and shown that transcriptional activation was due to TAF-1, whereas TAF-2 showed little, if any, transcriptional activity on these promoters. By using a more complex promoter derived from the URA3 gene, we now show that TAF-2 is also active in yeast, and that the activities of TAF-1 and TAF-2 are promoter-context-specific in yeast. We also confirm that the agonistic activity of 4-hydroxytamoxifen (OHT) can be ascribed to the activity of TAF-1.
Collapse
Affiliation(s)
- D Metzger
- Laboratoire de Génétique Moléculaire des Eucaryotes du CNRS, Unité 184 de Biologie Moléculaire et de Génie Génétique de l'INSERM, Strasburg, France
| | | | | | | | | |
Collapse
|
5
|
Human p53 and CDC2Hs genes combine to inhibit the proliferation of Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1545817 DOI: 10.1128/mcb.12.3.1357] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.
Collapse
|
6
|
Nigro JM, Sikorski R, Reed SI, Vogelstein B. Human p53 and CDC2Hs genes combine to inhibit the proliferation of Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:1357-65. [PMID: 1545817 PMCID: PMC369569 DOI: 10.1128/mcb.12.3.1357-1365.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.
Collapse
Affiliation(s)
- J M Nigro
- Johns Hopkins Oncology Center, Johns Hopkins University, Baltimore, Maryland 21231
| | | | | | | |
Collapse
|
7
|
Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 3'-end formation. Mol Cell Biol 1991. [PMID: 2005893 DOI: 10.1128/mcb.11.4.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequences directing formation of mRNA 3' ends in Saccharomyces cerevisiae are not well defined. This is in contrast to the situation in higher eukaryotes in which the sequence AAUAAA is known to be crucial to proper 3'-end formation. The AAUAAA hexanucleotide is found upstream of the poly(A) site in some but not all yeast genes. One of these is the gene coding for alcohol dehydrogenase, ADH2. Deletion or a double point mutation of the AAUAAA has only a small effect on the efficiency of the reaction, and in contrast to the mammalian system, it is most likely not operating as a major processing signal in the yeast cell. However, we isolated point mutations which reveal that a region located approximately 80 nucleotides upstream of the poly(A) site plays a critical role in either transcription termination, polyadenylation, or both. These mutations represent the first point mutations in yeasts which significantly reduce the efficiency of 3'-end formation.
Collapse
|
8
|
Hyman LE, Seiler SH, Whoriskey J, Moore CL. Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 3'-end formation. Mol Cell Biol 1991; 11:2004-12. [PMID: 2005893 PMCID: PMC359886 DOI: 10.1128/mcb.11.4.2004-2012.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The sequences directing formation of mRNA 3' ends in Saccharomyces cerevisiae are not well defined. This is in contrast to the situation in higher eukaryotes in which the sequence AAUAAA is known to be crucial to proper 3'-end formation. The AAUAAA hexanucleotide is found upstream of the poly(A) site in some but not all yeast genes. One of these is the gene coding for alcohol dehydrogenase, ADH2. Deletion or a double point mutation of the AAUAAA has only a small effect on the efficiency of the reaction, and in contrast to the mammalian system, it is most likely not operating as a major processing signal in the yeast cell. However, we isolated point mutations which reveal that a region located approximately 80 nucleotides upstream of the poly(A) site plays a critical role in either transcription termination, polyadenylation, or both. These mutations represent the first point mutations in yeasts which significantly reduce the efficiency of 3'-end formation.
Collapse
Affiliation(s)
- L E Hyman
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111-1800
| | | | | | | |
Collapse
|
9
|
Kallal LA, Bhattacharyya M, Grove SN, Iannacone RF, Pugh TA, Primerano DA, Clancy MJ. Functional analysis of the sporulation-specific SPR6 gene of Saccharomyces cerevisiae. Curr Genet 1990; 18:293-301. [PMID: 2253272 DOI: 10.1007/bf00318210] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SPR6 gene of Saccharomyces cerevisiae encodes a moderately abundant RNA that is present at high levels only during sporulation. The gene contains a long open reading frame that could encode a hydrophilic protein approximately 21 kDa in size. This protein is probably produced by the yeast, because the lacZ gene of Escherichia coli is expressed during sporulation when fused to SPR6 in the expected reading frame. SPR6 is inessential for sporulation; mutants that lack SPR6 activity sporulate normally and produce viable ascospores. Nonetheless, the SPR6 gene encodes a function that is relevant to sporulating cells; the wild-type allele can enhance sporulation in strains that are defective for several SPR functions. SPR6 is located on chromosome V, 14.4 centimorgans centromere-distal to MET6.
Collapse
Affiliation(s)
- L A Kallal
- Department of Biological Sciences, University of New Orleans, LA 70148
| | | | | | | | | | | | | |
Collapse
|
10
|
Complementary transcripts from two genes necessary for normal meiosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2188099 DOI: 10.1128/mcb.10.6.2809] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SPO12 gene, which is required for meiosis I chromosome division during sporulation of the yeast Saccharomyces cerevisiae, has been isolated. DNA sequencing has identified an open reading frame of 173 codons that encodes the putative SPO12 protein and has no significant sequence similarities to known genes. The last 15 amino acids of this putative protein have a high negative charge, which appears to be required for function. A second sporulation-specific gene, designated SPO16, was found adjacent to SPO12 and shown to be necessary for efficient spore formation. The two genes are encoded on opposite DNA strands with only 103 nucleotides between the termination codons. Up to 700 nucleotides of the SPO12 and SPO16 transcripts are complementary, and the 3' untranslated region of the longest SPO16 transcript is complementary to all or nearly all of the SPO12 mRNA. A strain homozygous for an insertion which removes the complementarity between the SPO12 and SPO16 mRNAs has an efficiency of sporulation, number of spores per ascus, and spore viability identical to those of a wild-type strain. The complementarity therefore has either no function or only a subtle function in meiosis and sporulation.
Collapse
|
11
|
RNA processing in vitro produces mature 3' ends of a variety of Saccharomyces cerevisiae mRNAs. Mol Cell Biol 1990. [PMID: 2160581 DOI: 10.1128/mcb.10.6.2599] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ammonium sulfate fractionation of a Saccharomyces cerevisiae whole-cell extract yielded a preparation which carried out correct and efficient endonucleolytic cleavage and polyadenylation of yeast precursor mRNA substrates corresponding to a variety of yeast genes. These included CYC1 (iso-1-cytochrome c), HIS4 (histidine biosynthesis), GAL7 (galactose-1-phosphate uridyltransferase), H2B2 (histone H2B2), PRT2 (a protein of unknown function), and CBP1 (cytochrome b mRNA processing). The reaction processed these pre-mRNAs with varying efficiencies, with cleavage and polyadenylation exceeding 70% in some cases. In each case, the poly(A) tail corresponded to the addition of approximately 60 adenosine residues, which agrees with the usual length of poly(A) tails formed in vivo. Addition of cordycepin triphosphate or substitution of CTP for ATP in these reactions inhibited polyadenylation but not endonucleolytic cleavage and resulted in accumulation of the cleaved RNA product. Although this system readily generated yeast mRNA 3' ends, no processing occurred on a human alpha-globin pre-mRNA containing the highly conserved AAUAAA polyadenylation signal of higher eucaryotes. This sequence and adjacent signals used in mammalian systems are thus not sufficient to direct mRNA 3' end formation in yeast. Despite the lack of a highly conserved nucleotide sequence signal, the same purified fraction processed the 3' ends of a variety of unrelated yeast pre-mRNAs, suggesting that endonuclease cleavage and polyadenylation may produce the mature 3' ends of all mRNAs in S. cerevisiae.
Collapse
|
12
|
Localization of sequences required in cis for yeast Ty1 element transposition near the long terminal repeats: analysis of mini-Ty1 elements. Mol Cell Biol 1990. [PMID: 2160583 DOI: 10.1128/mcb.10.6.2695] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to identify and characterize sequences within Ty1 elements which are required in cis for transposition, a series of mini-Ty1 plasmids were constructed and tested for transposition. Mini-Ty1s are deletion mutants of the Ty1-H3 element; Ty1 gene products required for transposition are supplied in trans from a helper Ty1 which has intact open reading frames but lacks a 3' long terminal repeat (LTR) and therefore cannot transpose itself. Up to 5 kilobase pairs of internal sequences of the 6-kilobase-pair-long Ty1 element can be deleted without a significant effect on transposition. The smallest mini-Ty1 element capable of transposition contains the 3' LTR and the transcribed portion of the 5' LTR, 285 base pairs (bp) of internal sequence 3' to the 5' LTR, and 23 bp of internal sequence 5' to the 3' LTR. We conclude that Ty1-encoded proteins can act in trans and that cis-acting sequences in Ty1-H3 are all within or near the LTRs. Further deletion of the 285-bp internal sequence adjacent to the 5' LTR significantly reduced transposition frequency, and the mini-Ty1 RNA produced failed to be packaged into the viruslike particles efficiently. Surprisingly, several nonhomologous cellular mRNAs were also associated with viruslike particles.
Collapse
|
13
|
Xu H, Boeke JD. Localization of sequences required in cis for yeast Ty1 element transposition near the long terminal repeats: analysis of mini-Ty1 elements. Mol Cell Biol 1990; 10:2695-702. [PMID: 2160583 PMCID: PMC360629 DOI: 10.1128/mcb.10.6.2695-2702.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In order to identify and characterize sequences within Ty1 elements which are required in cis for transposition, a series of mini-Ty1 plasmids were constructed and tested for transposition. Mini-Ty1s are deletion mutants of the Ty1-H3 element; Ty1 gene products required for transposition are supplied in trans from a helper Ty1 which has intact open reading frames but lacks a 3' long terminal repeat (LTR) and therefore cannot transpose itself. Up to 5 kilobase pairs of internal sequences of the 6-kilobase-pair-long Ty1 element can be deleted without a significant effect on transposition. The smallest mini-Ty1 element capable of transposition contains the 3' LTR and the transcribed portion of the 5' LTR, 285 base pairs (bp) of internal sequence 3' to the 5' LTR, and 23 bp of internal sequence 5' to the 3' LTR. We conclude that Ty1-encoded proteins can act in trans and that cis-acting sequences in Ty1-H3 are all within or near the LTRs. Further deletion of the 285-bp internal sequence adjacent to the 5' LTR significantly reduced transposition frequency, and the mini-Ty1 RNA produced failed to be packaged into the viruslike particles efficiently. Surprisingly, several nonhomologous cellular mRNAs were also associated with viruslike particles.
Collapse
Affiliation(s)
- H Xu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
14
|
Butler JS, Sadhale PP, Platt T. RNA processing in vitro produces mature 3' ends of a variety of Saccharomyces cerevisiae mRNAs. Mol Cell Biol 1990; 10:2599-605. [PMID: 2160581 PMCID: PMC360618 DOI: 10.1128/mcb.10.6.2599-2605.1990] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ammonium sulfate fractionation of a Saccharomyces cerevisiae whole-cell extract yielded a preparation which carried out correct and efficient endonucleolytic cleavage and polyadenylation of yeast precursor mRNA substrates corresponding to a variety of yeast genes. These included CYC1 (iso-1-cytochrome c), HIS4 (histidine biosynthesis), GAL7 (galactose-1-phosphate uridyltransferase), H2B2 (histone H2B2), PRT2 (a protein of unknown function), and CBP1 (cytochrome b mRNA processing). The reaction processed these pre-mRNAs with varying efficiencies, with cleavage and polyadenylation exceeding 70% in some cases. In each case, the poly(A) tail corresponded to the addition of approximately 60 adenosine residues, which agrees with the usual length of poly(A) tails formed in vivo. Addition of cordycepin triphosphate or substitution of CTP for ATP in these reactions inhibited polyadenylation but not endonucleolytic cleavage and resulted in accumulation of the cleaved RNA product. Although this system readily generated yeast mRNA 3' ends, no processing occurred on a human alpha-globin pre-mRNA containing the highly conserved AAUAAA polyadenylation signal of higher eucaryotes. This sequence and adjacent signals used in mammalian systems are thus not sufficient to direct mRNA 3' end formation in yeast. Despite the lack of a highly conserved nucleotide sequence signal, the same purified fraction processed the 3' ends of a variety of unrelated yeast pre-mRNAs, suggesting that endonuclease cleavage and polyadenylation may produce the mature 3' ends of all mRNAs in S. cerevisiae.
Collapse
Affiliation(s)
- J S Butler
- Department of Biochemistry, University of Rochester Medical Center, New York 14642
| | | | | |
Collapse
|
15
|
Malavasic MJ, Elder RT. Complementary transcripts from two genes necessary for normal meiosis in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1990; 10:2809-19. [PMID: 2188099 PMCID: PMC360642 DOI: 10.1128/mcb.10.6.2809-2819.1990] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The SPO12 gene, which is required for meiosis I chromosome division during sporulation of the yeast Saccharomyces cerevisiae, has been isolated. DNA sequencing has identified an open reading frame of 173 codons that encodes the putative SPO12 protein and has no significant sequence similarities to known genes. The last 15 amino acids of this putative protein have a high negative charge, which appears to be required for function. A second sporulation-specific gene, designated SPO16, was found adjacent to SPO12 and shown to be necessary for efficient spore formation. The two genes are encoded on opposite DNA strands with only 103 nucleotides between the termination codons. Up to 700 nucleotides of the SPO12 and SPO16 transcripts are complementary, and the 3' untranslated region of the longest SPO16 transcript is complementary to all or nearly all of the SPO12 mRNA. A strain homozygous for an insertion which removes the complementarity between the SPO12 and SPO16 mRNAs has an efficiency of sporulation, number of spores per ascus, and spore viability identical to those of a wild-type strain. The complementarity therefore has either no function or only a subtle function in meiosis and sporulation.
Collapse
Affiliation(s)
- M J Malavasic
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
16
|
Some of the signals for 3'-end formation in transcription of the Saccharomyces cerevisiae Ty-D15 element are immediately downstream of the initiation site. Mol Cell Biol 1989. [PMID: 2548082 DOI: 10.1128/mcb.9.6.2431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fragments from the Ty-D15 element of Saccharomyces cerevisiae were assayed for the ability to direct 3'-end formation for RNA initiated by the GAL1 promoter. The delta, the direct repeat at each end of the element, was capable of forming 3' ends at two sites, an inefficient upstream site and an efficient downstream site near the end of the delta. Different sequences were required for 3'-end formation at these sites. For the efficient site, all transcripts had 3' ends in the delta and no downstream transcription was detected, which suggested that these sequences terminate transcription. Surprisingly, the delta region downstream of the initiation site for Ty RNA comprised part of this major site and terminated more than 50% of the transcripts that read into it. Sequences necessary for the efficient site were localized to two small regions. Both regions were upstream of the 3' end and contained similarities to a tripartite consensus sequence that has been proposed as a terminator element. Sequences near the position of the 3' end could also affect termination; a short G + C-rich sequence inserted just downstream changed an efficient terminator to an inefficient one. Initiation in the delta had no effect on the efficiency or positions or termination in that delta. A new initiation site was seen when the same delta terminated transcription, but transcriptional interference did not occur, since the amount of initiation was not decreased.
Collapse
|
17
|
Yu K, Elder RT. Some of the signals for 3'-end formation in transcription of the Saccharomyces cerevisiae Ty-D15 element are immediately downstream of the initiation site. Mol Cell Biol 1989; 9:2431-44. [PMID: 2548082 PMCID: PMC362316 DOI: 10.1128/mcb.9.6.2431-2444.1989] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fragments from the Ty-D15 element of Saccharomyces cerevisiae were assayed for the ability to direct 3'-end formation for RNA initiated by the GAL1 promoter. The delta, the direct repeat at each end of the element, was capable of forming 3' ends at two sites, an inefficient upstream site and an efficient downstream site near the end of the delta. Different sequences were required for 3'-end formation at these sites. For the efficient site, all transcripts had 3' ends in the delta and no downstream transcription was detected, which suggested that these sequences terminate transcription. Surprisingly, the delta region downstream of the initiation site for Ty RNA comprised part of this major site and terminated more than 50% of the transcripts that read into it. Sequences necessary for the efficient site were localized to two small regions. Both regions were upstream of the 3' end and contained similarities to a tripartite consensus sequence that has been proposed as a terminator element. Sequences near the position of the 3' end could also affect termination; a short G + C-rich sequence inserted just downstream changed an efficient terminator to an inefficient one. Initiation in the delta had no effect on the efficiency or positions or termination in that delta. A new initiation site was seen when the same delta terminated transcription, but transcriptional interference did not occur, since the amount of initiation was not decreased.
Collapse
Affiliation(s)
- K Yu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
18
|
Kao G, Mannix DG, Holaway BL, Finn MC, Bonny AE, Clancy MJ. Dependence of inessential late gene expression on early meiotic events in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1989; 215:490-500. [PMID: 2651894 DOI: 10.1007/bf00427048] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SPR3 is one of at least nine genes which are expressed in sporulating Saccharomyces cerevisiae cells at the time of meiosis I. We show below that strains homozygous for null alleles of SPR3 are capable of normal meiosis and the production of viable ascospores. We have also monitored SPR3 expression in a series of strains that are defective in meiotic development, using an SPR3:lacZ fusion carried on a single copy plasmid. beta-Galactosidase activity occurred at wild-type levels in diploid strains homozygous for mutations in spo13, rad50, rad57 and cdc9, but was greatly reduced in strains carrying cdc8 or spo7 defects. We conclude that SPR3 expression is a valid monitor of early meiotic development, even though the gene is inessential for the sporulation process.
Collapse
Affiliation(s)
- G Kao
- Department of Biological Sciences, University of Notre Dame, IN 46556
| | | | | | | | | | | |
Collapse
|
19
|
Dorsman JC, van Heeswijk WC, Grivell LA. Identification of two factors which bind to the upstream sequences of a number of nuclear genes coding for mitochondrial proteins and to genetic elements important for cell division in yeast. Nucleic Acids Res 1988; 16:7287-301. [PMID: 3045755 PMCID: PMC338409 DOI: 10.1093/nar/16.15.7287] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Two abundant factors, GFI and GFII which interact with the 5' flanking regions of nuclear genes coding for proteins of the mitochondrial respiratory chain have been identified. In one case (subunit VIII of QH2: cytochrome c oxidoreductase) the binding sites for both factors overlap completely and their binding is mutually exclusive. For the other 5' regions tested the GFI and GFII binding sites do not coincide. Interestingly, binding sites for GFI and GFII are also present in or at the 3' ends of the coding regions of two genes of the PHO gene family and in DNA elements important for optimal ARS and CEN function respectively. The sites recognized by GFI conform to the consensus RTCRNNNNNNACGNR, while those recognized by GFII contain the element RTCACGTG. We speculate that GFI and GFII may play a role in different cellular processes, dependent on the context of their binding sites and that one of these processes may be the coordination of the expression of genes involved in mitochondrial biogenesis with the progress of the cell cycle.
Collapse
Affiliation(s)
- J C Dorsman
- Section for Molecular Biology, Department of Molecular Cell Biology, Amsterdam, The Netherlands
| | | | | |
Collapse
|
20
|
Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol Cell Biol 1988. [PMID: 3290652 DOI: 10.1128/mcb.8.5.2184] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription directed into a Saccharomyces cerevisiae autonomously replicating sequence (ARS) causes high-frequency loss of minichromosomes. Conditionally stable artificial yeast chromosomes were constructed that contain an inducible GAL promoter upstream of ARS1. Under growth conditions in which the promoter was inactive, these chromosomes were mitotically stable; however, when the GAL promoter was induced, the chromosomes became extremely unstable as a result of transcriptional impairment of ARS function. This interference by the GAL promoter occurred only in cis but can occur from either side of ARS1. Transcriptional interference of ARS function can be monitored readily by using a visual colony-color assay (P. Hieter, C. Mann, M. Snyder, and R.W. Davis, Cell 40:381-392, 1985), which was further developed as a sensitive in vivo assay for sequences which rescue ARS from transcription. DNA fragments from the 3' ends of genes, inserted downstream of the GAL promoter, protected ARS function from transcriptional interference. This assay is expected to be independent of both RNA transcript stability and processing. Philippsen et al. have shown that transcription into a yeast centromere inhibits CEN function in vivo (L. Panzeri, I. Groth-Clausen, J. Shepard, A. Stotz, and P. Philippsen, Chromosomes Today 8:46-58, 1984). We identified two 200- to 300-base-pair DNA fragments flanking CEN4 that rescued ARS1 from transcription. Both of these fragments protected ARS from transcription when inserted in either orientation. The 3' ends of stable transcripts are encoded by fragments that protected the ARS from transcription, suggesting that the protection was achieved by transcription termination. It is suggested that protection of elements important for the replication and segregation of eucaryotic chromosomes from transcription is necessary for their proper function in vivo.
Collapse
|
21
|
Ruohola H, Baker SM, Parker R, Platt T. Orientation-dependent function of a short CYC1 DNA fragment in directing mRNA 3' end formation in yeast. Proc Natl Acad Sci U S A 1988; 85:5041-5. [PMID: 2839828 PMCID: PMC281683 DOI: 10.1073/pnas.85.14.5041] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have cloned an 82-base-pair region spanning the site of normal 3' end formation of Saccharomyces cerevisiae CYC1 mRNA into an integrative vector carrying the 5' end of the actin gene (including its intron) fused in frame to HIS4ABC sequences. This vector can confer the ability to grow on histidinol if HIS4C (encoding histidinol dehydrogenase) is sufficiently expressed. With the CYC1 fragment cloned in its wild-type (forward) orientation within the actin intron, transformants cannot grow on histidinol, whereas cells transformed with the vector carrying the reverse orientation of this fragment are able to grow well. RNA transfers demonstrate that transformants containing the forward orientation accumulate less than 40% of the control level of full-length mRNA and reveal the presence of a short, stable (approximately equal to 300 nucleotides) poly(A) RNA that represents 60-70% of the transcripts originating from the same promoter. The reverse orientation of the insert allows near-normal levels of full-length mRNA. Mapping of the 3' end of the truncated RNA indicates that poly(A) addition is variable in length but occurs at the same location as in the normal CYC1 transcript. Dominant and recessive suppressor mutations permit growth on histidinol despite the inserted fragment. Genetic analyses indicate that most of the dominant mutants are cis-acting and that the recessive mutants define a minimum of three complementation groups, indicating that defects in several different genes can restore higher levels of HIS4C expression.
Collapse
Affiliation(s)
- H Ruohola
- Department of Biochemistry, University of Rochester Medical Center, NY 14642
| | | | | | | |
Collapse
|
22
|
Functional characterization of a pyrimidine-rich element in the 5'-noncoding region of the yeast iso-1-cytochrome c gene. Mol Cell Biol 1988. [PMID: 2835656 DOI: 10.1128/mcb.8.3.1045] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A predominantly pyrimidine-rich sequence (purine in the template strand, 32 of 37 bases) is located between a functional TATA element and the corresponding transcription start site region of the Saccharomyces cerevisiae iso-1-cytochrome c (CYC1) gene. By using linker deletions and gene fusion techniques, the functional characteristics of this pyrimidine sequence were examined. Results indicate that the function of this element is to limit the accumulation of full-length mRNAs with 5' ends which map upstream of the pyrimidine-rich sequence. Data suggest that the 5'-noncoding region of the CYC1 gene possesses signals for mRNA 3'-end processing.
Collapse
|
23
|
Snyder M, Sapolsky RJ, Davis RW. Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:2184-94. [PMID: 3290652 PMCID: PMC363400 DOI: 10.1128/mcb.8.5.2184-2194.1988] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transcription directed into a Saccharomyces cerevisiae autonomously replicating sequence (ARS) causes high-frequency loss of minichromosomes. Conditionally stable artificial yeast chromosomes were constructed that contain an inducible GAL promoter upstream of ARS1. Under growth conditions in which the promoter was inactive, these chromosomes were mitotically stable; however, when the GAL promoter was induced, the chromosomes became extremely unstable as a result of transcriptional impairment of ARS function. This interference by the GAL promoter occurred only in cis but can occur from either side of ARS1. Transcriptional interference of ARS function can be monitored readily by using a visual colony-color assay (P. Hieter, C. Mann, M. Snyder, and R.W. Davis, Cell 40:381-392, 1985), which was further developed as a sensitive in vivo assay for sequences which rescue ARS from transcription. DNA fragments from the 3' ends of genes, inserted downstream of the GAL promoter, protected ARS function from transcriptional interference. This assay is expected to be independent of both RNA transcript stability and processing. Philippsen et al. have shown that transcription into a yeast centromere inhibits CEN function in vivo (L. Panzeri, I. Groth-Clausen, J. Shepard, A. Stotz, and P. Philippsen, Chromosomes Today 8:46-58, 1984). We identified two 200- to 300-base-pair DNA fragments flanking CEN4 that rescued ARS1 from transcription. Both of these fragments protected ARS from transcription when inserted in either orientation. The 3' ends of stable transcripts are encoded by fragments that protected the ARS from transcription, suggesting that the protection was achieved by transcription termination. It is suggested that protection of elements important for the replication and segregation of eucaryotic chromosomes from transcription is necessary for their proper function in vivo.
Collapse
Affiliation(s)
- M Snyder
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
24
|
McNeil JB. Functional characterization of a pyrimidine-rich element in the 5'-noncoding region of the yeast iso-1-cytochrome c gene. Mol Cell Biol 1988; 8:1045-54. [PMID: 2835656 PMCID: PMC363247 DOI: 10.1128/mcb.8.3.1045-1054.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A predominantly pyrimidine-rich sequence (purine in the template strand, 32 of 37 bases) is located between a functional TATA element and the corresponding transcription start site region of the Saccharomyces cerevisiae iso-1-cytochrome c (CYC1) gene. By using linker deletions and gene fusion techniques, the functional characteristics of this pyrimidine sequence were examined. Results indicate that the function of this element is to limit the accumulation of full-length mRNAs with 5' ends which map upstream of the pyrimidine-rich sequence. Data suggest that the 5'-noncoding region of the CYC1 gene possesses signals for mRNA 3'-end processing.
Collapse
Affiliation(s)
- J B McNeil
- Department of Microbiology, University of Toronto, Ontario, Canada
| |
Collapse
|
25
|
Holaway BL, Kao G, Finn MC, Clancy MJ. Transcriptional regulation of sporulation genes in yeast. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:449-59. [PMID: 3323843 DOI: 10.1007/bf00327196] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The relative transcription rates of three sporulation-regulated genes of yeast (SPR1, SPR2 and SPR3) were determined at intervals during sporulation, using a filter binding assay. The binding of in vivo labeled RNA to the corresponding DNAs increased 3- to 12-fold at the time of meiosis I, in parallel with the accumulation of the SPR transcripts. SPR1 and SPR3 mRNA abundance increased from less than 0.7 to 130 and 90 copies per cell, respectively, between the time of shift to sporulation medium and the initiation of spore formation. This represented a 150-to 200-fold increase in the steady-state levels of these RNAs. Similarly, the levels of beta-galactosidase present in sporulating cells harboring fusions between SPR3 and Escherichia coli lacZ increased at least 700-fold. We conclude that SPR1, SPR2 and SPR3 transcription is modulated during sporulation, possibly in response to earlier events in the process.
Collapse
Affiliation(s)
- B L Holaway
- Department of Biological Sciences, University of Notre Dame, IN 46556
| | | | | | | |
Collapse
|
26
|
Yuen L, Moss B. Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proc Natl Acad Sci U S A 1987; 84:6417-21. [PMID: 3476956 PMCID: PMC299087 DOI: 10.1073/pnas.84.18.6417] [Citation(s) in RCA: 191] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In an in vitro system containing enzymes extracted from vaccinia virions, transcription of the vaccinia growth factor gene terminated approximately 50 base pairs downstream of a thymidine-rich sequence. Deletion mutagenesis suggested the presence of two tandem termination signals. The signal was identified by replacing the 3' end of the gene with the oligonucleotide AATTTTTAT that induced downstream termination. Further analysis of the transcripts formed with a series of templates containing 16 related synthetic oligonucleotides established the minimum functional termination signal as TTTTTNT, in which N represents any nucleotide. Termination efficiency may be increased, however, by the presence of an adenosine preceding the thymidine cluster. The general use of this signal at early times in infection but not at late times is supported by a survey of vaccinia virus gene sequences.
Collapse
|