1
|
Chen MX, Zhang KL, Gao B, Yang JF, Tian Y, Das D, Fan T, Dai L, Hao GF, Yang GF, Zhang J, Zhu FY, Fang YM. Phylogenetic comparison of 5' splice site determination in central spliceosomal proteins of the U1-70K gene family, in response to developmental cues and stress conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:357-378. [PMID: 32133712 DOI: 10.1111/tpj.14735] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 05/07/2023]
Abstract
Intron-containing genes have the ability to generate multiple transcript isoforms by splicing, thereby greatly expanding the eukaryotic transcriptome and proteome. In eukaryotic cells, precursor mRNA (pre-mRNA) splicing is performed by a mega-macromolecular complex defined as a spliceosome. Among its splicing components, U1 small nuclear ribonucleoprotein (U1 snRNP) is the smallest subcomplex involved in early spliceosome assembly and 5'-splice site recognition. Its central component, named U1-70K, has been extensively characterized in animals and yeast. Very few investigations on U1-70K genes have been conducted in plants, however. To this end, we performed a comprehensive study to systematically identify 115 U1-70K genes from 67 plant species, ranging from algae to angiosperms. Phylogenetic analysis suggested that the expansion of the plant U1-70K gene family was likely to have been driven by whole-genome duplications. Subsequent comparisons of gene structures, protein domains, promoter regions and conserved splicing patterns indicated that plant U1-70Ks are likely to preserve their conserved molecular function across plant lineages and play an important functional role in response to environmental stresses. Furthermore, genetic analysis using T-DNA insertion mutants suggested that Arabidopsis U1-70K may be involved in response to osmotic stress. Our results provide a general overview of this gene family in Viridiplantae and will act as a reference source for future mechanistic studies on this U1 snRNP-specific splicing factor.
Collapse
Affiliation(s)
- Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518063, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Kai-Lu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yuan Tian
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Debatosh Das
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Tao Fan
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Lei Dai
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518063, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Jianhua Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Biology, Hong Kong Baptist University, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan-Ming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
2
|
Xia X. RNA-Seq approach for accurate characterization of splicing efficiency of yeast introns. Methods 2019; 176:25-33. [PMID: 30926533 DOI: 10.1016/j.ymeth.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 01/21/2023] Open
Abstract
Introns in different genes, or even different introns within the same gene, often have different splice sites and differ in splicing efficiency (SE). One expects mass-transcribed genes to have introns with higher SE than weakly transcribed genes. However, such a simple expectation cannot be tested directly because variable SE for these genes is often not measured. Mechanistically, SE should depend on signal strength at key splice sites (SS) such as 5'SS, 3'SS and branchpoint site (BPS), i.e., SE = F(5'SS, 3'SS, BPS). However, without SE, we again cannot model how these splice sites contribute to SE. Here I present an RNA-Seq approach to quantify SE for each of the 304 introns in yeast (Saccharomyces cerevisiae) genes, including 24 in the 5'UTR, by measuring 1) number of reads mapped to exon-exon junctions (NEE) as a proxy for the abundance of spliced form, and 2) number of reads mapped to exon-intron junction (NEI5 and NEI3 at 5' and 3' ends of intron) as a proxy for the abundance of unspliced form. The total mRNA is NTotal = NEE + p * NEI5 + (1-p) * NEI3, with the simplest p = 0.5 but statistical methods were presented to estimate p from data. An estimated p is needed because NEI5 is expected to be smaller than NEI3 due to 1) step 1 splicing occurs before step 2 so EI5 is broken before EI3, 2) enrichment of poly(A) mRNA by oligo-dT, and 3) 5' degradation. SE is defined as the proportion (NEE/NTotal). Application of the method shows that ribosomal protein messages are efficiently and mostly cotranscriptionally spliced. Yeast genes with long introns are also spliced efficiently. HAC1/YFL031W is poorly spliced partly because its splicing involves a nonspliceosome mechanism and partly because Ire1p, which participate in splicing HAC1, is hardly expressed. Many putative yeast genes have low SE, and some splice sites are incorrectly annotated.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa K1N 6N5, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
3
|
Chen L, Weinmeister R, Kralovicova J, Eperon LP, Vorechovsky I, Hudson AJ, Eperon IC. Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways. Nucleic Acids Res 2017; 45:2051-2067. [PMID: 27683217 PMCID: PMC5389562 DOI: 10.1093/nar/gkw860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
The selection of 3΄ splice sites (3΄ss) is an essential early step in mammalian RNA splicing reactions, but the processes involved are unknown. We have used single molecule methods to test whether the major components implicated in selection, the proteins U2AF35 and U2AF65 and the U2 snRNP, are able to recognize alternative candidate sites or are restricted to one pre-specified site. In the presence of adenosine triphosphate (ATP), all three components bind in a 1:1 stoichiometry with a 3΄ss. Pre-mRNA molecules with two alternative 3΄ss can be bound concurrently by two molecules of U2AF or two U2 snRNPs, so none of the components are restricted. However, concurrent occupancy inhibits splicing. Stoichiometric binding requires conditions consistent with coalescence of the 5΄ and 3΄ sites in a complex (I, initial), but if this cannot form the components show unrestricted and stochastic association. In the absence of ATP, when complex E forms, U2 snRNP association is unrestricted. However, if protein dephosphorylation is prevented, an I-like complex forms with stoichiometric association of U2 snRNPs and the U2 snRNA is base-paired to the pre-mRNA. Complex I differs from complex A in that the formation of complex A is associated with the loss of U2AF65 and 35.
Collapse
Affiliation(s)
- Li Chen
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Robert Weinmeister
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Lucy P Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Andrew J Hudson
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Chemistry, Leicester LE1 7RH, UK
| | - Ian C Eperon
- University of Leicester, Leicester Institute for Structural and Chemical Biology and Department of Molecular and Cell Biology, Leicester LE1 9HN, UK
| |
Collapse
|
4
|
Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 2017; 18:655-670. [DOI: 10.1038/nrm.2017.86] [Citation(s) in RCA: 285] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Ge L, Hoa NT, Wilson Z, Arismendi-Morillo G, Kong XT, Tajhya RB, Beeton C, Jadus MR. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int Immunopharmacol 2014; 22:427-43. [PMID: 25027630 PMCID: PMC5472047 DOI: 10.1016/j.intimp.2014.06.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/18/2022]
Abstract
The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, stretch-activated potassium channel, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of the BK channel, especially its role, and its immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered.
Collapse
Affiliation(s)
- Lisheng Ge
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Neil T Hoa
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Zechariah Wilson
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | | | - Xiao-Tang Kong
- Department of Neuro-Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin R Jadus
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Pathology and Laboratory Medicine Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA; Pathology and Laboratory Medicine, Med Sci I, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
6
|
Hodson MJ, Hudson AJ, Cherny D, Eperon IC. The transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites. Nucleic Acids Res 2012; 40:6850-62. [PMID: 22505580 PMCID: PMC3413131 DOI: 10.1093/nar/gks322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spliceosomes are assembled in stages. The first stage forms complex E, which is characterized by the presence of U1 snRNPs base-paired to the 5′ splice site, components recognizing the 3′ splice site and proteins thought to connect them. The splice sites are held in close proximity and the pre-mRNA is committed to splicing. Despite this, the sites for splicing appear not to be fixed until the next complex (A) forms. We have investigated the reasons why 5′ splice sites are not fixed in complex E, using single molecule methods to determine the stoichiometry of U1 snRNPs bound to pre-mRNA with one or two strong 5′ splice sites. In complex E most transcripts with two alternative 5′ splice sites were bound by two U1 snRNPs. However, the surplus U1 snRNPs were displaced during complex A formation in an ATP-dependent process requiring an intact 3′ splice site. This process leaves only one U1 snRNP per complex A, regardless of the number of potential sites. We propose a mechanism for selection of the 5′ splice site. Our results show that constitutive splicing components need not be present in a fixed stoichiometry in a splicing complex.
Collapse
Affiliation(s)
- Mark J Hodson
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | |
Collapse
|
7
|
Owen N, Zhou H, Malygin AA, Sangha J, Smith LD, Muntoni F, Eperon IC. Design principles for bifunctional targeted oligonucleotide enhancers of splicing. Nucleic Acids Res 2011; 39:7194-208. [PMID: 21602265 PMCID: PMC3167598 DOI: 10.1093/nar/gkr152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 01/12/2023] Open
Abstract
Controlling the patterns of splicing of specific genes is an important goal in the development of new therapies. We have shown that the splicing of a refractory exon, SMN2 exon 7, could be increased in fibroblasts derived from patients with spinal muscular atrophy by using bifunctional targeted oligonucleotide enhancers of splicing (TOES) oligonucleotides that anneal to the exon and contain a 'tail' of enhancer sequences that recruit activating proteins. We show here that there are striking agreements between the effects of oligonucleotides on splicing in vitro and on both splicing and SMN2 protein expression in patient-derived fibroblasts, indicating that the effects on splicing are the major determinant of success. Increased exon inclusion depends on the number, sequence and chemistry of the motifs that bind the activator protein SRSF1, but it is not improved by increasing the strength of annealing to the target site. The optimal oligonucleotide increases protein levels in transfected fibroblasts by a mean value of 2.6-fold (maximum 4.6-fold), and after two rounds of transfection the effect lasted for a month. Oligonucleotides targeted to the upstream exon (exon 6 in SMN) are also effective. We conclude that TOES oligonucleotides are highly effective reagents for restoring the splicing of refractory exons and can act across long introns.
Collapse
Affiliation(s)
- Nicholas Owen
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, Dubowitz Neuromuscular Centre, Institute of Child Health, UCL, London WC1N 1EH, UK and Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Haiyan Zhou
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, Dubowitz Neuromuscular Centre, Institute of Child Health, UCL, London WC1N 1EH, UK and Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey A. Malygin
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, Dubowitz Neuromuscular Centre, Institute of Child Health, UCL, London WC1N 1EH, UK and Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Jason Sangha
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, Dubowitz Neuromuscular Centre, Institute of Child Health, UCL, London WC1N 1EH, UK and Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Lindsay D. Smith
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, Dubowitz Neuromuscular Centre, Institute of Child Health, UCL, London WC1N 1EH, UK and Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Francesco Muntoni
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, Dubowitz Neuromuscular Centre, Institute of Child Health, UCL, London WC1N 1EH, UK and Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Ian C. Eperon
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, Dubowitz Neuromuscular Centre, Institute of Child Health, UCL, London WC1N 1EH, UK and Institute for Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
8
|
Gendron D, Carriero S, Garneau D, Villemaire J, Klinck R, Elela SA, Damha MJ, Chabot B. Modulation of 5' splice site selection using tailed oligonucleotides carrying splicing signals. BMC Biotechnol 2006; 6:5. [PMID: 16412215 PMCID: PMC1379639 DOI: 10.1186/1472-6750-6-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 01/13/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously described the use of tailed oligonucleotides as a means of reprogramming alternative pre-mRNA splicing in vitro and in vivo. The tailed oligonucleotides that were used interfere with splicing because they contain a portion complementary to sequences immediately upstream of the target 5' splice site combined with a non-hybridizing 5' tail carrying binding sites for the hnRNP A1/A2 proteins. In the present study, we have tested the inhibitory activity of RNA oligonucleotides carrying different tail structures. RESULTS We show that an oligonucleotide with a 5' tail containing the human beta-globin branch site sequence inhibits the use of the 5' splice site of Bcl-xL, albeit less efficiently than a tail containing binding sites for the hnRNP A1/A2 proteins. A branch site-containing tail positioned at the 3' end of the oligonucleotide also elicited splicing inhibition but not as efficiently as a 5' tail. The interfering activity of a 3' tail was improved by adding a 5' splice site sequence next to the branch site sequence. A 3' tail carrying a Y-shaped branch structure promoted similar splicing interference. The inclusion of branch site or 5' splice site sequences in the Y-shaped 3' tail further improved splicing inhibition. CONCLUSION Our in vitro results indicate that a variety of tail architectures can be used to elicit splicing interference at low nanomolar concentrations, thereby broadening the scope and the potential impact of this antisense technology.
Collapse
Affiliation(s)
- Daniel Gendron
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sandra Carriero
- Department of chemistry, McGill University, Montréal, Québec, Canada
| | - Daniel Garneau
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jonathan Villemaire
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Roscoe Klinck
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Masad J Damha
- Department of chemistry, McGill University, Montréal, Québec, Canada
| | - Benoit Chabot
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
9
|
Villemaire J, Dion I, Elela SA, Chabot B. Reprogramming alternative pre-messenger RNA splicing through the use of protein-binding antisense oligonucleotides. J Biol Chem 2003; 278:50031-9. [PMID: 14522969 DOI: 10.1074/jbc.m308897200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alternative pre-messenger RNA splicing is a major contributor to proteomic diversity in higher eukaryotes and represents a key step in the control of protein function in a large variety of biological systems. As a means of artificially altering splice site choice, we have investigated the impact of positioning proteins in the vicinity of 5' splice sites. We find that a recombinant GST-MS2 protein interferes with 5' splice site use, most efficiently when it binds upstream of that site. To broaden the use of proteins as steric inhibitors of splicing, we have tested the activity of antisense oligonucleotides carrying binding sites for the heterogeneous nuclear ribonucleoprotein A1/A2 proteins. In a HeLa cell extract, tailed oligonucleotides complementary to exonic sequences elicit strong shifts in 5' splice site selection. In four different human cell lines, an interfering oligonucleotide carrying A1/A2 binding sites also shifted the alternative splicing of the Bcl-x pre-mRNA more efficiently than oligonucleotides acting through duplex formation only. The use of protein-binding oligonucleotides that interfere with U1 small nuclear ribonucleoprotein binding therefore represents a novel and powerful approach to control splice site selection in cells.
Collapse
Affiliation(s)
- Jonathan Villemaire
- Département de microbiologie et d'infectiologie, RNA/RNP Group, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
10
|
Schmauss C. Enhanced cleavage of an atypical intron of dopamine D3-receptor pre-mRNA in chronic schizophrenia. J Neurosci 1996; 16:7902-9. [PMID: 8987818 PMCID: PMC6579200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The D2-class of dopamine receptors (D2, D3, and D4) is a target for typical and atypical neuroleptic drugs. They have been considered, therefore, as factors that may contribute to the pathophysiology of psychotic disorders. Interestingly, in cortical brain tissues obtained postmortem form patients with chronic schizophrenia D3 mRNA was found to be significantly lower than in the corresponding anatomic regions of controls. Because the expression of a truncated D3-like mRNA (named D3nf) appeared to be unaffected in schizophrenic brains, these findings suggest the possibility that the loss of D3 mRNA results from an abnormal splicing of D3 pre-mRNA in schizophrenia that is accompanied by an increased accumulation of the truncated D3nf mRNA. To test this, three approaches were taken. (1) Substrate D3 pre-mRNA was spliced in vitro in HeLa nuclear extracts. Results from these experiments show that D3nf mRNA results from the alternative removal of a short spliceosomal intron in D3 pre-mRNA that has a noncanonical 3' splice site. (2) Substrate D3 pre-mRNA was spliced in vivo in stably transfected rat GH3 cells. Despite the atypical 3' cleavage that is necessary to generate D3nf mRNA, D3 and D3nf mRNA were found to be processed at similar amounts. (3) The relative D3/D3nf splicing efficiencies were then determined in the anterior cingulate cortex of postmortem brains obtained from controls and from patients with chronic schizophrenia. Significant differences were found between the relative levels of D3 and D3nf mRNA, suggesting that an enhanced D3nf-specific splicing of D3 pre-mRNA in schizophrenia leads to a decreased expression of D3 mRNA.
Collapse
Affiliation(s)
- C Schmauss
- Department of Psychiatry and Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| |
Collapse
|
11
|
Côté J, Beaudoin J, Tacke R, Chabot B. The U1 small nuclear ribonucleoprotein/5' splice site interaction affects U2AF65 binding to the downstream 3' splice site. J Biol Chem 1995; 270:4031-6. [PMID: 7876151 DOI: 10.1074/jbc.270.8.4031] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In the gene of the neural cell adhesion molecule, the 5' splice site of the alternate exon 18 plays an important role in establishing regulated splicing profiles. To understand how the 5' splice site of exon 18 contributes to splicing regulation, we have investigated the interaction of the U2AF65 splicing factor to pre-mRNAs that contained portions of the constitutive exon 17 or the alternate exon 18 fused to exon 19 and separated by a shortened intron. Despite sharing an identical 3' splice site, only the pre-mRNA that contained a portion of exon 17 and its associated 5' splice site displayed efficient U2AF65 cross-linking. Strikingly, a G-->U mutation at position +6 of the intron, converting the 5' splice site of exon 18 into that of exon 17, stimulated U2AF65 crosslinking. The improved cross-linking efficiency of U2AF65 to a pre-mRNA carrying the 5' splice site of exon 17 required the integrity of the 5' end of U1 but not of U2 small nuclear RNA. Our results indicate that neural cell adhesion molecule 5' splice site sequences influence U2AF65 binding through a U1 small nuclear ribonucleoprotein/U2AF interaction that occurs at the commitment stage of spliceosome assembly, before stable binding of the U2 small nuclear ribonucleoprotein. Thus, the 5' splice sites of exons 17 and 18 differentially affect U2AF65 binding to the 3' splice site of exon 19. Factors that modulate U1 small nuclear ribonucleoprotein binding to these 5' splice sites may play a critical role in regulating exon 18 skipping.
Collapse
Affiliation(s)
- J Côté
- Département de Microbiologie, Faculté de Médecine, Université de Sherbrooke, Québec, Canada
| | | | | | | |
Collapse
|
12
|
Liu K, Bergson C, Levenson R, Schmauss C. On the origin of mRNA encoding the truncated dopamine D3-type receptor D3nf and detection of D3nf-like immunoreactivity in human brain. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)62033-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
13
|
James JA, Scofield RH, Harley JB. Basic amino acids predominate in the sequential autoantigenic determinants of the small nuclear 70K ribonucleoprotein. Scand J Immunol 1994; 39:557-66. [PMID: 7516572 DOI: 10.1111/j.1365-3083.1994.tb03413.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autoantibodies binding the 70K nRNP polypeptide are commonly found in the serum of patients with systemic lupus erythematosus. IgG antibodies binding overlapping octapeptides of 70K nRNP have been evaluated in 10 patients with anti-nRNP precipitins, seven patients with other autoimmune serology, and four normal human sera. Neither normal controls nor patients without an anti-nRNP precipitin significantly bind any of the 70K nRNP octapeptides. Sera containing an anti-nRNP precipitin strongly bind various combinations of eleven different regions of the 70K nRNP protein. One antigenic region is consistently the most reactive in nine of ten nRNP precipitin positive sera tested. This sequence, KDKDRDRKRRSSRSR, is highly charged and has a similar pattern of alternating basic amino acids also present in seven of the other purported humoral autoimmune epitopes of the 70K nRNP polypeptide. The closely related DRKR and ERKR are important components of two of these epitopes. All regions of the 70K peptide bound by human anti-nRNP precipitin positive sera are very rich in the basic amino acids, especially lysine (chi-square = 23.03, odds ratio = 13.3, P < 0.000001).
Collapse
Affiliation(s)
- J A James
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | | | | |
Collapse
|
14
|
Ajioka J, Swindle J. The calmodulin-ubiquitin associated genes of Trypanosoma cruzi: their identification and transcription. Mol Biochem Parasitol 1993; 57:127-36. [PMID: 8381204 DOI: 10.1016/0166-6851(93)90250-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe here the identification of the calmodulin-ubiquitin associated (CUB) genes of Trypanosoma cruzi. A single CUB gene resides in a 1.5-kb DNA sequence linking the calmodulin and ubiquitin genes in the 2.65 and 2.8 loci (CUB2.65 and CUB2.8 respectively). The CUB genes also share the same coding strand as the flanking calmodulin and ubiquitin genes. DNA sequence analysis reveals that each CUB gene contains an open reading frame which would encode a protein of 208 amino acids. The CUB protein shares homology with the recently identified calcium binding EFH5 protein of T. brucei. Transcription of the CUB genes results in the generation of a mRNA of approximately 1.0 kb. CUB cDNA sequence analysis following PCR amplification of the CUB mRNA population indicates that both genes are expressed and trans-spliced, but utilize different 3' acceptor sites for the trans-splicing reaction.
Collapse
Affiliation(s)
- J Ajioka
- Department of Microbiology and Immunology, University of Tennessee, Memphis 38163
| | | |
Collapse
|
15
|
McPheeters DS, Abelson J. Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. Cell 1992; 71:819-31. [PMID: 1423632 DOI: 10.1016/0092-8674(92)90557-s] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have used an in vitro reconstitution system to determine the effects of a large number of mutations in the highly conserved 5' terminal domain of the yeast U2 snRNA on pre-mRNA splicing. Whereas many mutations have little or no functional consequence, base substitutions in two regions were found to have drastic effects on pre-mRNA splicing. A previously unrecognized function for the U2 snRNA in the second step of splicing was found by alteration of the absolutely conserved sequence AGA upstream of the branch point recognition sequence. The effects of these mutations suggest the formation of a structure involving the U2 snRNA similar to the guanosine-binding site found in the catalytic core of group I introns.
Collapse
Affiliation(s)
- D S McPheeters
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
16
|
Abstract
Pairwise recognition of splice sites as a result of a scanning mechanism is an attractive model to explain the coordination of vertebrate splicing. Such a mechanism would predict a polarity-of-site recognition in the scanned unit, but no evidence for a polarity gradient across introns has been found. We have suggested that the exon rather than the intron is the unit of recognition in vertebrates and that polyadenylation and splicing factors interact during recognition of 3'-terminal exons. Interaction is reflected in maximal rates of in vitro polyadenylation. If scanning across the exon is operating during this interaction, then insertion of a 5' splice site should depress polyadenylation. Here we report recognition in vitro and in vivo of a 5' splice site situated within a 3'-terminal exon, and a concomitant depression of polyadenylation and ultraviolet crosslinking of a polyadenylation factor. Decreased crosslinking was only found when the 3' and 5' splice sites were within 300 nucleotides of each other. These results are consistent with an exon scanning mechanism for splice-site selection.
Collapse
Affiliation(s)
- M Niwa
- Verna and Marrs McClean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
17
|
Tazi J, Daugeron M, Cathala G, Brunel C, Jeanteur P. Adenosine phosphorothioates (ATP alpha S and ATP tau S) differentially affect the two steps of mammalian pre-mRNA splicing. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42837-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Abstract
Members of the Trypanosomatidae, which include the African trypanosomes, the American trypanosomes and the leishmanias, cause disease in vast proportions in man and his livestock and are a major detrimental factor to the social and economic well-being of the third world. Current research using the techniques of molecular biology has revealed two unusual types of mRNA processing in these protozoans; these are the addition of a shared leader sequence to the 5' ends of nuclear mRNAs by a mechanism of trans splicing, and the insertion and deletion of specific uridine residues in mitochondrial transcripts by RNA editing. The presence of these two mRNA processing pathways in the Trypanosomatidae has profound consequences for the organization and expression of their genetic information.
Collapse
|
19
|
Bindereif A, Green MR. Identification and functional analysis of mammalian splicing factors. GENETIC ENGINEERING 1991; 12:201-24. [PMID: 1368558 DOI: 10.1007/978-1-4613-0641-2_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Affiliation(s)
- A Bindereif
- Max-Planck-Institut für Molekulare Genetik Otto-Warburg-Laboratorium, Berlin, Germany
| | | |
Collapse
|
20
|
Cunningham SA, Else AJ, Potter BV, Eperon IC. Influences of separation and adjacent sequences on the use of alternative 5' splice sites. J Mol Biol 1991; 217:265-81. [PMID: 1825120 DOI: 10.1016/0022-2836(91)90541-d] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Single nucleotide changes to the sequence between two alternative 5' splice sites, separated by 25 nucleotides in a beta-globin gene derivative, caused substantial shifts in pre-mRNA splicing preferences, both in vivo and in vitro. An activating sequence for splicing was located. Models for the recognition by U1 small nuclear ribonucleoproteins (snRNPs) of competing 5' splice sites were tested by altering the distance separating the two sites. Use of the upstream splice site declined sharply when it was separated from the downstream (natural) site by distances of 40 nucleotides or more. This effect was reversed in vivo, but not in vitro, by altering the upstream sequence to that of a consensus 5' splice site sequence. Dilution of an extract used for splicing in vitro shifted preferences when the sites were close towards the downstream site. We conclude that the mechanism of selection depends on the distance apart of the potential splice sites and that with close sites steric interference between factors bound to both sites may impede splicing and affect splicing preferences.
Collapse
|
21
|
Nadal-Ginard B, Smith CW, Patton JG, Breitbart RE. Alternative splicing is an efficient mechanism for the generation of protein diversity: contractile protein genes as a model system. ADVANCES IN ENZYME REGULATION 1991; 31:261-86. [PMID: 1877390 DOI: 10.1016/0065-2571(91)90017-g] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alternative splicing has emerged in recent years as a widespread device for regulating gene expression and generating protein diversity. Its analysis has provided some mechanistic understanding of this form of gene regulation and, in addition, has provided new insights into some fundamental aspects of splicing. This mode of regulation is particularly prevalent in muscle cells, where genes such as troponin T are able to generate up to 64 different isoforms from a single transcriptional unit. Alternative splicing has the potential to raise the coding capacity of the small multigene families that code for the contractile proteins so that several million structurally different sarcomeres can be generated. The mammalian alpha-tropomyosin gene has proved particularly useful for the analysis of the mechanisms involved in this type of regulation. In particular, the mutually exclusive splicing of exons 2 and 3 has provided answers about the processes involved in the three main regulatory steps: (a) establishment of mutually exclusive behavior; (b) the elements involved in setting up the default pattern of splicing, and (c) the switch from the default to the regulated splicing pattern in some cell types.
Collapse
Affiliation(s)
- B Nadal-Ginard
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital, Boston, MA
| | | | | | | |
Collapse
|
22
|
Lührmann R, Kastner B, Bach M. Structure of spliceosomal snRNPs and their role in pre-mRNA splicing. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1087:265-92. [PMID: 2147394 DOI: 10.1016/0167-4781(90)90001-i] [Citation(s) in RCA: 293] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- R Lührmann
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg F.R.G
| | | | | |
Collapse
|
23
|
A difference in the splicing patterns of the closely related normal and variant human growth hormone gene transcripts is determined by a minimal sequence divergence between two potential splice-acceptor sites. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45452-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Barabino SM, Blencowe BJ, Ryder U, Sproat BS, Lamond AI. Targeted snRNP depletion reveals an additional role for mammalian U1 snRNP in spliceosome assembly. Cell 1990; 63:293-302. [PMID: 2170025 DOI: 10.1016/0092-8674(90)90162-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HeLa cell nuclear splicing extracts have been prepared that are specifically and efficiently depleted of U1, U2, or U4/U6 snRNPs by antisense affinity chromatography using biotinylated 2'-OMe RNA oligonucleotides. Removal of each snRNP particle prevents pre-mRNA splicing but arrests spliceosome formation at different stages of assembly. Mixing extracts depleted for different snRNP particles restores formation of functional splicing complexes. Specific binding of factors to the 3' splice site region is still detected in snRNP-depleted extracts. Depletion of U1 snRNP impairs stable binding of U2 snRNP to the pre-mRNA branch site. This role of U1 snRNP in promoting stable preslicing complex formation is independent of the U1 snRNA-5' splice site interaction.
Collapse
Affiliation(s)
- S M Barabino
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
25
|
Burgess S, Couto JR, Guthrie C. A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell 1990; 60:705-17. [PMID: 2138057 DOI: 10.1016/0092-8674(90)90086-t] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously described a dominant suppressor of the splicing defect conferred by an A----C intron branchpoint mutation in S. cerevisiae. Suppression occurs by increasing the frequency with which the mutant branchpoint is utilized. We have now cloned the genomic region encoding the prp16-1 suppressor function and have demonstrated that PRP16 is essential for viability. A 1071 amino acid open reading frame contains sequence motifs characteristic of an NTP binding fold and further similarities to a superfamily of proteins that includes members with demonstrated RNA-dependent ATPase activity. A single nucleotide change necessary to confer the prp16-1 suppressor phenotype results in a Tyr----Asp substitution near the "A site" consensus for NTP binding proteins. We propose that PRP16 is an excellent candidate for mediating one of the many ATP-requiring steps of spliceosome assembly and that accuracy of branchpoint recognition may be coupled to ATP binding and/or hydrolysis.
Collapse
Affiliation(s)
- S Burgess
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | | | |
Collapse
|
26
|
Lear AL, Eperon LP, Wheatley IM, Eperon IC. Hierarchy for 5' splice site preference determined in vivo. J Mol Biol 1990; 211:103-15. [PMID: 2299664 DOI: 10.1016/0022-2836(90)90014-d] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The relationship between preferences among alternative 5' splice sites and their sequences has been investigated for 37 sequences by assessing their use in splicing relative to the 5' splice site of IVS-2 of rabbit beta-globin. There are strong correlations between the intrinsic strength of a 5' splice site and both the extent to which it resembles the consensus sequence and the calculated stability of its interactions with U1 small nuclear RNA. However, present methods of calculating either of the latter values do not allow predictions to be made of the relative preferences among a small number of sequences.
Collapse
Affiliation(s)
- A L Lear
- Department of Biochemistry, University of Leicester, U.K
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- G W Zieve
- Department of Basic Sciences, Hutchinson Cancer Research, Seattle, Washington
| | | |
Collapse
|
28
|
Krämer A. Site-specific degradation of RNA of small nuclear ribonucleoprotein particles with complementary oligodeoxynucleotides and RNase H. Methods Enzymol 1990; 181:284-92. [PMID: 2166214 DOI: 10.1016/0076-6879(90)81129-i] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
29
|
Blencowe BJ, Sproat BS, Ryder U, Barabino S, Lamond AI. Antisense probing of the human U4/U6 snRNP with biotinylated 2'-OMe RNA oligonucleotides. Cell 1989; 59:531-9. [PMID: 2478298 DOI: 10.1016/0092-8674(89)90036-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have used antisense 2'-OMe RNA oligonucleotides carrying four 5'-terminal biotin residues to probe the structure and function of the human U4/U6 snRNP. Nine oligonucleotides, complementary to multiple regions of U4 and U6 snRNAs, bound stably and specifically to U4/U6 snRNP. This allowed for efficient and selective removal of U4/U6 from HeLa cell nuclear extracts. Binding of oligonucleotides to certain snRNA domains inhibited splicing and affected the U4-U6 interaction. Pre-mRNA and splicing products could also be affinity-selected through binding of the oligonucleotides to U4/U6 snRNPs in splicing complexes. The results suggest that U4 snRNP is not released during spliceosome assembly.
Collapse
Affiliation(s)
- B J Blencowe
- European Molecular Biology Laboratory, Heidelberg Federal Republic of Germany
| | | | | | | | | |
Collapse
|
30
|
Lamond AI, Sproat B, Ryder U, Hamm J. Probing the structure and function of U2 snRNP with antisense oligonucleotides made of 2'-OMe RNA. Cell 1989; 58:383-90. [PMID: 2526684 DOI: 10.1016/0092-8674(89)90852-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have used oligonucleotides made of 2'-OMe RNA to analyze the role of separate domains of U2 snRNA in the splicing process. We show that antisense 2'-OMe RNA oligonucleotides bind efficiently and specifically to U2 snRNP and demonstrate that masking of two separate regions of U2 snRNA can inhibit splicing by affecting different steps in the spliceosome assembly pathway. Masking the 5' terminus of U2 snRNA does not prevent U2 snRNP binding to pre-mRNA but blocks subsequent assembly of a functional spliceosome. By contrast, masking of U2 sequences complementary to the pre-mRNA branch site completely inhibits binding of pre-mRNA. Hybrid formation at the branch site complementary region also triggers a specific change which affects the 5' terminus of U2 snRNA.
Collapse
Affiliation(s)
- A I Lamond
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
31
|
Query CC, Bentley RC, Keene JD. A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 1989; 57:89-101. [PMID: 2467746 DOI: 10.1016/0092-8674(89)90175-x] [Citation(s) in RCA: 487] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have defined the RNA binding domain of the 70K protein component of the U1 small nuclear ribonucleoprotein to a region of 111 amino acids. This domain encompasses an octamer sequence that has been observed in other proteins associated with RNA, but has not previously been shown to bind directly to a specific RNA sequence. Within the U1 RNA binding domain, an 80 amino acid consensus sequence that is conserved in many presumed RNA binding proteins was discerned. This sequence pattern appears to represent an RNA recognition motif (RRM) characteristic of a distinct family of proteins. By site-directed mutagenesis, we determined that the 70K protein consists of 437 amino acids (52 kd), and found that its aberrant electrophoretic migration is due to a carboxy-terminal charged domain structurally similar to two Drosophila proteins (su(wa) and tra) that may regulate alternative pre-messenger RNA splicing.
Collapse
Affiliation(s)
- C C Query
- Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
32
|
Smith CW, Nadal-Ginard B. Mutually exclusive splicing of alpha-tropomyosin exons enforced by an unusual lariat branch point location: implications for constitutive splicing. Cell 1989; 56:749-58. [PMID: 2924347 DOI: 10.1016/0092-8674(89)90678-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alternative splicing of alpha-tropomyosin pre-mRNA involves mutually exclusive utilization of exons 2 and 3, exon 3 being preferentially selected in most cells. This mutually exclusive behavior is enforced by absolute incompatibility between the adjacent splice sites of the two exons, due to close proximity of the exon 3 branch point to exon 2. The branch point, with an associated polypyrimidine tract, is in an unusual location, 177 nt upstream of the acceptor, only 42 nt from the exon 2 splice donor site. Splicing of exon 2 to 3 is consequently blocked prior to formation of an active spliceosome complex. This block to splicing can be relieved by insertion of spacer elements that increase the donor site-branch point separation to 51-59 nt. The unconventional relative location of the constitutive cis splicing elements therefore provides a simple mechanistic basis for strict mutually exclusive splicing. These results not only demonstrate that the branch point is not specified by proximity to the splice acceptor site, but rather suggest that it is the acceptor site which is specified relative to the branch point.
Collapse
Affiliation(s)
- C W Smith
- Laboratory of Molecular and Cellular Cardiology, Howard Hughes Medical Institute, Boston, Massachusetts
| | | |
Collapse
|
33
|
Tan EM. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 1989; 44:93-151. [PMID: 2646863 DOI: 10.1016/s0065-2776(08)60641-0] [Citation(s) in RCA: 1086] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- E M Tan
- W. M. Keck Autoimmune Disease Center, Scripps Clinic and Research Foundation, La Jolla, California 92037
| |
Collapse
|
34
|
Substitution of pre-mRNA with phosphorothioate linkages reveals a new splicing-related reaction. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37754-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Abstract
Mammalian spliceosomes were purified in preparative amounts by gel filtration chromatography and shown to be functional by in vitro complementation experiments. The column fractions containing spliceosomes are enriched in the snRNAs U1, U2, U4, U5, and U6 and a subset of proteins present in the nuclear extract. Splicing intermediates, the entire set of snRNAs, and the enriched proteins can be immunoprecipitated with three different monoclonal antibodies that recognize snRNP determinants. At least one U1 snRNP is present in each spliceosome since the particles are quantitatively immunoprecipitated by an anti-U1 snRNP monoclonal antibody. Examination of the spliceosome fractions by EM revealed a relatively homogeneous population of 40-60 nm particles with a striking morphology. Evidence that these particles are spliceosomes is their sensitivity to micrococcal nuclease, their ATP-dependent assembly, and their immunoprecipitation with a trimethyl cap monoclonal antibody. In addition, pre-mRNA was visualized in the particles by EM.
Collapse
Affiliation(s)
- R Reed
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
36
|
Ruskin B, Zamore PD, Green MR. A factor, U2AF, is required for U2 snRNP binding and splicing complex assembly. Cell 1988; 52:207-19. [PMID: 2963698 DOI: 10.1016/0092-8674(88)90509-0] [Citation(s) in RCA: 415] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pre-mRNA splicing complex assembly is mediated by two specific pre-mRNA-snRNP interactions: U1 snRNP binds to the 5' splice site and U2 snRNP binds to the branch point. Here we show that unlike a purified U1 snRNP, which can bind to a 5' splice site, a partially purified U2 snRNP cannot interact with its target pre-mRNA sequence. We identify a previously uncharacterized activity, U2AF, that is required for the U2 snRNP-branch point interaction and splicing complex formation. Using RNA substrate exclusion and competition assays, we demonstrate that U2AF binds to the 3' splice site region prior to the U2 snRNP-branch point interaction. This provides an explanation for the necessity of the 3' splice site region in U2 snRNP binding and, hence, the first step of splicing.
Collapse
Affiliation(s)
- B Ruskin
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
37
|
Affiliation(s)
- C M Stoltzfus
- Department of Microbiology, University of Iowa, Iowa City 52242
| |
Collapse
|
38
|
Lossky M, Anderson GJ, Jackson SP, Beggs J. Identification of a yeast snRNP protein and detection of snRNP-snRNP interactions. Cell 1987; 51:1019-26. [PMID: 2961458 DOI: 10.1016/0092-8674(87)90588-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RNA8 gene of Saccharomyces cerevisiae encodes an unusually large (260 kd) protein required for pre-mRNA splicing. Immunological procedures have been used to demonstrate that the RNA8 protein is in stable association with the small nuclear RNAs snR7L and snR7S, which are also known to be required for splicing and which are present in spliceosomal complexes. RNA8 is also involved in an ATP-dependent association with two other small nuclear RNAs, snR14 and snR6. It is proposed that this represents an ATP-dependent interaction between small nuclear ribonucleoprotein particles that precedes their entry into the spliceosome.
Collapse
Affiliation(s)
- M Lossky
- Department of Molecular Biology, University of Edinburgh, Scotland
| | | | | | | |
Collapse
|
39
|
Krämer A. Analysis of RNase-A-resistant regions of adenovirus 2 major late precursor-mRNA in splicing extracts reveals an ordered interaction of nuclear components with the substrate RNA. J Mol Biol 1987; 196:559-73. [PMID: 3681967 DOI: 10.1016/0022-2836(87)90032-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An RNase A protection assay was employed to investigate the interaction of nuclear components with a precursor-mRNA derived from the adenovirus 2 major late transcription unit in a splicing extract from HeLa cells. Upon incubation in the extract, two regions in the precursor-RNA become resistant to digestion with RNase A. After short incubation times (5 min) at 30 degrees C, fragments mapping upstream from the branch point in the intron are obtained. After ten minutes or more, additional oligonucleotides, derived from the 5' splice site, are protected. RNase A protection of different RNA substrates demonstrates that a 5' splice site is not required for the binding of components to the branch point region. For interaction with this site, the polypyrimidine stretch just upstream from the 3' splice site is essential. Binding to the 5' splice site occurs only in the presence of an intact 3' end of the intron. Preincubation of the extract with excess unlabelled RNA containing only a 3' splice site leads to efficient competition of binding, both in the branch point region and at the 5' splice site, whereas an RNA that contains only 5'-splice-site sequences has no effect on the interaction with the mRNA precursor. This indicates that stable association with the 5' splice site requires prior binding of components in the branch point region. When splicing complexes are digested with RNase A, it becomes apparent that only the branch point region is sequestered into a ribonucleoprotein (RNP) structure in the 35 S complex. The 5' splice site becomes resistant to RNase A only when a 50 S splicing complex has been assembled. Degradation of specific regions in U1, U2 and U4 RNA with complementary oligodeoxynucleotides and RNase H has been used to analyse involvement of the U small nuclear RNPs (snRNPs) in the protection reaction. The 5' end of U2 RNA is essential for protection of the branch point region. RNA sequences in a loop of U2 RNA (nucleotides 65 to 78) are required for the formation of an RNase-A-resistant structure at the 5' splice site. Taken together, these results suggest that U2 snRNP participates in the formation of a pre-splicing complex, the 5' end of its RNA being involved in the observed binding. Conversion to a 50 S splicing complex is obtained after the binding of U1 and U4/U6 snRNPs, which also requires sequences in a loop of U2 RNA. Possible interactions between the individual snRNPs and between snRNPs and precursor-mRNA are discussed.
Collapse
Affiliation(s)
- A Krämer
- Division of Molecular Biology, German Cancer Research Centre, Heidelberg
| |
Collapse
|
40
|
Parent A, Zeitlin S, Efstratiadis A. Minimal exon sequence requirements for efficient in vitro splicing of mono-intronic nuclear pre-mRNA. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)60957-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Noble JC, Pan ZQ, Prives C, Manley JL. Splicing of SV40 early pre-mRNA to large T and small t mRNAs utilizes different patterns of lariat branch sites. Cell 1987; 50:227-36. [PMID: 3036371 DOI: 10.1016/0092-8674(87)90218-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To explore the mechanism and control of alternative splicing, we have characterized the products formed by splicing of SV40 early pre-mRNA in vitro and in vivo. Large T and small t mRNAs are derived from this precursor by joining alternative 5' splice sites to a single shared 3' splice site. In contrast to pre-mRNAs studied previously, we have shown that splicing to large T RNA involves the utilization of multiple lariat branch sites, while small t splicing uses a single branch site. Interestingly, the predominant branch sites utilized in splicing of large T RNA in vitro were found to differ in nuclear extracts from HeLa and human 293 cells, correlated with previously observed differences in the ratio of large T to small t mRNAs produced in the two cell types. To test the significance of this correlation, we examined the products formed by splicing of an SV40 early precursor microinjected into X. laevis oocytes. Strikingly, both the pattern of branch sites used in large T splicing and the ratio of large T to small t mRNAs produced were found to be identical to those observed in 293 cells and extracts.
Collapse
|
42
|
Konarska MM, Sharp PA. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 1987; 49:763-74. [PMID: 2953438 DOI: 10.1016/0092-8674(87)90614-3] [Citation(s) in RCA: 431] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrophoretic separation of ribonucleoprotein particles in a nondenaturing gel was used to analyze the splicing of mRNA precursors. Early in the reaction, a complex formed consisting of the U2 small nuclear ribonucleoprotein particle (snRNP) bound to sequences upstream of the 3' splice site. This complex is modeled as a precursor of a larger complex, the spliceosome, which contains U2, U4/6, and U5 snRNPs. Conversion of the U2 snRNP-precursor RNA complex to the spliceosome probably involves binding of a single multi-snRNP particle containing U4/6 and U5 snRNPs. The excised intron was released in a complex containing U5, U6, and probably U2 snRNPs. Surprisingly, U4 snRNP was not part of the intron-containing complex, suggesting that U4/6 snRNP disassembles and assembles during splicing. Subsequently, the reassembled U4/6 snRNP would associate with U5 snRNP and participate in de novo spliceosome formation. U1 snRNP was not detected in any of the splicing complexes.
Collapse
|
43
|
Abstract
Yeast contains at least 24 snRNAs, many of which are dispensable for viability. We recently demonstrated that a small subset of these RNAs has a functional binding site for the Sm antigen, a hallmark of metazoan snRNAs involved in mRNA processing. Here we show that one of these snRNAs, snR7, is required for growth. To determine the biochemical basis of lethality in cells lacking snR7, we engineered the conditional synthesis of snR7 by fusing the snRNA coding sequences to the yeast GAL1 control region. Cells depleted for the SNR7 gene product by growth on glucose for five generations show marked accumulation of unspliced mRNA precursors from the four intron-containing genes tested. In some cases, intron-exon 2 lariats also accumulate. We have identified a 70 nucleotide domain within snR7 with limited sequence-specific but striking structural homology to the mammalian snRNA U5. We conclude that mRNA splicing in yeast requires the function of a U5-like snRNA.
Collapse
|